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We compute the spectrum, mixing and interaction structure of scalar models with a general coupling to
the scalar curvature. As it is well known the perturbative states of these theories are given by two massive
spin-0 modes in addition to one massless spin-2 state. This latter mode can be identified with the standard
graviton field. Indeed, it is possible to define an Einstein frame, where the dynamics of the massless spin-2
graviton is the one associated with the Einstein-Hilbert action. We explore systematically the interactions of
all these degrees of freedom in the mentioned frame, since part of the coupling structure can be anticipated
by geometrical arguments.
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I. INTRODUCTION

There are different theoretical and experimental reasons
to consider gravitational theories beyond general relativity
(GR) [1]. Among them, we can mention Lovelock theories
[2], Gauss-Bonnet models [3], extra dimensional geomet-
rical extensions [4], supergravity [5], nonlocal gravitational
modifications [6], Lorentz violating and CPT breaking
models [7], vector (or higher spin)-tensor models [8],
disformal gravity [9] and scalar-tensor theories (STTs)
[10,11]. This latter case will be the particular subject of
our work; i.e., we will study particular extensions of the
gravitational interaction, that are defined by the addition of
scalar degrees of freedom (d.o.f.). These new spin-0 states
act as mediators of part of the total gravitational force.
Currently, there are only one candidate for a fundamental

scalar particle. Its discovery was announced in 2012 by
both ATLAS [12] and CMS [13] collaborations. It has
associated a mass around 125 GeVand it is consistent with
the predictions for the so-called Higgs boson of the
Standard Model (SM) of particles and interactions.
However, many other scalar fields are motivated by differ-
ent theories, such as the Jordan-Fierz-Brans-Dicke (JFBD)
model [14] or different low energy approaches to string
theory [15], where the new scalar states are typically
coupled to the matter sector through the trace of the
energy-momentum tensor. In such a case, thanks to a
series of field redefinitions, it is possible to reexpress the

extended gravitational theory in terms of the Einstein
gravity associated with general relativity (GR) with new
couplings to the matter sector. A similar phenomenology is
associated with the so-called fðRÞ theories [16–18], whose
gravitational action is defined in terms of a given function
f, of the scalar curvature R. In addition, extended models
with scalar fields nonminimally coupled to gravity have
been proposed in the present literature. In particular, the
possibility of supporting the early inflation with scalar
models, which exhibits nonzero vacuum expectation values
(VEVs) at low energies, has inspired the generalized Higgs
inflation models (GHIMs) [19].
As we have commented, the new interactions mediated

by these scalar d.o.f. can be interpreted as part of the
gravitational force. In addition, the phenomenology asso-
ciated with these new d.o.f. themselves can be very rich and
provide viable solutions to open problems in cosmology
such as the mentioned inflation, dark energy or dark matter
[18]. However, these new models suffer important con-
straints. For instance, this new field can lead to effective
variations of fundamental constants, such as gauge and
Yukawa couplings or masses. In particular, precision tests of
gravity, big bang nucleosynthesis (BBN) [20–25], cosmic
microwave background anisotropies [26] and weak-lensing
[27] constrain the phenomenology of these scalar fields. In
any case, different scalar models are not very sensitive to
these restrictions [17,28–31]. In this work, we analyze the
biscalar content of a general nonminimal scalar tensor
theory (NMSTT). We provide explicit expressions for their
masses, their mixing and their coupling between them and
with the Standard Model (SM) of particles. Finally we
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discuss part of the phenomenological consequences of these
features, as the instabilities of GHIMs.
The paper will be organized as follows. In the next

section, we will define the NMSTT which will be studied.
We will provide the general set of equations that defines the
Einstein frame (EF) through a conformal transformation. In
Sec. III, we will report the general couplings, which are
enforced by such a transformation. They will be particu-
larized for the SMcontent.Wewill then set up our formalism
for treating different gravitational theories in Sec. IV: JFBD
model [14], fðRÞ theories [16–18] and GHIMs [19]. In
Sec. V, we will resume our main conclusions.

II. NONMINIMAL SCALAR-TENSOR THEORIES

The most general action for a scalar field nonminimally
coupled to the scalar curvature R, associated with the
space-time metric gμν, can be written in the following form:

SNMSTT ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½−gμν∇μφ∇νφþ Jðφ; RÞ�; ð1Þ

if we restrict the scalar field derivatives to the standard
kinetic contribution (the first term). The function Jðφ; RÞ
takes into account the mentioned coupling, that in general, it
is nonseparable. Note that this term may include a potential
(mass or self interaction) for the scalar field, or a pure
gravitational contributionwithout explicit dependence onφ.
Unless otherwise specified, wewill use reduced Planck units
throughout this work ðκ ≡ ffiffiffiffiffiffiffiffiffi

8πG
p ¼ c ¼ ℏ ¼ 1Þ, Greek

indices run from 0 to 3, and the symbol ∇μ denotes the
standard covariant derivative defined with respect to the
metric gμν.
In addition, we will assume a matter content, whose

fields will be represented by the letter μi, minimally
coupled to the space-time metric:

Sμi ¼ Siðgμν; μiÞ; ð2Þ

where by matter, we denote any field in the theory in
addition to φ and gμν. In such a case, we can claim that we
have defined the model in the Jordan frame (JF), in which
the metric gμν couples in this standard way to the matter
content. Although the action (1) did not support explicitly a
kinetic term for the gravitational interaction, this could be
implicit due to the presence of the Ricci scalar in the
coupling Jðφ; RÞ. In any case, the gravitational interaction
between matter fields can suffer important modifications.
Within the JF, this effect seems natural to be interpreted as a
modification of the Newton constant by the presence of the
scalar field φ, but it means that the scalar mode is mediating
part of the gravitational interaction. Finally, we will show
that the model given by Eq. (1) supports another scalar
perturbative d.o.f., that is also coupled to the matter content

and completes the gravitational force, as it was first noted
in [32].
In order to clarify the spectrum of the model, it is

convenient to work in the EF, that is defined by a conformal
transformation, which rewrites the action for the metric in
the standard Einstein-Hilbert term. In fact, two metrics (g�μν
and gμν) are conformally related if there is a function Ω,
which verifies:

g�μν ¼ Ω2gμν: ð3Þ

It implies that g�μν ¼ Ω−2gμν,
ffiffiffiffiffiffi−gp ¼ Ω−n ffiffiffiffiffiffiffiffi

−g�
p

and

R� ¼ Ω−2R − 2ðn − 1Þgμν� ∇�
μ∇�

ν lnΩ

þ ðn − 2Þðn − 1Þgμν� ∇�
μ lnΩ∇�

ν lnΩ; ð4Þ

where n is the dimension of the manifold, R� is the Ricci
scalar associated with the metric g�μν, and ∇� is its
corresponding covariant derivative. The function Ω is
dubbed the conformal factor of the transformation. We
will make use of the above expressions for n ¼ 4. In
particular, for rewriting the action, it is particularly useful
the following expression:

ffiffiffiffiffiffi
−g

p
R ¼ Ω−2

ffiffiffiffiffiffiffiffi
−g�

p
½R� þ 6gμν� ∇�

μ∇�
ν lnΩ

− 6gμν� ∇�
μ lnΩ∇�

ν lnΩ�: ð5Þ

In order to identify the correct conformal transformation
that defines the EF, it is convenient to work with an
auxiliary scalar field ϕ, defined by the following equation:

Jðφ; RÞ ¼ Jðφ;ϕÞ þ J0ðφ;ϕÞðR − ϕÞ; ð6Þ

where 0 denotes the partial derivative of the J function with
respect to its second argument:

J0ðφ;ϕÞ ¼ ∂ϕJðφ;ϕÞ: ð7Þ

We assume that J00ðφ;ϕÞ ≠ 0. We will discuss separately
the case J00ðφ;ϕÞ ¼ 0 in following sections, but we can
advance that, in such a case, the auxiliary field cannot be
defined. By expressing Jðφ; RÞ in terms of ϕ in the action
(1), we can write a Lagrangian that is linear on R. Indeed,
the two actions are equivalent if we also impose optimi-
zation with respect to ϕ in order to obtain the equations of
motion, whose solution implies ϕ ¼ R.
Now, it is evident to identify the proper conformal factor

associated with the Einstein metric, i.e., the metric corre-
sponding to the EF:

Ω2 ¼ J0ðφ;ϕÞ: ð8Þ

where we are assuming explicitly J0ðφ;ϕÞ > 0. This sign is
necessary to guarantee a positive Newton constant, i.e., an
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attractive gravitational interaction mediated by the standard
spin-2 massless graviton. In the opposite case, the graviton
has a ghost character since its kinetic term has the wrong
sign. Finally, we can define a new scalar Φ, in terms of the
fields φ and ϕ:

Φ ¼
ffiffiffiffiffiffiffiffi
3=2

p
ln J0ðφ;ϕÞ; ð9Þ

so that, except for a boundary term, we can write the total
action as:

SNMSTT ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffiffi
−g�

p h
R� − gμν� ∇�

μΦ∇�
νΦ

− gμν� e−
ffiffi
2
3

p
Φ∇�

μφ∇�
νφ − 2Vðφ;ΦÞ

i
; ð10Þ

where:

Vðφ;ΦÞ¼1

2

h
ϕðφ;ΦÞe−

ffiffi
2
3

p
Φ−Jðφ;ϕðφ;ΦÞÞe−2

ffiffi
2
3

p
Φ
i
: ð11Þ

is the potential associated with the self-interaction of the
scalar modes φ and Φ, and the interaction between them.
One needs to use Eq. (9) in order to write ϕ in terms of φ
and Φ. It is interesting to remark that the third term in
Eq. (10) does not only account for the standard kinetic term
for φ, but also for a derivative interaction with Φ. This
follows, for example, by expanding the exponential factor
around Φ ¼ 0, i.e., by assuming a small deviation from the
two frames, a small difference between gμν and g�μν. On the
other hand, the first term in (10) corresponds to the standard
Einstein-Hilbert action and the second one is associated
with a pure kinetic term for Φ. Of course, the kinetic terms
include the interaction of both scalar fields with the
geometry through the metric tensor g�μν.

III. INTERACTION WITH THE MATTER
CONTENT: THE STANDARD MODEL

It is interesting to analyze in more detail the interactions
associated with the different modes contained in the
spectrum of the theory. Indeed, the coupling of the scalar
field φ is open and not restricted by the geometrical
structure of the model. In particular, its coupling with
the SM can be assumed to be absent. The opposite situation
corresponds to the other scalar field Φ and the metric
tensor. As we have discussed, the matter content is
explicitly coupled to Φ when the action is expressed in
terms of the Einstein metric:

Sμi ¼ Si
�
e−

ffiffi
2
3

p
Φg�μν; μi

�
: ð12Þ

For example, we can follow [18] in order to detail the
coupling of this scalar mode. This computation can be done
directly with the help of the original action (JF), but it is
more transparent and easier in the EF. We can study the

couplings at the linear order by expanding perturbatively
the Jordan metric over the Minkowski background [18]:

gμν ¼ ημν þ
1

2
h�μν −

ffiffiffi
2

3

r
Φημν; ð13Þ

where h�μν takes into account the standard two d.o.f.
associated with the spin-2 (traceless and divergencefree)
graviton. For simplification, we assume a common
Minkowski background for the Jordan and Einstein geom-
etries. In other words, we expand around Φ ¼ 0. In such a
case, for computing the linear order analysis, we do not
need to specify the frame for quantities such as the energy-
momentum tensor.
By taking variations with respect to the metric in the

matter action, it is evident that the spin-2 d.o.f. will have
associated the standard interaction with the corresponding
energy-momentum tensor. On the other hand, the coupling
of the spin-0 mode at the linear level will be given by the
trace of the same energy-momentum tensor:

LΦ−Tμν
¼ 1ffiffiffi

6
p ΦTμ

μ: ð14Þ

It means that Φ interacts with massive SM fields at tree
level. In particular, the three body couplings are given by:

Ltree-level
Φ-SM ¼ 1ffiffiffi

6
p Φ

�
2m2

hh
2−∇�

μh∇μ
�h

þ
X
ψ

mψ ψ̄ψ −2m2
WW

þ
μ W−μ−m2

ZZμZμ

�
; ð15Þ

with the Higgs boson (h), (Dirac) fermions (ψ), and
electroweak gauge bosons (Wμ and Zμ), respectively. In
addition, this scalar field interacts with photons and gluons
by radiative corrections induced at one loop by charged
gauge bosons and fermions (i.e., due to the conformal
anomaly [18]):

Lone-loop
Φ-SM ¼ 1ffiffiffi

6
p Φ

�
αEMcEM

8π
FμνFμν þ αscG

8π
Ga

μνG
μν
a

�
; ð16Þ

where Fμν is the gauge invariant electromagnetic field
strength tensor,Ga

μν represents the gluon field strength tensor,
αEM is the fine-structure constant, and αs is the strong
coupling constant. The particular value of the couplings
cEM and cG, depends on the energy and the complete set of
particles charged with respect to these gauge interactions.

IV. SCALAR SPECTRUM

Another general property given by the geometrical
structure of the model is that the kinetic term for φ has
the same coupling with Φ as the matter fields. Indeed, Φ
can be understood as a dilaton, that parametrizes the
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conformal factor and couples to the trace of the energy-
momentum tensor. However, there is a general mixing of
the scalar sector of the theory trough the mass matrix that is
defined by the potential function Vðφ;ΦÞ. If we assume
that this potential reaches a minimum of value V0 at
ðφ0;Φ0Þ (i.e., Vðφ0;Φ0Þ ¼ V0), the squared-mass matrix
(SMM) is given by:

M2
φΦ ¼

 
e
ffiffi
2
3

p
Φ0∂2

φφVðφ;ΦÞ e
ffiffi
1
6

p
Φ0∂2

φΦVðφ;ΦÞ
e
ffiffi
1
6

p
Φ0∂2

ΦφVðφ;ΦÞ ∂2
ΦΦVðφ;ΦÞ

!�����
ðφ0;Φ0Þ

:

ð17Þ

Therefore, the mass eigenstates cannot be generally iden-
tified either with φ or with Φ, but with a linear mixing of
both. This fact is not in contradiction with the dilaton nature
of the couplings associated with Φ. The question is that the
SMM breaks, in general, scale invariance explicitly.
In any case, a non trivial mixing and even the presence of

two scalar d.o.f. is not completely general. There are
particular forms or values of the function Jðφ;ϕÞ that
are interesting to analyze separately as we do in the
following paragraphs.

A. Linear couplings

In the particular case of a linear coupling of the field φ
with the Ricci scalar, the action (1) has associated a
truncated scalar spectrum. Indeed, in such a case, we
can write Jðφ; RÞ in terms of two functions of φ: the
one that parametrizes its nonminimal interactionHðφÞ, and
the one that defines its potential UðφÞ:

Jðφ; RÞ ¼ HðφÞR − 2UðφÞ: ð18Þ

In this case, it is not necessary to introduce any additional
scalar field, since it is possible to define a conformal
transformation to the EF, through a conformal factor that
depends only on φ, namely:

Ω2 ¼ HðφÞ: ð19Þ

Following for example [11], if we redefine the scalar field
in the following way:

1

2HðφÞ ¼
1

2

�
dφ�
dφ

	
2

−
3

4

�
d lnHðφÞ

dφ

	
2

; ð20Þ

we can write the action in the EF with a standard kinetic
term for φ�:

SNMSTT ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−g�

p �
1

2
R� −

1

2
gμν� ∇�

μφ�∇�
νφ� − Vðφ�Þ

�
;

ð21Þ

where the potential for φ� takes into account the conformal
factor and the field redefinition:

Vðφ�Þ ¼
Uðφðφ�ÞÞ
H2ðφðφ�ÞÞ

: ð22Þ

By assuming a minimum for this potential at φ0�, the
corresponding squared-mass of the scalar mode will be
given by:

m2
φ� ¼ ∂2

φ�φ�Vðφ�Þjφ0� : ð23Þ

This simple example illustrates the complexity in the
identification of the scalar states. In this case, it is the
field φ (or φ�), the one that has associated the dilaton
couplings with the matter content, since the conformal
transformation is parametrized by φ (or φ�):

Sμi ¼ Si

�
g�μν

Hðφðφ�ÞÞ
; μi

	
: ð24Þ

B. f ðRÞ theories
Other simple examples of models described by Eq. (1)

are the so-called fðRÞ theories. In this case, the Jðφ; RÞ can
be written as the sum of two functions, one depending on R
and another one depending on φ:

Jðφ; RÞ ¼ fðRÞ − 2UðφÞ: ð25Þ

The first one gives the name to these models and the second
one constitutes a standard potential for the scalar field φ. In
this case, φ is minimally coupled to gravity, and it can be
interpreted as part of the matter content. However, the
nonlinear dependence on R introduces an additional scalar
d.o.f. Here, we can just particularize the equations derived
in the previous section for the general case. In fact, the new
scalar field, when properly normalized, is defined by

Φ ¼
ffiffiffiffiffiffiffiffi
3=2

p
ln f0ðϕÞ; ð26Þ

where the auxiliary field ϕ, verifies ϕ ¼ R by taking into
account the equations of motion. Here, 0 means the
derivative with respect to the unique argument ϕ. The
corresponding conformal factor is

Ω2 ¼ f0ðϕÞ: ð27Þ

Note that the total potential for the scalar sector cannot be
written in general as the sum of two individual potentials
associated with each one of the fields:

Vðφ;ΦÞ ¼ 1

2

h
ϕðΦÞe−

ffiffi
2
3

p
Φ − fðϕðΦÞÞe−2

ffiffi
2
3

p
Φ

þ 2UðφÞe−2
ffiffi
2
3

p
Φ
i
: ð28Þ
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The reason is that the conformal factor introduces a
nonderivative interaction between the two scalar modes.
Therefore, even in this case, the off-diagonal entries of the
SMM are not necessarily zero and the mass eigenstates
cannot be identified, in general, with φ or with Φ.

C. Generalized Higgs inflation models

Nonminimal gravitational couplings of the SM Higgs
doublet have been considered in order to build viablemodels
of inflation in the early universe [33]. Generalizations of this
idea with nonlinear couplings to the Ricci scalar have been
discussed in the literature with the SM Higgs working as
inflaton orwith a similar scalar field [19]. As far as we know,
the presence of a new scalar d.o.f. has been missed in these
analyses. As we have shown, the nonlinear couplings in the
Ricci scalar introduce a new d.o.f. We can determine its
phenomenology by using the general equations deduced in
this work. The general Jðφ; RÞ function that defines these
models can be written as

Jðφ; RÞ ¼ Rþ ξφaRb − 2UðφÞ; ð29Þ

where the first term is associated with the initial Einstein-
Hilbert action for the Jordan metric; the second term is the
nonlinear coupling parametrized by the strength constant ξ
and the exponents a and b; andUðφÞ is the potential for the
scalar field in the JF. Note that a and b need to be integer
numbers to have an analytical interaction at φ ¼ 0 and
R ¼ 0 respectively, but the nonminimal coupling can be
also defined for any real value of both exponents. The
standard potential in these models is usually assumed to be

UðφÞ ¼ λ

4

�
φ2 −

μ2

λ

	
2

; ð30Þ

with μ; λ > 0. It implies that UðφÞ is bounded from
below, and develops a stable minimum at φ0 ¼ μ=

ffiffiffi
λ

p
with

Uðφ0Þ ¼ 0, i.e., we have avoided the introduction of a
vacuum energy.1 By taking into account our previous
results, the conformal transformation to the EF is defined by

Ω2 ¼ 1þ ξbφaϕb−1; ð31Þ

with ϕ ¼ R as we have commented. Therefore, provided
b ≠ 1, the coupling introduces a new scalar particle,
associated with the normalized field:

Φ ¼
ffiffiffiffiffiffiffiffi
3=2

p
lnð1þ ξbφaϕb−1Þ: ð32Þ

As we have discussed, this new d.o.f. is associated with the
dynamics of the Jordan Ricci scalar through the relation:

R ¼ ϕ ¼ f½expð ffiffiffiffiffiffiffiffi
2=3

p
ΦÞ − 1�=ðξbφaÞg1=ðb−1Þ. Therefore,

the total action for this type of GHIMs is written in the
EF as:

SGHIM ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffiffi
−g�

p h
R� − gμν� ∇�

μΦ∇�
νΦ

− gμν� e−
ffiffi
2
3

p
Φ∇�

μφ∇�
νφ − 2Vðφ;ΦÞ

i
; ð33Þ

where:

Vðφ;ΦÞ¼ 1

2

�
ξφaðb−1Þ

�
e
ffiffi
2
3

p
Φ−1

ξbφa

	 b
b−1

þ2UðφÞ
�
e−2

ffiffi
2
3

p
Φ:

ð34Þ
In order to simplify the discussion, we can fix the particular
values: a ¼ b ¼ 2, and ξ > 0. In such a case, the total
potential is bounded from below provided UðφÞ is it as
well. Indeed, a minimum of the scalar sector can be found
at ðφ0;Φ0Þ ¼ ðμ= ffiffiffi

λ
p

; 0Þ if the potential (30) is assumed. In
fact, such a minimum is global since Vðφ0;Φ0Þ ¼ 0 and
Vðφ;ΦÞ is non-negative. In this case, the SMM around the
minimum is given by:

M2
φΦ ¼

�
2μ2 0

0 λ
6ξμ2

	
: ð35Þ

Therefore, in this particular case, the mass eigenstates can
be identified with φ andΦ. In other words, they do not mix.
In addition, the phenomenology ofΦ is decoupled since the
mass scale μ is expected to be very small with respect to the
Planck scale, what implies a very large mass for Φ (by
assuming λ; ξ ∼ 1).
It is important to comment that the original action has a

parity symmetry associated with the sign of the scalar φ.
However this is not the fundamental reason for the non-
mixing of the scalar fields, since this discrete Z2 symmetry
is broken by the VEVof φ. It means that this symmetry will
not be able to protect this property, that will be potentially
destroyed by radiative corrections.
Coming back to the on-shell analysis, the situation is

different for b ¼ 2 and a < −2. In this case, Φ is lighter
than φ for μ ≪ 1 (λ; ξ ∼ 1). Indeed, for such values of the
exponents, the SMM is still diagonal, but the nonzero
entries are M2

φφ ¼ 2μ2 and M2
ΦΦ ¼ λa=2=ð6ξμaÞ. Finally,

we must mention that any other integer value of b (b > 2)
may imply strong instabilities for the field configuration
defined by ðφ0;Φ0Þ ¼ ðμ= ffiffiffi

λ
p

; 0Þ, since the potential will
develop a singularity at Φ ¼ 0. Indeed, the study of the
SMM deduced in this work within the EF, is the most
efficient way to analyze the stability of a NMSTT (in the
same way as for fðRÞ theories, as it was originally pointed
out in [17]). This procedure is equivalent to the Hessian
matrix analysis of an optimization study in two variables.

1The potential develops an analogous minimum atφ0¼−μ=
ffiffiffi
λ

p
.

The same discussion applies when the system chooses this other
vacuum state.
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V. DISCUSSION

In this work, we have studied the phenomenology of
NMSTTs, i.e., scalar field models defined by a general
coupling of the scalar field with the Ricci scalar. These
theories can be understood as generalizations of the
gravitational interaction written in a particular JF. We have
found explicitly the EF corresponding to such general
theories by characterizing the conformal transformation
that defines the relation between both frames. By following
the general set of equations associated with the trans-
formation between the two corresponding metric tensors, it
is explicit that the spectrum of the theory contains not one,
but two (generally massive) scalar d.o.f., in addition to a
massless spin-2 state. The latter particle can be associated
with the standard mediator of Einstein gravity, whereas the
second scalar mode is related to the nonlinear coupling of
the original (JF defined) scalar field to the Ricci scalar.
Indeed, provided that the coupling is linear, we have proved
that the general conformal transformation is not well
defined and the spectrum of the theory is truncated by
removing the second scalar d.o.f. The situation is more
involved if the Jacobian associated with the field redefi-
nition is zero for particular values of the fields. In such a
case, the effective number of d.o.f. of the theory depends on
the field configuration. This fact can be understood as if the
spectrum of the theory maximizes the number of perturba-
tive states, but the masses of the scalar modes depend on the
values of the fields and can diverge for one of the modes.
This fact removes effectively one of the scalar d.o.f. as it
was discussed in [17,18] for the case of fðRÞ theories.

Once the d.o.f. were identified, we have analyzed their
couplings with the matter content. In particular, we have
studied the couplings with SM particles. Under general
assumptions, the spin-2 state couples as the standard GR
graviton.The scalar d.o.f. associatedwith the conformal factor
couples through the trace of the energy-momentum tensor.
Indeed, it can be identified with a dilaton since it parametrizes
general scale transformations. On the other hand, the coupling
of the other spin-0 particle is completely model dependent. It
changes by depending on the definition of its interactions in
the original action (JF), that is not fixed. It is interesting to
remark that this factorization of the couplings associated with
the scalar content of the theory is simple because it is
discussed in terms of the interaction eigenstates. Thesemodes
are not necessarily the mass eigenstates. In general, there is a
mixing between the two scalar modes that leads to the rich
phenomenology associated with these NMSTTs.
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and A. L. Maroto, Phys. Rev. D 78, 063005 (2008);
J. Cosmol. Astropart. Phys. 03 (2009) 016; Phys. Rev. D
80, 063512 (2009); T. Koivisto and D. F. Mota, J. Cosmol.
Astropart. Phys. 08 (2008) 021; J. A. R. Cembranos, C.
Hallabrin, A. L. Maroto, and S. J. Núñez Jareño, Phys. Rev.
D 86, 021301 (2012); Phys. Rev. D 87, 043523 (2013);
J. Cosmol. Astropart. Phys. 03 (2014) 042.

[9] G.W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974);
J. D. Bekenstein, Phys. Rev. D 48, 3641 (1993); J. A. R.
Cembranos, A. Dobado, and A. L. Maroto, Phys. Rev. D 65,
026005 (2001); J. Cosmol. Astropart. Phys. 10 (2008) 039;
Phys. Rev. D 83, 083507 (2011); 84, 083522 (2011); 85,
043505 (2012); J. A. R. Cembranos and L. E. Strigari,
Phys. Rev. D 77, 123519 (2008); M. Zumalacarregui,
T. S. Koivisto, D. F. Mota, and P. Ruiz-Lapuente, J. Cosmol.
Astropart. Phys. 05 (2010) 038; T. S. Koivisto, D. F. Mota,
and M. Zumalacarregui, Phys. Rev. Lett. 109, 241102
(2012); Phys. Rev. D 87, 104030 (2013).

[10] C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961); C. H.
Brans, Phys. Rev. 125, 2194 (1962); J. García-Bellido, A.
Linde, and D. Linde, Phys. Rev. D 50, 730 (1994); J. A. R.
Cembranos, A. de la Cruz Dombriz, and L. O. Garcia, Phys.
Rev. D 88, 123507 (2013).

[11] J. A. R. Cembranos, K. A. Olive, M. Peloso, and J.-P. Uzan,
J. Cosmol. Astropart. Phys. 07 (2009) 025.

[12] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1
(2012).

[13] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B
716, 30 (2012).

[14] P. Jordan, Nature (London) 164, 637 (1949); M. Fierz, Helv.
Phys. Acta 29, 128 (1956); C. Brans and R. Dicke, Phys.
Rev. 124, 925 (1961); P. G. Bergmann, Int. J. Theor. Phys. 1,
25 (1968); K. Nordtvedt, Astrophys. J. 161, 1059 (1970); R.
Wagoner, Phys. Rev. D 1, 3209 (1970).

[15] J. Polchinsky, String Theory (Cambridge University Press,
Cambridge, England, 1998).

[16] K. S. Stelle, Gen. Relativ. Gravit. 9, 353 (1978); A. A.
Starobinsky, Phys. Lett. 91B, 99 (1980); M. B. Mijíc, M. S.
Morris, and W.M. Suen, Phys. Rev. D 34, 2934 (1986);
S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner,
Phys. Rev. D 70, 043528 (2004); N. Goheer, J. Larena,
and P. K. S Dunsby, Phys. Rev. D 80, 061301 (2009);
S. Carloni, P. K. S. Dunsby, and A. Troisi, Phys. Rev. D 77,
024024 (2008); K. N. Ananda, S. Carloni, and P. K. S.
Dunsby, Phys. Rev. D 77, 024033 (2008); Classical
Quantum Gravity 26, 235018 (2009); B. M. Nunez, J. A.
R. Cembranos, and A. de la Cruz-Dombriz, AIP Conf. Proc.
1458, 491 (2011); Int. J. Geom. Methods Mod. Phys. 11,
1450001 (2014); A. Abebe, M. Abdelwahab, A. de la Cruz-
Dombriz, and P. K. S. Dunsby, Classical Quantum Gravity
29, 135011 (2012); A. Abebe, A. de la Cruz-Dombriz, and
P. K. S. Dunsby, Phys. Rev. D 88, 044050 (2013); A. de la
Cruz-Dombriz, P. K. S. Dunsby, V. C. Busti, and S.
Kandhai, Phys. Rev. D 89, 064029 (2014).

[17] J. A. R. Cembranos, Phys. Rev. D 73, 064029 (2006).
[18] J. A. R. Cembranos, Phys. Rev. Lett. 102, 141301 (2009).
[19] M. Atkins and X. Calmet, Phys. Lett. B 697, 37 (2011); G.

Chakravarty, S. Mohanty, and N. K. Singh, Int. J. Mod.
Phys. D 23, 1450029 (2014); I. Oda, Phys. Rev. D 87,
065025 (2013); Phys. Lett. B 724, 160 (2013); Adv. Stud.
Theor. Phys. 8, 215 (2014); R. Kallosh and A. Linde,
J. Cosmol. Astropart. Phys. 06 (2013) 027; 06 (2013) 028;
07 (2013) 002; I. Bars, P. Steinhardt, and N. Turok, Phys.
Lett. B 726, 50 (2013); Phys. Rev. D 89, 043515 (2014);
M. P. Hertzberg, Phys. Lett. B 745, 118 (2015); R. Costa
and H. Nastase, J. High Energy Phys. 06 (2014) 145; J. Ren,
Z. Z. Xianyu, and H. J. He, J. Cosmol. Astropart. Phys. 06
(2014) 032; G. K. Chakravarty and S. Mohanty, Phys. Lett.
B 746, 242 (2015); I. Oda and T. Tomoyose, J. High Energy
Phys. 09 (2014) 165.

[20] J. D. Barrow, Mon. Not. R. Astron. Soc. 184, 677 (1978); J.
Yang, D. N. Schramm, G. Steigman, and R. T. Rood, As-
trophys. J. 227, 697 (1979); F. S. Accetta, L. M. Krauss, and
P. Romanelli, Phys. Lett. B 248, 146 (1990).

[21] J. D. Barrow, Mon. Not. R. Astron. Soc. 184, 677 (1978); K.
Arai, M. Hashimoto, and T. Fukui, Astron. Asrophys. 179,
17 (1987); F. S. Accetta, L. M. Krauss, and P. Romanelli,
Phys. Lett. B 248, 146 (1990); T. Damour and C. Gundlach,
Phys. Rev. D 43, 3873 (1991); J. A. Casas, J. Garcia-
Bellido, and M. Quiros, Mod. Phys. Lett. A 07, 447 (1992);
Phys. Lett. B 278, 94 (1992); T. Clifton, J. D. Barrow, and
R. J. Scherrer, Phys. Rev. D 71, 123526 (2005).

[22] A. Serna and J. M. Alimi, Phys. Rev. D 53, 3074 (1996); 53,
3087 (1996).

[23] D. I. Santiago, D. Kalligas, and R. V. WagonerPhys. Rev. D,
56, 7627 (1997).

[24] T. Damour and B. Pichon, Phys. Rev. D 59, 123502
(1999).

[25] A. Coc, K. A. Olive, J. P. Uzan, and E. Vangioni, Phys.
Rev. D 73, 083525 (2006); 79, 103512 (2009).

[26] A. Riazuelo and J.-P. Uzan, Phys. Rev. D 66, 023525
(2002); 62, 083506 (2000).

[27] C. Schimd, J.-P. Uzan, and A. Riazuelo, Phys. Rev. D 71,
083512 (2005).

NONMINIMAL SCALAR-TENSOR THEORIES PHYS. REV. D 101, 044007 (2020)

044007-7

https://doi.org/10.1103/PhysRevLett.95.181301
https://doi.org/10.1063/1.2735254
https://doi.org/10.1063/1.2735254
https://doi.org/10.1103/PhysRevLett.99.191301
https://doi.org/10.1103/PhysRevD.75.036004
https://doi.org/10.1103/PhysRevD.75.036004
https://doi.org/10.1103/PhysRevD.87.025006
https://doi.org/10.1103/PhysRevD.87.025006
https://doi.org/10.1088/1475-7516/2010/11/008
https://doi.org/10.1088/1475-7516/2010/11/008
https://doi.org/10.1103/PhysRevLett.104.021601
https://doi.org/10.1007/JHEP10(2010)048
https://doi.org/10.1007/JHEP10(2010)048
https://doi.org/10.1103/PhysRevD.82.085028
https://doi.org/10.1103/PhysRevLett.108.031101
https://doi.org/10.1103/PhysRevLett.108.031101
https://doi.org/10.1088/1475-7516/2012/08/024
https://doi.org/10.1088/1475-7516/2012/08/024
https://doi.org/10.1103/PhysRevD.39.683
https://doi.org/10.1103/PhysRevD.39.683
https://doi.org/10.1103/PhysRevD.55.6760
https://doi.org/10.1103/PhysRevD.55.6760
https://doi.org/10.1103/PhysRevD.61.027503
https://doi.org/10.1103/PhysRevLett.84.2318
https://doi.org/10.1103/PhysRevLett.84.2318
https://doi.org/10.1038/418034a
https://doi.org/10.1038/418034a
https://doi.org/10.1103/PhysRevLett.88.190403
https://doi.org/10.1103/PhysRevLett.88.190403
https://arXiv.org/abs/hep-ph/0512020
https://doi.org/10.1209/0295-5075/82/21001
https://doi.org/10.1209/0295-5075/82/21001
https://doi.org/10.1103/PhysRevD.75.105021
https://doi.org/10.1103/PhysRevD.75.105021
https://doi.org/10.1103/PhysRevD.40.967
https://doi.org/10.1103/PhysRevD.78.063005
https://doi.org/10.1088/1475-7516/2009/03/016
https://doi.org/10.1103/PhysRevD.80.063512
https://doi.org/10.1103/PhysRevD.80.063512
https://doi.org/10.1088/1475-7516/2008/08/021
https://doi.org/10.1088/1475-7516/2008/08/021
https://doi.org/10.1103/PhysRevD.86.021301
https://doi.org/10.1103/PhysRevD.86.021301
https://doi.org/10.1103/PhysRevD.87.043523
https://doi.org/10.1088/1475-7516/2014/03/042
https://doi.org/10.1007/BF01807638
https://doi.org/10.1103/PhysRevD.48.3641
https://doi.org/10.1103/PhysRevD.65.026005
https://doi.org/10.1103/PhysRevD.65.026005
https://doi.org/10.1088/1475-7516/2008/10/039
https://doi.org/10.1103/PhysRevD.83.083507
https://doi.org/10.1103/PhysRevD.84.083522
https://doi.org/10.1103/PhysRevD.85.043505
https://doi.org/10.1103/PhysRevD.85.043505
https://doi.org/10.1103/PhysRevD.77.123519
https://doi.org/10.1088/1475-7516/2010/05/038
https://doi.org/10.1088/1475-7516/2010/05/038
https://doi.org/10.1103/PhysRevLett.109.241102
https://doi.org/10.1103/PhysRevLett.109.241102
https://doi.org/10.1103/PhysRevD.87.104030
https://doi.org/10.1103/PhysRev.124.925
https://doi.org/10.1103/PhysRev.125.2194
https://doi.org/10.1103/PhysRevD.50.730
https://doi.org/10.1103/PhysRevD.88.123507
https://doi.org/10.1103/PhysRevD.88.123507
https://doi.org/10.1088/1475-7516/2009/07/025
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1038/164637a0
https://doi.org/10.1103/PhysRev.124.925
https://doi.org/10.1103/PhysRev.124.925
https://doi.org/10.1007/BF00668828
https://doi.org/10.1007/BF00668828
https://doi.org/10.1086/150607
https://doi.org/10.1103/PhysRevD.1.3209
https://doi.org/10.1007/BF00760427
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1103/PhysRevD.34.2934
https://doi.org/10.1103/PhysRevD.70.043528
https://doi.org/10.1103/PhysRevD.80.061301
https://doi.org/10.1103/PhysRevD.77.024024
https://doi.org/10.1103/PhysRevD.77.024024
https://doi.org/10.1103/PhysRevD.77.024033
https://doi.org/10.1088/0264-9381/26/23/235018
https://doi.org/10.1088/0264-9381/26/23/235018
https://doi.org/10.1142/S0219887814500017
https://doi.org/10.1142/S0219887814500017
https://doi.org/10.1088/0264-9381/29/13/135011
https://doi.org/10.1088/0264-9381/29/13/135011
https://doi.org/10.1103/PhysRevD.88.044050
https://doi.org/10.1103/PhysRevD.89.064029
https://doi.org/10.1103/PhysRevD.73.064029
https://doi.org/10.1103/PhysRevLett.102.141301
https://doi.org/10.1016/j.physletb.2011.01.028
https://doi.org/10.1142/S0218271814500291
https://doi.org/10.1142/S0218271814500291
https://doi.org/10.1103/PhysRevD.87.065025
https://doi.org/10.1103/PhysRevD.87.065025
https://doi.org/10.1016/j.physletb.2013.06.014
https://doi.org/10.12988/astp.2014.419
https://doi.org/10.12988/astp.2014.419
https://doi.org/10.1088/1475-7516/2013/06/027
https://doi.org/10.1088/1475-7516/2013/06/028
https://doi.org/10.1088/1475-7516/2013/07/002
https://doi.org/10.1016/j.physletb.2013.08.071
https://doi.org/10.1016/j.physletb.2013.08.071
https://doi.org/10.1103/PhysRevD.89.043515
https://doi.org/10.1016/j.physletb.2015.04.031
https://doi.org/10.1007/JHEP06(2014)145
https://doi.org/10.1088/1475-7516/2014/06/032
https://doi.org/10.1088/1475-7516/2014/06/032
https://doi.org/10.1016/j.physletb.2015.04.056
https://doi.org/10.1016/j.physletb.2015.04.056
https://doi.org/10.1007/JHEP09(2014)165
https://doi.org/10.1007/JHEP09(2014)165
https://doi.org/10.1093/mnras/184.4.677
https://doi.org/10.1086/156779
https://doi.org/10.1086/156779
https://doi.org/10.1016/0370-2693(90)90029-6
https://doi.org/10.1093/mnras/184.4.677
https://doi.org/10.1016/0370-2693(90)90029-6
https://doi.org/10.1103/PhysRevD.43.3873
https://doi.org/10.1142/S0217732392000409
https://doi.org/10.1016/0370-2693(92)90717-I
https://doi.org/10.1103/PhysRevD.71.123526
https://doi.org/10.1103/PhysRevD.53.3074
https://doi.org/10.1103/PhysRevD.53.3087
https://doi.org/10.1103/PhysRevD.53.3087
https://doi.org/10.1103/PhysRevD.56.7627
https://doi.org/10.1103/PhysRevD.56.7627
https://doi.org/10.1103/PhysRevD.59.123502
https://doi.org/10.1103/PhysRevD.59.123502
https://doi.org/10.1103/PhysRevD.73.083525
https://doi.org/10.1103/PhysRevD.73.083525
https://doi.org/10.1103/PhysRevD.79.103512
https://doi.org/10.1103/PhysRevD.66.023525
https://doi.org/10.1103/PhysRevD.66.023525
https://doi.org/10.1103/PhysRevD.62.083506
https://doi.org/10.1103/PhysRevD.71.083512
https://doi.org/10.1103/PhysRevD.71.083512


[28] T. Damour and K. Nordtvedt, Phys. Rev. Lett. 70, 2217
(1993); Phys. Rev. D 48, 3436 (1993).

[29] T. Damour and A. M. Polyakov, Nucl. Phys. B423, 532
(1994).

[30] J. Khoury and A. Weltman, Phys. Rev. Lett. 93, 171104
(2004).

[31] P. Brax, C. van de Bruck, A. C. Davis, J. Khoury, and A.
Weltman, Phys. Rev. D 70, 123518 (2004).

[32] K. i. Maeda, Phys. Rev. D 39, 3159 (1989).

[33] F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659,
703 (2008); A. O. Barvinsky, A. Y. Kamenshchik,
and A. A. Starobinsky, J. Cosmol. Astropart. Phys. 11
(2008) 021; F. Bezrukov, D. Gorbunov, and M.
Shaposhnikov, J. Cosmol. Astropart. Phys. 06 (2009)
029; F. L. Bezrukov, A. Magnin, and M. Shaposhnikov,
Phys. Lett. B 675, 88 (2009); F. Bezrukov, Classical
Quantum Gravity 30, 214001 (2013).

ISMAEL AYUSO and JOSE A. R. CEMBRANOS PHYS. REV. D 101, 044007 (2020)

044007-8

https://doi.org/10.1103/PhysRevLett.70.2217
https://doi.org/10.1103/PhysRevLett.70.2217
https://doi.org/10.1103/PhysRevD.48.3436
https://doi.org/10.1016/0550-3213(94)90143-0
https://doi.org/10.1016/0550-3213(94)90143-0
https://doi.org/10.1103/PhysRevLett.93.171104
https://doi.org/10.1103/PhysRevLett.93.171104
https://doi.org/10.1103/PhysRevD.70.123518
https://doi.org/10.1103/PhysRevD.39.3159
https://doi.org/10.1016/j.physletb.2007.11.072
https://doi.org/10.1016/j.physletb.2007.11.072
https://doi.org/10.1088/1475-7516/2008/11/021
https://doi.org/10.1088/1475-7516/2008/11/021
https://doi.org/10.1088/1475-7516/2009/06/029
https://doi.org/10.1088/1475-7516/2009/06/029
https://doi.org/10.1016/j.physletb.2009.03.035
https://doi.org/10.1088/0264-9381/30/21/214001
https://doi.org/10.1088/0264-9381/30/21/214001

