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We present a model of FðRÞ gravity in the presence of a string theory motivated misalignment axion like
particle materialized in terms of a canonical scalar field minimally coupled with gravity, and we study the
cosmological phenomenology of the model, emphasizing mainly on the late-time era. The main result of
the paper is that inflation and the dark energy era may be realized in a geometric way by an FðRÞ gravity,
while the axion is the dark matter constituent of the Universe. The FðRÞ gravity model consists of an R2

term, which as we show dominates the evolution during the early time, thus producing a viable inflationary
phenomenology, and a power law term ∼Rδ with δ ≪ 1 and positive, which eventually controls the late-
time era. The axion field remains frozen during the inflationary era, which is an effect known for
misalignment axions, but as the Universe expands, the axion starts to oscillate, and its energy density scales
eventually as we show, as ρa ∼ a−3. After appropriately rewriting the gravitational equations in terms of the
redshift z, we study in detail the late-time phenomenology of the model, and we compare the results with
the ΛCDM model and the latest Planck 2018 data. As we show, the model for small redshifts 0 < z < 5 is
phenomenologically similar to the ΛCDM model, however at large redshifts and deeply in the matter
domination era, the results are different from those of the ΛCDMmodel due to the dark energy oscillations.
For the late-time study we investigate the behavior of several well-known statefinder quantities, like the
deceleration parameter, the jerk and OmðzÞ, and we demonstrate that the statefinders which contain lower
derivatives of the Hubble rate have similar behavior for both the ΛCDM and the axion FðRÞ gravity model.
We conclude that the axion FðRÞ gravity model can unify in a geometric way the inflationary epoch with
the dark energy era, and with the axion being the main dark matter constituent.
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I. INTRODUCTION

Currently the field of theoretical cosmology is chal-
lenged by striking observational data, and solid answers
must be found in order to produce a viable cosmological
description. We are living in the era of precision cosmol-
ogy, thus every theoretical model is challenged and must be
tested in numerous ways. The most important unanswered
for the moment observational and theoretical problems, are
related to the current accelerated expansion of the Universe
and to the dark matter issue. Specifically it was known for
more than twenty years that the Universe is expanding in an
accelerating way [1], and recently it has been verified by
using different approaches, that the expansion rate based on
local data is different in comparison to the expansion rate
that the Universe had in the past, with the latter based on the

cosmic microwave background anisotropy data [2]. This
issue is currently known as the H0 tension [3,4]. There is
also tension in other null diagnostic quantities, this time
related to baryon acoustic oscillations, like for example
the quantity OmðzÞh2 (better stated the quantity ΩMh2 at
z ∼ 2.34) [5], known as improved OmðzÞ diagnostic. As it
is stated in Ref. [5], this tension may be alleviated by
dynamically evolving the dark energy equation of state, or
in our opinion, modified gravity models with a dynamical
dark energy equation of state may shed some light on
these tensions. In fact, it is possible that these tensions
may be used as a test to verify the possibility of whether a
modified gravity model is responsible for the accelerating
expansion of the Universe, and even discriminate different
modified gravity models that can produce such phenom-
enological descriptions. For reviews on modified gravity
and dark energy, see [6–11] and also Refs. [12–18] for
some streamlined articles on the topic. Moreover, a
cosmographic approach to the dark energy issue may
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provide useful insights for finding the exact dark energy
equation of state [19].
On the other hand, the dark matter problem has also

been a fundamental challenge for theoretical high energy
physics and theoretical cosmology for almost forty years.
Continuous efforts seeking dark matter particles with quite
large masses, even of the order of hundreds of GeVor even
TeV scale, had no results. There are several candidates that
could serve as the weakly interacting massive particle
(known as WIMPs) which we still seek, see for example
Refs. [20], however none of those have ever been found, at
least until the present. The question is why to stick with
particle dark matter, while modified gravity can also
successfully describe certain aspects of particle dark matter.
The motivation to continue seeking for particle dark matter
is the observational data coming from galactic collisions,
like the Bullet cluster. Thus, there are two, at least in our
opinion, chances for particle dark matter, ultralight stable
particles, or supersymmetry related particles that may be
found by the Large Hadron Collider in the far (or near)
future. With regard to the ultralight stable particles, the
most important candidate belonging to this category is the
axion, or any string theory motivated axion like particle
[21–24]. Currently there is a large number of researchers
that study several phenomenological implications of the
axion, both in astrophysics and cosmology and for an
important stream of research articles on this timely issue
see for example [21,25–70] and references therein. Also
there are currently many experiments running and theo-
retical studies that may verify the existence of μeV or even
much smaller masses for the axion [71–79] with most of
these experiments and theoretical proposals invoking the
axion photon conversion in a magnetic field [80–82]. In
addition, the future LISA collaboration may reveal axionic
effects coming from gravitational waves related to super-
radiance of black holes [50–52]. Notably, there is quite a
number of works involving axions and gravitational waves
[83], mainly focusing on the possibility of finding non-
trivial polarized gravity waves. We need to stress that
several works in the literature, not related to axions, also
discuss the circular polarization issue for gravitational
waves [84,85], but axions involve Chern-Simons terms
which may generate inequivalent polarization modes [83].
Another interesting study is related to the effect of axions
on the H0 tension [86].
In view of the above major modern cosmological issues,

in this paper we shall study an FðRÞ gravity model in the
presence of a misalignment axion canonical scalar field
with the standard (approximate) VðϕÞ ∼m2

aϕ
2 scalar poten-

tial, where ma is the axion mass. The FðRÞ gravity will
contain the standard Einstein-Hilbert term plus an R2 term
accompanied by a positive noninteger power-law term Rδ,
with δ ≪ 1. The misalignment axion field has a primordial
broken Uð1Þ Peccei-Quinn symmetry [87], so during the
whole inflationary era it remains frozen in its primordial

vacuum expectation value, while it does not control the
dynamical evolution of the Universe at early times. On the
other hand, as we show, the dominant terms that drive
the evolution at early times are the standard Einstein-
Hilbert term and the R2 term. What we achieve in this way
is to obtain a viable inflationary era, and as the Hubble rate
value drops, the axion starts oscillations when its mass is of
the orderma ∼H. By assuming that the axion oscillates in a
damped way, with the damping function being slowly
varying, we demonstrate that the axion energy density
scales as ρa ∼ a−3, and its average equation of state (EoS)
parameter is hwai ¼ 0. Thus the axion behaves as dark
matter for all cosmic times that obey ma ≫ H. Then we
turn our focus on the late-time era and by introducing
appropriate variables, which by themselves are statefinders,
we rewrite the Friedmann equation in terms of the redshift
z, and by choosing physically motivated initial conditions
we numerically solve the Friedmann equation, focusing on
redshifts in the range z ¼ ½0; 10�, thus covering the last
stages of the matter domination era until the present time at
z ¼ 0. As we show, the model can produce quite interesting
phenomenology, and the predicted cosmological parame-
ters match those of the Λ cold dark matter (ΛCDM) model,
at least at the present time. Also as we show, deviations
from the ΛCDM occur for larger redshifts, and the
deviations are enhanced, especially for cosmological quan-
tities such as the deceleration parameter and other state-
finder parameters which depend on higher derivatives of
the Hubble rate. This issue though depends on the initial
conditions, and also we discuss possible remedies that may
soften these dark energy oscillations during the matter
domination era. As we conclude, this model of FðRÞ
gravity is some sort of dynamically evolving dark energy
model and we briefly discuss the future perspectives of
this work.
This paper is organized as follows: In Sec. II we present

the FðRÞ gravity axion model in some detail, and we
discuss the essential features of the misalignment axion
model. In addition, we show that the energy density of the
axion scales as a−3 and that the averaged axion EoS
parameter is zero. Moreover, we discuss the oscillating
era of the axion in further detail and we explicitly
demonstrate the effects of the assumed slowly varying
damped oscillation of the axion on the Friedmann equation.
In addition, we examine the phenomenology of the infla-
tionary era for the axion-FðRÞ gravity model, and we
quantify our claim that the driving dominant terms are the
Einstein-Hilbert term and the R2 term. In Sec. III we study
in detail the late-time era and we show that the axion-FðRÞ
gravity model produces a viable late-time phenomenology.
Also we discuss in some detail certain aspects of the model,
related to statefinder parameters that may indicate whether
a model of this type can actually be the correct physical
description of the Universe, and in addition we discuss
several other theoretical issues related to the model. Finally,
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the conclusions of our study along with a discussion on the
future perspectives of this work follow in the end of the
article.

II. DESCRIPTION OF THE MODEL,
COSMOLOGICAL DYNAMICS AND THE

AXION SCALAR EVOLUTION

A. The misalignment axion-FðRÞ gravity model

The axion-FðRÞ gravity action we shall consider in this
work first appeared and was briefly discussed at the end of
our previous work [29], and it has the following form:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
FðRÞ − 1

2
∂μϕ∂μϕ − VðϕÞ þ Lm

�
;

ð1Þ
where κ2 ¼ 1

8πG ¼ 1
M2

p
, with G being Newton’s gravitational

constant and Mp being the reduced Planck mass. Also the
Lagrangian Lm contains all the perfect fluids that are
assumed to be present in the theory. The form of the
FðRÞ gravity which we shall choose is the following:

FðRÞ ¼ Rþ 1

M2
R2 − γΛ

�
R

3m2
s

�
δ

; ð2Þ

and there is a very specific reason for choosing this R2

corrected power law type of FðRÞ gravity which we discuss
in later sections. Also ms in Eq. (2) is m2

s ¼ κ2ρð0Þm
3

. The
parameter δ is assumed to take positive values in the
interval 0 < δ < 1, and γ is a dimensionless free parameter,
while the parameter Λ is a parameter with mass dimensions
½m�2. The parameter M must be approximately M ¼ 1.5 ×
10−5ðN

50
Þ−1Mp for early time phenomenological reasons

[88], with N being the e-foldings number. By assuming a
flat Friedmann-Robertson-Walker (FRW) geometric back-
ground of the form

ds2 ¼ −dt2 þ aðtÞ2
X

i¼1;2;3

ðdxiÞ2; ð3Þ

upon varying the gravitational action with respect to the
metric and with respect to the scalar field, we obtain the
following gravitational equations of motion:

3H2FR ¼ RFR − F
2

− 3H _FR þ κ2
�
ρr þ

1

2
_ϕ2 þ VðϕÞ

�
;

−2 _HF ¼ κ2 _ϕ2 þ F̈R −H _FR þ 4κ2

3
ρr; ð4Þ

ϕ̈þ 3H _ϕþ V 0ðϕÞ ¼ 0; ð5Þ

where FR ¼ ∂F
∂R. In addition, the “dot” denotes differentia-

tion with respect to the cosmic time t, the “prime” denotes
differentiation with respect to the scalar field, while we also

assumed that the only perfect fluid present will be that of
radiation, so pr ¼ 1

3
ρr. The core assumption of this paper is

that the axion scalar field ϕ is the main constituent of cold
dark matter, so we did not include any other dark matter
component in the action.
It is crucial to understand how the axion dynamics affects

the dynamics of the model at all eras. The axion model we
shall consider in this work is the misalignment axion
model, so in the next section we shall present in detail
the dynamical evolution of the axion from the inflationary
era to the late-time eras. As we already mentioned, this is a
crucial component of our model, so we discuss this issue
in detail.

B. The misalignment axion field dynamics:
Inflation and postinflationary eras evolution

As we already mentioned in the Introduction, the axion
scalar and all axion like scalars have attracted a lot of
attention in the past years. The main reason for this is the
absence of evidence for a large mass WIMP, so currently
the scientific community has focused on mass scales of eV
scale or quite smaller than that. The focus in this paper will
be on misalignment axion scalars, which result from a
primordial string theory motivated broken Uð1Þ Peccei-
Quinn symmetry. The actual mechanism for the sponta-
neous breaking of this primordial symmetry is not
necessary for this work, however, the important outcome
is that during this preinflationary epoch, the axion scalar
obtains a large vacuum expectation value, its mass is
constant, and more importantly it remains frozen in its
vacuum expectation value. Essentially, it contributes a
cosmological constant in the Friedman equations, as we
will see. Eventually this freezing of the axion during the
inflationary era will enable the FðRÞ gravity to control the
inflationary dynamics, and control even the subsequent
reheating era. Let us quantify the freezing of the axion like
particle after the primordial breaking of the Uð1Þ Peccei-
Quinn symmetry; more details on these issues can be found
in [21]. The axion potential after the spontaneous breaking
for the Uð1Þ Peccei-Quinn symmetry has the following
approximate form at leading order:

VðϕÞ ≃ 1

2
m2

aϕ
2
i ; ð6Þ

with ϕi being the (large) vacuum expectation value obtained
by the axion field after the breaking of the primordial Uð1Þ
symmetry. In addition, as already mentioned, the axion field
has a nearly constant mass after theUð1Þ breaking and for all
the subsequent eras, including the inflationary era.
During the inflationary era, the axion field is over-

damped, and this is quantified in the following initial
conditions that control its dynamics during inflation [21]:

ϕ̈ðtiÞ ≃ 0; _ϕðtiÞ ≃ 0; ϕðtiÞ≡ ϕi ¼ faθa; ð7Þ
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with ti being a time instance characterizing the inflationary
era. Also fa is an important constant of the axion particle
theory, called the axion decay constant, which plays a
crucial role in the axion phenomenology, and θa is the
initial misalignment angle. Hence during the inflationary
era, the axion contributes merely a cosmological constant
in the gravitational equations of motion (4). This behavior
continues for all cosmic times for whichH ≫ ma, however
when the Hubble rate drops significantly and becomes of
the order H ∼ma, the axion field starts to oscillate in a
damped way though. This can be seen from the axion
equation of motion, which is a canonical scalar field
equation of motion with potential (6),

ϕ̈þ 3H _ϕþm2
aϕ ¼ 0: ð8Þ

As the Universe expands, the second term is merely a
friction term and the evolution is a damped oscillation,
which commences approximately when H ∼ma and con-
tinues until for all the subsequent eras for which ma ≫ H.
Let us quantify in detail this axion oscillatory era because it
is of crucial importance. We shall assume that the axion
oscillatory solution has the following form [21]:

ϕðtÞ ¼ ϕiAðtÞ cosðmatÞ; ð9Þ

where ϕi is the initial value of the axion field after inflation
ends. The function AðtÞ is assumed to be a slow-varying
function, the dynamics of which are governed by the
following condition valid for all cosmic times for which
ma≽H:

_A
ma

∼
H
ma

≃ ϵ ≪ 1: ð10Þ

Combining Eqs. (8) and (9) and by keeping leading order
terms in the parameter ϵ we get

−
2 _A sinðmatÞ

ma
−
3AH sinðmatÞ

ma
¼ 0; ð11Þ

so using H ¼ _a
a we get the following approximate differ-

ential equation:

dA
A

¼ −
3da
2a

; ð12Þ

with an analytic solution of the form

A ∼ a−3=2: ð13Þ

The misalignment axion field is a canonical scalar field, so
its energy density and pressure are

ρa ¼
_ϕ2

2
þ VðϕÞ; ð14Þ

Pa ¼
_ϕ2

2
− VðϕÞ; ð15Þ

and the effective equation of state (EoS) parameter wa for
the axion scalar is wa ¼ Pa=ρa. Let us calculate these at
leading order in ϵ, since these will be needed in the sections
that follow. Using the slow-varying oscillating solution (9)

the term
_ϕ2

2
reads

_ϕ2

2
¼ m2

aϕ
2
i

2

�
_A
m2

a
cos2ðmatÞ þ A2sin2ðmatÞ

− 2A
_A
ma

cosðmatÞ sinðmatÞ
�
; ð16Þ

and since _A
ma

∼ ϵ ≪ 1, the term
_ϕ2

2
can be approximated as

follows:

_ϕ2

2
≃
1

2
m2

aϕ
2
i A

2sin2ðmatÞ: ð17Þ

Moreover, the axion potential term is equal to

VðϕÞ ¼ 1

2
m2

aϕ
2
i A

2cos2ðmatÞ; ð18Þ

therefore by substituting Eqs. (17) and (18) in the axion
energy density (14), the later becomes

ρa ≃
1

2
m2

aϕ
2
i A

2; ð19Þ

and in view of Eq. (13), the axion energy density reads

ρa ≃ ρð0Þm a−3; ð20Þ

where we have introduced the notation ρð0Þm ¼ 1
2
m2

aϕ
2
i . Thus

the axion energy density scales as ρa ∼ a−3 for all cosmic
times for whichma ≫ H, in effect the axion scalar scales as
a cold dark matter perfect fluid. Since the axion mass is
constant, the total energy density of the cold dark matter

scalar at present is ρð0Þm ¼ 1
2
m2

aϕ
2
i , which indicates that its

magnitude is set by the initial conditions of the primordial
axion scalar, quantified in the initial vacuum expectation
value of the axion scalar ϕi which received it after the
spontaneous breaking of the primordial Uð1Þ Peccei-Quinn
symmetry.
By substituting Eqs. (17) and (18) in the pressure of the

axion scalar (15), we obtain
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Pa ≃
1

2
m2

aϕ
2
i A

2½sin2ðmatÞ − cos2ðmatÞ�; ð21Þ

and in effect, the EoS for the axion scalar wa ¼ Pa=ρa
reads

w ¼ sin2ðmatÞ − cos2ðmatÞ; ð22Þ
which when integrated for an integration period yields
hwi ¼ 0, which also supports the fact that the axion scalar
is a cold dark matter particle.
Thus we showed that the axion scalar can act as a cold

dark matter particle, which we assumed constitutes the
whole dark matter of the Universe, and we determined its
dynamics during inflation and for all the subsequent eras.
Before closing, we shall discuss all the essential phenom-
enological issues related with the axion, in order to
determine in a quantitative way the order of magnitude
of the axion scalar effects during the inflationary era. We
shall assume that the inflationary scale is HI ¼ 1013 GeV,
and also that the current Hubble rate value H0 is that of the
Planck observational data [2],

H0 ¼ 67.4� 0.5
km

sec×Mpc
; ð23Þ

so H0 ¼ 67.4 km= sec =Mpc which is H0 ¼ 1.37187×
10−33 eV, hence h ≃ 0.67. In addition, the latest Planck
data indicate that the dark matter density Ωch2 is

Ωch2 ¼ 0.12� 0.001; ð24Þ
in which case, for ϕi ¼ Oð1015Þ GeV, the axion mass
compatible with the constraint (24) is of the order
ma ≃Oð10−14Þ eV. In the next sections we shall inves-
tigate the inflationary and the late-time phenomenology of
the axion FðRÞ gravity model, and as we demonstrate it is
possible to describe both the early and the late-time
acceleration in a geometric way, with the axion playing
the role of the cold dark matter particle.

C. The inflationary era: R2 gravity prevails

In the previous section we demonstrated that the axion
scalar during the inflationary era contributes merely a
cosmological constant in the equations of motion of
Eq. (4) and in this section we shall calculate the order
of magnitude of this contribution and compare it to the
FðRÞ gravity terms during the inflationary era. In this way
we shall show that the R2 gravity terms control the
dynamical evolution during the inflationary era. Also we
shall appropriately choose the values of the free parameters
and we shall show that the FðRÞ gravity of Eq. (2) satisfies
the FðRÞ gravity viability criteria.
We start off with the equations of motion (4), and

specifically the Friedmann equation, which for the FðRÞ
gravity of Eq. (2) and for the potential (6) reads

3H2

�
1þ 2

M2
R − δγ

�
R

3m2
s

�
δ−1

�

¼ R2

2M
þ ðγ − γδÞ

ð R
3m2

s
Þδ

2

− 3H _R

�
2

M2
− γδðδ − 1Þ

�
R

3m2
s

�
δ−2

�

þ κ2
�
ρr þ

1

2
κ2 _ϕi

2 þ 1

2
m2

aϕ
2
i

�
: ð25Þ

Now we shall choose the values free parametersM, γ and δ
and we shall compare the order of magnitude of the terms
appearing in Eq. (25) in order to see which terms drive the
dynamical evolution of the Universe during the inflationary
era. The choice of the free parameters γ and δ is determined
by the late-time era as we see in the later section, so by
choosing

γ ¼ 1

0.5
; δ ¼ 1

100
; ð26Þ

and also we assume that Λ ≃ 11.895 × 10−67 eV2. As we
shall see in the next section, these values for γ and δ can
yield a very interesting late-time evolution. Also ms was
defined below Eq. (2) so m2

s ≃ 1.87101 × 10−67 eV2.
Finally, the parameter M related to the R2 term in
Eq. (2) for phenomenological reasons must be chosenM ¼
1.5 × 10−5ðN

50
Þ−1Mp [88], so for N ∼ 60, M is approxi-

mately M ≃ 3.04375 × 1022 eV. Furthermore we assume
that during the inflationary era _H ≪ H2, and in effect
the curvature is approximately R ≃ 12H2, so for H ¼
HI ∼ 1013 GeV, the curvature scalar is approximately
R ∼ 1.2 × 1045 eV2. Now let us proceed in the comparison
of the terms appearing in Eq. (25), and we start off by
eliminating the radiation term κ2ρr ∼ e−N which could be
eliminated from the beginning, since it does not affect
the evolution during inflation. The term _ϕ2

i can also be
eliminated since the axion obeys the initial conditions (7),
so is frozen during the inflationary era. Also, the values of
ϕi and ma were chosen in the previous section as ϕi ¼
Oð1015Þ GeV and ma ≃Oð10−14Þ eV, therefore the poten-
tial term is of the order κ2VðϕiÞ ∼Oð8.41897×
10−36Þ eV2, since κ2 ¼ 1=M2

p, where Mp is the reduced
Planck massMp ≃ 2.435 × 1027 eV. Let us now proceed to
the curvature related terms, so the terms R∼
1.2 ×Oð1045Þ eV2, also R2=M2 ∼Oð1.55 × 1045Þ eV2.
Finally the term ∼ð R

3m2
s
Þδ ∼Oð10Þ, also ∼ð R

3m2
s
Þδ−1 ∼

Oð10−111Þ and lastly ∼ð R
3m2

s
Þδ−2 ∼Oð10−223Þ. Clearly, the

only dominant terms are those corresponding to the positive
powers of the curvature, hence the Friedman equation (25)
at leading order during inflation is identical to the one
corresponding to the vacuum R2 model, that is,

GEOMETRIC INFLATION AND DARK ENERGY WITH AXION … PHYS. REV. D 101, 044009 (2020)

044009-5



3H2

�
1þ 2

M2
R

�
¼ R2

2M
−
6H _R
M2

; ð27Þ

which can be rewritten

3Ḧ − 3
_H2

H
þ 2M2H

6
¼ −9H _H; ð28Þ

which can be solved by using the slow-roll assumption
_H ≪ H2 and it yields an approximate quasi-de Sitter
evolution,

HðtÞ ¼ H0 −
M2

36
t: ð29Þ

The phenomenology of the Jordan frame vacuum R2 model
with the quasi-de Sitter evolution produces a viable infla-
tionary era, compatible with the latest Planck data [2], since
the spectral index as a function of the e-foldings number is
ns ∼ 1 − 2

N and the predicted tensor-to-scalar ratio is r ∼ 12
N2.

Thus in this section we demonstrated that the vacuum R2

gravity controls the evolution of the axion FðRÞ gravity
model, due to the fact that the axion is dynamically frozen
during inflation. However as the Universe expands, when
ma≽H, the axion starts to oscillate and behaves dynami-
cally as cold dark matter, as we showed in the previous
section. In effect, at late times it behaves as a cold dark
matter fluid the energy density of which scales as ρa ∼ a−3.
In the next section we shall discuss the late-time phenom-
enology of the axion FðRÞ gravity model.

III. LATE-TIME EVOLUTION AND
COSMOLOGICAL PARAMETERS

The gravitational equations of motion (4) and (5) can be
written in a form similar to the Einstein gravity case for a
flat FRW spacetime,

3H2 ¼ κ2ρtot;

−2 _H ¼ κ2ðρtot þ PtotÞ; ð30Þ

where ρtot ¼ ρϕ þ ρG þ ρr is the total energy density of the
cosmological fluid and Ptot ¼ Pr þ Pa þ PG is the total
pressure. In the case at hand, the total fluid consists from
the radiation perfect fluid with energy density ρr, the axion
scalar field fluid with energy density ρa, which is given in
Eq. (14), and the geometric fluid ρG which at late times will
play the role of dark energy and it is equal to

ρG ¼ FRR − F
2

þ 3H2ð1 − FRÞ − 3H _FR: ð31Þ

Accordingly the pressures can consist of the radiation,
scalar field and geometric part, with the pressure for the

radiation being Pr ¼ 1
3
ρr, the pressure for the scalar fluid

being defined in Eq. (15), and the pressure of the geometric
fluid being equal to

PG ¼ F̈R −H _FR þ 2 _HðFR − 1Þ − ρG: ð32Þ

All the fluids in the way we chose the respective energy
momentum tensors, do not interact between them and
satisfy the continuity equations,

_ρa þ 3Hðρa þ PaÞ ¼ 0;

_ρr þ 3Hðρr þ PrÞ ¼ 0;

_ρG þ 3HðρG þ PGÞ ¼ 0: ð33Þ

The basic principle we would like to point out here is
that the geometric fluid controls apart from the early-time
era, the late-time acceleration era too, and the axion acts as
a cold dark matter dust.
For the late-time study, we shall express the Friedmann

equation in terms of the redshift z which is defined as
follows:

1þ z ¼ 1

a
; ð34Þ

where we assumed that the present time scale factor, which
corresponds to z ¼ 0, is equal to one. Also, we shall
introduce the function yHðzÞ to quantify our study [89,90],
which is defined as follows:

yHðzÞ ¼
ρG

ρð0Þm

; ð35Þ

where ρð0Þm is the present time energy density of cold dark
matter. In terms of the first Friedman equation (30), the
function yHðzÞ is written as

yHðzÞ ¼
3H2

κ2ρð0Þm

−
_ϕ2

2ρð0Þm

−
VðϕÞ
ρð0Þm

−
ρr

ρð0Þm

: ð36Þ

The radiation energy density scales as ρr ¼ ρð0Þr a−4, where

ρð0Þr is the present time value of the radiation energy density,

so ρr
ρð0Þm

¼ χð1þ zÞ4, where χ ¼ ρð0Þr

ρð0Þm
≃ 3.1 × 10−4. The most

interesting part in Eq. (36) is the scalar field dependent part,
so the ϕ-dependent terms in Eq. (36). At late times, the
axion field oscillates with a frequency ma as we showed
earlier, and by combining Eqs. (17) and (18), the two terms
in Eq. (36) are equal to
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1

ρð0Þm

�
−
_ϕ2

2
− VðϕÞ

�

¼ −
ϕ2
i m

2
a

2ρð0Þm

�
ϕ2
i
_A2

m2
a

cos2ðmatÞ þ A2ϕ2
i sin

2ðmatÞ −
2 _Aϕ2

i

ma
A cosðmatÞ sinðmatÞ þ A2ϕ2

i cos
2ðmatÞ

�
¼ −a3; ð37Þ

where we used Eq. (20) and the definition ρð0Þm ¼ 1
2
m2

aϕ
2
i we gave earlier. Thus, in view of Eq. (37), and substituting

ρr
ρð0Þm

¼ χð1þ zÞ4, the function yHðzÞ of Eq. (36) is finally written:

yHðzÞ ¼
H2

m2
s
− ð1þ zÞ3 − χð1þ zÞ4; ð38Þ

where the parameter m2
s ¼ κ2ρð0Þm

3
¼ H0Ωc ¼ 1.37201 × 10−67 eV2 was defined below Eq. (2). Now let us express the

cosmological equation as a function of the variable yHðzÞ, so it can be shown that this is written as follows [90]:

d2yHðzÞ
dz2

þ J1
dyHðzÞ
dz

þ J2yHðzÞ þ J3 ¼ 0; ð39Þ

where the functions J1, J2 and J3 are defined as follows:

J1 ¼
1

zþ 1

�
−3 −

1 − FR

ðyHðzÞ þ ðzþ 1Þ3 þ χð1þ zÞ4Þ6m2
sFRR

�
;

J2 ¼
1

ðzþ 1Þ2
�

2 − FR

ðyHðzÞ þ ðzþ 1Þ3 þ χð1þ zÞ4Þ3m2
sFRR

�
;

J3 ¼ −3ðzþ 1Þ −
ð1 − FRÞððzþ 1Þ3 þ 2χð1þ zÞ4Þ þ R−F

3m2
s

ð1þ zÞ2ðyHðzÞ þ ð1þ zÞ3 þ χð1þ zÞ4Þ6m2
sFRR

; ð40Þ

where FRR ¼ ∂2F
∂R2. The above differential equation must be

solved by using appropriate initial conditions, for a range of
suitable redshift values that describe the last stage of the
matter domination epoch and the late-time era up to the
present day. We shall focus on the interval z ¼ ½zi; zf� with
zi ¼ 0 and zf ¼ 10, so the initial conditions on the function
yHðzÞ and its derivative are determined by the last stages of
the matter domination era. The Ricci scalar in terms of the
function yHðzÞ is written as follows:

RðzÞ¼ 3m2
s

�
4yHðzÞ− ðzþ1ÞdyHðzÞ

dz
þðzþ1Þ3

�
: ð41Þ

Now an important issue is the initial conditions, and how
these affect the late-time phenomenology. Actually, as we
will see, the right choice of initial conditions may provide a
reasonable phenomenological picture for statefinder
parameters that contain higher derivatives of the Hubble
rate. We shall consider the following general choice of
initial conditions for the redshift zf ¼ 10:

yHðzfÞ ¼
Λ
3m2

s
ð1þ γ̃ð1þ zfÞÞ;

dyHðzÞ
dz

����
z¼zf

¼ γ̃
Λ
3m2

s
;

ð42Þ

where the dimensionless parameter γ̃ will be assumed to be
γ̃ ¼ 1

103
but in principle can take larger values. We need to

note that this parameter strongly affects the large redshift
behavior of the function yH and also of the corresponding
statefinder parameters, so eventually it may affect the
high redshift phenomenology and the dark energy oscil-
lations, which is always an issue in dynamical dark energy
modified gravity models. We shall take that as a free
parameter, and among other issues, we shall examine the
effect of γ̃ on the phenomenology of the model. The actual
determination of the initial conditions is always going to be
some variant form of the above, and perhaps some cosmo-
graphic approach [19] may provide some more accurate
form for these. We shall assume that these are of the form
(42), so one of the main aims of this section is also to
investigate the effect of the initial conditions on the
cosmological parameters.
Now we can start making comparisons with the ΛCDM

model, in which case the Hubble rate is equal to

HΛðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þ ΩMðzþ 1Þ3 þ Ωrð1þ zÞ4

q
; ð43Þ

where H0 is the present day value of the Hubble rate which
is H0 ≃ 1.37187 × 10−33 eV according to the latest Planck
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data [2], ΩΛ ≃ 0.681369 and ΩM ∼ 0.3153 [2], while
Ωr=ΩM ≃ χ, with χ being defined below Eq. (36).
The function yH is by itself a statefinder parameter for

the dark energy era, and in fact was used indirectly in
Ref. [5] to discuss the issue that it might become negative at
a redshift z ∼ 2.34 first reported in Ref. [91]. Basically,
good statefinder parameters are those associated with the
geometry of the spacetime, thus the Hubble rate and its
higher derivatives. Also it is known that the FðRÞ gravity
models that can describe a dynamical dark energy era, are
plagued with the problem of dark energy oscillations at
high redshift z > 6, and singularities in the dark energy
EoS parameter may occur during the matter domination
era. In our case, the R2 term cures these singularities, as it is
already known in the literature that such a term amends the
singularities issue in the dark energy EoS [88,92], but the
dark energy oscillations issue still remains. In fact, as we
will show, the oscillations issue becomes more evident in
statefinder parameters that contain higher derivatives of the
Hubble rate, and is strongly affected by the initial con-
ditions chosen for yH, thus it is affected by the parameter γ̃
appearing in Eq. (42). Let us solve numerically the

differential equation (39), for the values of the parameters
defined in this and the previous sections, with the initial
conditions (42), for γ̃ ¼ 1=103. In the left plot of Fig. 1 we
present the behavior of the function yH as a function of the
redshift, and already the issue of dark energy oscillations
becomes apparent for redshifts z ∼ 4 and higher. In the right
plot of Fig. 1 we present the behavior of the scalar curvature
(41) as a function of the redshift. In order to better
understand the behavior of the model and assess the
viability of the model, we shall compare several statefinder
quantities for the model and directly compare these to the
ΛCDM model values. We start off with the dark energy
EoS parameter ωG ¼ PG

ρG
, which can be expressed in terms

of the function yH as follows:

ωGðzÞ ¼ −1þ 1

3
ðzþ 1Þ 1

yHðzÞ
dyHðzÞ
dz

; ð44Þ

which is also a good statefinder since it depends on the
geometry via the dependence on the derivatives of the
Hubble rate HðzÞ. In the left plot of Fig. 2 we present
the behavior of the dark energy EoS for γ̃ ¼ 1=103. As it
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FIG. 1. The statefinder function yH for geometric dark energy as a function of the redshift (left plot) and the scalar curvature (right
plot) for γ̃ ¼ 1=103.
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FIG. 2. The dark energy EoS parameter ωGðzÞ (left plot) and the dark energy density parameter ΩGðzÞ (right plot) as functions of the
redshift for γ̃ ¼ 1=103.
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can be seen, the EoS parameter for the model has oscillat-
ing behavior for z≽6 approximately, but the present
day value is ωGð0Þ ¼ −0.995175, which is compatible
with the latest Planck constraints [2], which is ωG ¼
−1.018� 0.031. The results for present day values of
the various parameters that will be obtained hereafter are
summarized in Table I. Also in the right plot of Fig. 2 we
plot ΩG ¼ ρG

ρtot
, as a function of the redshift, and ΩGðzÞ is

written as a function of the function yHðzÞ as follows:

ΩGðzÞ ¼
yHðzÞ

yHðzÞ þ ðzþ 1Þ3 þ χðzþ 1Þ4 : ð45Þ

As can be seen in the right plot of Fig. 2, the late-time
behavior of ΩGðzÞ is oscillation free and leads to the
present day value prediction ΩGð0Þ ¼ 0.681369, which is
also compatible with the latest Planck constraint ΩG ¼
0.6847� 0.0073. The statefinder quantities, as we already
mentioned, are quite important since the results depict the
effects of the geometry of spacetime on the statefinder
quantities, and this is why the statefinder quantities are
valuable tools for late-time cosmology. We shall be
interested in four statefinder quantities, namely the decel-
eration parameter q, the jerk j, the parameter s [93] and
finally the parameter OmðzÞ [5], which their functional
behavior as functions of the Hubble rate is given below:

TABLE I. Values of cosmological parameters for axion FðRÞ gravity model and ΛCDM for initial conditions
with γ̃ ¼ 1=103.

Cosmological parameter Axion FðRÞ gravity value Base ΛCDM or Planck 2018 value

ΩGð0Þ 0.683948 0.6847� 0.0073
ωGð0Þ −0.995205 −1.018� 0.031
Omð0.000000001Þ 0.319364 0.3153� 0.007
qð0Þ −0.520954 −0.535
jð0Þ 1.00319 1
sð0Þ −0.00104169 0
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FIG. 3. The deceleration parameter q (upper left plot), the statefinder OmðzÞ (upper right plot), the statefinder j (lower left) and the
statefinder s (lower right) as functions of the redshift, for the axion FðRÞ gravity model (blue curves) and for the ΛCDM model (red
curves), for γ̃ ¼ 1=103.
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q ¼ −1 −
_H
H2

; j ¼ Ḧ
H3

− 3q − 2;

s ¼ j − 1

3ðq − 1
2
Þ ; OmðzÞ ¼

HðzÞ2
H2

0

− 1

ð1þ zÞ3 − 1
: ð46Þ

The last three, namely the jerk j, s and OmðzÞ, have very
simple values for theΛCDMmodel, which are s ¼ 0, j ¼ 1
and OmðzÞ ¼ ΩM ≃ 0.3153. We can easily compare the
results of the axion FðRÞ gravity model with those of the
ΛCDM by expressing the statefinders (46) as functions of
the redshift, but the final expressions are too lengthy to
quote here. The results of the numerical integration are
shown in Fig. 3, where in the upper left the deceleration
parameter of the axion FðRÞ gravity model is plotted as a
function of the redshift (blue curve) and the corresponding
deceleration parameter of the ΛCDM model also appears
(red). As can be seen, these are indistinguishable up to a
redshift z ∼ 4. In the upper right of Fig. 3, in the lower left
we plot the jerk j and in the lower right plot the statefinder
OmðzÞ for the axion FðRÞ model and for the ΛCDM is
shown. In all of the plots, the red curve corresponds to the
ΛCDMmodel, and the blue curve to the axion FðRÞ gravity
model, for γ̃ ¼ 1=103. As can be seen in the upper plots of
Fig. 3, when lower derivatives of the Hubble rate are
invoked, or even simply of the Hubble rate in the case of the
statefinder OmðzÞ, the oscillations of the dark energy at
higher redshifts are not so pronounced. However, it is
notable that the ΛCDM and the axion FðRÞ gravity model
can be distinguished even at low redshifts when the
statefinder OmðzÞ is considered. From the lower plots of
Fig. 3 it is evident that when higher derivatives of the
Hubble rate are invoked, the dark energy oscillations are
strongly pronounced even for redshift values z ∼ 2 and
higher, as we already expected. However, the low redshift
behavior of the statefinders j and s are similar to the ones
corresponding to the ΛCDM model. We need to note
though, that although the dark energy oscillations are
apparent especially in more complex statefinder parame-
ters, the R2 term in the FðRÞ gravity of Eq. (2) ensures the
absence of singularities in the dark energy EoS parameter,
as is also noted in the literature [88]. In fact, this can also be
seen in the left plot of Fig. 2, since the oscillations of dark
energy are not so pronounced, in comparison to statefinders

containing higher derivatives of the Hubble rate. The results
of the values of the statefinders at the present time and the
comparison with the values of the ΛCDM model can be
found in Table I. Another important issue we need to
discuss is the effect of the initial conditions on the
phenomenology of the axion FðRÞ gravity model. We
performed the numerical integration of the differential
equation (39) with the initial conditions (42) for two values
of γ̃, namely γ̃ ¼ 1=10 and γ̃ ¼ 1=1000. The results are
quite interesting since the effect of the initial conditions on
the values of the physical parameters and on the statefinders
at the present time is minor, apart from the ones that contain
higher derivatives of the Hubble rate, namely j and s, but
the changes are of the order of Oð10−2Þ. For a direct
comparison we quote these in Table II. However, the effect
of the values of γ̃ and in effect of the initial conditions on
the dark energy oscillations is mentionable, and in fact, as γ̃
takes larger values, the oscillations are more pronounced.
This can be seen in Fig. 4, where we present the behavior of
the deceleration parameter q, of the statefinder OmðzÞ and
of the function yHðzÞ as a function of the redshift, for γ̃ ¼
1=10 (red curves) and for γ̃ ¼ 1=1000 (blue curves). Also
for even smaller values of γ̃, the oscillation behavior is even
less pronounced. In conclusion, we demonstrated that the
axion FðRÞ gravity model can mimic the ΛCDM model at
late times and can also provide a viable late-time phenom-
enology compatible with the Planck 2018 constraints on the
cosmological parameters quantifying the effects of the dark
energy. However, the issue of dark energy oscillations
seems to be present, as was expected though. The dark
energy oscillations are strongly affected by the initial
conditions chosen for the function yHðzÞ and its derivative
during the last stages of the matter domination era, however
we will report soon on a mechanism that may eliminate
completely the dark energy oscillations from FðRÞ gravity
models.
At this point, let us investigate whether the FðRÞ gravity

model satisfies the viability criteria that any FðRÞ gravity
model should satisfy. These are

F0ðRÞ > 0; F00ðRÞ > 0; ð47Þ

for R > R0, where R0 is the present day curvature. In Fig. 5
we plot the behavior of F0ðRÞ and F00ðRÞ as functions of the

TABLE II. Values of cosmological parameters for axion FðRÞ gravity model and ΛCDM for initial conditions
with γ̃ ¼ 1=10.

Cosmological parameter Axion FðRÞ gravity value Base ΛCDM or Planck 2018 value

ΩGð0Þ 0.683968 0.6847� 0.0073
ωGð0Þ −0.995827 −1.018� 0.031
Omð0.000000001Þ 0.318919 0.3153� 0.007
qð0Þ −0.521621 −0.535
jð0Þ 0.980965 1
sð0Þ 0.00621087 0
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redshift, for small redshifts, and the same applies for
higher redshifts. In fact, when H ∼HI , then R ∼ 12H2

I
and we have approximately F00ðRÞ ∼ 2.15 × 10−28 eV−1,
and F0ðRÞ ∼ 3.59, thus the viability conditions are satisfied
even up to inflationary scales.
Before closing, we need to note that in Ref. [94] we also

proposed an FðRÞ gravity in which the functional form of
the FðRÞ gravity was chosen in such a way so that the dark

energy oscillations in large redshifts are reduced or elim-
inated. The action in the case of Ref. [94] was of the form

I ¼
Z
M

d4
ffiffiffiffiffiffi
−g

p �
R
κ2

þ γðRÞR2 þ fDEðRÞ þ Lm

�
; ð48Þ

where
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FIG. 5. F0ðRÞ and F00ðRÞ as functions of the redshift. As can be seen, these are both positive thus the viability criteria for the FðRÞ
function hold true.
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fDEðRÞ ¼ −
2ΛgðRÞð1 − e−bR=ΛÞ

κ2
; 0 < b; ð49Þ

with b being a positive parameter and Λ being the
cosmological constant. In addition, the function gðRÞ is

gðRÞ ¼
�
1 − c

�
R
4Λ

�
log

�
R
4Λ

��
; 0 < c; ð50Þ

with c being a real and positive. The choice of the function
gðRÞ is crucial for the stabilization of the theory at large
redshifts, and it is basically a deformed R2 correction. As
was shown in Ref. [94], such a stabilization is achieved in
this case, but we do not perform this analysis in this paper.

IV. CONCLUDING REMARKS

In this work we considered an axion FðRÞ gravity model,
in which the axion eventually is the main component of
cold dark matter in the Universe, and we demonstrated that
the axion FðRÞ gravity model can unify the early-time with
the late-time acceleration. We chose the FðRÞ gravity to
contain an R2 term and also a term Rδ with 0 < δ < 1, with
the R2 term being motivated for a viable description of the
inflationary era, while the term Rδ was added for a
successful description of the late-time acceleration era.
The axion scalar field was described by a canonical scalar
field with a broken primordial Uð1Þ Peccei-Quinn sym-
metry, in the context of the misalignment axion scenario.
During the inflationary era, the axion scalar was frozen in
its primordial vacuum expectation value, and thus it merely
contributes a cosmological constant in the gravitational
equations of motion. In effect, the R2 term of the FðRÞ
gravity controls the primordial dynamics, and it generates a
viable acceleration era. We quantified these considerations
and we demonstrated that indeed the axion and the Rδ terms
have a minor contribution to the dynamics of the model. As
the Universe expands though, when H ∼ma and for
ma ≫ H, the axion starts to oscillate. Assuming a slowly
varying oscillation for the axion, we demonstrated that the
axion energy density scales as ρa ∼ a−3, thus the axion
scalar mimics the dark matter fluid, with an average EoS
parameter wa ∼ 0. At late times, the FðRÞ gravity term Rδ

controls the dynamics of the model, via its first derivatives,
but we needed to quantify this in the best way we could, so
we used numerical analysis to solve the Friedmann equa-
tion. We introduced a statefinder function yHðzÞ which is
the fraction of the dark energy, energy density over the

current cold dark matter energy density yH ¼ ρG=ρ
ð0Þ
m , and

we rewrote the Friedmann equation in terms of yH. By
using appropriate initial conditions, we numerically solved
the Friedmann equation, and we focused our analysis up to
redshift zf ∼ 10. We focused our analysis on the behavior
of statefinder quantities, and also on the energy density of
dark energy and its EoS behavior. We found that the FðRÞ

gravity model produces results very similar to the ΛCDM
model, in some cases almost identical for small redshifts,
and in all cases compatible results with the latest Planck
constraints on the cosmological parameters. In addition, we
showed that for statefinder quantities that contain higher
derivatives of the Hubble rate, the dark energy oscillations
issue occurs, as expected. This oscillation issue is more
pronounced for larger redshifts, and is strongly affected by
the initial conditions we used. However, the presence of the
R2 term ensures the absence of singularities in the dark
energy EoS parameter; nevertheless this issue of oscilla-
tions, somewhat obscures the whole picture. In response to
this issue, in a future work we shall present how the
oscillations can be eliminated from the FðRÞ gravity late-
time phenomenology.
Another issuewe did not address is related to the reheating

era. In the axion FðRÞ gravity model we present, this is
expected to be somewhat complicated, and not so easy to
address analytically, due to the presence of a−3 and Rδ terms
caused by the axion and the FðRÞ gravity in the Friedmann
equation. In principle, the R2 term is not expected to be
dominant in this era, since the curvature is already too small,
and the axion already starts to oscillate in a slowly varying
way. This study is an important one, which we hope to
address in a future work focused on this issue.
Another issue that is quite interesting and valuable for

future observations is matter curvature perturbations for the
FðRÞ gravity axion model. In the presence of FðRÞ gravity,
Newton’s effective gravitational constant is different from
the present day value; during the matter domination era,
however, the axion also contributes to the matter curvature
perturbations. The question is which contribution is dom-
inant and to which extent. The study for the axion effect on
the matter curvature perturbations was performed in [95–
99], while for the FðRÞ gravity case see [90]. The evolution
of the matter curvature perturbations is valuable phenom-
enologically, since the growth index is an observable that
may even discriminate modified gravities between them.
A highly nontrivial issue is the axion isocurvature

perturbations issue, generated during or mainly well after
the first horizon crossing and before the horizon reentry.
Although misalignment axion scalars have minor back-
reaction from isocurvature perturbations during inflation, if
these are generated well after the first horizon crossing,
they might have an observable effect. The question is to
what extent may FðRÞ gravity affect the generation of axion
isocurvature perturbations and their evolution. This is a
highly nontrivial issue to address, and we leave this open as
a question.
Finally, it is noteworthy another phenomenologically

interesting issue, which deserves to be addressed in detail in
a future work. It is related to the fact that in some
observational data [5,91], these suggest that the function
yH ∼ ρG took negative values during the last stages of the
matter domination era, and specifically around z ∼ 2.34.
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This is a highly intriguing issue, and we devised a
mechanism in the context of modified gravity in order to
produce both a viable late-time era at z ∼ 0 and a negative
yH, without introducing compensating dark energy mech-
anisms. We shall report on this intriguing issue in the near
future.
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