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Gravitational clock compass and the detection of gravitational waves
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We present an alternative derivation of the gravitational clock compass and show how such a device
can be used for the detection of gravitational waves. Explicit compass setups are constructed in special
types of space-times, namely for exact plane gravitational waves and for waves moving radially relative to

an observer.
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I. INTRODUCTION

Modern clocks reached an unprecedented level of
accuracy and stability [1-7] in recent years. Therefore it
appears obvious to utilize them for a direct detection of the
gravitational field.

Building upon a preceding series of works [8—10]—in
which we derived general prescriptions for the setup of the
constituents of a device called a “gravitational compass”
[11] and a “clock compass,” i.e., realizations of gradiom-
eters in the context of the theory of general relativity—we
are now going to study how clocks can be used in an
operational way to explicitly map gravitational wave space-
times by means of mutual frequency comparisons.

In a previous work [8] on the standard gravitational
compass we employed a covariant expansion technique
based on Synge’s world function [12,13], while in the
context of the clock compass [9] the derivation was based
on the construction of a suitable normal coordinate system.
Here we present an alternative approximation technique,
motivated by earlier work on radiation from isolated systems
[14] and on work on the equations of motion in general
relativity [15,16]. It offers a different perspective on the
derivation of the measurable frequency ratio between the
clocks and is not, like [9], based on [17] as a starting point.

Implementing the gravitational compass in the cases of
explicit gravitational field models involves working in a
coordinate system since the models are expressed in a
coordinate system. This paper demonstrates how one might
do this since itis in a coordinate system which (i) respects, or
is tailored to, the geometry and (ii) applies to any model
since it involves six functions of the four coordinates. The
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examples we describe demonstrate that even working in a
suitable coordinate system the application to explicit models
involving gravitational radiation is a complex procedure.

The structure of the paper is as follows: In Sec. II we
review a suitable form of the flat space-time metric around
a world line along in a reference frame carried by a general
observer. In the subsequent Secs. III and IV an expression
for the frequency ratio between a clock carried by the
observer and a clock in the vicinity of his world line is
given in a flat as well as in a curved background. This is
followed by a derivation of the frequency ratio in a plane
gravitational wave background in the Secs. V and VI, as
well as for radial waves in Sec. VIL. In Sec. VIII we show
how an ensemble of clocks has to be prepared in order to
allow for a measurement of all independent components of
the curvature tensor through mutual frequency comparisons
of the clocks in the previously derived space-times. We
draw our conclusions in Sec. IX. Appendix A contains a
brief overview of the notations and conventions used
throughout the article, whereas some consistency checks
are given in Appendix B.

II. MINKOWSKIAN PRELIMINARIES

In this section we demonstrate how to construct a
coordinate system for Minkowskian space-time based on
a family of spacelike hypersurfaces since the extension of
this construction to general curved space-times is the
central feature of this paper. The construction in this
section leads to a particularly useful form [Eq. (30)] of
the Minkowskian line element which is important for the
derivation of the frequency ratio in flat space-time in the
next section. In addition basic formulas [Eqgs. (57)—(61)] in
the Minkowskian case play an important role in the
neighborhood of a timelike world line in the general curved
space-time case later.

© 2020 American Physical Society
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We begin with the Minkowskian line element in rec-
tangular Cartesian coordinates and time X' = (X,Y,Z,T):

ds® = —(dX)? = (dY)? = (dZ)* + (dT)? = n;dX'dX’. (1)
Writing
X =wi(u) + rp'(u), (2)
with
pir' =1, (3)

we see that p' is a unit spacelike vector field defined along
the world line, which we take to be timelike with u taken to
be proper-time or arc length along it. Hence

i

= ith
du W

v (u) v;vt = +1. (4)

Thus v(u) is the unit timelike tangent vector field to
r=0 and is therefore the 4-velocity of an observer
with world line r = 0, see Fig. 1 for a sketch of the setup.
The 4—acceleration of an observer with world line r = 0 is

v
Cdu’

a'(u) (5)
and this satisfies ;2 = 0 on account of the second of (4).
The unit spacelike vector field p’ defined along r =0
is assumed to be orthogonal to r = 0 at each of its points
and thus

w(u)

FIG. 1. Construction of the coordinates of a point X in the
vicinity the timelike world line w(u) parametrized by the proper
time u. The parameter r is centered on the world line, and the
spacelike vector p' is chosen to be orthogonal to the velocity v’
along the world line.

vipi =0, (6)

We are free to choose the transport law for p’ along r = 0
subject to ensuring that (3) and (6) are preserved at all
points of » = 0. For our present purposes we construct the
transport law for p’ as follows: Begin by defining an
orthonormal tetrad {/1’('0)} with a = 1, 2, 3, 4, at a point of
r =0 with

”i.i’léa)’%) =Na)b) = diag(—l, -1,-1, —l—]). (7)

Tetrad indices (or labels) will be those indices with round
brackets around them. They will be raised and lowered with

n'@®) and N(a)(») Tespectively with the former defined by
N(ay oy () = 85. We shall choose

A,y =0, (8)
and we can invert (7) to read
n = 0O Xy = —Hohlg T )

with henceforth Greek indices taking values 1, 2, 3. On
account of (8) /12 2 is extended to a field on r = 0 since we

shall take (8) to hold at all points of r = 0 and thus
Ty () = vi(w), (10)

for all u. We define Aéa)(u) along r = 0 by requiring this
orthonormal triad to be transported according to the law:

i, )

W:_U afﬂ(a)j—l—a)fA(a)j, (11)
fora = 1,2, 3. Here "/ (1) = —@/'(u) and "/ v; = 0. The
first term on the right-hand side of (11) represents Fermi—
Walker transport while the second term represents transport

with rigid rotation. The transport law (11) preserves the
scalar products

nl]ll(a)/lff}') = _5aﬁ and Ui/léa) = 0, (12)

along r = 0. Multiplying (9) by p; we have, on account
of (6),

P'= =Py = Py, (13)

a = —a(,,)/léa) = a(“)/léa), (14)

i
(a

with p,) = p,»xl’('a) and a(q) = a;4 ) For future reference

we note that
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8P WP =+1 and a'p;=—a(p =awpr'”. (15)

We will now take p(® to be independent of the proper time
u and parametrize p(® with the stereographic variables x, y
(with —o0 < X,y < 400) as

1
p =Pglx, p@=p5ly, p®=ps! (1(;8 +y?) - 1),
(16)

with

1
P0:1+Z(x2+y2)' (17)

It now follows from (11), (13), and (16) that p’ obeys,
along » = 0, the transport law

ap'
ou
Here again the first term on the right-hand side is Fermi—
Walker transport while the second term represents a rigid

rotation.
We now have

—v'(a’p;) + @ p;. (18)

op' opi op'op”
A e O
api apl _ ap<a) ap(ﬁ> _ po (20)
ay ay P oy oy O
api apl - ap<a> ap(ﬁ> -
ox 0y Oap ox 0y 0 (21)
Using (18) we find that
dp; Op' ap
dx ou @B gy P
Op! ()
dp;op' dp (22)

dy Ou = O)(p) dy p

It will also be useful to have the formulas:

8p(“) 8p(/}) 8[7((1) ap(/})
P? = 5% — p@ph) 23
0( Ox Ox dy Oy ) PP (23)
and
9 p@ OP,Op'® OP,Op'®
—_p2 ((1)_P—l 0 —1 0 24
ox? oP O ox ox O 9y dy’ (24)
% p@ OP,Op@ OP,0p @
— _p2pl@) 4 p-l 0 _p-1Y70 . (25
oy? 0P+ Ox Ox O gy dy (25)
2 (a) () (@)
o _ —p-l %81) —_p! %81) (26)

oxdy % 9y ox O ox gy’

which can be verified by direct substitution from (16) or
otherwise.

Now (2) gives X' in terms of x, v, r, u. To obtain the
Minkowskian line element in coordinates x, y, r, u we first
have from (2)

i i

, 0 ap'
)du + pldr+ ra—idx—i— ra—l;dy. (27)

. . Jdp
Xl: 1
d <v +r8u

Now using the scalar products (19)—(22) the Minkowskian
line element (1) becomes

dS2 = l’]l]XmdXJ,
(a)

0
= —r?Py2(dx* +dy*) + 2w g ) gx PP dudx

opl@
g pPdudy — dr*
y

+2riw )
+{(1=hor)? = o) @@ pp' P du?,  (28)
with
hy = a;p" = ag,p', (29)
by (15). We can rewrite (28) in the neat form

ds* = —r’Py*{(dx + agdu)?® + (dy + bydu)?}

—dr* + (1= hor)*du, (30)
with
ap(a)
ay = =Piw ) 5P
by = —P§wa)p) 8—}]17(/5)’ (31)
since
ap(a> 2 ap(a) 2
Pg (a’(a)(ﬂ) o P’ >) + P <(‘)(a)(ﬁ) o P
= 57 0o @() (5 P\ PP (32)

The last equation here is a consequence of (23). Using (24)
and (25) we see that

aao 8b0
—_— =, 33
Oox Oy (33)
and so it follows that we can write
Jq Jq
apg = a—y and bo = a, (34)
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with the function ¢ given by

1 1
(x2 —yz)a)(l)(z) +y<1 +4x _E 2)

N =

q(x,y,u) =

1,1
Xw<1><s)+X<1—12x +4y> o)) (35)

For future convenience we define the 3—vectors

1—7) e (p(n’p(z)’p(:i))’ a (a(l)’a(Z)’a@))’
& = (@0, P01 Q@) (36)

Using the standard notation of the scalar product (or “dot
product”) of 3—vectors and for the vector product (or “cross
product”) of 3—vectors we have

- o op\ @

hoz—a.p’ aoz—P%W(wxﬁ)(a)’
ap((l) - o
by = —P§ dy (@ x p), (37)

from which we find, using (23), that

Po*(a5 + bg) = (& x p) - (@ x p) = |&x p|>.  (38)
In the light of the foregoing we can now say that (2),

written more explicitly, reads

wi(u) + rp'(x, y, u), (39)

which implicitly determines x, y, r, u as scalar functions of
X' on Minkowskian space-time. We will need the gradients
of these functions with respect to X/, denoted by a comma
in each case. To obtain these we start by differentiating (39)
with respect to X/ giving

X =

i i, op' i op' op'
5j:<7) -I—rau)u,j—i—p r,(,-+r§x.j+ra—yy_j. (40)

Multiplying this by w; p;, dp;/Ox and Op;/dy yields
successively

=1 =horyu; = u;=(1-hor)"'v;, (41)
pj=-r;=r;=-pj (42)
8Pj apz ap
“Fj = rPy%x;
ox | ox ou T o
P20p,
= x;+aou; = —70%, (43)
apj apl ap
“Pj_ _ p2
Oy (’9y ou T 0
P2Op;
:>y'j+b0u’j:_706—y]’ (44)

with the final two cases relying on (22) and (31). We first
note from (41)—(44) that

.0 0 0 8 0 0
: —p< +y,8 +r; »—>=—- (45)

P oxi o o Miou) " or

Substituting (41)—(44) back into (40), using (18) and
raising the covariant index using 7"/, we have

- dp'op’  op'op’ S
j— _p2| 2 4 88 ) pipi iy
g (3}( Ox  OJy Oy pp vy
ap' 0 )
+r(1 = hor)™' R w*py — ag—— v —by— v v/, (46)
Ox dy
However the final term here vanishes since
ap' . ap'
o' Pk—ao O — by dy
0 8
(5%) Py + ao ‘;( +ho, )/1’“ (47)
and
op@ op'®
b
%~ 5y + 2 dy
_ , apW op@  gpt) gp@
0% (r)(6) Ox Ox dy Oy
=] (g(y)(ﬁ)p(ﬁ>(57a — p(y)p(a>)
(23) .
= ol )(ﬂ)p(/),)_ (48)

Hence (46) simplifies to

y op' op’
ij __ P
7 <6x Ox

ap'op’ S
RLLE Y i, (4
By 8y> p'p! +v'v (49)

The line element (30) can be written
ds? = =(911)? = (902 = (92 + (92, (50)
with the basis 1-forms given by

I = rP5!(dx + agdu) = rPy' (x; + agu;)dX'

8])1 ap(a) .
22 o (51)
8@ = rP5'(dy + bodu) = rPy' (y,; + bou;)dX’
op; op' '
=P, Ligxi = —p AayidX', 52
0 8 07 a ()i ( )
=dr = r‘idXi = —pidXi = _p(a)/’{(a)idxi7 (53)

W =(1 = rho)du = (1 = rho)udX' = v;dX'. (54
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Finally we shall also require p; ; and we can obtain this
by rewriting (40), using (41) and (42), as

5;'- =viu;+p'r;+rp';
= (1 =rhg)™"v'v;—p'p;+rp' ;. (55)

Lowering the contravariant index with 7;; gives

1
pPij = ?{'7’7 +pip; = (1 =rho) wv;}. (56)

Using the basis 1-forms listed in (51)—(54) we derive the
following formulas which will prove useful later:

o 1 o
Pii¥8h) === Py (57)
Pii81) ) = 0= pi;9(5 ). (58)
. . h
i J 0
Pi,j19(4)‘9(4) = 71 — rho’ (59)
P8 = 0= Pii¥p 8 (60)
from which, in particular, we find
o 2-3rhy 2
=20 2 4 0(r), 61
M= oy = o). ()

with the latter holding for small values of r.

III. FREQUENCY RATIO IN FLAT SPACE-TIME

With X' = (X,Y,Z,T) and x' = (x,y,r,u) the para-
metric equations of an arbitrary timelike world line, with
arc length s as parameter along it, are

X' =Xi(s) & x' = x(s), (62)
with
dx' dx’
M gs ds + (63)

Using (27) and writing

dx' dx'du
_——= 4
ds duds’ (64)

in effect changing from the parameter s to the parameter u
along the arbitrary world line, we can write
dX'  du
ds ds

(14 (G- p)rjv’ + W(a),{l('a)}, (65)

with

op@ dy

dr op'? dx .
dy du

w@ = pla) -
p du+r Ox du

(66)

Substituting (65) into (63) we obtain

(&) =a+@pre-1we. @)

du
with
W=ii+r(@xp), (68)
and
- dr_ dx0p dydp
=— ——tr——. 6
" dup+rdu8x+rdu8y (69)

We see that, since u is proper-time along the world line
r =0, i is the 3—velocity of the observer with world line
(62) relative to the observer with world line » = 0. Hence
(67) can finally be written

BN 1 jap 2@ p-ii (@)
— | =1-1u a-p—u-(o r
du 14 p

+{(@-p)* - |&x pl*}r. (70)

This formula is, of course, exact (in particular it does not
have any restriction on r). Equation (67), or equivalently
Eq. (70), can be compared directly to the results in [17] and
with Eq. (22) in [9].

IV. FREQUENCY RATIO IN CURVED
SPACE-TIME

We now consider a general curved space-time. So that
the line element of this space-time specializes easily to (30)
when the space-time is flat we need to emphasize some
geometrical aspects which are also present in the form (30)
of the Minkowskian line element. Guided by Eqs. (42) and
(45) we choose a family of timelike hypersurfaces r(x') =
constant in this space-time with unit spacelike normal

o dx! . o

P :i:—g‘/rj and g;p'p/ =-1. (71)
dr ’

Taking x* = r as a coordinate and labeling the remaining

coordinates x' = (x,y, r,u) we have from (71)

dx/

gijE =-r;<03= -6;. (72)

l

Hence four components of the metric tensor of the space-
time are fixed. Using straightforward algebra the remaining
six components can be expressed in terms of six functions
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P,a,p,a,b,c of the four coordinates x, y, r, u in such a
way that the line element of the space-time is given by

as* = =(90)2 = (90 = (9907 + (92, (73)
with

W = —9y),dx’
= rP~!(e*cosh fdx + e~*sinh Bdy + adu), (74)

9@ = —95),dx!
= rP~!(e%sinh fdx + e~*cosh fdy + bdu), (75)

90) = —93,dx = dr, (76)
W = 9ydx’ = cdu. (77)

We take r = 0 in this space-time to be a timelike world line
with u as proper time along it. Then in the neighborhood of
r = 0 (i.e., for small values of r) we expand the functions of
x, v, r, u in (74)—-(77) in positive powers of r, with
coefficients functions of x, y, u, in such a way that the
line element (73) is a perturbation of the Minkowskian line
element (30). Clearly this involves taking

P =Py+ O(r), a=0(r),
p=0(r), a=ay+ O(r),
b=by+ O(r), c=1=hyr+0(r?), (78)

but we need to know the leading powers of r in the O(r)-
terms here. To find these we make use of (57)—(60). With p’
given by (71), and using (74)—(77), and denoting by a
semicolon covariant differentiation with respect to the
Riemannian connection associated with the metric tensor
g;j given by the line element (73) we start by recording that

1921) = 1 P(e—a cosh 3, —e“*sinh 3, 0, O), (79)

91y = r~'P(=e™*sinh , e* cosh $,0,0),  (80)
1923) =(0,0,1,0), (81)

1954) = ¢ !(—e~*{acosh f — b sinh },
e*{asinh f — bcosh },0, 1), (82)

and thus
i 9 i g Ja
Pii8) 81y = Pij¥(y By = —275 cosh 28, (83)
i qi op

Pi;j'g(l)l%) o (84)

o o .

Pii¥y ) + P By = —25 log(rP™).  (85)
i g/ 9

pi;j19(4>19(4> = Elog c, (86)

o 1 3 da
plvllgél)lgé@ = ET(PC) 1{—54— (a COShZﬁ

. Oa op
—b SlIlh 2,3)54‘ ba}, (87)
o 1 ob .
pl’/822)8(4) = E r(Pc)_l {—E + (a Slnh Zﬂ
Oa aop
—b cosh 2,8)54— aar}. (88)

From (57) perturbed for small values of r we require the
left-hand sides of (83) and (84) to be small of order r and
this is achieved with

o= a(x.y.u)r? + O(F),
B = Palx.y.u)? + O(F). (89)

From (57) we require the left-hand side of (85) to have the
form —2r~! 4+ O(r) and this is achieved with

P =Py{1+ q,(x,y,u)r* + O(r*)}. (90)

Next from (59) the left-hand side of (86) should have the
form —hy + O(r) and this occurs if

c=1=hor+ cy(x,y,u)r* + O(r?). (91)

Finally from (60) with a = ag + O(r) and b = by + O(r)
we now have from (87) and (88):

P 1 _  0a

Pii®y 8 = _Erpol 5 ' o(r*), (92)
o 1 b

Pi;j'9(z)‘9f4) = _EFPO] 5+ o(r). (93)

and to have the right-hand sides of these O(r) we take
a=ag+a;(x,y,u)r+0(r?),
b = by + by(x,y. u)r+ O(r%). (94)

The components of the Riemann curvature tensor calcu-
lated on the world line r =0, and expressed on the
orthonormal tetrad /léa) with a =1, 2, 3, 4 defined by

(7)—(11), are denoted

Riayv)(e)(a) = Rijuh{ 4y A0y a)- (95)
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Calculating the Riemann tensor of the space-time evaluated
on r = 0 allows us to determine the functions a», /5, ¢, ¢»,
ay, by appearing in (89), (90), (91), and (94) in terms of the
tetrad components (95). We find the following expressions
for these functions of x, y, u

1 5 ap(a) ap(l’) ”
% = e PR 0 g P 55 P

1

- Ra@ @@,
1 ap((’) 8p(7)

=—-P3R (o)

g PiR@m0 55 PV 5P
1

+ 5 R@p@@p? P, (96)

with the second equality following from the use of (23),

1 op@ ap® ,
ﬂzng%R(axﬂ)(y)(a) o P dy pl (97
__1p B) (o) 98
4 = =~ R@ @)@ P P (98)
1 (@) (F)
CZZ_ER(a)(4)(ﬂ)(4)p Y, (99)
2 . op®P)
a1 = =3 PiR@@pp ™ —5— P, (100)
2 @ )
b= =3 PR @@ P =5 P (101)

Fifteen equations which these functions satisfy are listed in
the Appendix B and can be verified directly using (23)-
(26). When the functions are substituted into the 1-forms
(74) —(77) the line element (73) is given, in the coordinates
x' = (x,y,r.u) withi = 1,2, 3, 4 as ds* = g;;dx'dx’ with

gn = —rPi{1+2(e = q)r* + O(r)},  (102)
g = —r*Pi*{1 =2(ay + q)r* + O(r)},  (103)
g2 = =r*P3*{26,r* + O(r)}, (104)
g3 =-1 (931 =93 =93 =0), (105)
gis = —r*Py*{ag + a;r + O(r?)}, (106)
Gos = =1 Py*{by + byr + O(1?)}, (107)
gas = {1+ (@~ p)ry> =@ x p/*r?

+2c,1% + O(r?), (108)

with P, given by (17).

If x' = x'(s) with x' = (x,y, r, u) is an arbitrary timelike
world line in the neighborhood of » = 0 with s proper time
along it then, for small values of r and using the line
element (73) the formula (70) is modified to read

BN jap 2@ g (0% )
— | =1-lu a-p—u-(@ r
du p p
+{(@a-p)* =@ x pl*}r* 4+ 2c,r?
zdy

dx
—26117‘3P0 d——2b 3P0 d
u u

, dx dy dx
— 4p,r* Py ;?_2( — q,)r*Py? <du>
ap(dV? 3
P+ a)r P () ror). (109)

Here ¢, is given by (99). Using (100) and (101) we have

dx d
alr3P62£+ b1r3P62d—y
2 dxap dy op®
= =37 Raw@pnp® ( awox Vau oy )P
2 a
= =37 Ra@pnpu’p?, (110)

using (69). Next using (96)—(98) and (69) again we have

dx dy

dx
— 4B, r*Py? dudn 2(ay — q2)r*Py? <du)

L fdy)?
+2(ay + g2)r*Py? (E)

1 dx Op'®)
_5rzR(u)(/})(Y)(")p(ﬁ)p( )( dbt Ox o

o dx ap® rﬂap 7)
"du ox du Oy

dy op'®
du Oy

1
=37 R@pn o pPupl. (111)

Substituting (110) and (111) into (109) results in

BN i _jap @ p-a @)
— ) =1-|u a-p—u-(w r
o p p
+ {(5 -p)? =@ x pl* - (a)(4)(ﬂ)(4)P<“>P(ﬂ>
4 (@) (6) (7)
T3 R@@@pe P " pY
1
_gR<a)(ﬁ)(y)(o_)u((")p(/})uO’)p( )}r + 0( )
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V. PLANE GRAVITATIONAL WAVES 1

As a particularly simple illustration of the treatment of
curvature above we consider the exact solution of Einstein’s
vacuum field equations which provides a space-time model
of the gravitational field of plane gravitational waves. This
well known solution is given by the line element

ds*=—dX*>—dY?—dZ*+dT*+2H(dT -dz)*, (113)

with

H=a(T-Z)(X*-Y?) +2b(T — Z)XY. (114)
A more general form for H, preserving the key properties
for plane waves, namely, that H is a harmonic function in
X, Y and the corresponding curvature tensor components
are functions of 7' — Z only, is required in Sec. VII below.

The histories of the plane wave fronts in the space-time
with line element (113) are the null hyperplanes

T — Z = constant. (115)

The waves have two degrees of freedom of polarization
reflected in the presence of the two arbitrary functions
a(T —Z) and b(T — Z) and, in addition, their arbitrariness
represents the freedom to choose the profile of the waves.

In the coordinates X' = (X,Y,Z,T) the nonvanishing
components of the Riemann curvature tensor are

Ri414 = —Roana = Ri313 = —Razn3 = —Ryuns
= Ryps = —2a(T - Z), (116)
and
Rina = —Ryup3 = Riz3 = —Ryzpy = -26(T = Z).  (117)
From these it is clear that
Rijpmk™ =0 with k™ =(0,0,1,1),  (118)

and so the curvature tensor is type N (purely radiative) in
the Petrov classification with degenerate principal null
direction k'. The null vector field k' is covariantly constant
and its expansionfree, twistfree, and shearfree geodesic
integral curves generate the null hyperplanes (115).

From (113) and (114) we see immediately that the
coordinate 7 is the arc length along the timelike world
line X =Y =Z7Z=0. The parametric equations of an
arbitrary timelike world line in the space-time with line
element (113), with arc length s along it, are X' = X'(s)
with

()-8 - ) ()

dT dZ\?
2H| ——— | =+1 119
+ (ds ds) (119)
Using
dX dYy dzZ
- 1 2 3 _ (44 df a4z
u—(u,u,u)—(dT,dT,dT>, (120)

which is the 3—velocity of the observer with world line
X' = X'(s) measured by the observer with world line
X =Y =7 =0, we can rewrite (119) in the form

ds\' |i|> + 2H(1 — u?)? (121)
Using (114), (116), and (117) we see that
RA4B4XAXB — —2H (A,B - 1,2), (122)

with X4 = (X,Y). On account of the simplicity of the
Riemann tensor (in particular that it has only two inde-
pendent components) all of the information contained in it
can be extracted using the observer with world line X =
Y =Z =0 and observers with world lines Z = constant.
The ratio of arc lengths or proper-times along such world
lines is, by (121) and (122),

d 2
< s) — 1 — utu® — Ryupa XX,

o (123)

We note that in general the final term in (121) can be written

2H(1 - M3>2 = —RA4B4XAXB - 2RA4B3XAXBM3
—_ RA3B3XAXB(M3>2. (124)

However this contains no more information on the

Riemann tensor than the final term in (123) since

RA4B3XAXB:—RA3B3XAXB:2H:—RA4B4XAXB. (125)

VI. PLANE GRAVITATIONAL WAVES II

The function H in (113) and (114) has the property that it
vanishes on the world line X =Y = Z = 0. Its essential
analytical properties are that the vacuum field equations
require it to be a harmonic function,

Hyx + Hyy =0, (126)
with the subscripts denoting partial derivatives, and the

curvature tensor components must be functions of 7 — Z so
that
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HXX_HYY:4a(T—Z) and nyzzb(T—Z> (127)

Hence we can have it vanish on the arbitrary timelike world

line X’ = w'(u) by taking it to be

H = a(T = 2){(X = w!(T - 2))* = (¥ = wX(T - 2)}

+2b(T = Z)(X —=w' (T = Z2))(Y —=w?(T - Z)).

With R;j; given by (116) and (117) we can write this as

(again with capital indices taking values 1, 2)

2H = —Rpypa(T = Z)[X* = wA(T = Z)][X® = w*(T - Z)].
(128)

We now make the coordinate transformation

. . | .
X' =w+rp'+ §V3(P4 — p*)(v* = v})Raspap® PPV

+0(r*), (129)
which generalizes (39) for small values of r and therefore
applies in the neighborhood of the timelike world line
r = 0. The effect of this on the line element (113) with H
given by (128) is to transform it into

ds> = —rPP3*{(dx + agdu)? + (dy + bodu)*} — dr’
{1 = 2hor + 1B = (st = )

X Rpapap” pP}du?, (130)
neglecting O(r?)—terms. Here Py, ay, by, h, are given by
(17) and (38). This form of the line element of the space-
time model of the gravitational field of plane gravitational
waves is in the form of line element discussed in Sec. IV. To
effect a closer comparison we note that

R(a>(4)<ﬂ)(4)P(a)P(ﬂ) = RijklPinPkUl =R UAUB, (131)
with

Ut = (v* = 0%)pt = (p* = PPt (132)
Hence if v* = 0, so that the timelike world line » = 0 is the
history of an observer accelerating in the direction of
propagation of the gravitational waves (the Z—direction),
then in this case (112) simplifies to

ds

<E>2 — - [i+2{@ P) -7 (@ x P)}r

The origin of the coordinate transformation (129) is to start
with the line element
ds* = n;;dX'dX7 + 2H(dT — dZ)*

= 1;;dX'dX) = Rpapa(T = Z){X* =W (T - Z)}

x {XB —wB(T — 2)}(dT — dZ)>. (134)

Now in the final term here make the transformation (39).
This involves

T-Z=w'-w+r(p*-p°) >

dT —dZ = (v* = v¥)du + (p* = p*)dr+ O(r),  (135)
and
Raapa(T = Z)(X* = wN(T = Z))(X? = wH(T - Z))

= r*Ruaps(u)p* p* + O(r). (136)

Hence the final term in the line element (134) reads

- r2RA4B4PAPB{(U4 - ”3)2‘1”2

+2(v* =03 (p* = pP)dudr} + O(r). (137)
Now to calculate n;;dX'dX’ we modify the transformation
(39) to (129) in order to cancel the dudr—term in (137)
when everything is substituted into the line element (134).
From (129) it follows that

) ) 8 i a i (9 i
dX' = (v’ +r al;)du—l-r 81; dx+r 81; dy
+{p"+ r*v'(v* = *)(p* = P?)Raspap” pB}dr

o). (138)
Since v’ and p' are orthogonal the only surviving
Riemann tensor term in n;dX'dX/ is 2r*(v*—v?)(p*-
P?)Raspsp” pPdudr (neglecting O(r?)—terms) and so when
n;;dX'dX/’ is added to (137) now the result is the line
element (130).

VII. WAVES MOVING RADIALLY
RELATIVE TO r=0

The plane gravitational waves have the property that
their propagation direction in space-time is covariantly
constant. Hence their propagation direction in space-time
is, in particular, nonexpanding. Arguably the simplest
example of gravitational waves for which the propagation
direction in space-time is not covariantly constant and is
expanding are waves moving radially with respect to the
observer with world line » = 0 in the present context. Such
waves may, for example, be spherical fronted but the wave
fronts cannot be centered on the observer with world line
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r = 0 since that would result in the Riemann curvature
tensor being singular on r = 0 which emphatically is not
the case here. It follows from (53) and (76) that the
3—direction is the radial direction relative to the world line
r = 0. We thus consider gravitational waves whose propa-
gation direction calculated on r = 0 is given by the 1-form

ki@®@ = =90 + 9% & k@ = (0,0,1,1).  (139)

Thus for small values of r,

ka9 @) = {=r; + (1 = rho)u; + O(r*)}dX" = k;dX',

(140)
and, using (41) and (42), we can write
ki=—r;+ (1 —rho)u; + O(r?)
=pitv;+0(r) (= Kk=0(7), (141)

and so the lightlike propagation direction calculated on
r=01is k' = p' + v'. The vacuum field equations
(142)

Riay0) = ~Ra)@)b)(@) T Ria)(@)4) = 0

and the radiative conditions on the Riemann tensor (that the
Riemann tensor be type N in the Petrov classification with
k@) as degenerate principal null direction)

Rk = Rayw)e3) + Rap)ow =0, (143)

must be satisfied on » = 0 for substitution into (112).
As a consequence of (142) and (143) there are only
two independent nonvanishing components of the vacuum
Riemann tensor calculated on r = 0, namely, R 1)4)(1)4) =
—R(2)4)(2)4) and R(1)(4)(2)(4)- All remaining nonvanishing
curvature components are given in terms of these by

(144)

= Ruy2)4)- (145)

When these are substituted into the Riemann tensor terms
in (112) we find that

Ri@@p@P' p"” = Riayaysmp ™ p®, (146)
Ry p) () P u? P71 = Ripyay )y 1l p) = u® p}
x pB), (147)

and

= R(A)(4)(3)(4){M(A>P(3) — u(3>p(A>}{u(B>p(3) _ u<3>p(3>},

(148)
where capital letters take values 1, 2.
Substituting (146)—(148) into (112) we find
ds\? - e e o o
(d_D =1—laP+2{a-p—ii-(@xp)}r
+ {(5 P)? = 1@ x B> = Riayay sy p p®

x {ul®) pi) — u(3)p(3)}}1’2 +0(r). (149)

It is interesting to note that while k' given by (141) when
r = 0 is the propagation direction of the radial gravitational
waves relative to the observer with world line r =0 it
cannot be the propagation direction of gravitational waves
in the neighborhood of » =0 (i.e.,, for small, nonzero,
values of r). The reason for this is because the Goldberg—
Sachs [18] theorem requires the propagation direction in
space-time of gravitational waves propagating in a vacuum
to be geodesic and shearfree. Using (41) and (56) we have

1

ki j :;(ﬂij‘FPin—Uin) —hov;v;+a;v;+0(r), (150)
from which we conclude that
ki’jkj:—hof}i+0(r), (151)

and so k' is not even approximately geodesic for small 7 if
a' #0 (i.e., if » = 0 is not a timelike geodesic). However
we can construct an approximately null vector field K’ in
the neighborhood of r = 0, which coincides with k' on
r = 0, and which is approximately geodesic and shearfree.
Such a vector field is given by

: . 1. . .
Ki=p' +7 —E{a’ +hop'}r+ 0(r*) = K'K; = O(r?).
(152)

When differentiating this with respect to X' using (41), (42)
and (56) it is useful to note that the partial derivative of
ho = a;p' reads

Oh 1
8X(3 =7 (a; + hop;) + O(r°).

(153)
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In particular we calculate that

K:,j+K;; =M +&K;+ &K+ 0(r), (154)
with
2
A=5—hy+0(r), (155)
r
and
1 1
&= ;(Pi - ;) +§(ai = hov;) + O(r).  (156)

The appearance of the algebraic form of the right-hand side
of (154) ensures that K' is geodesic and shearfree in the
neighborhood of r = 0 (i.e., K’ is geodesic and shearfree if
O(r)—terms are neglected). This characterization of “geo-
desic and shearfree” is due to Robinson and Trautman [19].
It is useful for discussing these geometrical properties
when, (a) not using a null tetrad and (b) not assuming an
affine parameter along the integral curves of the null vector
field. We note in particular that it follows from (154) that

Ki’jKj:—hoKi_FO(r), (157)
demonstrating that K’ is approximately geodesic (without
an affine parameter if iy # 0).

VIII. CLOCK COMPASS

In the following, the general idea is to use suitably
prepared set of clocks to determine all components of the
gravitational field. The goal is to express all parameters of
the space-times under consideration by means of the
measured frequency ratios between the clocks in a con-
figuration. In analogy to the gravitational compass [8,11],
we call such a clock configuration a “gravitational clock
compass” [9].

In contrast to the general procedure outlined in [9], in
which we worked out the minimal number clocks necessary
for a measurement of all the components of the gravita-
tional field, we now consider setups of clocks which allow
for a determination of the properties of the special space-
times introduced in the previous sections.

In the following we are going to search for arrangements
of n clocks, at positions ")p® with respect to the reference
world line of the observer. In addition to the positions of the
compass constituents, we may also make a choice for the
velocity of the clocks with respect to the observer, denoted
by ™u® in the following. While possible in principle, and
in particular covered by our general formalism, we are not
going to allow for situations with additional accelerations
or rotations.

A. Plane gravitational waves

The starting point is (133), which is the measurable
frequency ratio as a function C=C(r, p®,u®,a®, @™ R z,s)

of the quantities characterizing the state of motion as well as
the space-time.

Assuming that all quantities but the gravitational field
can be prescribed by the experimentalist, we can rearrange
(133) as follows:

B(r, pa, l/ta, da, a)“ﬂ) = R(a)(4)(ﬁ)(4)P(a)p<ﬂ), (158)

where
B(r, p®, u®, a*, o)
R T N N T T N S
=(a-p) = |oxpl*+—{(a-p) - (@xp)}

(1= C= [a). (159)

Employing the strategy from [8,9], we are now looking
for a configuration of clocks, which allows for a determi-
nation of all components of the gravitational field in terms
of the measured quantities B. By labeling different posi-
tions of the clocks by an additional index (n) Eq. (158)
turns into the system

(mp = R(a)(4)(ﬂ)(4)<">p<“)(")p(ﬂ), (160)

in which we suppressed all indices of quantities entering
("B which are directly controlled by the experimentalist.
Considering different choices for the positions p%, we
notice that we end up with the constrained vacuum clock
compass solution given in [9][(114)-(119)]:

012 Reiyaynya = VB (161)

02: Ry = ?B. (162)

03: Res)a)4) = 7B, (163)
|

04: Ry =5 (VB —VB-B),  (164)
1

05: Riy@ =5 (B - @B -0B),  (165)
1

06: R(3)(4)(1>(4) = 5 ((G)B - B — (3>B). (166)

Of course in our case the situation is simplified even further
due to (116) and (117). From the constrained system we
can infer—using the notation from [9]—that two clocks at
positions
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o,

(1,0)
(4,0)

FIG. 2. Symbolical sketch of the explicit clock configuration
which allows for a complete determination of the gravitational
field (168). In total 2 suitably prepared clocks (hollow circles) are
needed to determine all curvature components. The observer is
denoted by the black circle. We make use of the notation
analogous to the one in [9].

allow for a complete determination of the gravitational
field, i.e., the functions a and b are given by

(168)

See Fig. 2 for a symbolical sketch of the solution. Note that
the sketches of the clock configurations make use of a
notation analogous to the one in [9]. The observer is
indicated by a black circle, the prepared clocks are
indicated by hollow circles. In contrast to the notation in
(168)—in which all indices but the relevant position index
(n) are suppressed—the second (velocity) index (m) is
explicitly given in Fig. 2 and set to m = 0, indicating that
the clocks in this configuration do not move with respect to
the observer. Furthermore, we note that the sketches were
introduced in [9] to give a 2 dimensional visual represen-
tation of the solution. In particular they are designed for
counting the number of clocks/measurements at a glance,
they do not directly represent the 3 dimensional geometry
of the measurement (we order hollow circles, correspond-
ing to different positions (n), starting at the three o’clock
position, advancing counter clockwise in 45 degree angles
depending on the position index n).

B. Waves radial relative to r=0

Following the same line of reasoning as in the case of
plane gravitational waves, we use the definition for B as
given in (159), however now we have a system of clocks at
positions ("p® moving with velocities ™u(® and we are
left with the system

n,m _ (n)(a)(n [ m
(rmp = (plmp )<R(a>(4)<ﬂ)(4) — 2 Ry ™u”

1 m m),, (6
+ 3R @@ "l )>- (169)

In vacuum, the general clock compass solution on the
basis of (169) was given in [9]. Taking into account the
nonvanishing curvature components in the radial case as
indicated in (144) and (145), one may infer several clock
configurations which allow for a determination of the
curvature components.

(3,1) (3,1)
(4,3) 34

FIG. 3. Symbolical sketch of the two explicit clock configu-
rations which allow for a complete determination of the gravi-
tational field (170)—(172). In both cases two suitably prepared
clocks (hollow circles) are needed to determine all curvature
components. Again the observer is denoted by the black circle.
We make use of the notation analogous to the one in [9].

One configuration coincides with the one already given
in plane gravitational wave case, cf. Eq. (168) and Fig. 2.
However, due to the more general nature of the compass
Eq. (169) one may now also construct configurations in
which the clocks are in motion. We briefly mention here
two possible configurations, i.e.,

Ry = 3¢17 VB, (170)

8 2\
Ruy@@@ = (2—5633 +§c§3> @3B, (171)

An alternative solution for the second curvature component
is given by

-l
2¢q41040 C1 1

(172)

Ry

Here we used the same nomenclature for the positions and
velocities as in [9], i.e.,

0 ciy
Gpr=10 |, Oy =1 0 |,
1 0
0 Cq
Cur=1 0 [, By = | ey |- (173)
c33 0

Symbolical sketches of the solutions (170)—(172) are
given in Fig. 3. Note that we order arrows, corresponding to
different velocities (m), starting at the twelve o’clock
position, advancing clockwise in 45 degree angles depend-
ing on the velocity index m.

IX. CONCLUSIONS

In this work we presented an alternative derivation of
the gravitational clock compass, previously proposed in
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[9,10], by means of the approximation technique developed
in [14-16].

It should be emphasized that the derivation presented
here starts from scratch, i.e., from first principles in flat
space-time. It is reassuring to observe that the result
regarding the general frequency ratio from [9] can, within
the conventions used in the present work, be confirmed by
the use of an independent approximation technique.

Building upon this result, we were able to specialize the
general compass setup to two special types of space-times,
describing plane gravitational waves and waves moving
radially to an observer.

It should be stressed that the focus of the present work
differs somewhat from other works in the gravitational
wave context, for here the main focus is on the general
geometry of the clock configuration required for a complete
field determination, and not the possible measurement of
the wave character (profile). In contrast to classical works
on (indirect) timing experiments like [20,21], a clock
compass relies on the direct frequency comparison of a
suitably prepared set of local clocks.

It is clear that the highly idealized situations of plane and
spherically gravitational waves should be generalized in
future works. Still they serve as a testbed and demonstrate
the direct operational relevance of a clock compass. We hope
to be able to extend them in future works to an approximate
description of more general radiative space-times. A future
goal would be the realization of an omnidirectional (tenso-
rial) [22-24] gravitational wave detector based on clocks.
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APPENDIX A: NOTATIONS AND CONVENTIONS

Note that our conventions for labeling the space-time
metric differs from the one in [9]. The signature is assumed
|

1/0 0
2 <a(1)62b1) —a—y(P62al)

Bea _

ox

by _
dy

TABLE I. Directory of symbols.

Symbol Explanation

ds Line element

Gabs Nab Metric, flat metric

9 Coframe

op Kronecker symbol

x4, X4 Coordinates

X,y Stereographic coordinates
u, s Proper time

P Spacelike vectorfield
Rupc Riemann curvature
A%y Orthonormal tetrad
xi(s) (Reference) world line
v? Velocity

ot Rotation

a® Acceleration

C Frequency ratio

w', P, Py, r, hy, a, ap1,2,
b, by, ¢, €os 5 G25 @, Xy,

Auxiliary quantities

ﬂy ﬂZa H9 UAy B

Operators

@, “7), (V;, ) (Partial, covariant) derivative
“” 3d vector

3d scalar product

“x” 3d vector product

tobe (—1,—1,—1,+1). Latin indices run from 1, ..., 4, and
Greek indices from 1,...,3. The notation/symbols used
throughout are listed in Table L.

APPENDIX B: CONSISTENCY OF CURVATURE
TENSOR CALCULATION

The following equations are a spin-off from the calcula-
tions of the Riemann tensor and can be verified to be satisfied
by @, f2, g5, €3, a1, by given in (96)—(101) using (23)—(26):

ap® apt)

):R<a)<4)<ﬂ>(y>l’“ o oy (B1)
. ap®
“Rawpar' =g (B2)
_opt)
R r'” 5 (B3)
op@ ap
= PiRwpine g P 5 (B4)
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3/ 0b, oP, OP,

2< By TR gy bR e 1>:P<2JR(<1)(ﬂ>(r)(4) o " o (BS)
8b] 1 _ 5)P0 laal 1 _ BPO ap(a> ap(/j)
_a+ipolg 1 _iaiy_ipolaiy 1= PgR(a)(zt)(/i)(r) Ox Ty ’ (B6)
801 1 1 5‘P0 1 8]71 1 8P0 5 8p<a> ap<ﬁ)
it S =0y =221 P2R ) B7
gy 270 oy T 2ox 2 Po' gy br = PiRawi ay ox U (B7)
_ 1,0 o ap@ ap®) §pv)
5P04b‘+§P025{P (a (Pozb)‘_(”o al)>}=R<a)<4></f)<y>W o oy (BS)
3 1,0 d ) ap' op¥) opW
§P04a1 +§P028—y{P%(a <P0 Cll) a <P02b ))} R(a)(4)(ﬂ)(y) ay ay e (BQ)
o o X 3q2 1 opl@ ® ap® opl
dy (Pgas) = I (P37F2) = By =7 Rpne —5; ox oy (B10)
0 o, ,0q, 1 ap@  ap¥) oplo
_a(POZaZ) (Pozﬂz)— OZEZER("W)(V)(U) o (8) o o (B11)
d ) ) d ) )
- P2 -2 P . P —2 P
S AP (g e+ g ) o+ o R (S - (e ) |
_ dp'“ ap\¥ op) oplo)
= —P3*(842 + 642) = PiR(w)(p) 1)) g - o ox oy (B12)
1 8 802 8 aCZ ap(“') 8p(ﬂ)
——P P2 —(P? = S B1
{ay< 8x>+ 3x< 3y>} @OP@ gy gy (B13)
6 8P0 602 8P0 acZ ap(a) ap(/j)
2= RGP et gy 5y dy ~ DOR@WO® 5 g (B14)
3 Cy 8P0 802 8P0 aCZ ap(a) ap(ﬂ)
—2¢2 - Pﬁa > 0%y By T 0x ax R @@ )4 oy Oy (B15)
with Ag, = P3(2% %—4) in (B12).
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