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We construct a deformed anti—de Sitter-Einstein-Born-Infeld black hole from noncommutative gauge
theory of gravity and determine the metric coefficients up to second order on the noncommutative
parameter. We analyze the modifications on the thermodynamical properties of the black hole due to the
noncommutative contributions, and we show that noncommutativity has as a direct consequence, the

removal of critical points.
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I. INTRODUCTION

In the past years, several approaches have been proposed
to explore fundamental interactions in nature at energies
beyond those attained at the laboratory. Gauge theories, for
example, provide many helpful insights into the nature of
particle interactions, and they have been generalized to
various contexts. In particular, noncommutative gauge
theories using the Seiberg-Witten map [1] have broad
applications into the analysis of the scattering process of
fundamental particles at high energies [2—6]. On the other
hand, loop quantum gravity, string theory, and noncom-
mutative geometry are a few of several approaches that
exist aiming to elucidate the structure of spacetime taking
into account quantum effects; the link between the string
theory and noncommutative geometry has attracted much
attention since first noticed [7—13]. The ultimate goal of all
these formalisms is to provide a detailed picture of our
universe at high energies.

At the Planck scale, noncommutativity manifests itself
through discretization of spacetime and quantum gravita-
tional effects are noticeable [14]. A procedure to analysing
these effects is to use commutation relations among
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spacetime coordinates. The implementation of a star
product provides a simple realization of these commutation
relations and at the same time, generalizes the standard
pointwise multiplication of functions. The star product
defined on a manifold encodes the quantum structure of
spacetime and its discretization naturally.

One of the implications of a noncommutative structure of
spacetime is that the standard pointlike nature of particles
becomes replaced by a fuzzy picture; objects are no longer
localized [15,16]. This fundamental difference with respect
to the classical scenario leads to the prediction of new
effects susceptible of experimental observation in particle
physics, gravity and cosmology [17-24]. In all of these
scenarios, the fuzzy structure of the sources affects the
spacetime with nontrivial consequences.

Furthermore, noncommutative gravity produces quan-
tum corrections and deviations of the classical results
that may be used to set bounds on the noncommutative
parameter. In particular, the thermodynamical properties of
noncommutative spacetimes may be useful in understand-
ing the evolution of black holes when a minimal length
scale exists [25,26].

As the Seiberg-Witten map gives a straightforward con-
struction of a noncommutative gauge theory from a com-
mutative one employing a star product, it is natural to ask
how this procedure works using the formulation of gravity
as a gauge theory. Fortunately enough, gauge theories of
gravity have a long history in physics and admit an elegant
formulation in the language of fiber bundles [27-30]. These
models have as a basis a gauge theory of gravity with
de Sitter group as their local symmetry group [31] at the
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classical level. The classical spacetimes obtained in this way
are then generalized to the noncommutative framework by
a perturbative approach based on the Seiberg-Witten map;
such theories of noncommutative gauge-gravity have been
formulated and extensively studied in the last years [32-34].

Even if models of pure gravity are exciting per se, either
classical or noncommutative, the general situation where
other interactions are present gives valuable information
on several classes of phenomena. For example, in active
galaxy nuclei, if an electromagnetic field exists, it should
interact with itself in a nonlinear way, and the motion of
charged test particles provides a way to quantify differences
in comparison when the nonlinearity is absent.

It is then necessary for a complete picture of fundamental
interactions to include at some point, nonlinear electro-
dynamics. In this regard, Born-Infeld (BI) electrodynamics
[35,36] and the corresponding gravitational solution, the
standard Einstein-Born-Infeld (EBI) metric [37], have a
broad variety of applications and extensions, from inflation
and branes to AdS and dilaton black holes. For these
reasons, in this paper, we use the gauge formulation of
gravity to construct a noncommutative anti-de Sitter-
Einstein-Born-Infeld (AdSEBI) black hole. A thermo-
dynamical analysis of the solutions, based on the equation
of state and Gibbs function, may reveal the existence or not
of new critical points and new phase transitions induced
by noncommutativity.

The paper is organized as follows: In Sec. II, we review
the formalism of gauge theory of gravity based on the Sitter
group, and use this approach there to solve explicitly the
field equations for the specific case of AASEBI spacetime;
we recover the well-known EBlon solution with a cosmo-
logical constant when the BI parameter vanishes. We
discuss then the deformation technique of gauge-gravity
theory based on the Seiberg-Witten map and apply it to the
commutative AdSEBI black hole in Sec. III to define the
noncommutative counterpart. The analysis of the non-
commutative effects on the thermodynamical properties
of the AdSEBI black hole is discussed in Sec. IV; there we
show that critical points may be removed. Finally, in the
Conclusions section, we give some remarks and perspec-
tives about future work.

II. GAUGE THEORY OF GRAVITY

We review briefly the main ingredients of gauge theory of
gravity with de Sitter group as a local symmetry [31,38,39].
The starting point is a 4-dimensional Minkowski metric in
spherical coordinates

ds* = di* — dr* — r*(d6* + sin® 0d¢?). (1)

This spacetime is the base manifold where the gravitational
field will be described by gauge field potentials h4,
u=0,...,3,A=1,...,10. The gauge potentials depend
on the coordinates of the base manifold and are split into

two sets: four tetrads e with components ef(x), and six

spin connections with components g’ (x); the latter

possess the standard skew property w4’ (x) = —wh(x).
Using the tetrad and the spin connections, we define the
following antisymmetric strength tensors
Fﬁu = 8;!63 - auez + (wzhe;‘ - wﬁbe;)nhw (2)

ab ._ ab ab ac ,.db ac ,.db
F/,w = aﬂwl/ - 81/60;4 + (wycwy - wucwﬂ )nbc

+42%(ehed — edel). (3)

The action associated with these gauge gravitational fields is

1 4
= F 4
S_(/ 1 67[G / d rer ( )

where e := det(e;;) and

F = Fiese. (5)

Here the elements e, (x) are the inverse elements of the
tetrad components ef(x), i.e., &;e; = &y, etc.

As we are dealing with gauge gravitational fields, an
electromagnetic gravitational potential A,(x) is also cre-
ated; its corresponding action is given by

Sy = Ik / d*xeAlAL, (6)

where the quantities Aj and Al are defined as

Ali=Avel, AL = eien A Al =Ale,  (7)

up>

in terms of the electromagnetic field tensor
Ay =0,A,-0,A,. (8)

In the above expressions, g represents a coupling constant
and K is a normalization constant that will be chosen later
to simplify certain expressions.

The full action of the model takes into account the gauge
fields and the electromagnetic field

1 T
— [ Fe— A",
S / e [167zG AKP ®)

Variation of this action with respect to the tetrad compo-
nents ef(x) gives the following field equations

1
Ffi 5 Fej; = 8aGT}, (10)

where Fj = F l’jf,’é’;) and the energy-momentum tensor is

given by
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1 14 1 v ,,a
T4 = %7 (AZAﬁeb —ZA’;Abe,,) (11)

When considering additional fields interacting with gravity,
the corresponding energy-momentum tensors should be
included on the right-hand side of Eq. (10). On the other
hand, the field equations for the gravitational gauge
potentials @i’ (x) are

F%, =0. (12)

Physically, this condition amounts to the absence of torsion
in the theory as it is the situation in general relativity.

A. Commutative AdSEBI spacetime from
gauge theory of gravity

To illustrate the previous formalism of gauge-gravity
[31,40-42] for classical spacetimes, we use it now to
obtain a commutative anti—de Sitter-Einstein-Born-Infeld
black hole solution. The starting point is a gravitational
gauge field with spherical symmetry given by the following
Ansatz

1
¢ = (A,0,0,0), e;:<o,A,o,o>,

eﬁ = (0,0,r,0), ei =(0,0,0,rsin@), (13)

together with the spin connections

CU21 :(Uyog()’o)’ 600226003:0, 0)1142:(0,0,14,0),
o} =(0,0,0,Asin0), @' =(0,0,0,cos6), (14)

where A and U are functions of the radial coordinate r. On
the other hand, the density Lagrangian of the BI electro-
dynamics is chosen as

2
Ly zﬁ(1 ~ 1 +b2F,wFW), (15)

where b is the BI parameter; in the limit when b — 0, we
recover standard Maxwell’s electrodynamics. From the
above Lagrangian, we obtain straightforwardly the com-
ponents of the energy-momentum tensor of the BI electro-
dynamics. In consequence, the field equations for the tetrad
elements ey as deduced from Egs. (10) including the BI
electromagnetic contributions are

(—2rAA’+1—A2+12/12r2)A <\/r4—|—b2Q2 1>A

r2 r2b2 b2
(16)
<2rU—|—1—A2+12/12r2>1_ (W@_l)l
r? A r’b? b* | A’
(17)

rU’+U—AA’+12/12r:b—r2<

r2
WQ (18)

(rzU’ +rU — rAA’ + 12&21"2) .
rsin@

72

rsin@

r2
- < r4+b2Q2_1>. (19)

We see that Egs. (18) and (19) are the same field
equation. We also notice that Eqgs. (16) and (17) become
the same field equation if U = —AA’ = —(A?/2)’; this last
relation is also a consequence from Eq. (12). Therefore, the
relevant field equations to solve are

7 22
I+ b Q0 (20)

24A" 1 - A? 1

PAR2=——s+ X =
r + r? + b2+ r2b?
1 2AA' 1 2
—— (A2 — PRr=-+—— (21
2( ) r + b2+b2 /P + 202 (21)

If we now take the difference between Egs. (20) and (21),
we obtain the single equation

1 1- A 0>
(A2 = : 22
S e (@)

or equivalently

20?
r?(A%)" =242 42 = ———. (23)
Vrt+ b2 Q?
The solution to Eq. (23) is
2M A 2 r? rd
A=1-" P2l 1—y/1+2
r 3 T3 ( T
4 r} 115
-0 F (o220 24
T3 1<4’2’4’ ) (24)
where we have set 7 := b>Q? and A := —1242. In the limit

b — 0, we recover the black hole solution of the model
studied in [33].

III. NONCOMMUTATIVE ADSEBI BLACK HOLE
FROM GAUGE THEORY OF GRAVITY

Having as starting point a gauge theory of gravity, a
natural generalization of this theory to the noncommutative
framework makes use of the Seiberg-Witten map [1]. A
deformation based on the Moyal-Groenewold star product
[43,44] makes use of constant noncommutative parameters
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®"; they define the commutation relations among the
spacetime coordinates providing the noncommutative
structure of spacetime as

[x#, x¥] = i@, (25)

where ©* is an antisymmetric matrix. It follows then that
the product of any two fields is given by the Moyal star
product

(fxg)(x) = f(x)er® 00 g(x). (26)

Along the lines of [32], noncommutative corrections to
commutative quantities are obtained as follows. First, the
noncommutative gauge gravity fields cb;:‘B (x, ®) are subject
to the reality conditions

A nt R
w8, (x,0) = —0f(x,0),

W™ (x,0)" = B (x, -@) = —afA(x,0), (27)

where § denotes complex conjugation; these conditions
guarantee that the noncommutative gauge fields are real.

Then, we expand the fields wABI,(x, ®) in powers of the
noncommutative parameter ©,

w;‘B: (x,0) = wi(x, 0) — iO”w)5 (x)

+ 070 i, (x) 4. (28)

The reality conditions, Eqgs. (27), after expansion become

wp?(x) =~ (x). o (x) = Wil (x),
wﬁlﬁ)ﬂf(x) = _wﬁ:‘})};‘r(x)' (29)

Using now the Seiberg-Witten map, we obtain straightfor-
wardly the corrections up to second order; they are [32]
|

Hvpit

1
a)ﬁf},(x) = Z {w”’ a/’wﬂFw}AB’

W8 (3) = 55 (. Ocf,. Dy, )
20, {Fu By}
— {0 (0, Dy F 0,5}
~- o 0,0, + Fu}. (0.0, + Fy)}
+200,0,.0,(0,, + F ). (30)

where we use the following definitions

{a,ﬂ}AB = (XACﬁg —I—ﬂACalg,
[o. A2 = a2 — pACal, (31)

and

D, F48 = 0,F58 + (0f“FBP + 0B FOMncp.  (32)

Notice that we only need to know the classical quantities
to determine the noncommutative contributions to them.
On the other hand, the noncommutative corrections up to

second order in the noncommutativity parameter to the
classical tetrad fields are [45—47]

&i(x.0) = ¢ji(x) — i®7¢f,, (x) + 07O ey, , (x),  (33)

where

Le e .
ehup(¥) = 7@ Dpes + (D05 + Fpi)edInea.  (34)

and

1
e, ()C) - ﬁ {2{Fﬂ/’ Fﬂp}abe/cl - wjb<DpF1c';ti + angg)ez’:lndm - {a)w (DpFw + apFr/l)}abei + 81/(‘),?}78/7678;

- 0w, (0,0, + F,,)}""e5 — 0820 (w0, ep + (8,5 + F5n) e Mam — 20,008 + Fi2)d, e
—{w,, (0,0, + F,;)}00 e, — (005" 4 F&) (@i 0, ey + (005" + F4) ey nam) v (35)

The noncommutative metric can then be found from the expression [32]

1

g/w = E”ab(éz*é“u + éz*é(ﬁu)’ (36)

where { denotes complex conjugation.

We now proceed to calculate the noncommutative metric for the EBI spacetime using the formalism just described; using
Egs. (34) and (35) together with Egs. (13) and (14), we obtain the following expressions
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1 1A”
0 —er4+ 0.
911 +4 1 +0(0%),
1
I = 1+ 12 (A4 T1PAA 4162247 + 127AA")82 + O(6),

1 Al
G35 = r*sin® 0 + T [4 <2rAA’ —rat rPAA" + rzA’2> sin? @ + cos? 9] @ + 0(e4),

1
Goo = —A% = (rAAD 4 A" L A+ PAP £ 2APA” 4 SIAPA'A1)O? + O(01), (37)

up to second order on the noncommutative parameter. In the above expressions, the function A is given by Eq. (24); we also
set ®'2 = —@?! =: © as the only nonvanishing values for the noncommutative parameters. We recover the classical result for
the components of the metric in the commutative limit ® — 0.

Using now the explicit expression for A, a straightforward calculation shows then that the coefficient gy, of the
noncommutative metric tensor is

. 2M AP 277 bZQ2 4Q2f() 4 4AM 4r* — 82 Q?
Jo=1—-———+-5|1-1/1+ +—92r| 53— —
r 3 3b 3r 16 365 322/t 4 b2Q?
2N 802 2M 4 b*Q*\ 2Ar 4Q?
2 Qf(r)H ., r(l_ o Q>__r_ Qf(rq

3 373 3b? r 3 3r?
e - BB ] 32 59
K O 2 0 oo
where
f(r)= ﬁF[arccos{%},%] = %ZFI (%é’%’ _ b;Qz)_ (39)

|

The explicit form of the remaining metric coefficients  absence of horizons. In Fig. 1, we plot gy as a function
can be determined in a similar way. Once they are known, of r; for large values of r, we recover the commutative
several quantities may be evaluated. In particular, using the ~ behavior of the metric, while the short distance behavior
above expression for gy, we can determine the presence or ~ changes. We see that the noncommutative AdSEBI black

goo gOO
2.5 2.5
2.0} 2.0
150 15
1.0} 1.0
05 o5ff |
0.0 2 0.0fH = 5 3 2"
. ' II
l 1 .
11 HE | .I
-0.5H i 0.5 i
I i
1i P
—10t Vi _toli i

FIG. 1. Plot of gy, as a function of the radial variable r for ® = 0.01, 0.1, 0.4, 0.8 (solid, dotted, dashed, dot-dashed line) with
Q0 =1,A=-1/20,M = 1 with b = 0.1 (left panel) or b = 1 (right panel). The noncommutative AASEBI black hole can develop two
or more horizons for some values of the BI parameter b; they eventually collapse to only one as 0 increases.
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hole may develop up to three horizons for some values of its
parameters; we also notice that as noncommutative effects
increase, an extremal black hole may arise with a single
horizon.

IV. THERMODYNAMICS

The fact that a thermodynamical approach can be used to
study black hole solutions is remarkable since it leads to a
notion of temperature based on the surface gravity of the
black hole. Quantum effects can also be incorporated in this
|

r Ar r sz2 4Q2fr
Maow =5~ TH+W<1_ R A
H H

1 2 22 1 2 22 2
x<+ rf(l— 1+ Q)—Arﬁ>+< +rf<1— 1+ Q)—A;»H>
b H b H

where r is the radius of the outer horizon. We see that the
well-known classical result gives the leading order in this
expression. On the other hand, the Hawking temperature
becomes

1 dgeo
Ty=——"-—
" 4n dr .
1 22 22 b2Q2
= 1 —Ary + 1=y
Anry +b2 +b ( * rh

+ Fy(r)®* + 0O(04), (41)

where the explicit expression for the function F,(r), rather
cumbersome, is provided in the Appendix. We expect that

0.010

0.005 -

0.000

-0.005}

-0.010t

picture, providing a more in-depth insight into certain
aspects expected to exist in a quantum theory of gravity.

In the following, we use the results of the previous
sections to study the thermodynamics of the noncommu-
tative AASEBI black hole from gauge-gravity; the resulting
expressions are direct generalizations of classical results.
The first step in this direction is the calculation of the
ADM mass. Using standard perturbation theory, the
ADM mass up to second order in the noncommutative
parameter is

s (e,
o [ \ Vi + 70

@’ +0(e%), (40

I
increasing orders in perturbation theory will give us more
involved expressions for the noncommutative corrections.
We can also find the corrections to the pressure up to
second order in the noncommutative parameter. Using the
standard definition P := —A/8x, we have the result

T 1 b
P:H—+<1— 1+

v 2m?r Arx vt

16b2Q2>

+ F3(r)®% + O(8%), (42)

where the specific volume is v :=2ry, and the explicit
expression for the function F5(r) can be found in the
Appendix. In Fig. 2, we show several isotherms associated

0.010 -
0.005 -

0.000

-0.005 +

-0.010

FIG. 2. P — v diagram of noncommutative AdSEBI black hole. The corresponding values for the temperature are 7' = 0.0043,
0.04362, 0.02362, 0.01362, and 0.05362 (solid, dotted, dashed, dot-dashed, and long dashed line) with b = 1, Q = 1 in both plots.
For the plot in the left panel, ® = 0.2 and for the plot in the right panel ® = 0.6; noncommutativity makes harder the presence of
critical points.
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(b)

0.5+

0.0

. T
0.04 0.08

(d

o.bzl o.62|

\ 0.06 \

FIG. 3.

0.04

(e)

0.04

®

1006 | 0.08 0.02 [o08

\ 0.08

The plots show the Gibbs function for different values of the noncommutative parameter 6 and the BI parameter b: in the upper

row b = 0.001 and ® = 0, 0.1, 0.4 from left to right, in the lower row b = 10 and ® = 0, 0.1, 0.4 from left to right. In each graph the
pressure p takes the values 96zP = 0.2, 0.6, 1, 1.6 and Q = 1. Classical RN and Schwarzschild behaviors are shown in graphs 3(a)

and 3(d) respectively.

with the above equation of state; they have the particular
form of isothermals of the van der Waals equation. For a
fixed value of the BI parameter b, it is clear that for a small
value of the noncommutative parameter 6, a critical point
exists, meanwhile for a larger value of 6, the critical point is
absent. Noncommutative effects make harder the presence
of critical points.

Besides the analysis of the equation of state of the
noncommutative AdSEBI black hole, a discussion of
critical points is achieved by calculating the corresponding
Gibbs function G. In the commutative cases, both
Schwarzschild and RN spacetimes have points in the
G — Ty plane where the derivative of G as a function of
the temperature Ty is ill defined, leading to the existence of
phase transitions.

To analyze the existence of phase transitions in the
noncommutative AdSEBI black hole solution, we plot in
Fig. 3 the noncommutative Gibbs function

G = Mapy — TS, (43)

for several values of the noncommutative parameter ©.
The explicit expression for G can be obtained by using
Eq. (40) together with Eq. (41) and S := zr%,. The BI
parameter b has a nontrivial effect on the derivatives of G
in the commutative case, allowing the transition from
Schwarzschild to RN spacetimes, and we have the standard
graphs for the Gibbs function of those two situations.
When O is not vanishing and increasing, noncommutativity
manifest, and we see clearly that the curves become
smoother. Eventually, the derivatives of G become single-
valued for ® = 0.4; a phase transition is no longer present.

V. CONCLUSIONS

Using a noncommutative gauge theory of gravity based
on the Seiberg-Witten map, we have constructed a non-
commutative model of gravity coupled to the nonlinear BI
electrodynamics. We calculated the metric coefficients
associated with the AdSEBI spacetime explicitly up to
second order on the noncommutative parameter using
noncommutative gauge gravity fields. This approach is
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GT

1.5
1.0

0.5

-0.5

G,T

FIG. 4. Behavior of the Gibbs function G (solid line) and the temperature 7' (dashed line) of the black hole as a function of its horizon
radius rg; notice the degeneracy associated to the commutative case (left panel with @ = 0) for a given value of G. When the
noncommutative parameter is turned on, the degeneracy is partially lifted (right panel with & = 0.4). In these plots, we set b =
0.1,96zP = 0.6, Q = 1 and the temperature 7" was scaled by a factor of ten to fit in the same graph.

perturbative, the lowest order being the classical AdSEBI
spacetime, and it allows the incorporation of noncommu-
tative effects into standard results. Furthermore, quantities
like the ADM mass and the Hawking temperature of the
AdSEBI black hole solution allowed quick calculations.
Besides this feature, the analysis of thermodynamical
properties was also straightforward.

For a given temperature of a black hole, it is possible to
have two different horizon radii leading to the same value
for the temperature of the black hole. This degeneracy
translates into discontinuities on the Gibbs function cor-
responding to transitions from small to large black holes,
with the understanding that the horizon radius gives a
measure of the size of the black hole.

In this paper, we focused on the equation of state and the
Gibbs function of the noncommutative model. We showed
that the most direct effect of noncommutativity on classical
thermodynamical behavior concerns the existence or
absence of critical points. By looking at the Gibbs function
G, we can determine if a phase transition may exist; it turns
out that ® # 0 implies that the Gibbs function becomes
smoother and its derivatives with respect to the temperature
become single-valued, removing thus critical points; © does
not need to take large values for this situation to happen.

Our findings are in agreement with previous results [48]
using smeared distributions of matter and charge to include
noncommutative effects on classical black hole solutions;
in that work, the metric of the noncommutative inspired
black hole changes when going from short to large
distances. In our treatment, even though perturbative, the
behavior of the metric coefficient g, also shows changes at
short distances, while at large distances it reproduces the
standard commutative behavior.

More explicitly, in the noncommutative scenario, the
absence of critical points that exist in the commutative case

is a direct consequence of the relationship between the
temperature 7" and the Gibbs function G of the noncommu-
tative black hole with its horizon radius. As Fig. 4 shows,
there is a degeneracy for both 7" and G in the commutative
case; the noncommutative parameter removes these degen-
eracies partially in such way that, for example, if for some
values of the parameters of the black hole there are three
horizons associated to a single value of G in the classical
situation, there exists only two for the same G in the
noncommutative case.

Finally, in [49], a formalism was put forward to explore
in more detail the nature of phase transitions and to analyze
features of holographic superconductors; it would be
interesting to apply this technique to noncommutative
inspired black holes solutions to gain more information
on the influence of the noncommutative parameter on the
thermodynamical properties of black holes.
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APPENDIX: TEMPERATURE AND EQUATION
OF STATE OF THE ADSEBI BLACK HOLE

For convenience, we provide here the full expression
for the temperature and the equation of state of the non-
commutative AASEBI black hole. Up to second order on ©,
they are
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