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We present an alternative derivation of the gravitational clock compass and show how such a device
can be used for the detection of gravitational waves. Explicit compass setups are constructed in special
types of space-times, namely for exact plane gravitational waves and for waves moving radially relative to
an observer.
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I. INTRODUCTION

Modern clocks reached an unprecedented level of
accuracy and stability [1–7] in recent years. Therefore it
appears obvious to utilize them for a direct detection of the
gravitational field.
Building upon a preceding series of works [8–10]—in

which we derived general prescriptions for the setup of the
constituents of a device called a “gravitational compass”
[11] and a “clock compass,” i.e., realizations of gradiom-
eters in the context of the theory of general relativity—we
are now going to study how clocks can be used in an
operational way to explicitly map gravitational wave space-
times by means of mutual frequency comparisons.
In a previous work [8] on the standard gravitational

compass we employed a covariant expansion technique
based on Synge’s world function [12,13], while in the
context of the clock compass [9] the derivation was based
on the construction of a suitable normal coordinate system.
Here we present an alternative approximation technique,
motivated by earlier work on radiation from isolated systems
[14] and on work on the equations of motion in general
relativity [15,16]. It offers a different perspective on the
derivation of the measurable frequency ratio between the
clocks and is not, like [9], based on [17] as a starting point.
Implementing the gravitational compass in the cases of

explicit gravitational field models involves working in a
coordinate system since the models are expressed in a
coordinate system. This paper demonstrates how one might
do this since it is in a coordinate systemwhich (i) respects, or
is tailored to, the geometry and (ii) applies to any model
since it involves six functions of the four coordinates. The

examples we describe demonstrate that even working in a
suitable coordinate system the application to explicit models
involving gravitational radiation is a complex procedure.
The structure of the paper is as follows: In Sec. II we

review a suitable form of the flat space-time metric around
a world line along in a reference frame carried by a general
observer. In the subsequent Secs. III and IV an expression
for the frequency ratio between a clock carried by the
observer and a clock in the vicinity of his world line is
given in a flat as well as in a curved background. This is
followed by a derivation of the frequency ratio in a plane
gravitational wave background in the Secs. V and VI, as
well as for radial waves in Sec. VII. In Sec. VIII we show
how an ensemble of clocks has to be prepared in order to
allow for a measurement of all independent components of
the curvature tensor through mutual frequency comparisons
of the clocks in the previously derived space-times. We
draw our conclusions in Sec. IX. Appendix A contains a
brief overview of the notations and conventions used
throughout the article, whereas some consistency checks
are given in Appendix B.

II. MINKOWSKIAN PRELIMINARIES

In this section we demonstrate how to construct a
coordinate system for Minkowskian space-time based on
a family of spacelike hypersurfaces since the extension of
this construction to general curved space-times is the
central feature of this paper. The construction in this
section leads to a particularly useful form [Eq. (30)] of
the Minkowskian line element which is important for the
derivation of the frequency ratio in flat space-time in the
next section. In addition basic formulas [Eqs. (57)–(61)] in
the Minkowskian case play an important role in the
neighborhood of a timelike world line in the general curved
space-time case later.
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We begin with the Minkowskian line element in rec-
tangular Cartesian coordinates and time Xi ¼ ðX; Y; Z; TÞ:
ds2¼−ðdXÞ2− ðdYÞ2− ðdZÞ2þðdTÞ2 ¼ ηijdXidXj: ð1Þ
Writing

Xi ¼ wiðuÞ þ rpiðuÞ; ð2Þ

with

pipi ¼ −1; ð3Þ

we see that pi is a unit spacelike vector field defined along
the world line, which we take to be timelike with u taken to
be proper-time or arc length along it. Hence

viðuÞ ¼ dwi

du
with vivi ¼ þ1: ð4Þ

Thus viðuÞ is the unit timelike tangent vector field to
r ¼ 0 and is therefore the 4–velocity of an observer
with world line r ¼ 0, see Fig. 1 for a sketch of the setup.
The 4–acceleration of an observer with world line r ¼ 0 is

aiðuÞ ¼ dvi

du
; ð5Þ

and this satisfies aivi ¼ 0 on account of the second of (4).
The unit spacelike vector field pi defined along r ¼ 0
is assumed to be orthogonal to r ¼ 0 at each of its points
and thus

vipi ¼ 0: ð6Þ

We are free to choose the transport law for pi along r ¼ 0
subject to ensuring that (3) and (6) are preserved at all
points of r ¼ 0. For our present purposes we construct the
transport law for pi as follows: Begin by defining an
orthonormal tetrad fλiðaÞg with a ¼ 1, 2, 3, 4, at a point of

r ¼ 0 with

ηijλ
i
ðaÞλ

j
ðbÞ ¼ ηðaÞðbÞ ¼ diagð−1;−1;−1;þ1Þ: ð7Þ

Tetrad indices (or labels) will be those indices with round
brackets around them. They will be raised and lowered with
ηðaÞðbÞ and ηðaÞðbÞ respectively with the former defined by
ηðaÞðbÞηðbÞðcÞ ¼ δca. We shall choose

λið4Þ ¼ vi; ð8Þ

and we can invert (7) to read

ηij ¼ ηðaÞðbÞλiðaÞλ
j
ðbÞ ¼ −λiðαÞλ

j
ðαÞ þ vivj; ð9Þ

with henceforth Greek indices taking values 1, 2, 3. On
account of (8) λið4Þ is extended to a field on r ¼ 0 since we

shall take (8) to hold at all points of r ¼ 0 and thus

λið4ÞðuÞ ¼ viðuÞ; ð10Þ

for all u. We define λiðαÞðuÞ along r ¼ 0 by requiring this

orthonormal triad to be transported according to the law:

dλiðαÞ
du

¼ −viajλðαÞj þ ωijλðαÞj; ð11Þ

for α ¼ 1, 2, 3. Here ωijðuÞ ¼ −ωjiðuÞ and ωijvj ¼ 0. The
first term on the right-hand side of (11) represents Fermi–
Walker transport while the second term represents transport
with rigid rotation. The transport law (11) preserves the
scalar products

ηijλ
i
ðαÞλ

j
ðβÞ ¼ −δαβ and viλiðαÞ ¼ 0; ð12Þ

along r ¼ 0. Multiplying (9) by pj we have, on account
of (6),

pi ¼ −pðαÞλiðαÞ ¼ pðαÞλiðαÞ; ð13Þ

and multiply (9) by aj results in

ai ¼ −aðαÞλiðαÞ ¼ aðαÞλiðαÞ; ð14Þ

with pðαÞ ¼ piλ
i
ðαÞ and aðαÞ ¼ aiλiðαÞ. For future reference

we note that

FIG. 1. Construction of the coordinates of a point X in the
vicinity the timelike world line wðuÞ parametrized by the proper
time u. The parameter r is centered on the world line, and the
spacelike vector pi is chosen to be orthogonal to the velocity vi

along the world line.
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δαβpðαÞpðβÞ ¼þ1 and aipi ¼−aðαÞpðαÞ ¼ aðαÞpðαÞ: ð15Þ
We will now take pðαÞ to be independent of the proper time
u and parametrize pðαÞ with the stereographic variables x, y
(with −∞ < x; y < þ∞) as

pð1Þ ¼P−1
0 x; pð2Þ ¼P−1

0 y; pð3Þ ¼P−1
0

�
1

4
ðx2þ y2Þ− 1

�
;

ð16Þ
with

P0 ¼ 1þ 1

4
ðx2 þ y2Þ: ð17Þ

It now follows from (11), (13), and (16) that pi obeys,
along r ¼ 0, the transport law

∂pi

∂u ¼ −viðajpjÞ þ ωijpj: ð18Þ

Here again the first term on the right-hand side is Fermi–
Walker transport while the second term represents a rigid
rotation.
We now have

∂pi

∂x
∂pi

∂x ¼ −δαβ
∂pðαÞ

∂x
∂pðβÞ

∂x ¼ −P−2
0 ; ð19Þ

∂pi

∂y
∂pi

∂y ¼ −δαβ
∂pðαÞ

∂y
∂pðβÞ

∂y ¼ −P−2
0 ; ð20Þ

∂pi

∂x
∂pi

∂y ¼ −δαβ
∂pðαÞ

∂x
∂pðβÞ

∂y ¼ 0: ð21Þ

Using (18) we find that

∂pi

∂x
∂pi

∂u ¼ ωðαÞðβÞ
∂pðαÞ

∂x pðβÞ;

∂pi

∂y
∂pi

∂u ¼ ωðαÞðβÞ
∂pðαÞ

∂y pðβÞ: ð22Þ

It will also be useful to have the formulas:

P2
0

�∂pðαÞ

∂x
∂pðβÞ

∂x þ ∂pðαÞ

∂y
∂pðβÞ

∂y
�

¼ δαβ − pðαÞpðβÞ; ð23Þ

and

∂2pðαÞ

∂x2 ¼−P−2
0 pðαÞ−P−1

0

∂P0

∂x
∂pðαÞ

∂x þP−1
0

∂P0

∂y
∂pðαÞ

∂y ; ð24Þ

∂2pðαÞ

∂y2 ¼−P−2
0 pðαÞ þP−1

0

∂P0

∂x
∂pðαÞ

∂x −P−1
0

∂P0

∂y
∂pðαÞ

∂y ; ð25Þ

∂2pðαÞ

∂x∂y ¼ −P−1
0

∂P0

∂y
∂pðαÞ

∂x − P−1
0

∂P0

∂x
∂pðαÞ

∂y ; ð26Þ

which can be verified by direct substitution from (16) or
otherwise.
Now (2) gives Xi in terms of x, y, r, u. To obtain the

Minkowskian line element in coordinates x, y, r, u we first
have from (2)

dXi¼
�
viþ r

∂pi

∂u
�
duþpidrþ r

∂pi

∂x dxþ r
∂pi

∂y dy: ð27Þ

Now using the scalar products (19)–(22) the Minkowskian
line element (1) becomes

ds2 ¼ ηijdXidXj;

¼−r2P−2
0 ðdx2þdy2Þþ 2r2ωðαÞðβÞ

∂pðαÞ

∂x pðβÞdudx

þ 2r2ωðαÞðβÞ
∂pðαÞ

∂y pðβÞdudy−dr2

þfð1−h0rÞ2 − r2ωðσÞðαÞωðσÞðβÞpðαÞpðβÞgdu2; ð28Þ

with

h0 ¼ aipi ¼ aðαÞpðαÞ; ð29Þ

by (15). We can rewrite (28) in the neat form

ds2 ¼ −r2P−2
0 fðdxþ a0duÞ2 þ ðdyþ b0duÞ2g

− dr2 þ ð1 − h0rÞ2du2; ð30Þ

with

a0 ¼ −P2
0ωðαÞðβÞ

∂pðαÞ

∂x pðβÞ;

b0 ¼ −P2
0ωðαÞðβÞ

∂pðαÞ

∂y pðβÞ; ð31Þ

since

P2
0

�
ωðαÞðβÞ

∂pðαÞ

∂x pðβÞ
�

2

þ P2
0

�
ωðαÞðβÞ

∂pðαÞ

∂x pðβÞ
�

2

¼ δσρωðσÞðαÞωðρÞðβÞpðαÞpðβÞ: ð32Þ

The last equation here is a consequence of (23). Using (24)
and (25) we see that

∂a0
∂x ¼ ∂b0

∂y ; ð33Þ

and so it follows that we can write

a0 ¼
∂q
∂y and b0 ¼

∂q
∂x ; ð34Þ
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with the function q given by

qðx; y; uÞ ¼ 1

2
ðx2 − y2Þωð1Þð2Þ þ y

�
1þ 1

4
x2 −

1

12
y2
�

× ωð1Þð3Þ þ x

�
1 −

1

12
x2 þ 1

4
y2
�
ωð2Þð3Þ: ð35Þ

For future convenience we define the 3–vectors

p⃗ ¼ ðpð1Þ; pð2Þ; pð3ÞÞ; a⃗ ¼ ðað1Þ; að2Þ; að3ÞÞ;
ω⃗ ¼ ðωð2Þð3Þ;ωð3Þð1Þ;ωð1Þð2ÞÞ: ð36Þ
Using the standard notation of the scalar product (or “dot
product”) of 3–vectors and for the vector product (or “cross
product”) of 3–vectors we have

h0 ¼ −a⃗ · p⃗; a0 ¼ −P2
0

∂pðαÞ

∂x ðω⃗ × p⃗ÞðαÞ;

b0 ¼ −P2
0

∂pðαÞ

∂y ðω⃗ × p⃗ÞðαÞ; ð37Þ

from which we find, using (23), that

P−2
0 ða20 þ b20Þ ¼ ðω⃗ × p⃗Þ · ðω⃗ × p⃗Þ ¼ jω⃗ × p⃗j2: ð38Þ

In the light of the foregoing we can now say that (2),
written more explicitly, reads

Xi ¼ wiðuÞ þ rpiðx; y; uÞ; ð39Þ
which implicitly determines x, y, r, u as scalar functions of
Xi on Minkowskian space-time. We will need the gradients
of these functions with respect to Xi, denoted by a comma
in each case. To obtain these we start by differentiating (39)
with respect to Xj giving

δij¼
�
viþ r

∂pi

∂u
�
u;jþpir;jþ r

∂pi

∂x x;jþ r
∂pi

∂y y;j: ð40Þ

Multiplying this by vi, pi, ∂pi=∂x and ∂pi=∂y yields
successively

vj ¼ ð1 − h0rÞu;j ⇒ u;j ¼ ð1 − h0rÞ−1vj; ð41Þ

pj ¼ −r;j ⇒ r;j ¼ −pj; ð42Þ

∂pj

∂x ¼ r
∂pi

∂x
∂pi

∂u u;j − rP−2
0 x;j

⇒ x;j þ a0u;j ¼ −
P2
0

r

∂pj

∂x ; ð43Þ

∂pj

∂y ¼ r
∂pi

∂y
∂pi

∂u u;j − rP−2
0 y;j

⇒ y;j þ b0u;j ¼ −
P2
0

r

∂pj

∂y ; ð44Þ

with the final two cases relying on (22) and (31). We first
note from (41)–(44) that

pi ∂
∂Xi ¼pi

�
x;i

∂
∂xþy;i

∂
∂yþ r;i

∂
∂rþu;i

∂
∂u

�
¼ ∂
∂r: ð45Þ

Substituting (41)–(44) back into (40), using (18) and
raising the covariant index using ηij, we have

ηij ¼ −P2
0

�∂pi

∂x
∂pj

∂x þ ∂pi

∂y
∂pj

∂y
�
− pipj þ vivj

þ rð1 − h0rÞ−1
�
ωikpk − a0

∂pi

∂x − b0
∂pi

∂y
�
vj: ð46Þ

However the final term here vanishes since

ωikpk − a0
∂pi

∂x − b0
∂pi

∂y
¼

�
δβγωðαÞðβÞpðγÞ þ a0

∂pðαÞ
∂x þ b0

∂pðαÞ
∂y

�
λiðαÞ; ð47Þ

and

a0
∂pðαÞ

∂x þ b0
∂pðαÞ

∂y
¼ P2

0ωðγÞðβÞpðβÞ
�∂pðγÞ

∂x
∂pðαÞ

∂x þ ∂pðγÞ

∂y
∂pðαÞ

∂y
�

¼ ωðγÞðβÞpðβÞðδγα − pðγÞpðαÞÞ
¼ð23Þ − ωðαÞðβÞpðβÞ: ð48Þ

Hence (46) simplifies to

ηij ¼ −P2
0

�∂pi

∂x
∂pj

∂x þ ∂pi

∂y
∂pj

∂y
�
− pipj þ vivj: ð49Þ

The line element (30) can be written

ds2 ¼ −ðϑð1ÞÞ2 − ðϑð2ÞÞ2 − ðϑð3ÞÞ2 þ ðϑð4ÞÞ2; ð50Þ

with the basis 1–forms given by

ϑð1Þ ¼ rP−1
0 ðdxþ a0duÞ ¼ rP−1

0 ðx;i þ a0u;iÞdXi

¼ −P0

∂pi

∂x dXi ¼ −P0

∂pðαÞ

∂x λðαÞidXi; ð51Þ

ϑð2Þ ¼ rP−1
0 ðdyþ b0duÞ ¼ rP−1

0 ðy;i þ b0u;iÞdXi

¼ −P0

∂pi

∂y dXi ¼ −P0

∂pðαÞ

∂y λðαÞidXi; ð52Þ

ϑð3Þ ¼ dr ¼ r;idXi ¼ −pidXi ¼ −pðαÞλðαÞidXi; ð53Þ

ϑð4Þ ¼ð1 − rh0Þdu ¼ ð1 − rh0Þu;idXi ¼ vidXi: ð54Þ
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Finally we shall also require pi;j and we can obtain this
by rewriting (40), using (41) and (42), as

δij ¼ viu;j þ pir;j þ rpi
;j

¼ ð1 − rh0Þ−1vivj − pipj þ rpi
;j: ð55Þ

Lowering the contravariant index with ηij gives

pi;j ¼
1

r
fηij þ pipj − ð1 − rh0Þ−1vivjg: ð56Þ

Using the basis 1–forms listed in (51)–(54) we derive the
following formulas which will prove useful later:

pi;jϑ
i
ð1Þϑ

j
ð1Þ ¼ −

1

r
¼ pi;jϑ

i
ð2Þϑ

j
ð2Þ; ð57Þ

pi;jϑ
i
ð1Þϑ

j
ð2Þ ¼ 0 ¼ pi;jϑ

i
ð3Þϑ

j
ð3Þ; ð58Þ

pi;jϑ
i
ð4Þϑ

j
ð4Þ ¼ −

h0
1 − rh0

; ð59Þ

pi;jϑ
i
ð1Þϑ

j
ð4Þ ¼ 0 ¼ pi;jϑ

i
ð2Þϑ

j
ð4Þ; ð60Þ

from which, in particular, we find

pi
;i ¼

2 − 3rh0
rð1 − rh0Þ

¼ 2

r
− h0 þOðrÞ; ð61Þ

with the latter holding for small values of r.

III. FREQUENCY RATIO IN FLAT SPACE-TIME

With Xi ¼ ðX; Y; Z; TÞ and xi ¼ ðx; y; r; uÞ the para-
metric equations of an arbitrary timelike world line, with
arc length s as parameter along it, are

Xi ¼ XiðsÞ ⇔ xi ¼ xiðsÞ; ð62Þ

with

ηij
dXi

ds
dXj

ds
¼ þ1: ð63Þ

Using (27) and writing

dxi

ds
¼ dxi

du
du
ds

; ð64Þ

in effect changing from the parameter s to the parameter u
along the arbitrary world line, we can write

dXi

ds
¼ du

ds
f½1þ ða⃗ · p⃗Þr�vi þWðαÞλiðαÞg; ð65Þ

with

WðαÞ ¼ pðαÞ dr
du

þ r
∂pðαÞ

∂x
dx
du

þ r
∂pðαÞ

∂y
dy
du

þ rωðαÞðβÞpðβÞ:

ð66Þ

Substituting (65) into (63) we obtain

�
ds
du

�
2

¼ ð1þ ða⃗ · p⃗ÞrÞ2 − jW⃗j2; ð67Þ

with

W⃗ ¼ u⃗þ rðω⃗ × p⃗Þ; ð68Þ

and

u⃗ ¼ dr
du

p⃗þ r
dx
du

∂p⃗
∂x þ r

dy
du

∂p⃗
∂y : ð69Þ

We see that, since u is proper-time along the world line
r ¼ 0, u⃗ is the 3–velocity of the observer with world line
(62) relative to the observer with world line r ¼ 0. Hence
(67) can finally be written

�
ds
du

�
2

¼ 1 − ju⃗j2 þ 2fa⃗ · p⃗ − u⃗ · ðω⃗ × p⃗Þgr

þ fða⃗ · p⃗Þ2 − jω⃗ × p⃗j2gr2: ð70Þ

This formula is, of course, exact (in particular it does not
have any restriction on r). Equation (67), or equivalently
Eq. (70), can be compared directly to the results in [17] and
with Eq. (22) in [9].

IV. FREQUENCY RATIO IN CURVED
SPACE-TIME

We now consider a general curved space-time. So that
the line element of this space-time specializes easily to (30)
when the space-time is flat we need to emphasize some
geometrical aspects which are also present in the form (30)
of the Minkowskian line element. Guided by Eqs. (42) and
(45) we choose a family of timelike hypersurfaces rðxiÞ ¼
constant in this space-time with unit spacelike normal

pi ¼ dxi

dr
¼ −gijr;j and gijpipj ¼ −1: ð71Þ

Taking x3 ¼ r as a coordinate and labeling the remaining
coordinates xi ¼ ðx; y; r; uÞ we have from (71)

gij
dxj

dr
¼ −r;i ⇔ gi3 ¼ −δ3i : ð72Þ

Hence four components of the metric tensor of the space-
time are fixed. Using straightforward algebra the remaining
six components can be expressed in terms of six functions

GRAVITATIONAL CLOCK COMPASS AND THE DETECTION OF … PHYS. REV. D 101, 044012 (2020)

044012-5



P; α; β; a; b; c of the four coordinates x, y, r, u in such a
way that the line element of the space-time is given by

ds2 ¼ −ðϑð1ÞÞ2 − ðϑð2ÞÞ2 − ðϑð3ÞÞ2 þ ðϑð4ÞÞ2; ð73Þ

with

ϑð1Þ ¼ −ϑð1Þidxi
¼ rP−1ðeα cosh βdxþ e−α sinh βdyþ aduÞ; ð74Þ

ϑð2Þ ¼ −ϑð2Þidxi
¼ rP−1ðeα sinh βdxþ e−α cosh βdyþ bduÞ; ð75Þ

ϑð3Þ ¼ −ϑð3Þidxi ¼ dr; ð76Þ

ϑð4Þ ¼ ϑð4Þidxi ¼ cdu: ð77Þ

We take r ¼ 0 in this space-time to be a timelike world line
with u as proper time along it. Then in the neighborhood of
r ¼ 0 (i.e., for small values of r) we expand the functions of
x, y, r, u in (74)–(77) in positive powers of r, with
coefficients functions of x, y, u, in such a way that the
line element (73) is a perturbation of the Minkowskian line
element (30). Clearly this involves taking

P ¼ P0 þOðrÞ; α ¼ OðrÞ;
β ¼ OðrÞ; a ¼ a0 þOðrÞ;
b ¼ b0 þOðrÞ; c ¼ 1 − h0rþOðr2Þ; ð78Þ

but we need to know the leading powers of r in the OðrÞ–
terms here. To find these we make use of (57)–(60). With pi

given by (71), and using (74)–(77), and denoting by a
semicolon covariant differentiation with respect to the
Riemannian connection associated with the metric tensor
gij given by the line element (73) we start by recording that

ϑið1Þ ¼ r−1Pðe−α cosh β;−eα sinh β; 0; 0Þ; ð79Þ

ϑið2Þ ¼ r−1Pð−e−α sinh β; eα cosh β; 0; 0Þ; ð80Þ

ϑið3Þ ¼ ð0; 0; 1; 0Þ; ð81Þ

ϑið4Þ ¼ c−1ð−e−αfa cosh β − b sinh βg;
eαfa sinh β − b cosh βg; 0; 1Þ; ð82Þ

and thus

pi;jϑ
i
ð1Þϑ

j
ð1Þ − pi;jϑ

i
ð2Þϑ

j
ð2Þ ¼ −2

∂α
∂r cosh 2β; ð83Þ

pi;jϑ
i
ð1Þϑ

j
ð2Þ ¼ −

∂β
∂r ; ð84Þ

pi;jϑ
i
ð1Þϑ

j
ð1Þ þ pi;jϑ

i
ð2Þϑ

j
ð2Þ ¼ −2

∂
∂r logðrP

−1Þ; ð85Þ

pi;jϑ
i
ð4Þϑ

j
ð4Þ ¼

∂
∂r log c; ð86Þ

pi;jϑ
i
ð1Þϑ

j
ð4Þ ¼

1

2
rðPcÞ−1

�
−
∂a
∂r þ ða cosh 2β

−b sinh 2βÞ ∂α∂r þ b
∂β
∂r

�
; ð87Þ

pi;jϑ
i
ð2Þϑ

j
ð4Þ ¼

1

2
rðPcÞ−1

�
−
∂b
∂r þ ða sinh 2β

−b cosh 2βÞ ∂α∂r þ a
∂β
∂r

�
: ð88Þ

From (57) perturbed for small values of r we require the
left-hand sides of (83) and (84) to be small of order r and
this is achieved with

α ¼ α2ðx; y; uÞr2 þOðr3Þ;
β ¼ β2ðx; y; uÞr2 þOðr3Þ: ð89Þ

From (57) we require the left-hand side of (85) to have the
form −2r−1 þOðrÞ and this is achieved with

P ¼ P0f1þ q2ðx; y; uÞr2 þOðr3Þg: ð90Þ

Next from (59) the left-hand side of (86) should have the
form −h0 þOðrÞ and this occurs if

c ¼ 1 − h0rþ c2ðx; y; uÞr2 þOðr3Þ: ð91Þ

Finally from (60) with a ¼ a0 þOðrÞ and b ¼ b0 þOðrÞ
we now have from (87) and (88):

pi;jϑ
i
ð1Þϑ

j
ð4Þ ¼ −

1

2
rP−1

0

∂a
∂r þOðr2Þ; ð92Þ

pi;jϑ
i
ð2Þϑ

j
ð4Þ ¼ −

1

2
rP−1

0

∂b
∂r þOðr2Þ; ð93Þ

and to have the right-hand sides of these OðrÞ we take

a ¼ a0 þ a1ðx; y; uÞrþOðr2Þ;
b ¼ b0 þ b1ðx; y; uÞrþOðr2Þ: ð94Þ

The components of the Riemann curvature tensor calcu-
lated on the world line r ¼ 0, and expressed on the
orthonormal tetrad λiðaÞ with a ¼ 1, 2, 3, 4 defined by

(7)–(11), are denoted

RðaÞðbÞðcÞðdÞ ¼ Rijklλ
i
ðaÞλ

j
ðbÞλ

k
ðcÞλ

l
ðdÞ: ð95Þ
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Calculating the Riemann tensor of the space-time evaluated
on r ¼ 0 allows us to determine the functions α2, β2, q2, c2,
a1, b1 appearing in (89), (90), (91), and (94) in terms of the
tetrad components (95). We find the following expressions
for these functions of x, y, u:

α2 ¼
1

6
P2
0RðαÞðβÞðγÞðσÞ

∂pðαÞ

∂x pðβÞ ∂pðγÞ

∂x pðσÞ

−
1

12
RðαÞðβÞðαÞðσÞpðβÞpðσÞ;

¼ −
1

6
P2
0RðαÞðβÞðγÞðσÞ

∂pðαÞ

∂y pðβÞ ∂pðγÞ

∂y pðσÞ

þ 1

12
RðαÞðβÞðαÞðσÞpðβÞpðσÞ; ð96Þ

with the second equality following from the use of (23),

β2 ¼
1

6
P2
0RðαÞðβÞðγÞðσÞ

∂pðαÞ

∂x pðβÞ ∂pðγÞ

∂y pðσÞ; ð97Þ

q2 ¼ −
1

12
RðαÞðβÞðαÞðσÞpðβÞpðσÞ; ð98Þ

c2 ¼ −
1

2
RðαÞð4ÞðβÞð4ÞpðαÞpðβÞ; ð99Þ

a1 ¼ −
2

3
P2
0RðαÞð4ÞðβÞðγÞpðαÞ ∂pðβÞ

∂x pðγÞ; ð100Þ

b1 ¼ −
2

3
P2
0RðαÞð4ÞðβÞðγÞpðαÞ ∂pðβÞ

∂y pðγÞ: ð101Þ

Fifteen equations which these functions satisfy are listed in
the Appendix B and can be verified directly using (23)–
(26). When the functions are substituted into the 1-forms
(74)–(77) the line element (73) is given, in the coordinates
xi ¼ ðx; y; r; uÞ with i ¼ 1, 2, 3, 4 as ds2 ¼ gijdxidxj with

g11 ¼ −r2P−2
0 f1þ 2ðα2 − q2Þr2 þOðr3Þg; ð102Þ

g22 ¼ −r2P−2
0 f1 − 2ðα2 þ q2Þr2 þOðr3Þg; ð103Þ

g12 ¼ −r2P−2
0 f2β2r2 þOðr3Þg; ð104Þ

g33 ¼ −1 ðg31 ¼ g32 ¼ g34 ¼ 0Þ; ð105Þ

g14 ¼ −r2P−2
0 fa0 þ a1rþOðr2Þg; ð106Þ

g24 ¼ −r2P−2
0 fb0 þ b1rþOðr2Þg; ð107Þ

g44 ¼ f1þ ða⃗ · p⃗Þrg2 − jω⃗ × p⃗j2r2
þ 2c2r2 þOðr3Þ; ð108Þ

with P0 given by (17).

If xi ¼ xiðsÞ with xi ¼ ðx; y; r; uÞ is an arbitrary timelike
world line in the neighborhood of r ¼ 0 with s proper time
along it then, for small values of r and using the line
element (73) the formula (70) is modified to read

�
ds
du

�
2

¼ 1 − ju⃗j2 þ 2fa⃗ · p⃗ − u⃗ · ðω⃗ × p⃗Þgr

þ fða⃗ · p⃗Þ2 − jω⃗ × p⃗j2gr2 þ 2c2r2

− 2a1r3P−2
0

dx
du

− 2b1r3P−2
0

dy
du

− 4β2r4P−2
0

dx
du

dy
du

− 2ðα2 − q2Þr4P−2
0

�
dx
du

�
2

þ 2ðα2 þ q2Þr4P−2
0

�
dy
du

�
2

þOðr3Þ: ð109Þ

Here c2 is given by (99). Using (100) and (101) we have

a1r3P−2
0

dx
du

þ b1r3P−2
0

dy
du

¼ −
2

3
r2RðαÞð4ÞðβÞðγÞpðαÞ

�
r
dx
du

∂pðβÞ

∂x þ r
dy
du

∂pðβÞ

∂y
�
pðγÞ

¼ −
2

3
r2RðαÞð4ÞðβÞðγÞpðαÞuðβÞpðγÞ; ð110Þ

using (69). Next using (96)–(98) and (69) again we have

− 4β2r4P−2
0

dx
du

dy
du

− 2ðα2 − q2Þr4P−2
0

�
dx
du

�
2

þ 2ðα2 þ q2Þr4P−2
0

�
dy
du

�
2

¼ −
1

3
r2RðαÞðβÞðγÞðσÞpðβÞpðσÞ

�
r
dx
du

∂pðαÞ

∂x þ r
dy
du

∂pðαÞ

∂y
�

×

�
r
dx
du

∂pðγÞ

∂x þ r
dy
du

∂pðγÞ

∂y
�

¼ −
1

3
r2RðαÞðβÞðγÞðσÞuðαÞpðβÞuðγÞpðσÞ: ð111Þ

Substituting (110) and (111) into (109) results in

�
ds
du

�
2

¼ 1 − ju⃗j2 þ 2fa⃗ · p⃗ − u⃗ · ðω⃗ × p⃗Þgr

þ
�
ða⃗ · p⃗Þ2 − jω⃗ × p⃗j2 − RðαÞð4ÞðβÞð4ÞpðαÞpðβÞ

þ 4

3
RðαÞð4ÞðβÞðγÞpðαÞuðβÞpðγÞ

−
1

3
RðαÞðβÞðγÞðσÞuðαÞpðβÞuðγÞpðσÞ

�
r2 þOðr3Þ:

ð112Þ
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V. PLANE GRAVITATIONAL WAVES I

As a particularly simple illustration of the treatment of
curvature above we consider the exact solution of Einstein’s
vacuum field equations which provides a space-time model
of the gravitational field of plane gravitational waves. This
well known solution is given by the line element

ds2¼−dX2−dY2−dZ2þdT2þ2HðdT−dZÞ2; ð113Þ

with

H ¼ aðT − ZÞðX2 − Y2Þ þ 2bðT − ZÞXY: ð114Þ

A more general form for H, preserving the key properties
for plane waves, namely, that H is a harmonic function in
X, Y and the corresponding curvature tensor components
are functions of T − Z only, is required in Sec. VII below.
The histories of the plane wave fronts in the space-time

with line element (113) are the null hyperplanes

T − Z ¼ constant: ð115Þ

The waves have two degrees of freedom of polarization
reflected in the presence of the two arbitrary functions
aðT − ZÞ and bðT − ZÞ and, in addition, their arbitrariness
represents the freedom to choose the profile of the waves.
In the coordinates Xi ¼ ðX; Y; Z; TÞ the nonvanishing
components of the Riemann curvature tensor are

R1414 ¼ −R2424 ¼ R1313 ¼ −R2323 ¼ −R1413

¼ R2423 ¼ −2aðT − ZÞ; ð116Þ

and

R1424 ¼ −R1423 ¼ R1323 ¼ −R1324 ¼ −2bðT − ZÞ: ð117Þ

From these it is clear that

Rijkmkm ¼ 0 with km ¼ ð0; 0; 1; 1Þ; ð118Þ

and so the curvature tensor is type N (purely radiative) in
the Petrov classification with degenerate principal null
direction ki. The null vector field ki is covariantly constant
and its expansionfree, twistfree, and shearfree geodesic
integral curves generate the null hyperplanes (115).
From (113) and (114) we see immediately that the

coordinate T is the arc length along the timelike world
line X ¼ Y ¼ Z ¼ 0. The parametric equations of an
arbitrary timelike world line in the space-time with line
element (113), with arc length s along it, are Xi ¼ XiðsÞ
with

−
�
dX
ds

�
2

−
�
dY
ds

�
2

−
�
dZ
ds

�
2

þ
�
dT
ds

�
2

þ 2H

�
dT
ds

−
dZ
ds

�
2

¼ þ1: ð119Þ

Using

u⃗ ¼ ðu1; u2; u3Þ ¼
�
dX
dT

;
dY
dT

;
dZ
dT

�
; ð120Þ

which is the 3–velocity of the observer with world line
Xi ¼ XiðsÞ measured by the observer with world line
X ¼ Y ¼ Z ¼ 0, we can rewrite (119) in the form

�
ds
dT

�
2

¼ 1 − ju⃗j2 þ 2Hð1 − u3Þ2: ð121Þ

Using (114), (116), and (117) we see that

RA4B4XAXB ¼ −2H ðA;B ¼ 1; 2Þ; ð122Þ

with XA ¼ ðX; YÞ. On account of the simplicity of the
Riemann tensor (in particular that it has only two inde-
pendent components) all of the information contained in it
can be extracted using the observer with world line X ¼
Y ¼ Z ¼ 0 and observers with world lines Z ¼ constant.
The ratio of arc lengths or proper-times along such world
lines is, by (121) and (122),

�
ds
dT

�
2

¼ 1 − uAuA − RA4B4XAXB: ð123Þ

We note that in general the final term in (121) can bewritten

2Hð1 − u3Þ2 ¼ −RA4B4XAXB − 2RA4B3XAXBu3

− RA3B3XAXBðu3Þ2: ð124Þ

However this contains no more information on the
Riemann tensor than the final term in (123) since

RA4B3XAXB¼−RA3B3XAXB¼2H¼−RA4B4XAXB: ð125Þ

VI. PLANE GRAVITATIONAL WAVES II

The functionH in (113) and (114) has the property that it
vanishes on the world line X ¼ Y ¼ Z ¼ 0. Its essential
analytical properties are that the vacuum field equations
require it to be a harmonic function,

HXX þHYY ¼ 0; ð126Þ

with the subscripts denoting partial derivatives, and the
curvature tensor components must be functions of T − Z so
that
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HXX−HYY ¼ 4aðT−ZÞ and HXY ¼ 2bðT−ZÞ: ð127Þ

Hence we can have it vanish on the arbitrary timelike world
line Xi ¼ wiðuÞ by taking it to be

H ¼ aðT − ZÞfðX − w1ðT − ZÞÞ2 − ðY − w2ðT − ZÞÞ2g
þ 2bðT − ZÞðX − w1ðT − ZÞÞðY − w2ðT − ZÞÞ:

With Rijkl given by (116) and (117) we can write this as
(again with capital indices taking values 1, 2)

2H ¼ −RA4B4ðT − ZÞ½XA − wAðT − ZÞ�½XB − wBðT − ZÞ�:
ð128Þ

We now make the coordinate transformation

Xi ¼ wi þ rpi þ 1

3
r3ðp4 − p3Þðv4 − v3ÞRA4B4pApBvi

þOðr4Þ; ð129Þ

which generalizes (39) for small values of r and therefore
applies in the neighborhood of the timelike world line
r ¼ 0. The effect of this on the line element (113) with H
given by (128) is to transform it into

ds2 ¼ −r2P−2
0 fðdxþ a0duÞ2 þ ðdyþ b0duÞ2g − dr2

þ f1 − 2h0rþ h20r
2 − r2ðv4 − v3Þ2

× RA4B4pApBgdu2; ð130Þ

neglecting Oðr3Þ–terms. Here P0, a0, b0, h0 are given by
(17) and (38). This form of the line element of the space-
time model of the gravitational field of plane gravitational
waves is in the form of line element discussed in Sec. IV. To
effect a closer comparison we note that

RðαÞð4ÞðβÞð4ÞpðαÞpðβÞ ¼Rijklpivjpkvl¼RA4B4UAUB; ð131Þ

with

UA ¼ ðv4 − v3ÞpA − ðp4 − p3ÞvA: ð132Þ

Hence if vA ¼ 0, so that the timelike world line r ¼ 0 is the
history of an observer accelerating in the direction of
propagation of the gravitational waves (the Z–direction),
then in this case (112) simplifies to

�
ds
du

�
2

¼ 1 − ju⃗j2 þ 2fða⃗ · p⃗Þ − u⃗ · ðω⃗ × p⃗Þgr

þ
�
ða⃗ · p⃗Þ2 − jω⃗ × p⃗j2 − RðαÞð4ÞðβÞð4ÞpðαÞpðβÞ

�
r2

þOðr3Þ: ð133Þ

The origin of the coordinate transformation (129) is to start
with the line element

ds2 ¼ ηijdXidXj þ 2HðdT − dZÞ2
¼ ηijdXidXj − RA4B4ðT − ZÞfXA − wAðT − ZÞg
× fXB − wBðT − ZÞgðdT − dZÞ2: ð134Þ

Now in the final term here make the transformation (39).
This involves

T − Z ¼ w4 − w3 þ rðp4 − p3Þ ⇒
dT − dZ ¼ ðv4 − v3Þduþ ðp4 − p3ÞdrþOðrÞ; ð135Þ

and

RA4B4ðT − ZÞðXA − wAðT − ZÞÞðXB − wBðT − ZÞÞ
¼ r2RA4B4ðuÞpApB þOðr3Þ: ð136Þ

Hence the final term in the line element (134) reads

− r2RA4B4pApBfðv4 − v3Þ2du2
þ 2ðv4 − v3Þðp4 − p3Þdudrg þOðr3Þ: ð137Þ

Now to calculate ηijdXidXj we modify the transformation
(39) to (129) in order to cancel the dudr–term in (137)
when everything is substituted into the line element (134).
From (129) it follows that

dXi ¼
�
vi þ r

∂pi

∂u
�
duþ r

∂pi

∂x dxþ r
∂pi

∂y dy

þ fpi þ r2viðv4 − v3Þðp4 − p3ÞRA4B4pApBgdr
þOðr3Þ: ð138Þ

Since vi and pi are orthogonal the only surviving
Riemann tensor term in ηijdXidXj is 2r2ðv4−v3Þðp4−
p3ÞRA4B4pApBdudr (neglectingOðr3Þ–terms) and so when
ηijdXidXj is added to (137) now the result is the line
element (130).

VII. WAVES MOVING RADIALLY
RELATIVE TO r= 0

The plane gravitational waves have the property that
their propagation direction in space-time is covariantly
constant. Hence their propagation direction in space-time
is, in particular, nonexpanding. Arguably the simplest
example of gravitational waves for which the propagation
direction in space-time is not covariantly constant and is
expanding are waves moving radially with respect to the
observer with world line r ¼ 0 in the present context. Such
waves may, for example, be spherical fronted but the wave
fronts cannot be centered on the observer with world line
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r ¼ 0 since that would result in the Riemann curvature
tensor being singular on r ¼ 0 which emphatically is not
the case here. It follows from (53) and (76) that the
3–direction is the radial direction relative to the world line
r ¼ 0. We thus consider gravitational waves whose propa-
gation direction calculated on r ¼ 0 is given by the 1–form

kðaÞϑðaÞ ¼ −ϑð3Þ þ ϑð4Þ ⇔ kðaÞ ¼ ð0; 0; 1; 1Þ: ð139Þ
Thus for small values of r,

kðaÞϑðaÞ ¼ f−r;i þ ð1 − rh0Þu;i þOðr2ÞgdXi ¼ kidXi;

ð140Þ
and, using (41) and (42), we can write

ki ¼ −r;i þ ð1 − rh0Þu;i þOðr2Þ
¼ pi þ vi þOðr2Þ ð⇒ kiki ¼ Oðr2ÞÞ; ð141Þ

and so the lightlike propagation direction calculated on
r ¼ 0 is ki ¼ pi þ vi. The vacuum field equations

RðaÞðbÞ ¼ −RðαÞðaÞðbÞðαÞ þ Rð4ÞðaÞðbÞð4Þ ¼ 0; ð142Þ

and the radiative conditions on the Riemann tensor (that the
Riemann tensor be type N in the Petrov classification with
kðaÞ as degenerate principal null direction)

RðaÞðbÞðcÞðdÞkðdÞ ¼ RðaÞðbÞðcÞð3Þ þ RðaÞðbÞðcÞð4Þ ¼ 0; ð143Þ
must be satisfied on r ¼ 0 for substitution into (112).
As a consequence of (142) and (143) there are only
two independent nonvanishing components of the vacuum
Riemann tensor calculated on r ¼ 0, namely, Rð1Þð4Þð1Þð4Þ ¼
−Rð2Þð4Þð2Þð4Þ and Rð1Þð4Þð2Þð4Þ. All remaining nonvanishing
curvature components are given in terms of these by

Rð1Þð3Þð1Þð3Þ ¼ −Rð2Þð3Þð2Þð3Þ ¼ −Rð1Þð3Þð1Þð4Þ

¼ Rð2Þð3Þð2Þð4Þ ¼ Rð1Þð4Þð1Þð4Þ; ð144Þ
and

Rð1Þð3Þð2Þð3Þ ¼ −Rð1Þð4Þð2Þð3Þ ¼ −Rð2Þð4Þð1Þð3Þ
¼ Rð1Þð4Þð2Þð4Þ: ð145Þ

When these are substituted into the Riemann tensor terms
in (112) we find that

RðαÞð4ÞðβÞð4ÞpðαÞpðβÞ ¼ RðAÞð4ÞðBÞð4ÞpðAÞpðBÞ; ð146Þ

RðαÞð4ÞðβÞðγÞpðαÞuðβÞpðγÞ ¼ RðAÞð4ÞðBÞð4Þfuð3ÞpðAÞ − uðAÞpð3Þg
× pðBÞ; ð147Þ

and

RðαÞðβÞðγÞðσÞuðαÞpðβÞuðγÞpðσÞ

¼RðAÞð4ÞðBÞð4ÞfuðAÞpð3Þ −uð3ÞpðAÞgfuðBÞpð3Þ−uð3ÞpðBÞg;
ð148Þ

where capital letters take values 1, 2.
Substituting (146)–(148) into (112) we find

�
ds
du

�
2

¼ 1 − ju⃗j2 þ 2fa⃗ · p⃗ − u⃗ · ðω⃗ × p⃗Þgr

þ
�
ða⃗ · p⃗Þ2 − jω⃗ × p⃗j2 − RðAÞð4ÞðBÞð4ÞpðAÞpðBÞ

þ 4

3
RðAÞð4ÞðBÞð4Þfuð3ÞpðAÞ − uðAÞpð3ÞgpðBÞ

−
1

3
RðAÞð4ÞðBÞð4ÞfuðAÞpð3Þ − uð3ÞpðAÞg

× fuðBÞpð3Þ − uð3ÞpðBÞg
�
r2 þOðr3Þ: ð149Þ

It is interesting to note that while ki given by (141) when
r ¼ 0 is the propagation direction of the radial gravitational
waves relative to the observer with world line r ¼ 0 it
cannot be the propagation direction of gravitational waves
in the neighborhood of r ¼ 0 (i.e., for small, nonzero,
values of r). The reason for this is because the Goldberg–
Sachs [18] theorem requires the propagation direction in
space-time of gravitational waves propagating in a vacuum
to be geodesic and shearfree. Using (41) and (56) we have

ki;j ¼
1

r
ðηijþpipj−vivjÞ−h0vivjþaivjþOðrÞ; ð150Þ

from which we conclude that

ki;jkj ¼ −h0vi þOðrÞ; ð151Þ

and so ki is not even approximately geodesic for small r if
ai ≠ 0 (i.e., if r ¼ 0 is not a timelike geodesic). However
we can construct an approximately null vector field Ki in
the neighborhood of r ¼ 0, which coincides with ki on
r ¼ 0, and which is approximately geodesic and shearfree.
Such a vector field is given by

Ki ¼ pi þ vi −
1

2
fai þ h0pigrþOðr2Þ⇒ KiKi ¼Oðr2Þ:

ð152Þ

When differentiating this with respect to Xi using (41), (42)
and (56) it is useful to note that the partial derivative of
h0 ¼ aipi reads

∂h0
∂Xi ¼

1

r
ðai þ h0piÞ þOðr0Þ: ð153Þ
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In particular we calculate that

Ki;j þ Kj;i ¼ ληij þ ξiKj þ ξjKi þOðrÞ; ð154Þ
with

λ ¼ 2

r
− h0 þOðrÞ; ð155Þ

and

ξi ¼
1

r
ðpi − viÞ þ

1

2
ðai − h0viÞ þOðrÞ: ð156Þ

The appearance of the algebraic form of the right-hand side
of (154) ensures that Ki is geodesic and shearfree in the
neighborhood of r ¼ 0 (i.e., Ki is geodesic and shearfree if
OðrÞ–terms are neglected). This characterization of “geo-
desic and shearfree” is due to Robinson and Trautman [19].
It is useful for discussing these geometrical properties
when, (a) not using a null tetrad and (b) not assuming an
affine parameter along the integral curves of the null vector
field. We note in particular that it follows from (154) that

Ki;jKj ¼ −h0Ki þOðrÞ; ð157Þ
demonstrating that Ki is approximately geodesic (without
an affine parameter if h0 ≠ 0).

VIII. CLOCK COMPASS

In the following, the general idea is to use suitably
prepared set of clocks to determine all components of the
gravitational field. The goal is to express all parameters of
the space-times under consideration by means of the
measured frequency ratios between the clocks in a con-
figuration. In analogy to the gravitational compass [8,11],
we call such a clock configuration a “gravitational clock
compass” [9].
In contrast to the general procedure outlined in [9], in

which weworked out the minimal number clocks necessary
for a measurement of all the components of the gravita-
tional field, we now consider setups of clocks which allow
for a determination of the properties of the special space-
times introduced in the previous sections.
In the following we are going to search for arrangements

of n clocks, at positions ðnÞpα with respect to the reference
world line of the observer. In addition to the positions of the
compass constituents, we may also make a choice for the
velocity of the clocks with respect to the observer, denoted
by ðmÞuα in the following. While possible in principle, and
in particular covered by our general formalism, we are not
going to allow for situations with additional accelerations
or rotations.

A. Plane gravitational waves

The starting point is (133), which is the measurable
frequency ratio as a function C¼Cðr;pα;uα;aα;ωαβ;RαβγδÞ

of the quantities characterizing the state of motion as well as
the space-time.
Assuming that all quantities but the gravitational field

can be prescribed by the experimentalist, we can rearrange
(133) as follows:

Bðr; pα; uα; aα;ωαβÞ ¼ RðαÞð4ÞðβÞð4ÞpðαÞpðβÞ; ð158Þ

where

Bðr; pα; uα; aα;ωαβÞ

≔ ða⃗ · p⃗Þ2 − jω⃗ × p⃗j2 þ 2

r
fða⃗ · p⃗Þ − u⃗ · ðω⃗ × p⃗Þg

þ 1

r2
ð1 − C − ju⃗j2Þ: ð159Þ

Employing the strategy from [8,9], we are now looking
for a configuration of clocks, which allows for a determi-
nation of all components of the gravitational field in terms
of the measured quantities B. By labeling different posi-
tions of the clocks by an additional index (n) Eq. (158)
turns into the system

ðnÞB ¼ RðαÞð4ÞðβÞð4ÞðnÞpðαÞðnÞpðβÞ; ð160Þ

in which we suppressed all indices of quantities entering
ðnÞB which are directly controlled by the experimentalist.
Considering different choices for the positions ðnÞpα, we
notice that we end up with the constrained vacuum clock
compass solution given in [9][(114)–(119)]:

01∶ Rð1Þð4Þð1Þð4Þ ¼ ð1ÞB; ð161Þ

02∶ Rð2Þð4Þð2Þð4Þ ¼ ð2ÞB; ð162Þ

03∶ Rð3Þð4Þð3Þð4Þ ¼ ð3ÞB; ð163Þ

04∶ Rð2Þð4Þð1Þð4Þ ¼
1

2
ðð4ÞB − ð1ÞB − ð2ÞBÞ; ð164Þ

05∶ Rð3Þð4Þð2Þð4Þ ¼
1

2
ðð5ÞB − ð2ÞB − ð3ÞBÞ; ð165Þ

06∶ Rð3Þð4Þð1Þð4Þ ¼
1

2
ðð6ÞB − ð1ÞB − ð3ÞBÞ: ð166Þ

Of course in our case the situation is simplified even further
due to (116) and (117). From the constrained system we
can infer—using the notation from [9]—that two clocks at
positions

ð1Þpα ¼

0
B@

1

0

0

1
CA; ð4Þpα ¼

0
B@

1

1

0

1
CA; ð167Þ
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allow for a complete determination of the gravitational
field, i.e., the functions a and b are given by

a ¼ −
1

2
ð1ÞB; b ¼ −

1

4
ð4ÞB: ð168Þ

See Fig. 2 for a symbolical sketch of the solution. Note that
the sketches of the clock configurations make use of a
notation analogous to the one in [9]. The observer is
indicated by a black circle, the prepared clocks are
indicated by hollow circles. In contrast to the notation in
(168)—in which all indices but the relevant position index
(n) are suppressed—the second (velocity) index (m) is
explicitly given in Fig. 2 and set to m ¼ 0, indicating that
the clocks in this configuration do not move with respect to
the observer. Furthermore, we note that the sketches were
introduced in [9] to give a 2 dimensional visual represen-
tation of the solution. In particular they are designed for
counting the number of clocks/measurements at a glance,
they do not directly represent the 3 dimensional geometry
of the measurement (we order hollow circles, correspond-
ing to different positions (n), starting at the three o’clock
position, advancing counter clockwise in 45 degree angles
depending on the position index n).

B. Waves radial relative to r= 0

Following the same line of reasoning as in the case of
plane gravitational waves, we use the definition for B as
given in (159), however now we have a system of clocks at
positions ðnÞpðαÞ moving with velocities ðmÞuðαÞ, and we are
left with the system

ðn;mÞB ¼ ðnÞpðαÞðnÞpðβÞ
�
RðαÞð4ÞðβÞð4Þ −

4

3
RðαÞð4ÞðγÞðβÞðmÞuðγÞ

þ 1

3
RðγÞðαÞðδÞðβÞðmÞuðγÞðmÞuðδÞ

�
: ð169Þ

In vacuum, the general clock compass solution on the
basis of (169) was given in [9]. Taking into account the
nonvanishing curvature components in the radial case as
indicated in (144) and (145), one may infer several clock
configurations which allow for a determination of the
curvature components.

One configuration coincides with the one already given
in plane gravitational wave case, cf. Eq. (168) and Fig. 2.
However, due to the more general nature of the compass
Eq. (169) one may now also construct configurations in
which the clocks are in motion. We briefly mention here
two possible configurations, i.e.,

Rð1Þð4Þð1Þð4Þ ¼ 3c−211
ð3;1ÞB; ð170Þ

Rð1Þð4Þð2Þð4Þ ¼
�
2 −

8

3
c33 þ

2

3
c233

�
−1ð4;3ÞB: ð171Þ

An alternative solution for the second curvature component
is given by

Rð1Þð4Þð2Þð4Þ ¼
3

2c41c42

�
ð3;4ÞB−

��
c41
c11

�
2

−
�
c42
c11

�
2
�
ð3;1ÞB

�
:

ð172Þ

Here we used the same nomenclature for the positions and
velocities as in [9], i.e.,

ð3Þpα ¼

0
B@

0

0

1

1
CA; ð1Þuα ¼

0
B@

c11
0

0

1
CA;

ð3Þuα ¼

0
B@

0

0

c33

1
CA; ð4Þuα ¼

0
B@

c41
c42
0

1
CA: ð173Þ

Symbolical sketches of the solutions (170)–(172) are
given in Fig. 3. Note that we order arrows, corresponding to
different velocities (m), starting at the twelve o’clock
position, advancing clockwise in 45 degree angles depend-
ing on the velocity index m.

IX. CONCLUSIONS

In this work we presented an alternative derivation of
the gravitational clock compass, previously proposed in

FIG. 2. Symbolical sketch of the explicit clock configuration
which allows for a complete determination of the gravitational
field (168). In total 2 suitably prepared clocks (hollow circles) are
needed to determine all curvature components. The observer is
denoted by the black circle. We make use of the notation
analogous to the one in [9].

FIG. 3. Symbolical sketch of the two explicit clock configu-
rations which allow for a complete determination of the gravi-
tational field (170)–(172). In both cases two suitably prepared
clocks (hollow circles) are needed to determine all curvature
components. Again the observer is denoted by the black circle.
We make use of the notation analogous to the one in [9].
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[9,10], by means of the approximation technique developed
in [14–16].
It should be emphasized that the derivation presented

here starts from scratch, i.e., from first principles in flat
space-time. It is reassuring to observe that the result
regarding the general frequency ratio from [9] can, within
the conventions used in the present work, be confirmed by
the use of an independent approximation technique.
Building upon this result, we were able to specialize the

general compass setup to two special types of space-times,
describing plane gravitational waves and waves moving
radially to an observer.
It should be stressed that the focus of the present work

differs somewhat from other works in the gravitational
wave context, for here the main focus is on the general
geometry of the clock configuration required for a complete
field determination, and not the possible measurement of
the wave character (profile). In contrast to classical works
on (indirect) timing experiments like [20,21], a clock
compass relies on the direct frequency comparison of a
suitably prepared set of local clocks.
It is clear that the highly idealized situations of plane and

spherically gravitational waves should be generalized in
future works. Still they serve as a testbed and demonstrate
the direct operational relevance of a clock compass.We hope
to be able to extend them in future works to an approximate
description of more general radiative space-times. A future
goal would be the realization of an omnidirectional (tenso-
rial) [22–24] gravitational wave detector based on clocks.
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APPENDIX A: NOTATIONS AND CONVENTIONS

Note that our conventions for labeling the space-time
metric differs from the one in [9]. The signature is assumed

to be ð−1;−1;−1;þ1Þ. Latin indices run from 1;…; 4, and
Greek indices from 1;…; 3. The notation/symbols used
throughout are listed in Table I.

APPENDIX B: CONSISTENCY OF CURVATURE
TENSOR CALCULATION

The following equations are a spin-off from the calcula-
tions of the Riemann tensor and can be verified to be satisfied
by α2, β2, q2, c2, a1, b1 given in (96)–(101) using (23)–(26):

1

2

� ∂
∂x ðP

−2
0 b1Þ −

∂
∂y ðP

−2
0 a1Þ

�
¼ RðαÞð4ÞðβÞðγÞpðαÞ ∂pðβÞ

∂x
∂pðγÞ

∂y ; ðB1Þ

∂c2
∂x ¼ −RðαÞð4ÞðβÞð4ÞpðαÞ ∂pðβÞ

∂x ; ðB2Þ

∂c2
∂y ¼ −RðαÞð4ÞðβÞð4ÞpðαÞ ∂pðβÞ

∂y ; ðB3Þ

3

2

�
−
∂a1
∂x þ P−1

0

∂P0

∂x a1 þ P−1
0

∂P0

∂y b1

�
¼ P2

0RðαÞðβÞðγÞð4Þ
∂pðαÞ

∂x pðβÞ ∂pðγÞ

∂x ; ðB4Þ

TABLE I. Directory of symbols.

Symbol Explanation

ds Line element
gab, ηab Metric, flat metric
ϑa Coframe
δab Kronecker symbol
xa, Xa Coordinates
x, y Stereographic coordinates
u, s Proper time
Pa Spacelike vectorfield
Rabc

d Riemann curvature
λaðbÞ Orthonormal tetrad
xiðsÞ (Reference) world line
va Velocity
ωab Rotation
aα Acceleration
C Frequency ratio
wi, P, P0, r, h0, a, a0;1;2, Auxiliary quantities
b, b0;1;2, c, c0, q, q2, α, α2,
β, β2, H, UA, B

Operators

(∂i, “,”), (∇i, “;”) (Partial, covariant) derivative
“→” 3d vector
“·” 3d scalar product
“×” 3d vector product
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3

2

�
−
∂b1
∂y þ P−1

0

∂P0

∂y b1 þ P−1
0

∂P0

∂x a1

�
¼ P2

0RðαÞðβÞðγÞð4Þ
∂pðαÞ

∂y pðβÞ ∂pðγÞ

∂y ; ðB5Þ

−
∂b1
∂x þ 1

2
P−1
0

∂P0

∂x b1 −
1

2

∂a1
∂y −

1

2
P−1
0

∂P0

∂y a1 ¼ P2
0RðαÞð4ÞðβÞðγÞ

∂pðαÞ

∂x
∂pðβÞ

∂y pðγÞ; ðB6Þ

−
∂a1
∂y þ 1

2
P−1
0

∂P0

∂y a1 −
1

2

∂b1
∂x −

1

2
P−1
0

∂P0

∂x b1 ¼ P2
0RðαÞð4ÞðβÞðγÞ

∂pðαÞ

∂y
∂pðβÞ

∂x pðγÞ; ðB7Þ

3

2
P−4
0 b1 þ

1

2
P−2
0

∂
∂x

�
P2
0

� ∂
∂x ðP

−2
0 b1Þ −

∂
∂y ðP

−2
0 a1Þ

��
¼ RðαÞð4ÞðβÞðγÞ

∂pðαÞ

∂x
∂pðβÞ

∂x
∂pðγÞ

∂y ; ðB8Þ

3

2
P−4
0 a1 þ

1

2
P−2
0

∂
∂y

�
P2
0

� ∂
∂y ðP

−2
0 a1Þ −

∂
∂x ðP

−2
0 b1Þ

��
¼ RðαÞð4ÞðβÞðγÞ

∂pðαÞ

∂y
∂pðβÞ

∂y
∂pðγÞ

∂x ; ðB9Þ

∂
∂y ðP

−2
0 α2Þ −

∂
∂x ðP

−2
0 β2Þ − P−2

0

∂q2
∂y ¼ 1

2
RðαÞðβÞðγÞðσÞ

∂pðαÞ

∂x pðβÞ ∂pðγÞ

∂x
∂pðσÞ

∂y ; ðB10Þ

−
∂
∂x ðP

−2
0 α2Þ −

∂
∂y ðP

−2
0 β2Þ − P−2

0

∂q2
∂x ¼ 1

2
RðαÞðβÞðγÞðσÞ

∂pðαÞ

∂y pðβÞ ∂pðγÞ

∂y
∂pðσÞ

∂x ; ðB11Þ

∂
∂x

�
P2
0

� ∂
∂y ðP

−2
0 β2Þ þ

∂
∂x ðP

−2
0 α2Þ

��
þ ∂
∂y

�
P2
0

� ∂
∂x ðP

−2
0 β2Þ −

∂
∂y ðP

−2
0 α2Þ

��

¼ −P−2
0 ðΔq2 þ 6q2Þ − P2

0RðαÞðβÞðγÞðσÞ
∂pðαÞ

∂x
∂pðβÞ

∂y
∂pðγÞ

∂x
∂pðσÞ

∂y ; ðB12Þ

−
1

2
P−2
0

� ∂
∂y

�
P2
0

∂c2
∂x

�
þ ∂
∂x

�
P2
0

∂c2
∂y

��
¼ RðαÞð4ÞðβÞð4Þ

∂pðαÞ

∂x
∂pðβÞ

∂y ; ðB13Þ

−2c2 − P2
0

∂2c2
∂x2 − P0

∂P0

∂x
∂c2
∂x þ P0

∂P0

∂y
∂c2
∂y ¼ P2

0RðαÞð4ÞðβÞð4Þ
∂pðαÞ

∂x
∂pðβÞ

∂x ; ðB14Þ

−2c2 − P2
0

∂2c2
∂y2 − P0

∂P0

∂y
∂c2
∂y þ P0

∂P0

∂x
∂c2
∂x ¼ P2

0RðαÞð4ÞðβÞð4Þ
∂pðαÞ

∂y
∂pðβÞ

∂y ; ðB15Þ

with Δq2 ¼ P2
0ð∂

2q2
∂x2 þ ∂2q2

∂y2 Þ, in (B12).
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