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In presence of gravitational radiation, the notion of angular momentum of an isolated system acquires an
infinite dimensional supertranslation ambiguity. This fact has been emphasized in the mathematical general
relativity literature over several decades. We analyze the issue in the restricted context of compact binary
coalescence (CBC) where the initial total angular momentum of the binary and the final black hole spin
generically refer to distinct rotation subgroups of the Bondi-Metzner-Sachs group, related by super-
translations. We show that this ambiguity can be quantified using gravitational memory and the “black hole
kick.” Our results imply that, although the ambiguity is conceptually important, under assumptions
normally made in the CBC literature, it can be ignored in practice for the current and foreseeable
gravitational wave detectors.
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I. INTRODUCTION

The goal of this paper is to resolve a conceptual tension
in the literature on angular momentum of isolated gravi-
tating systems, in the context of compact binary coales-
cences (CBCs).
In presence of gravitational waves, ripples in space-time

curvature persist all the way to null infinity, Iþ, and
introduce an ambiguity in the notion of rotations and boosts
even in the asymptotic region. Thus, even though space-
time is asymptotically Minkowskian, the asymptotic sym-
metry group at Iþ is not the Poincaré group p, but an
infinite-dimensional generalization thereof, the Bondi-
Metzner-Sachs (BMS) group B: While B is structurally
similar to p, the 4-dimensional subgroup T of translations
in p is replaced by an infinite dimensional subgroup S of
supertranslations of B. Consequently, whereas p admits a
4-parameter family of Lorentz subgroups—related to one
another by translations—B admits an infinite parameter
family of Lorentz subgroups, related to one another by
supertranslations (see, e.g., [1–4]). Since angular momen-
tum refers to the Lorentz group, the relativistic angular
momentumMab in Minkowski space physics comes with a
4-parameter ambiguity which corresponds precisely to the
choice of an origin about which angular momentum is
defined. In asymptotically Minkowski space-times, by
contrast, the ambiguity in angular momentum is infinite-
dimensional and cannot be traced to the choice of an origin
in space-time. This dramatic shift occurs because of

gravitational waves. In absence of gravitational waves,
one can naturally reduce B to a Poincaré subgroup p
thereof [5,6] and the supertranslation ambiguity disappears.
Similarly, since gravitational waves do not reach spatial
infinity, i∘, one can again reduce the asymptotic symmetry
group at i∘ to the Poincaré group, and introduce the familiar
notion of angular momentum there [7,8].
The situation atIþ came as a major surprise when it was

first discovered and, in the subsequent decades, generated
substantial literature aimed at introducing a conceptually
meaningful notion of angular momentum at Iþ (see, e.g.,
[9–24]). The challenge was two-fold. On the mathematical
side, the task was to find expressions of angular momentum
of the system at a retarded instant of time—represented by a
cross section ofIþ—and of the flux of angular momentum
carried by gravitational waves across any subregion ΔIþ
of Iþ. On the conceptual side, the issue was whether the
supertranslation ambiguity is avoidable. As for concrete
expressions of angular momentum and its flux, initially
there was considerable confusion and many of the early
expressions had unphysical features. In particular, in most
cases the flux of BMS angular momentum through a patch
ΔIþ bounded by two generic cross sections was nonzero
in Minkowski space [9–14,16].1 The situation was
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1in general, the past and future cross sections of Iþ that are
used to define the initial angular momentum J⃗i∘ of the binary and
the final spin S⃗iþ of the black hole are related by a super-
translation rather than a time-translation. This is why, as a check,
it is important to allow generic cross sections in Minkowski space
which are also related by a general supertranslation. If a flux
formula yields a nonzero flux in Minkowski space for such cross
section, it is difficult to have faith in the flux it yields in generic
situations of physical interest.
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subsequently clarified and a satisfactory expressions of the
Bondi angular momentum and its flux are since then
available [15,21–24]. They have all the necessary math-
ematical invariances as well as expected physical prope-
rties (summarized in the last section of Ref. [17]). On
the conceptual side, by now it is widely recognized in the
mathematical general relativity (GR) community that the
underlying supertranslation ambiguity cannot be avoided in
presence of gravitational waves: one just has to live with the
“infinite-dimensional” BMS angular momentum.
However, the supertranslation ambiguity is generally

ignored in the CBC community (see, e.g., [25–31] for
examples of discussion of angular momentum). In particu-
lar, the fact that the initial total angular momentum J⃗i∘ of
the binary and the spin S⃗iþ of the final black hole
generically refer to different SO(3) subgroups ofB, related
by a supertranslation, is not taken into account. If one
restricts oneself to a SO(3) subgroup of B, say the one
adapted to the distant past, one can indeed introduce
3-vectors representing the angular momentum of the system
at retarded instants of time, and the flux of this angular
momentum carried by gravitational waves, both regarded as
3-vectors in an asymptotic Minkowski space. But, since the
past SO(3) is generically related to the future one by a
supertranslation, onewould not obtain the correct black hole
spin S⃗iþ in the distant future using a simple balance law that
does not take into account the supermomentum carried by
gravitational waves. Since supermomenta do not enter the
angular momentum considerations of the CBC community,
there is a clear conceptual tension.
The tension has persisted over the years, primarily

because the supertranslation ambiguity has not been
quantified, whence its observational significance has
remained obscure. The purpose of this paper is to change
this status-quo by quantifying the ambiguity in the context
of compact binaries emitting gravitational waves. We will
present a systematic procedure to calculate the super-
momentum that must be taken into account in angular
momentum considerations of exact GR. The result will
show explicitly that, although the ambiguity is conceptually
important, we have the happy circumstance that one can
ignore it in practice. More precisely, because of the
asymptotic boundary conditions that are normally imposed
at i∘ and iþ in the analysis of CBCs, the supermomentum
contribution is small for the kick velocities normally
considered, orders of magnitude smaller than the statistical
errors associated with detectors.
We have made a special effort to address both the

waveform and the mathematical GR communities in order
to bring the discussion to a common platform. In Sec. II we
recall some results that will provide the conceptual basis for
the rest of the paper. In particular, we summarize the
relation between rest frames, rotation subgroups of the
Poincaré and BMS groups, and the commonly used angular
momentum 3-vectors. (Mathematical relativists can skip

this discussion.) In Sec. III we discuss the BMS angular
momentum at Iþ for CBC. We will find that the asymp-
totic conditions in distant past and distant future enable us
to single out two Poincaré subgroups, pði∘Þ and pðiþÞ of the
BMS group: The initial angular momentum J⃗i∘ refers to
pði∘Þ while the final spin S⃗iþ refers to pðiþÞ. The two
Poincaré groups are distinct unless the (total) gravitational
memory vanishes, and are related by a supertranslation.
While comparing J⃗i∘ with S⃗iþ , one has to take into account
this supertranslation as well as the fact that the past and
future rest frames are in general different because of the
black hole recoil or kick [32,33]. We will show that this
extra term can be computed directly from the waveform.
In Sec. IV we summarize the main result and discuss why
the supermomentum contribution turns out to be negli-
gibly small under assumptions normally made by the
CBC community. In Appendix we show that all results
of Sec. III—expressions of J⃗i∘ , S⃗iþ and fluxes relating
them—continue to hold under weaker assumptions on
the behavior of the system in the distant past and distant
future. However, now we can no longer conclude that the
supermomentum ambiguity is negligible. Therefore, if it
should turn out that the weaker asymptotic conditions at i∘
and iþ are needed in the analysis of CBCs of physical
interest, the issue of importance of the supermomentum
term will have to be revisited.
We use the same notation as in the companion paper [34]

but set c ¼ 1. For convenience of readers who are inter-
ested only in the issue of angular momentum—rather than
the measures of accuracy of waveforms discussed in [34]—
we have attempted to make this paper essentially self-
contained. As in [34], the term “mathematical relativity” is
used to refer to the literature (such as Refs. [9–24]) that
assumes that space-times under consideration admit a
conformal completion at I a la Penrose [35] and works
out the consequences. Indeed, this degree of regularity is
needed for the notion of angular momentum to be well-
defined at null infinity in the first place. We will briefly
discuss the issue of existence of such space-times
in Sec. IV.

II. THE SUPERTRANSLATION AMBIGUITY

This section is divided in three parts. In the first we fix
terminology and recall the notion of relativistic angular
momentum. In the second, we pinpoint the difficulty
encountered in extending this notion to Iþ. In the third,
we recall how this obstacle can be overcome in absence of
gravitational waves (in particular in stationary space-
times). In Sec. III, we will apply these ideas to CBCs
under the standard assumption made in the CBC commu-
nity that the system becomes asymptotically stationary (in a
certain weak sense, specified in Sec. III A).

A. Relativistic angular momentum

Let us begin by recalling the notion of angular
momentum in special relativity. Let ðM; ηabÞ be
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Minkowski space-time. A constant, unit timelike vector
field τa is said to fix a Lorentz frame because it represents
the 4-velocity of a family of inertial observers. There is a
three parameter family of these observers, related to one
another by Lorentz boosts which map τa to another
constant, unit timelike vector field τ0a. Next, recall that
by fixing an origin O, the 10 Killing fields Ka of the
Minkowski metric can be written as

Ka ¼ t
∘ a þ F

∘
abXb ≡ t

∘ a þ La ð2:1Þ

where t
∘ a is a constant vector field—a translation Killing

field—and La a Lorentz Killing field constructed from a

constant skew symmetric tensor field F
∘
ab and the position

vector Xa of the point at which Ka is evaluated, relative to
O. Thus, while we have a well-defined notion of a “pure”

translation t
∘ a, we can speak of a pure Lorentz trans-

formation La only relative to an origin. Now, given a
physical system with conserved stress-energy tensor Tab,
the 10 Poincaré generators Ka enable us to define 10
conserved quantities, namely Pa the 4-momentum, and
Mab the relativistic angular momentum:

Pat
∘ a þMabF

∘
ab ≔

Z
Σ
TabKbdSa; ð2:2Þ

where the integral is performed on a Cauchy surface Σ of
Minkowski space. We will restrict ourselves to the physi-
cally interesting case where Pa is timelike; Pa ¼ −Moτa,
whereMo > 0 is the rest mass:M2

o ¼ −PaPa. We will refer
to the Lorentz frame defined by this τa as the rest frame of
the system.
Under a displacement O → O0 of the origin we have

Pa → Pa and Mab → Mab þMoτ½adb� ð2:3Þ

where da is the position vector of O0 relative to O. Thus,
three of the six components of Mab—corresponding to the
three boosts in the rest frame of the system—can be
transformed away by change of origin. The nontrivial
information corresponds just to the rotation subgroups
of the Lorentz group selected by the rest frame of the
system. This is encoded in the angular-momentum spatial
vector J⃗d:

J⃗d ≔ ϵabcdτaMbc ð2:4Þ

Thus, although we have 10 conserved quantities, phy-
sical information they carry is encoded entirely in the
4-momentum Pa and the angular momentum 3-vector J⃗a.

B. The conceptual obstacle at I+

With these preliminaries out of the way, let us turn to
null infinity of asymptotically Minkowski space-times (for

notation and an introduction, see [34]; for precise defi-
nition, see e.g., [4]). The key question for us is: can we
define the analog of the 4-momentum Pa and the angular
momentum vector J⃗a at Iþ? Because gravitational waves
carry energy-momentum and angular momentum, these
notions can at best be time-dependent. Recall that each
cross section C of Iþ represents a retarded instant of time.
So the question is whether we can meaningfully associate a
4-momentum and angular momentum to each cross section
C of Iþ in a consistent manner.
Let us begin with the kinematical structures at Iþ that

have direct analogs in the geometry of Minkowski space.
First, Iþ is equipped with a 3-parameter family of pairs

ðq∘ ab; n∘ aÞ of fields, where q
∘
ab is the unit 2-sphere metric,

and n
∘ a a null normal to Iþ–the limit to Iþ of an

asymptotic (unit) time-translation Killing field τa in the
physical space-time. Each such pair is referred to as a Bondi
(conformal) frame. Thus, there is a 1-1 correspondence
between the asymptotic Lorentz frame in the physical

space-time selected by τa, and the Bondi frame (q
∘
ab; n

∘ a)
on Iþ. If we first fix a Lorentz frame and then perform a
boost corresponding to a velocity v⃗, then τa is mapped to
another unit asymptotic time translation τ0a and the initial

Bondi-frame ðq∘ ab; n∘ aÞ transforms as

ðq∘ ab; n∘ aÞ → ðq∘ 0
ab; n

∘ 0aÞ ¼ ðω2q
∘
ab;ω−1n

∘ aÞ;

with ω ¼ 1

γð1 − v⃗ · x̂Þ ð2:5Þ

where γ ¼ ð1 − v2Þ−1
2 is the standard Lorentz factor, and x̂a

is the unit radial vector with Cartesian components
(sin θ cosφ, sin θ sinφ, cos θ) in the (θ;φ)-chart adapted

to q
∘
ab. (Recall we have set c ¼ 1).

Next, the role of Killing fields Ka in Minkowski space is
assumed by the generators ξa of the BMS group. In any

given Bondi-frame ðq∘ ab; n∘ aÞ the explicit form of these
vector fields on Iþ is given by [1,5,23]:

ξaðu; θ;φÞ ¼ ½fðθ;ϕÞ þ ukðθ;ϕÞ�n∘ a

þ q
∘ abD

∘
bkðθ;ϕÞ þ ϵ

∘ abD
∘
bβðθ;ϕÞ; ð2:6Þ

where f is any smooth function on a 2-sphere, u is an affine

parameter of n
∘ a (i.e., n

∘ a∂au ¼ 1), q
∘ ab and ϵ

∘ ab are the
metric and the alternating tensor on the u ¼ const cross
sections of Iþ, and kðθ;φÞ and βðθ;φÞ are linear combi-
nations of the l ¼ 1 spherical harmonics (defined by the

unit, round metric q
∘
ab). The first term, fn

∘ a, of ξa represents
a BMS supertranslation, which reduces to a BMS trans-
lation if fðθ;φÞ is a linear combination of the first four
spherical harmonics. We will denote the BMS translations

by αn
∘ a, to distinguish them from generic supertranslations
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fn
∘ a. Although we have used a Bondi-frame in this

description, the resulting supertranslation and translation
subgroups S and T are independent of this choice.
The interpretation of the rest of ξa, on the other hand,

makes use of the specific Bondi-frame and choice of u.
Recall first that the Bondi-frame corresponds to an
asymptotic rest frame. The 1-parameter family of cross
sections u ¼ const is the analog of a world-line of the time-
translation Killing field τa in Minkowski space that defines

the rest frame under consideration. Now, for a fixed n
∘ a,

there is a (supertranslation) freedom u → ũ ¼ uþ sðθ;ϕÞ
in the choice of u, where s is any smooth function.
Therefore, while given a rest frame τa in Minkowski space
we have only a three-parameter family integral curves of τa,
each representing a “candidate” center of mass (c.m.) world

lines of the given system, given a rest frame ðq∘ ab; n∘ aÞ atIþ
we have an infinite parameter family of candidate c.m.
“world lines,” each represented by the family u ¼ const of

cross sections that are preserved by n
∘ a. The three vector

fields ϵ
∘ abD

∘
bβðθ;ϕÞ define “the” rotation or SO(3) sub-

group in the rest and c.m. frame determined by n
∘ a and the

choice of u. The remaining three, ukðθ;ϕÞn∘ a þ
q
∘ abD

∘
bkðθ;ϕÞ represent “the” boosts in this frame.

Note that the last six vector fields—which together
generate a Lorentz subgroup L of B–are tangential to
precisely one cross section, namely, u ¼ 0. Now, given any
cross section C of Iþ we can adapt the affine parameter u

of n
∘ a to it so that u ¼ 0 on that C. Therefore each cross

section C of Iþ picks out a Lorentz subgroup LC of B.
Furthermore, this is a 1-to-1 correspondence. Finally, since
any cross section C can be mapped to any other cross
section C0 by a supertranslation, any two Lorentz sub-
groups are also mapped to one another by a supertransla-
tion. In this precise sense, B admits as many Lorentz
subgroups as there are supertranslations. By contrast, in
Minkowski space-time, there is a natural 1-1 correspon-
dence between space-time points and Lorentz subgroups L
of the Poincaré group p—the action of each subgroup
leaving precisely one point invariant—whence p admits as
many Lorentz subgroups as there are translations.
Now, associated with each BMS vector field ξa there is a

quantity Pξ½C� representing the ξ-component of the Bondi-
momentum at the retarded instant of time defined by the
cross section C of Iþ. The explicit expressions of Pξ½C�
involve certain physical fields at Iþ, in addition to the
symmetry vector field ξa. These fields are the asymptotic
shear σ∘,

σ∘ðu; θ;φÞ ¼ 1

2
lim
r→∞

rðhþ þ ih×Þðu; θ;φÞ; ð2:7Þ

constructed from the wave form, and the Newman-Penrose
fields Ψ∘

2 and Ψ∘
1,

2Ψ∘
2ðu; θ;φÞ ¼ lim

r→∞
r3Cabcdðnalbncld þ nalbmcm̄dÞ;

Ψ∘
1ðu; θ;φÞ ¼ lim

r→∞
r4Cabcdlamblcnd ð2:8Þ

constructed from the asymptotic Weyl curvature. Here, na,
la, ma, m̄a is a Newman-Penrose tetrad adapted to the
Bondi-frame and the cross section C (given by u ¼ u1 in
Fig. 1), and the limit is taken along outgoing null cones
(u ¼ const). See, e.g., [34] for further discussion.
With this structure at hand, we can introduce the

4-momentum and supermomentum. The 4-momentum
PðαÞ½C� is the Bondi-momentum Pξ½C� associated with

the BMS translation ξa ¼ αðθ;φÞn∘ a at Iþ [2,37,38]:

FIG. 1. A depiction of a compact binary space-time, together
with an artist’s impression of the wave form based on [36]. Iþ
constitutes the future boundary of this space-time and has
topology S2 ×R. The Bondi news—the time derivative of the
waveform—goes to zero in the distant past and distant future.
Because of the black hole kick, the Bondi (conformal) frames

ðq∘ab; n∘ aÞ and ðq∘ 0
ab; n

∘ 0aÞ adapted to rest-frames in the distant past
and distant future are distinct. Cross sections u ¼ u1 and u ¼ u2
belong to the c.m. family adapted to the distant past; the shear of
this family of cross sections vanishes as u → −∞. They define
the past Poincaré group pði∘Þ discussed in Sec. III A. However,
generically their shear fails to vanish in the distant future. There is
a distinct family of cross sections—such as u0 ¼ u02–that are
adapted to the rest frame in the future and become shearfree in the
limit u → ∞. This family defines the future Poincaré group
pðiþÞ. Generically the two Poincaré groups are distinct sub-
groups of the BMS group B, related by a BMS supertranslation.
The total angular momentum J⃗i∘ in the distant past refers
to pði∘Þ, while the final spin refers to pðiþÞ. Therefore, the
difference J⃗i∘ − S⃗iþ involves flux of angular momentum as well
as supermomentum.
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PðαÞ½C�≔−
1

4πG

I
C
d2V

∘
αðθ;φÞRe½Ψ∘

2þ σ̄∘ _σ∘�ðθ;φÞ; ð2:9Þ

where d2V
∘
is the volume element of a unit 2-sphere and n

∘ a

is the limit of na toIþ. Now, because the BMS translations
constitute a canonical 4-dimensional (normal) subgroup of

the BMS group [1], we know what it means to consider the
same BMS translation on another cross section C0. The
energy-momentum flux F ðαÞ carried by gravitational waves
across the region ΔIþ bounded by these cross sections is
given by the difference between the two Bondi
4-momenta [2,37,38]

PðαÞ½C0�−PðαÞ½C�≡F ðαÞ≔−
1

8πG

Z
ΔIþ

dud2V
∘
_σ∘abðL

αn
∘σ∘abþD

∘
aD
∘
bfÞ¼−

1

4πG

Z
ΔIþ

dud2V
∘
αðθ;φÞj _σ∘j2ðu;θ;φÞ; ð2:10Þ

if C0 is to the future of C, where σ∘ab ¼ −ðσ̄∘mamb þ
σ∘m̄am̄bÞ and D

∘
the derivative operator compatible with

q
∘
ab. Finally, in view of the positive energy theorem at

null infinity [39–41], it is customary to assume that the
Bondi 4-momentum PðαÞ½C� is a timelike vector. It
provides us with an instantaneous rest frame of the
system, corresponding to that time instant. Thus the
situation with 4-momentum at Iþ is completely analo-
gous to that in special relativity, except that the Bondi

4-momentum is not conserved; it refers to a retarded
instant of time. The balance law (2.10) is often used
in CBC—for example, the final black hole kick is
estimated by evaluating the flux of the 3-momentum
across Iþ (in the initial rest frame) using the right-hand
side of (2.10) [32,33].
Finally, associated with any supertranslation ξa ¼

fðθ;ϕÞn∘ a there is a supermomentum PðfÞ½C� for any cross
section C and a flux F ðfÞ associated with any region ΔIþ:

PðfÞ½C� ≔ −
1

4πG

I
C
d2V

∘
fðθ;φÞRe½Ψ∘

2 þ σ̄∘ _σ∘�ðθ;φÞ; and; ð2:11Þ

F ðfÞ ≔−
1

8πG

Z
ΔIþ

dud2V
∘
_σ∘abðLfn

∘σ∘ab þD
∘
aD
∘
bfÞ ¼ −

1

4πG

Z
ΔIþ

dud2V
∘
fðθ;φÞ½j _σ∘j2 − Reðð2 _̄σ∘Þ�ðu; θ;φÞ: ð2:12Þ

Here ð is the usual angular derivative: If A has spin weight
s, then ðA is a field with spin-weight sþ 1 given by

ðA ¼ 1ffiffiffi
2

p ðsin θÞs
�
∂θ þ

i
sin θ

∂φ

�
ðsin θÞ−sA: ð2:13Þ

Let us now turn to angular momentum. One immediately
encounters an obstacle: Since the BMS group B admits an
infinite-parameter family of Poincaré subgroups p rather
than one, we cannot just repeat the familiar procedure from
special relativity outlined above to obtain an analog of J⃗a.
However, given any cross section C we do have a preferred
Lorentz subgroup L ofBwhich we can use to construct the
analog of the relativistic angular momentum tensor Mab.
Furthermore, the Bondi 4-momentum PðαÞ½C� provides the
instantaneous rest frame for the system atC. Can we not put
these two elements together to arrive at the desired analog
J⃗a½C� of J⃗a?
Indeed, this idea can be implemented in detail. The

problem is that as we change the cross section C to another
one, C0, the Lorentz group LC as well as the rest frame
determined by the 4-momentum PðαÞ½C� changes. In the

special case when C is mapped to C0 by a BMS translation,
LC and LC0 are related by a translation as in special
relativity. But even in this case the Bondi 4-momentum
changes, whence the two rest frames are different.
Therefore, J⃗a at the two cross sections would be associated
with different SO(3) subgroups of B. Consequently,
comparing J⃗a½C� with J⃗a½C0� would be like comparing,
in Minkowski space, the J⃗z ≡Mxy component of angular
momentum at a given time with, say, Mxy þMzt at another
time. If we consider two generic cross sections, the
situation becomes much worse. For, now the two cross
sections are related by a supertranslation (See Fig. 1),
whence the analog of the transformation property (2.3) now
involves the infinite component supermomentum PðfÞ in
place of the 4-momentum Pa. Therefore, we are led to
replace the 6-component object Mab in special relativity
with an infinite component object—the BMS angular
momentum. Generically, it is no longer possible to con-
struct the analog of the 3-vector J⃗a of Eq. (2.4) to encode
the full content of the BMS angular momentum. This is the
celebrated “supertranslation ambiguity” in the notion of
angular momentum.
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As we remarked in the Introduction, in general we just
have to live with it. But in classes of physical systems of
interest—such as CBC—one can significantly reduce the
ambiguity.

C. Poincaré reduction of the BMS group

As a prelude to the discussion of CBCs in Sec. III, we
will now summarize the procedure [5,6] that can be used
to reduce the BMS group B to a canonical Poincaré
subgroup p of B for systems that can be regarded as
stationary to leading order at Iþ. By themselves these
systems are not of direct interest to CBCs because they do
not admit any gravitational waves. Nonetheless, as we
discuss in Sec. III A, the main ideas can be generalized to
situations in which the required condition is satisfied not
on all of Iþ but only asymptotically in time, i.e., in the
limit u → �∞ on Iþ. This generalization is directly
applicable to CBCs.
Let us begin with stationary space-times ðM; gabÞ, and

denote the time-translation Killing field (that has unit norm
at infinity) by τa. Then there is precisely one Bondi frame

ðq∘ ab; n∘ aÞ at Iþ whose n
∘ a is the limit to Iþ of τa. Let us

restrict ourselves to that Bondi frame. Then if u denotes the

affine parameter of n
∘ a, in the ðu; θ;φÞ chart onIþ we have

n
∘ a∂a ¼ ∂=∂u and u can be taken to be the natural time
variable at Iþ. In these space-times, the Bondi news N ¼
− _̄σ∘ vanishes, signaling absence of gravitational radiation.
This in turn implies that the components Ψ∘

4 and Ψ∘
3 of the

asymptotic Weyl tensor vanish and _Ψ°
2 ¼ 0 atIþ (see, e.g.,

[3,4,38]). Next, since τa is a Killing field, in particular
we have LτCabcd ¼ 0 everywhere on M. Therefore if we

use a Newman-Penrose null tetrad ðn∘ a;l
∘
a; m

∘ a; m̄
∘

aÞ at Iþ

which is Lie dragged by n
∘ a, we also have _Ψ °

1 ¼ 0,
and _Ψ °

0 ¼ 0.
The Poincaré reduction of B does not need stationarity,

but a weaker, asymptotic version thereof. Let us consider
space-times ðM; gabÞ which are such that

(I) The Bondi news vanishes, N ≡ − _̄σ∘ ¼ 0 on
Iþ; and,

(II) In the rest frame defined by the Bondi 4-momentum
PðαÞ, _Ψ °

1 ¼ 0 on Iþ.2

We will refer to these gravitating systems as being
stationary to leading order at Iþ. Since vanishing of N
is conformally invariant, condition (I) implies that ∂uσ

∘ ¼
0 in any Bondi frame ðq∘ ab; n∘ aÞ and for any choice of the

affine parameter u of n
∘ a. Next, conditions (I) and (II)

together with Bianchi identities imply that ImΨ∘
2 ¼ 0 on

Iþ (and ReΨ∘
2 is a constant in the rest frame of the system)

[34,38]. Now, in any asymptotically Minkowskian
space-time, ImΨ∘

2 is completely determined by the asymp-
totic shear σ∘ and its derivatives: ImΨ∘

2 ¼ 2
ffiffiffi
2

p ðImð2σ̄∘ þ
σ∘ _̄σ∘Þ [38]. Vanishing of ImΨ∘

2 and the Bondi news N
therefore implies

Imð2σ̄∘ ¼ 0; whose general solution is σ∘ ¼ ð2s̃

ð2:14Þ
for some real, spin-weight zero function s̃. Shears σ∘ of this
form are said to be purely electric. Now, using the fact that
the Bondi news vanishes, one can also show that the shear
σ∘ of two cross sections C and C0 that are related to
each other by a (finite) supertranslation u → uþ sðθ;φÞ is
given by

σ∘0 ¼ σ∘ þ ð2s: ð2:15Þ

Therefore, starting with any cross section one can make an
appropriate supertranslation to arrive at a shearfree cross
section: in absence of Bondi news, purely electric shears
can be transformed away by moving to a suitable cross
section. Furthermore, the equation ð2s ¼ 0 has precisely a
4-parameter family of solutions, each defining a BMS
translation. Therefore, it follows thatIþ admits precisely a
4-parameter family of shear-free cross sections—called
good cuts—that are mapped into each other by BMS
translations. Since each cross section is left invariant by
a Lorentz subgroup L of B, the subgroup of B that
preserves this family of good cuts is a Poincaré group,
say po. (Thus, as far as the Lorentz subgroups L of po are
concerned, good cuts are the analogs of points in
Minkowski space.) Using these Lorentz subgroups, we
can now define an angular momentum tensor Mab that
transforms as in Eq. (2.3), where the “displacement vector”
da relating origins O and O0 is replaced by a (finite) BMS
translation that maps the first good cut C to a second good
cut C0.
Next, as we remarked before, since N ¼ 0 in this case,

the Bondi 4-momentum PðαÞ½C� is independent of the
choice of C and we have a canonical Bondi-frame at
Iþ representing the asymptotic rest frame of the system.
Thus both the obstacles encountered in Sec. II B have
been removed and one can define an angular momentum
3-vector J⃗ðβÞ½C� for any cross section C, which is again
independent of the choice of C. (Here α is a linear
combination of the first four spherical harmonics, repre-
senting a BMS translation and β a linear combination of the
Y1;m representing the direction of the axis of rotation. The

explicit expression of J⃗ðβÞ will be given in Section III B.)

Both PðαÞ and J⃗ðβÞ can be naturally regarded as co-vectors

2Note that while Bondi news is invariant under the change of
Bondi-frame, _Ψ°

1 is not. Therefore condition (II) can be satisfied
only in one Bondi frame. Now, since N ≡ − _̄σ∘ ¼ 0, Eq. (2.10)
implies that the Bondi 4-momentum is independent of the choice
of cross section. Therefore there is a unique Bondi-frame in
which the Bondi 3-momentum is zero; this is the rest frame of the
system. Condition (II) is imposed in this Bondi-frame.
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dual to the space of BMS translations; the first is timelike
while the second is spacelike and orthogonal to the first.
To summarize, then, the 4-momentum and angular

momentum structure of space-times that are stationary to
leading order at Iþ is the same as in special relativity.
Remarks:
(1) In Minkowski space-time ðM; ηabÞ, each shear-free

cross section of Iþ is the intersection of the future
light cone of a point in the interior with Iþ. Thus,
there is indeed a natural isomorphism between the
4-parameter family of points of Minkowski space
and the 4-parameter family of good cuts on its Iþ.
As one would expect, the Poincaré subgroup po is
induced on Iþ by the isometry group of Minkowski
space. Finally, in this correspondence between the
two Poincaré actions, the Lorentz subgroup LO that
leaves a point O of Minkowski space invariant is
sent to the Lorentz subgroup LCO

of po that leaves
the good cut CO defined by O invariant. In more
general space-times that are only stationary to the
leading order at Iþ, we have neither isometries in
the interior, nor a natural correspondence between
space-time points and shearfree cross sections. But
the shadows of some Minkowski structures cast on
Iþ–the Poincaré subgroup po of B, the good cuts,
and the 4-parameter family of Lorentz subgroups
that leaves one of the good cuts invariant–continue
to exist.

(2) We presented this procedure of Poincaré reduction
using stationarity to leading order at Iþ to bring
out the physical motivation. From a mathematical
perspective, a necessary and sufficient condition for
this procedure to go through is simply that the Bondi
news N and ImΨ∘

2 must vanish on Iþ. These two
conditions have an invariant geometric meaning. It
turns out that in any asymptotically Minkowskian
space-time, Iþ is naturally equipped with an equiv-
alence class of intrinsically defined connections
[D].3 The nontrivial part of its curvature is encoded
precisely in N and ImΨ∘

2. Therefore the curvature is
trivial (as on Minkowski Iþ) precisely when they
vanish. Borrowing terminology from Yang-Mills
theory, such connections are called classical vacua,
denoted by ½D∘� [6,42]. There are as many vacua
½D∘� as there are supertranslations modulo trans-
lations. Each ½D∘� is left invariant under the action of

a Poincaré subgroup of the BMS group. Thus, to
single out a Poincaré subgroup, we need to select a
specific classical vacuum. Each ½D∘� provides a
4-parameter family of good cuts of Iþ and vice
versa. But the invariant geometric meaning of
various constructions in the next section are more
transparent in terms of ½D∘�. (For a summary, see
[4].) In this paper we chose to emphasize “good
cuts” in place of ½D∘� because researchers working
with waveforms are likely to be more familiar with
good cuts.

III. COMPACT BINARY COALESCENCE:
ANGULAR MOMENTUM AT I+

This section is divided into three parts. In the first we
specify the class of systems we wish to consider: isolated
gravitating bodies that become stationary in the distant past
and in the distant future, in a certain sense that is much
weaker than what is generally assumed in the CBC
literature. We then recall how one can select canonical
Poincaré subgroups pði∘Þ and pðiþÞ of B on Iþ of such
space-times using this asymptotic stationarity in the past
(i.e., as one approaches io alongIþ) and future (i.e., as one
approaches iþ along Iþ); see Fig. 1. The past total angular
momentum of the system J⃗i∘ and the spin of the final black
hole S⃗iþ refer to these two Poincaré subgroups, respec-
tively. In the second part we present the expressions of J⃗i∘

and S⃗iþ . In the third, we discuss the nontriviality involved in
comparing J⃗i∘ and S⃗iþ . The results are instructive for both
mathematical relativists and gravitational wave theorists.

A. Poincaré subgroups in the
distant past and distant future

We now wish to consider systems which do allow
gravitational waves—so the Bondi news N ≡ − _̄σ∘ on
Iþ is nonzero. Therefore, we will impose the two con-
ditions introduced in Sec. II C only in the limits u → �∞.
Throughout, we assume that if a field Fðu; θ;ϕÞ ¼
Oð1=jujαÞ–i.e., if jujαFðu; θ;φÞ admits smooth limits
F�ðθ;φÞ as u → �∞– then its mth u-derivative,
∂m
u Fðu; θ;φÞ is Oð1=jujmþαÞ. Then our conditions will be:
(i) the Bondi news N ≡ − _̄σ along Iþ goes to zero as

u → �∞ as 1=juj1þϵ for some ϵ > 0; i.e., N is
Oð1=juj1þϵÞ, and

(ii) ∂uΨ∘
1 → 0 in the past Bondi-frame as u → −∞, and

in the future Bondi-frame as u → ∞.
In condition (ii), the future Bondi-frame is the one in which
the future limit of the Bondi 3-momentum vanishes; thus it
corresponds to the future rest frame of the system. Similarly
the past Bondi-frame corresponds to the past rest frame of
the system. Generically, the two are distinct. In CBCs,
evolution in the future part of the coalescence is calculated
using NR. Within the numerical accuracy, _̄σ∘ goes to zero

3Without loss of generality one can assume that the conformal
factor Ω in Penrose’s completion is chosen such that the null
normal na toIþ is divergencefree. In such conformal frames, the
space-time derivative operator compatible with the conformally
rescaled metric can be pulled back to Iþ to an intrinsically
defined derivative operator D. An equivalence class [D] consists
of various D that are induced on Iþ of any one physical
space-time through various choices of divergencefree conformal
factors Ω.
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rapidly after the merger and the final state of the system is
well described by a Kerr black hole for which we also have
∂uΨ∘

1 ¼ 0 (see, e.g., [30]). Therefore conditions (i) and (ii)
are readily satisfied in the distant future. The evolution of
the binary in the distant past is calculated using PN
methods where it is assumed that the system is stationary
to the past of some time t ¼ −τ (see, e.g., [25]). Therefore
our two conditions are trivially satisfied also in the distant
past. Thus, space-times under consideration include in
particular those used to create CBC waveforms for
detection and source characterization. For further discus-
sion on motivation and implications of these two asymp-
totic conditions, see the companion paper [34]. Following
terminology used in that paper, space-times satisfying
conditions (i) and (ii) will be said to be past and future
tame on Iþ. In this Section we will work with this class of
space-times. Now, while condition (i) is essential to ensure
finiteness of the flux of energy momentum and angular
momentum across Iþ, condition (ii) is not as compelling.
Therefore, in Appendix we will weaken it. We will find that
the procedure used in Sec. III C still goes through under
these weaker conditions but one cannot draw the conclu-
sions we arrive at in Sec. IV.
Considerations of Section II C do not hold on all of Iþ

in space-times that are past and future tame. But they
do hold in the limits u → �∞. More precisely, various
fields have the following asymptotic behavior in any
Bondi-frame:
(1) The waveform 2σ∘ ¼ limr→∞rðhþ þ ih×Þ has the

asymptotic form:

σ∘ðu; θ;φÞ ¼ σ�ðθ;φÞ þ juj−ϵσð1Þ� ðθ;φÞ
þOðjuj−ϵ−1Þ as u → �∞ ð3:1Þ

so that σ�ðθ;φÞ are the limits of σ∘ðu; θ;φÞ, and
∓ ϵσð1Þ� ðθ;φÞ are the limits of juj1þϵN̄ðu; θ;φÞ as
u → �∞. These limits depend on the choice of the
affine parameter u, i.e., on the choice of cross section
u ¼ 0 in the given Bondi-frame. In particular, if we
make a (finite) supertranslation

u → ũ ¼ uþ sðθ;φÞ;
then σ̃�ðθ;φÞ ¼ σ�ðθ;φÞ þ ð2sðθ;φÞ: ð3:2Þ

Note that the difference ½σ∘�i∘iþ is invariant under
supertranslations.

(2) Bianchi identities and Einstein’s equations imply
that the Newman-Penrose component Ψ∘

2 of the
Weyl tensor (whose real part determines the Bondi
4-momentum in the limits u → �∞) has the asymp-
totic form:

Ψ∘
2ðu; θ;φÞ ¼ ψ�ðθ;φÞ þ juj−ϵψ ð1Þ

� ðθ;φÞ
þOðjuj−ϵ−1Þ as u → �∞; ð3:3Þ

where the limiting values ψ�ðθ;φÞ and ψ ð1Þ
� ðθ;φÞ

depend on the choice of the Bondi-frame,
but ψ�ðθ;φÞ is real in all Bondi-frames, ψ− is
spherically symmetric in the past Bondi frame and
ψþ in the future Bondi frame.

(3) The Newman-Penrose component Ψ∘
1 of the Weyl

tensor [which (together with ReΨ∘
2) determines

the BMS angular momentum as u → �∞] has the
asymptotic form:

Ψ∘
1ðu; θ;φÞ ¼ χ�ðθ;φÞ þ jujðψ�ðθ;φÞ

þOðjuj−ϵÞ as u → �∞; ð3:4Þ

where the limiting value χ� depends on the choice of
the Bondi-frame as well as of the affine parameter u.

Let us first consider the past limit, u → −∞. Since
ImΨ∘

2 ¼ 2
ffiffiffi
2

p
Imðð2σ̄∘ þ σ∘ _̄σ∘Þ everywhere on Iþ, and in

the limit u → −∞, it follows [34] that ImΨ∘
2 and _σ∘ðu; θ;ϕÞ

vanish in any Bondi-frame, condition (i) implies that the
limiting value σ−ðθ;φÞ must satisfy

Imð2σ̄− ¼ 0; whose general solution is σ− ¼ ð2s−

ð3:5Þ
for some function s−ðθ;φÞ. Therefore, given any Bondi-

frame ðq∘ ab; n∘ aÞ we can use the transformation property
(3.2) to choose an affine parameter ũ such that the limiting
value σ̃−ðθ;φÞ on the cuts ũ ¼ const vanishes as ũ → −∞.

Furthermore, since ð2s− ¼ 0 if and only if s−ðθ;φÞn∘ a

is a BMS translation, there is precisely a 4-parameter
family of cross sections ũ ¼ const with the property
limũ→−∞ σ̃− ¼ 0. We will refer to these cross sections as
cuts that become asymptotically “good” in the past. Note
that this 4-parameter family is uniquely chosen in any
space-time that is past tame on Iþ; the family obtained
starting from one Bondi-frame is the same as that obtained
starting from another. Since the family is preserved by
translations but no other supertranslations, the subgroup of
the BMS group B that preserves it is precisely a Poincaré
group. We will denote by pði∘Þ. Note that for finite value of
ũo, the cross sections ũ ¼ ũo do carry shear because
the Bondi news at Iþ is nonzero. Shear σ̃∘ðũ; θ;φÞ of
these cross sections vanish only in the limit ũ → −∞.
(See Fig. 1).
To summarize, in space-times that are past tame, we can

select a preferred Poincaré subgroup pði∘Þ of B by
constructing the 4-parameter family of cross sections C−

of Iþ on which the waveform hþ þ ih× ¼ 2σ∘ðu; θ;φÞ
vanishes as u → −∞. We can repeat the procedure for
u → ∞ and construct a 4-parameter family of cross
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sections Cþ, representing the cuts that become asymptoti-
cally good in the future. This family is also left invariant by
a Poincaré subgroup pðiþÞ. When would the two Poincaré
subgroups pði∘Þ and pðiþÞ be the same? They would be the
same if and only if the family of cuts that becomes shearfree
in the past also becomes shearfree in the asymptotic future.
From the procedure outlined above, it is clear that for this to
happen we would need ½σ∘�i∘iþ ¼ 0 so that a single super-
translation fðθ;φÞ can transform away both σ∘− and σ∘þ.
That is, the gravitational memory must vanish:4

lim
u→∞

σ∘ðu; θ;φÞ − lim
u→−∞

σ∘ðu; θ;φÞ ¼ 0: ð3:6Þ

The left side is independent of the choice of the Bondi-
frame. As emphasized already in the early literature on
gravitational waves, Eq. (3.6) is a very stringent condition
and will not be generically satisfied. Therefore, even for the
class of space-times that are past and future tame, generically
the Poincaré groups pði∘Þ and pðiþÞ are distinct. The initial
total angular momentum J⃗i∘ in the past refers to pði∘Þ and the
final spin S⃗iþ refers to pðiþÞ. As has been emphasized in the
mathematical GR literature over the years [5,6,14,42], this
situation is qualitatively different from that in special
relativity. Finally, the fact that pði∘Þ and pðiþÞ are generi-
cally different is unrelated to the fact that the asymptotic rest
frames in the past and future are also generically different:
Generically the past and future Poincaré groups are distinct
even in absence of a black hole kick [32,33].
Remark: As noted in Remark 2 at the end of Sec. II, an

invariant characterization of the Poincaré subgroups p of B
is provided by “classical vacua”—connections ½Do� intrinsi-
cally defined on Iþ for which curvature is trivial. Consider
asymptotically Minkowski space-times in which curvature
of the connection [D] induced onIþ is nontrivial—allowing
for generic radiation—but becomes trivial in the asymptotic
past and future of Iþ∶½D� → ½Doði∘Þ� as u → −∞ and
½D� → ½DoðiþÞ� as u → ∞. Then one can again select
canonical Poincaré subgroups pði∘Þ and pðiþÞ, but generi-
cally the two are distinct because ½Doði∘Þ� ≠ ½DoðiþÞ�
[6,42]. Since triviality of curvature requires only N and
ImΨ∘

2 to be zero, the asymptotic conditions needed to extract
pði∘Þ and pðiþÞ from B are weaker than those satisfied by
space-times that are past and future tame on Iþ: One can
replace condition (ii) that features Ψ∘

1 with just one it its
consequences: ImΨ∘

2 goes to zero asymptotically. Angular
momentum can also be defined in this more general setting.
However, as discussed in Appendix, the definition then
requires additional care in how the limits are taken.

B. Angular momentum in the distant past
and distant future

With the two Poincaré groups pði∘Þ and pðiþÞ at hand we
now have the first necessary ingredient to define the two
angular momentum vectors J⃗i∘ and S⃗iþ . Let us begin with
the past limit u → −∞ and spell out the step by step
procedure to define the total angular momentum vector J⃗i∘
in the distant past.
Recall first that the angular momentum vector refers to

an SO(3) subgroup of the Poincaré group, selected by the
rest frame of the system. Now, Nðu; θ;φÞ → 0 as u → −∞
because of condition (i), the past limit PðαÞði∘Þ of the Bondi
4-momentum is well-defined and given, from (2.9), by:

PðαÞði∘Þ ≔ −
1

4πG
lim

uo→−∞

I
u¼uo

d2V
∘
αðθ;φÞReΨ∘

2; ð3:7Þ

where αðθ;φÞn∘ a are the BMS-translations. PðαÞði∘Þ equals
the ADM 4-momentum of the space-time [46]. To locate
the past rest frame of the system, one can calculate PðαÞði∘Þ
in any Bondi-frame, and then use the 3-momentum to
perform a boost to arrive at the desired Bondi frame

ðq∘ ab; n∘ aÞ in which the limiting 3-momentum vanishes.
The angular momentum J⃗i∘ refers to the SO(3) subgroups
selected by this rest frame. More precisely, from the
4-parameter family of cuts of Iþ that become asymptoti-
cally good in the distant past, one selects a sub-family u ¼
const which is preserved by the flow generated by the BMS

time translation n
∘ a, and finds the SO(3) generators

RaðkÞ ¼ ϵ
∘ ab∂bβðkÞ; ð3:8Þ

where ðkÞ ¼ 1, 2, 3, ϵ
∘ ab is the area-form on the u ¼ const

cross sections and βðkÞ ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ in
terms of the spherical coordinates of the spherical unit

2-sphere metric q
∘
ab [see the form of general BMS gen-

erators given in Eq. (2.6)]. Then, the explicit expression of
J⃗i∘ is given as a limit of integrals on the u ¼ const cross
sections [14,21,23,24]

J⃗ðkÞi∘ ¼ −
1

4πG
lim

uo→−∞

I
u¼uo

d2V
∘
Im½Ψ∘

1ðu; θ;φÞð̄βðkÞðθ;φÞ�:

ð3:9Þ

whereΨ∘
1 can be calculated from the asymptotic form of the

PN metric in the distant past when the waveform vanishes.
Now, any two of these u ¼ const families are related by a
spatial BMS translation, whence the rotation generators
RaðkÞ also transform by picking up a spatial translation.
However, since we are in the rest frame, the Bondi

3-momentum vanishes at i∘, whence J⃗ðkÞi∘ does not change.
Nonetheless, since we have to make a choice in the actual

4In the mathematical GR literature, this is sometimes referred
to as the total gravitational memory—the sum of the “ordinary”
and “null” contributions [43]—while in the quantum gravity
literature [44,45], it is called soft charge.
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calculation, we will use the past c.m. frame: the u ¼ const
family of cross sections for which the past limit of the
boost-angular momentum vanishes. Note that the two
steps—finding the rest and the c.m. frames adapted to
i∘—can always be carried out if the Bondi news falls off as
u → −∞. Finally, since we do have a Poincaré group pði∘Þ
adapted to i∘, we can use special relativistic considerations

and say that the pair ðPðαÞ
i∘ ; JðkÞi∘ Þ captures the full informa-

tion about energy-momentum and angular momentum of
the system in the distant past.
We can repeat the procedure for u → ∞ to obtain the

future limit S⃗iþ of the angular momentum vector represent-
ing the spin of the final black hole. As with the past limit,
we have to proceed in two steps. First, we have to find the

Bondi-frame ðq∘ 0
ab; n

∘ 0aÞ in which the system is at rest in the
asymptotic future, and in the second step a 1-parameter
family of cross sections u0 ¼ const whose shear vanishes in

the distant future, where u0 satisfies n
∘ 0a∂au0 ¼ 1.5 The spin

S⃗iþ of the final black hole is the angular momentum vector
that refers to the SO(3) subgroups of pðiþÞ, selected by

ðq∘ 0
ab; n

∘ 0aÞ, given by the obvious modifications of (3.9).
Since the NR simulations show that the space-time geom-
etry quickly approaches that of a Kerr solution in distant
future, all the ingredients needed in this calculation can be
extracted from the simulations.
As their definitions make it clear, J⃗i∘ and S⃗iþ refers to

specific SO(3) subgroups of pði∘Þ and pðiþÞ, respectively.
Generically the two Poincaré groups are distinct and
therefore do not share any SO(3) subgroups. Thus generi-
cally J⃗i∘ and S⃗iþ refer to distinct BMS generators.
Therefore, if one were to succumb to the temptation of
subtracting S⃗iþ from J⃗i∘ to calculate the angular momentum
vector radiated away, one would be “subtracting apples
from oranges” and the result would be conceptually
meaningless. What then is the relation between J⃗i∘ , S⃗iþ
and the angular momentum carried by gravitational waves?
We analyze this issue in the next subsection.

C. Relation between the initial and final angular
momentum vectors

Recall that J⃗i∘ refers to SO(3) subgroups of pði∘Þ
selected by the past rest frame ðq∘ ab; n∘ aÞ, while S⃗iþ refers
to SO(3) subgroups of pðiþÞ selected by the future rest

frame ðq∘ 0
ab; n

∘ 0aÞ. Therefore the relation between them
involves the (total) gravitational memory ½σ∘�i∘iþ–the differ-
ence between asymptotic shears at i∘ and iþ– that deter-
mines the supertranslation relating pði∘Þ and pðiþÞ, as well
as to the black hole kick that characterizes the change in the

two asymptotic rest frames. Thus, we are led to consider
4 cases: (i) ½σ∘�i∘iþ ¼ 0 and zero kick; (ii) ½σ∘�i∘iþ ¼ 0 and
nonzero kick; (iii) ½σ∘�i∘iþ ≠ 0 and zero kick; and,
(iv) ½σ∘�i∘iþ ≠ 0 and nonzero kick. We will find that in the
first three cases, the simple-minded procedure to calculate
flux of angular momentum using J⃗i∘ and S⃗iþ turns out to
give the correct answer. For case (iii) this result is
unexpected because one would have expected a super-
momentum contribution to the flux, associated with the
supertranslation relating pði∘Þ and pðiþÞ. Vanishing of this
supermomentum contribution is a consequence of the
assumption that the system becomes asymptotic stationar-
ity as u → �∞, introduced in Sec. III A. But the first three
cases are exceptional for CBC in that they involve extreme
fine tuning of parameters characterizing the compact
binary. Case (iv) represents the generic situation. In this
case, not only is the naive procedure conceptually incorrect
but would also yield incorrect flux precisely because it
ignores the supermomentum contribution.
Since it is the generic case that is of direct interest,

logically it would be sufficient to just discuss the case (iv)
and read off the consequences in the first three cases from
the general result (3.30). However, the actual calculation in
case (iv) involves a number of intermediate steps that are
easier to follow if one discusses the special cases first.
Therefore, we will adopt the pedagogical—rather than the
most direct—route and pass from special cases to the
general one.

1. Cases (i) and (ii): Zero gravitational memory

If the gravitational memory vanishes, the past Poincaré
group is the same as the future one, pði∘Þ ¼ pðiþÞ, and
so the supertranslation ambiguity simply disappears. In
case (i), the kick also vanishes, whence the future and past
Bondi frames also coincide. Therefore the situation trivi-

alizes: Since J⃗ðkÞi∘ and S⃗ðkÞiþ refer to the same SO(3) subgroup
of the BMS group, it is meaningful to subtract the two to
obtain the flux of angular momentum radiated across Iþ
which also refers to the same SO(3):

S⃗ðkÞiþ − J⃗ðkÞi∘ ¼ F ðRðkÞÞ ð3:10Þ

where F ðRðkÞÞ is the flux across Iþ of the angular
momentum associated with the BMS rotations Ra

ðkÞ that

generate the SO(3) under consideration [see Eq. (3.8)]. The
flux F ðRðkÞÞ is given by [15]

F ðRðkÞÞ ¼ −
1

8πG

Z
Iþ

du d2V
∘
_σ∘abðLRðkÞσ

∘
abÞ: ð3:11Þ

In the case (ii), we again have a preferred Poincaré
subgroup: pði∘Þ ¼ pðiþÞ ¼ p, say. However, this case is a
bit more complicated technically because now the past and

5Since it is not necessary, we will not take the extra step to
require that this family should represent the “center of mass
foliation” in the future.
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the future rest frames are different: J⃗ðkÞi∘ refers to the SO(3)

subgroups associated with the past rest frame, while S⃗ðkÞiþ

refers to a SO(3) subgroups selected by the future rest
frame. However, since the two SO(3) subgroups belong to
the same Poincaré group, conceptually the situation is the
same as in special relativity: the future rotation generators
can be taken to be linear combinations of past rotations and
boosts.
Recall that we are working in the (rest and the) c.m.

frame adapted to i∘. Therefore, u ¼ const is the preferred
foliation by cuts that become shearfree in the distant past,
and for which the limiting boost angular momentum J⃗⋆i∘
vanishes. Let us suppose that the black hole kick—or the
boost relating the past and future rest frames—is in the x (or
first) direction with velocity v.6 Then, in the Lie algebra of
the Poincaré group p, the future rotation generators R0a

ðiÞ are
related to the past rotation generators Ra

ðiÞ and the past boost
generators Ka

ðiÞ as follows:

R0a
ð1Þ ¼ Ra

ð1Þ; R0a
ð2Þ ¼ γðRa

ð2Þ þ vKa
ð3ÞÞ;

R0a
ð3Þ ¼ γðRa

ð3Þ − vKa
ð2ÞÞ; ð3:12Þ

where the expression of the rotations Ra
ðkÞ is given by (3.8)

and of boosts Ka
ðkÞ by

Ka
ðkÞ ¼ κðkÞðθ;φÞna þ q

∘ abDbκðkÞðθ;φÞ ð3:13Þ
with κðkÞ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ. These relations
translate directly to angular momenta. Thus, the spin vector
S⃗iþ of the final black hole and the total angular momentum
J⃗i∘ of the binary in the distant past are related via:

S⃗ð1Þiþ ¼ J⃗ð1Þjiþ ; S⃗ð2Þiþ ¼ γðJ⃗ð2Þjiþ þ vJ⃗⋆ð3ÞjiþÞ;
and S⃗ð3Þiþ ¼ γðJ⃗ð3Þjiþ − vJ⃗⋆ð2ÞjiþÞ; ð3:14Þ

where J⃗ðkÞjiþ and J⃗⋆ðkÞjiþ are evaluated at iþ but refer to

rotations and boosts defined in the past frame (while S⃗ðkÞiþ , of
course, refers to the rotations defined in the future rest
frame). Now,

J⃗ðkÞjiþ − J⃗ðkÞi∘ ¼ F ðRðkÞÞ and J⃗⋆ðkÞjiþ − J⃗⋆ðkÞi∘ ¼ F ðKðkÞÞ;

ð3:15Þ

where F ðRðkÞÞ and F ðKðkÞÞ denote the flux across Iþ of
angular momentum defined by the generators Ra

ðkÞ of

rotations and Ka
ðkÞ of boosts [see Eqs. (3.8) and (3.13)].

Their expressions [15] are given, respectively, by
Eq. (3.11) and

F ðKðkÞÞ ¼ −
1

8πG

Z
Iþ

du d2V
∘
_σ∘abðLKðkÞ − κðkÞðθ;φÞÞσ∘ab:

ð3:16Þ

Finally, recall that we chose the foliation u ¼ const such
that the boost momentum vanishes in the distant past. Now,
the flux associated with a linear combination of two BMS
generators is just that linear combination of the two fluxes.
Therefore, we have:

S⃗ð1Þiþ − J⃗ð1Þi∘ ¼F ðRð1ÞÞ; γ−1S⃗ð2Þiþ − J⃗ð2Þi∘ ¼F ðRð2ÞÞ þvF ðKð3ÞÞ;

and γ−1S⃗ð3Þiþ − J⃗ð3Þi∘ ¼F ðRð3ÞÞ−vF ðKð2ÞÞ: ð3:17Þ

This is the desired relation between the initial total angular

momentum J⃗ðkÞi∘ , the final spin S⃗ðkÞiþ , and the fluxes of
rotational and boost angular momenta across Iþ: For
components along the boost direction it is the same as
Eq. (3.10) in case (i) above, but for components in
directions orthogonal to the boost direction the relation
is different. But this phenomenon reflects just the standard,
special relativistic effect of mixing of rotations and boost
generators under the change of the rest frame.
Remark:We chose the boost in the first direction just for

concreteness. If we choose it to be along an arbitrary unit
vector v̂i in the 3-dimensional space S of space-translations
then the relation (3.12) between the future rotations and the
past rotations and boosts generalizes:

v̂iR0a
i ¼ v̂iRa

i ; ôiR0a
i ¼ γôi ðRa

i − vϵi j kK
ajv̂kÞ ð3:18Þ

where ôk is a unit vector in S orthogonal to v̂k; v̂iRa
i is the

rotation along the axis defined by the unit vector v̂i; ôiRai

the rotation along the axis ôi; and ôiϵi j kK
ajv̂k the boost in

the spatial direction orthogonal to both ôi and v̂i. As a
result, the nontrivial balance equations for angular momen-
tum in the direction ôi orthogonal to the boost direction
becomes

γ−1S⃗ðoÞiþ − J⃗ðoÞi∘ ¼ F ðRðoÞÞ − vF ðKðo0ÞÞ ð3:19Þ

where ô0ðiÞ ¼ ϵi j kô
jv̂k is the unit vector orthogonal to both

ôj and v̂k.

2. Case (iii): Nonzero gravitational memory and zero kick

In this case gravitational waves do not carry away net
3-momentum, whence the initial and the final rest frames
are the same. Therefore for the entire calculation we can
restrict ourselves to the fixed Bondi-frame ðq∘ ab; n∘ aÞ that
represents this common rest frame. Let us choose, as
before, the foliation u ¼ const of Iþ, the leaves of which
become asymptotically shear-free and represent the c.m.

6A boost in a general direction is discussed in the Remark at
the end of this subsection.
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frame in the past. The initial total angular momentum J⃗ðkÞi∘
refers to the SO(3) subgroup selected by this family. Since
the gravitational memory is nonzero, for this family we
have σ−ðθ;φÞ ¼ 0 but σþðθ;φÞ ≠ 0 [in Eq. (3.1)]. Now, the
final spin S⃗iþ refers to the Poincaré group pðiþÞ that
preserves the 4-parameter family of cross sections that
are shearfree in the future. These are obtained by going to a
new foliation ũ ¼ const, where

ũ ¼ uþ sðθ;φÞ and ð2sðθ;φÞ ¼ ½σ∘�iþi∘ ≡ σþðθ;φÞ:
ð3:20Þ

Aswe saw before, sðθ;φÞ is unique up to addition of a BMS
translation αðθ;ϕÞ (since they constitute the kernel
of ð2). By varying s in this permissible class, we obtain a
4-parameter family of cuts that become good in the
asymptotic future. The future spin S⃗iþ refers to SO(3)
subgroups adapted to a 1-parameter subfamily, ũ ¼ const,

satisfying n
∘ a∂aũ ¼ 1. There is a 3-parameter family of such

foliations, related by spatial translations. To select the
rotation generators explicitly, one needs to choose a specific
foliation.One can easily obtain it by exploiting the facts that:

(i) we have a preferredBondi-frame ðq∘ ab; n∘ aÞ; and, (ii) given
a Bondi-frame, there is a well-defined notion of a pure
supertranslation, i.e., one that is orthogonal to all the BMS
translations: sl≥2ðθ; φÞ ¼

P∞
l¼2

Pl
m¼−l sl;mYl;mðθ; φÞ.

Therefore, a specific foliation adapted to the distant future
can be obtained by setting sðθ;φÞ ¼ sl≥2ðθ;φÞ in (3.20).

Since ũ satisfies n
∘ a∂aũ ¼ 1, the final spin S⃗iþ can be

obtained by using the rotational vector fields R̃a
ðiÞ adapted

to this foliation. The difference between these future SO(3)
generators R̃a

ðkÞ and the past ones Ra
ðkÞ is a pure super-

translation, determined by the fact that while Ra
ðkÞ are

tangential to the u ¼ const cross sections, R̃a
ðkÞ are tangential

to the ũ ¼ const cross sections:

R̃a
ðkÞ ¼ Ra

ðkÞ þ sðkÞn
∘ a; where sðkÞ ¼ −LRðkÞ sl≥2; ð3:21Þ

sinceRa
ðkÞ∂au ¼ 0 implies that R̃a

ðkÞ∂aũ ¼ 0. Note that since

sl≥2ðθ;φÞn∘ a is a pure supertranslation in our Bondi frame,

so is sðkÞðθ;φÞn∘ a.
Now, conceptually one cannot subtract S⃗ðkÞiþ from J⃗ðiÞi∘ to

obtain the flux of angular momentum across Iþ [as in
(3.10)] because the two vectors now refer to two different
SO(3) subgroups of the BMS group B, and in general the
two subgroups need not have any generators in common.
But it is meaningful to subtract the angular momentum

J⃗ðkÞjiþ from J⃗ðkÞji∘ ≡ J⃗ðkÞi∘ since both correspond to the same
rotation generators, Ra

ðkÞ associated with the asymptotic

past. Then, the balance law for the BMS angular momenta
implies

J⃗ðkÞjiþ − J⃗ðkÞi∘ ¼ F ðRðkÞÞ; ð3:22Þ
where F ðRðkÞÞ is the flux of angular momentum associated
with the generators Ra

ðkÞ of the SO(3) subgroup adapted to

i∘. Now, since the spin S⃗ðkÞiþ of the final black hole is
associated with the generators R̃a

ðkÞ, Eq. (3.21) implies

S⃗ðkÞiþ ¼ J⃗ðkÞjiþ þ PðsðkÞÞjiþ ; ð3:23Þ
where PðsðkÞÞ is the “supermomentum”7 obtained by sub-

stituting f with sðkÞ in Eq. (2.11). But because sðkÞn
∘ a is a

pure supertranslation a simplification arises as follows.
Condition (ii) implies that both Ψ∘

2ji∘ and Ψ∘
2jiþ are spheri-

cally symmetric in the Bondi-frame in which the system is
at rest both in the distant past and distant future. This fact
together with condition (i) imply that the pure super-
momentum component of Eq. (2.11) vanish at i∘ as well
as at iþ. Consequently, the flux F ðfÞ of pure supermo-
mentum also vanishes. For details see [34].
Therefore, from (3.22) and (3.23) we conclude

S⃗ðkÞiþ − J⃗ðkÞi∘ ¼ F ðRðkÞÞ: ð3:24Þ
Thus, because of the special circumstance that the flux
of supermomentum associated with any pure supertrans-
lation vanishes, the naive subtraction of the spin of the final
black hole from the initial total angular momentum of the
system gives one the flux of angular momentum associated
with the rotation subgroup in the asymptotic past (or
asymptotic future). In terms of special relativity, the
subtraction on the left side of (3.24) is like taking the
difference between, say, the z-component J⃗ · ẑ of angular
momentum at early time and the combination ðJ⃗ · ẑ − P⃗ · ŷÞ
at late time in Newtonian gravity. In general the result is
physically meaningless. However, if the y component of
the 3-momentum P⃗ happens to vanish at late time, this
subtraction does provide the correct answer for change in
the z-component of angular momentum from early to late
times. The same phenomenon occurs in CBC if there is
no kick.

3. Case (iv): Nonzero gravitational memory
and nonzero kick

Finally, let us consider the generic case. Because the
gravitational memory is nonvanishing, the past Poincaré

7Note that sl≥2 in Eq. (3.20) is a finite supertranslation with
physical dimensions of length. Therefore fl≥2 also has physical
dimensions of length. In the expression fn

∘ a of infinitesimal
generators of supertranslations used in Sec. II B, on the other
hand, f is dimensionless and therefore PðfÞ of Eq. (2.11) has
dimensions of 4-momentum. PðsðkÞÞ, on the other hand, has
dimensions of angular momentum because of the difference in
physical dimensions of f used in (2.11) and sðkÞ.
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subgroup pði∘Þ is distinct from the future one, pðiþÞ, and
because the kick is nonvanishing, the past rest frame

ðq∘ ab; n∘ aÞ is also distinct from the future one, ðq∘ 0
ab; n

∘ 0aÞ.
As a consequence, the situation is now more complicated
both conceptually and technically in that we have to
combine the steps used in Sec. III C 1 and Sec. III C 2.
At i∘ we can begin as in Sec. III C 2. Let us use the past

rest and c.m. frames to define the initial angular momentum

J⃗ðkÞi∘ . Thus we have a 1-parameter family of cross sections
u ¼ const that become asymptotically shear free at i∘ (and
satisfy n

∘ a∂au ¼ 1). For this family, the asymptotic shear
σ∘ðu; θ;φÞ in the distant future is nonzero. Therefore, we
can go to the foliation given by ũ ¼ uþ sl≥2ðθ;φÞ to
obtain a new family of cross sections ũ ¼ const which are
asymptotically shear-free in the distant future. As in

Sec. III C 2, ũ satisfies n
∘ a∂aũ ¼ 1. However because of

the kick, now it is n
∘ 0a that is adapted to the future rest frame

as in the case (ii) of Sec. III C 1. Therefore, from the
4-parameter family of cuts that become asymptotically
good in the distant future, we need to select a 1-parameter

subfamily u0 ¼ const, satisfying n
∘ 0a∂au0 ¼ 1. This family

can be obtained simply by performing a boost on the
ũ ¼ const cross sections (that are already good cuts in the
asymptotic future). The precise boost is the one that relates
the past Bondi-frame to the future one; as in Sec. III C 1 it is
determined by the kick velocity v of the final black hole,
and the unit vector v̂a that specifies the direction of
the kick.
The relation between rotation generators R0a

ðkÞ that are

used to define the spin SðkÞ
f of the final black hole and the

rotation generators R̃a
ðkÞ and boosts K̃a

ðkÞ adapted to the ũ ¼
const cross sections is the same as in Sec. III C 1. We just
have to replace Ra

ðkÞ and Ka
ðkÞ in Eq. (3.12) with their tilde

versions because now u0 ¼ const cuts are obtained by
performing the boost on the ũ ¼ const cuts rather than on
the u ¼ const cuts:

R0a
ð1Þ ¼ R̃a

ð1Þ; R0a
ð2Þ ¼ γðR̃a

ð2Þ þ vK̃a
ð3ÞÞ;

R0a
ð3Þ ¼ γðR̃a

ð3Þ − vK̃a
ð2ÞÞ: ð3:25Þ

In the next step we relate R̃a
ðkÞ and K̃a

ðkÞ to their versions
without a tilde using the supertranslation that relates the
ũ ¼ const cuts (that become shearfree in the limit u → ∞)
with the u ¼ const cuts (that become shearfree in the limit
u → −∞). The two sets of rotations are related by a
supertranslation, just as one would expect:

R̃a
ðkÞ ¼ Ra

ðkÞ þ sðkÞn
∘ a; where sðkÞ ¼ −LRðkÞsl≥2: ð3:26Þ

(Note that the relation guarantees that R̃a∂aũ ¼ 0.) To
obtain the relation between the two sets of boosts we
use the form (2.6) of the BMS generators, which tells
us that the two sets of boosts have the following

form: K̃a
ðkÞ ¼ ũκðkÞn

∘ a þ q̃
∘
ab∂bκðkÞ, where again κðkÞ ≡

ðsin θ cosφ; sin θ sinφ; cos θÞ and q̃
∘
ab is the 2-sphere

metric on the ũ ¼ const cross sections; and Ka
ðkÞ have

the same form but without the tilde. A straightforward
calculation shows that:

K̃a
ðkÞ ¼Ka

ðkÞ þ½κðkÞsl≥2þs⋆ðkÞ�n
∘ a; where s⋆ðkÞ ¼−LKðkÞsl≥2:

ð3:27Þ
Together, Eqs. (3.25) and (3.27) enable us to express the
rotations R0a

ðkÞ adapted to iþ in terms of rotations Ra
ðkÞ and

boosts Ka
ðkÞ adapted to i∘:

R0a
ð1Þ ¼ Ra

ð1Þ þ sð1Þn
∘ a; R0a

ð2Þ ¼ γðRa
ð2Þ þ vKa

ð3Þ þ gð2Þn
∘ aÞ; and R0a

ð3Þ ¼ γðRa
ð3Þ − vKa

ð2Þ þ gð3Þn
∘ aÞ; ð3:28Þ

where gð2Þ ¼ sð2Þ þ vκð3Þsl≥2 þ vs⋆ð3Þ; and gð3Þ ¼ sð3Þ − vκð2Þsl≥2 − vs⋆ð2Þ: ð3:29Þ

With relations (3.28) at hand, as in Secs. III C 1 and III C 2 we can express the difference S⃗ðkÞiþ − J⃗ðkÞi∘ in terms of fluxes
F ðRðkÞÞ, F ðKðkÞÞ of angular momentum, boost momentum and fluxes F ðsð1ÞÞ and F ðgðkÞÞ of supermomentum across Iþ, all of
which can be computed directly from the waveforms [see Eqs. (2.12), (3.11), and (3.16)]:

S⃗ð1Þiþ − J⃗ð1Þi∘ ¼F ðRð1ÞÞ þF ðsð1ÞÞ; γ−1S⃗ð2Þiþ − J⃗ð2Þi∘ ¼F ðRð2ÞÞ þvF ðKð3ÞÞ þF ðgð2ÞÞ; γ−1S⃗ð3Þiþ − J⃗ð3Þi∘ ¼F ðRð3ÞÞ −vF ðKð2ÞÞ þF ðgð3ÞÞ:

ð3:30Þ
Presence of supermomentum fluxes on the right side implies that, in the generic case, one cannot simply subtract the final

spin S⃗ðkÞiþ from the initial total angular momentum J⃗ðkÞi∘ of the binary to obtain the angular momentum radiated across Iþ.
The difference also involves fluxes of supermomentum, in addition to the expected boost angular-momentum contribution
that arises already in special relativity. An examination of the expression (3.29) of gðkÞ shows immediately that this
supermomentum contribution vanishes identically if the total memory vanishes or the kick vanishes, as it must from our
results of Secs. III C 1 and III C 2.
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However as we remarked earlier, the binary has to be
fine tuned for either of these possibilities to occur. In the
generic case, the presence of the supermomentum flux
on the right side of (3.30) is the concrete manifestation
of the supertranslation ambiguity in the definition of
angular momentum at Iþ, that has been emphasized
over the years in the mathematical GR literature [9–24].
This is a key signature of the surprising enlargement of
the 10 dimensional Poincaré group p to the infinite
dimensional BMS group B that accompanies the pres-
ence of gravitational waves. But these conceptual con-
siderations have remained qualitative. Now that we have
a concrete expression (3.30) in terms of memory and the
kick, we can estimate the observational significance of

this ambiguity for the CBCs currently under investiga-
tion. We do so in the next section.
Remarks:
(1) Using the fact that sl≥2ðθ;φÞ is a pure supertrans-

lation (in the past Bondi frame), it follows that in
their spherical harmonic decomposition, sðkÞ have
only l ≥ 2 parts, and gðkÞ have no Y0;0 part and their
Y1;m-part is proportional to v. This fact will play a
key role in Sec. IV in estimating the supermomen-
tum contribution to Eq. (3.30).

(2) Recall that in the distant past Ψ∘
2 is spherically sym-

metric in the past Bondi-frame ðq∘ ab; n∘ aÞ that most of
our analysis refers to. Therefore it follows that

PðgðkÞÞji∘ ¼ −
1

4πG
lim

uo→−∞

I
u¼uo

d2V
∘
gðkÞðθ;φÞReΨ∘

2 ¼ 0; and;

PðfðkÞÞji∘ ¼ −
1

4πG
lim

uo→−∞

I
u¼uo

d2V
∘
fðkÞðθ;φÞReΨ∘

2 ¼ 0: ð3:31Þ

Consequently, in (3.30) we can replace the fluxes of supermomenta with supermomenta evaluated at iþ to obtain:

S⃗ð1Þiþ − J⃗ð1Þi∘ ¼ F ðRð1ÞÞ þ Pðsð1ÞÞjiþ ; γ−1S⃗ð2Þiþ − J⃗ð2Þi∘ ¼ F ðRð2ÞÞ þ vF ðKð3ÞÞ þ Pðgð2ÞÞjiþ ;
γ−1S⃗ð3Þiþ − J⃗ð3Þi∘ ¼ F ðRð3ÞÞ − vF ðKð2ÞÞ þ Pðgð3ÞÞjiþ : ð3:32Þ

IV. DISCUSSION

A quintessential feature of gravitational waves in full,
nonlinear GR (with zero cosmological constant) is that
although space-times representing isolated gravitating
systems are asymptotically Minkowskian, the asymptotic
symmetry group is enlarged from the isometry group p of
Minkowski space to the infinite dimensional BMS group
B. As a result, given a cross section C of Iþ representing
a retarded time instant, and a generator ξa of the BMS
group, we have a 2-sphere integral PðξÞ½C� representing the
ξ-component of the BMS momentum at that retarded time
instant. Similarly, we have a 3-surface integral F ðξÞ over
Iþ, representing the flux of this BMS momentum carried
by gravitational (and other) waves across Iþ. Einstein’s
equations and Bianchi identities imply that these integrals
satisfy the expected balance law: PðξÞji∘ − PðξÞjiþ ¼ F ðξÞ.

Given a BMS supertranslation ξa¼fðθ;φÞn∘ a, the 2-surface
integral provides a supermomentum component, PðfÞ½C�.
In general, two BMS symmetries Ra

ðkÞ and R0a
ðkÞ that

generate rotations around the (k)th axis differ by a super-

translation, say fn
∘ a. Consequently, the corresponding

angular momenta are related by supermomentum:
J⃗ðR0

ðkÞÞ½C� − J⃗ðRðkÞÞ½C� ¼ PðfÞ½C�. In the mathematical GR

literature, one works with PðξÞ½C� and F ðξÞ associated with

every BMS generator ξa, and regards the “supertranslation
ambiguity” in the notion of angular momentum simply as
an inevitable consequence of the presence of gravitational
waves, that one just has to live with. This is of course a fully
consistent viewpoint. However, it does not help one relate
fluxes of physical quantities across Iþ with observables
associated with sources, an issue of central importance to
the community investigating CBCs.
In the post-Newtonian and effective one body approx-

imations, for example, one associates with sources energy-
momentum 4-vectors Pa and angular momentum 3-vectors
J⃗a, and uses balance laws to arrive at equations of motion of
the binary, and waveforms it produces at Iþ. But in these
treatments, there is no mention of the supermomentum, or
of the supertranslation ambiguity while discussing angular
momentum.
How can one reconcile this with the BMS group and

the notion of BMS momenta at Iþ? We addressed this
issue in detail in Sec. III A and showed that the boundary
conditions assumed by the CBC community in the distant
past naturally enable one to select a preferred Poincaré
subgroup pði∘Þ of the BMS group B using constructions
available in the literature [6,18]. Therefore, one can
restrict oneself only to those BMS generators ξa that
belong to this Poincaré group and speak of the associated
Poincaré momentum—i.e., Pa and J⃗a—as one does for
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special relativistic systems (see Sec. II A). These notions
are appropriate for the investigation of the motion of
sources referred to above. However, as is well-known in
the mathematical GR community, there is a catch. The
boundary conditions that hold at iþ in CBCs also select
a Poincaré subgroup pðiþÞ of B and generically it is
distinct from pði∘Þ, related to it by a supertranslation.
Therefore, if one starts with the total angular momentum

of the binary J⃗ðkÞi∘ in the distant past and uses balance
laws associated only with the BMS generators in pði∘Þ,
one would not obtain the angular momentum (i.e., spin)

S⃗ðkÞiþ of the final black hole: The two would be related by
a component of supermomentum that is not captured in
the flux of the Poincaré momenta considered: to relate

S⃗ðkÞiþ with J⃗ðkÞi∘ , we are forced to analyze supermomenta.
We carried out this analysis in detail in Sec. III C. The

final expression (3.32) provides an explicit formula for the
supermomentum terms that must be included to calculate
S⃗iþ from J⃗i∘ . For definiteness, we assumed that the kick is
in the x direction (which corresponds to ðkÞ ¼ 1 in our
notation) and found:

S⃗ð1Þiþ ¼ J⃗ð1Þi∘ þ F ðRð1ÞÞ þ Pðsð1ÞÞjiþ ; γ−1S⃗ð2Þiþ ¼ J⃗ð2Þi∘ þ F ðRð2ÞÞ þ vF ðKð3ÞÞ þ Pðgð2ÞÞjiþ ;
γ−1S⃗ð3Þiþ ¼ J⃗ð3Þi∘ þ F ðRð3ÞÞ − vF ðKð2ÞÞ þ Pðgð3ÞÞjiþ : ð4:1Þ

[For a boost in the general direction, see Eq. (3.19).] The fluxes of angular momentum F ðRðkÞÞ and boost angular
momentum F ðKðkÞÞ on the right side are expected already from special relativistic considerations. The supermomentum
terms PðsðkÞÞjiþ and PðgðkÞÞjiþ , on the other hand, are the quintessential signatures of the enlargement of the Poincaré
group p to the BMS group B.8 The supertranslations labeling the supermomenta are determined by the (finite)
supertranslation sl≥2 relating the Poincaré groups pði∘Þ and pðiþÞ and the generators Ra

ðkÞ, K
a
ðkÞ of rotations and boosts

adapted to i∘:

sðkÞ ¼ −LRðkÞsl≥2; s⋆ðkÞ ¼ −LKðkÞsl≥2; gð2Þ ¼ sð2Þ þ vκð3Þsl≥2 þ vs⋆ð3Þ; and gð3Þ ¼ sð3Þ − vκð2Þsl≥2 − vs⋆ð2Þ;

ð4:2Þ

where the functions κðkÞðθ;φÞ defining the boosts
Ka

ðkÞ are given by κðkÞ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ.
(For explicit expressions for rotations and boosts, see
(3.8) and (3.13).)
With this explicit expression at hand, one can estimate

the magnitude of the supermomentum using the general
expression (2.11)

PðfÞjiþ ≔ −
1

4πG
lim
u→∞

I
u¼uo

d2V
∘
fðθ;φÞReΨ∘

2ðθ;φÞ; ð4:3Þ

and substituting sðkÞ and gðkÞ for f. Now, the
boundary conditions at iþ of Sec. III A imply that, in
the Bondi-frame adapted to iþ, Ψ∘

2jiþ is spherically
symmetric. Hence by the well-known transformation prop-
erty, in the Bondi-frame adapted to i∘ used in the paper,
we have:

Ψ∘
2ju¼∞ ¼ −

GMiþð1 − v2Þ32
ð1 − v sin θ cosφÞ3

¼ −GMiþ

�
1þ

�
3 sin θ cosφ

�
v

−
�
3

2
− 6 sin2θcos2φ

�
v2 þ…

�
; ð4:4Þ

(as spelled out in [34]). Here in the second step we
truncated the Taylor expansion in v, ignoring terms
Oðv3Þ because numerical simulations show that the kicks
are typically of the order of a few hundred kms/s, i.e., with
v ∼ 10−3 (although one can, of course continue the expan-
sion to higher orders). Now in the spherical harmonic
decomposition, sðkÞ and gðkÞ have no Y00 parts; sðkÞ has no
Y1;m part; and sin θ cosφ is a linear combination of Y1;1 and
Y1;−1. Therefore the expressions of supermomenta Pðsð1ÞÞ,
Pðgð2ÞÞ, and Pðgð3ÞÞ simplify considerably; in terms of the kick

velocity, their leading terms go as ∼v2. Furthermore,
analytic considerations [47] as well as detailed calculations
using available waveforms [48] show that the memory
term, and hence sl≥2 is of the orderOðGEradÞ where Erad is

8As explained in footnote 7, this supermomentum has dimen-
sions of angular momentum. Its magnitude depends on both the
(total) gravitational memory and the kick of the final black hole.
In the generic case, both are nonzero.
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the total energy radiated in the form of gravitational waves.
Therefore, we obtain

PðsðkÞÞ ∼ PðgðkÞÞ ¼ MiþOðGEradÞv2 þOðv3Þ: ð4:5Þ

What is the magnitude of the error involved if these
supermomenta are ignored in Eq. (4.1)? To assess the
importance of these terms, let us consider the (dimension-
less) fractional contributions P̃ðsðkÞÞ and P̃ðgðkÞÞ of super-
momenta to the total angular momentum flux:

P̃ðsðkÞÞ ¼
PðsðkÞÞ

jJ⃗i∘ − S⃗iþj
; and P̃ðgðkÞÞ ¼

PðgðkÞÞ

jJ⃗i∘ − S⃗iþj
: ð4:6Þ

Now, in binary coalescences, the initial total angular
momentum is much larger than the spin of the final black
hole, whence jJ⃗i∘ − S⃗iþj > jS⃗iþj ∼M2

iþ . Therefore, the frac-
tional supermomentum contribution to the angular momen-
tum flux is bounded by:

P̃ðsðkÞÞ < O

�
GErad

Miþ

�
v2 and P̃ðgðkÞÞ < O

�
GErad

Miþ

�
v2:

ð4:7Þ

Now, since the fractional energy radiated in the form of
gravitational waves is less than 10%, the right sides in (4.7)
are less than ∼10−1v2. As we already noted, typically v ∼
10−3 in CBCs that are usually considered. The largest black
hole kicks that have been seen numerically have velocities
of ∼5000 km=s, or, v ∼ 2 × 10−2 [32,33]. Even for these,
the fractional supermomentum contributions would only be
Oð10−5Þ. Thus, while ignoring the supermomentum terms
in the calculation of the angular momentum flux is
conceptually incorrect, the numerical error is small for
the CBCs of current interest.
To summarize, the detailed calculations of Sec. III

provide a resolution of the tension surrounding angular
momentum at Iþ that should be satisfying to both the
mathematical GR and waveform communities. As empha-
sized by the mathematical GR community, the super-
translation ambiguity is indeed inevitable because the
BMS group B does not admit a preferred Poincaré group.
Generically the total angular momentum J⃗i∘ of the initial
binary and the spin S⃗iþ of the final black hole refer to two
different Poincaré subgroups, pði∘Þ and pðiþÞ, of B. One
could imagine working with pði∘Þ and using its rotation and
boost generators Ra

ðkÞ and Ka
ðkÞ to define the initial J⃗i∘ and

fluxes F ðRðkÞÞ and F ðKðkÞÞ across I
þ. But, one cannot obtain

the spin S⃗iþ of the final black hole by subtracting these
fluxes from J⃗i∘ because S⃗iþ refers to the rotations R0a

ðkÞ in the
future Poincaré group pðiþÞ. Therefore, in the generic case
when the gravitational memory does not vanish, R0a

ðkÞ are

related to Ra
ðkÞ and K

a
ðkÞ via a supertranslation. Therefore, to

obtain S⃗iþ , one also needs the corresponding supermomen-
tum flux. However it turns out that under asymptotic
conditions in the distant future and past that are generally
used in the analysis of CBCs, the fractional contribution of
this supermomentum flux to S⃗iþ is only Oð10−7Þ (for kick
velocities v ∼ 10−3 that are normally encountered).
Therefore, the error one would make by ignoring the
supermomentum flux in the above calculation of S⃗iþ is
too small to be relevant to the current gravitational wave
detectors or those that will be built in foreseeable future.
Thus, while it is conceptually incorrect to restrict oneself to
just one Poincaré subgroup pði∘Þ of B, in practice one can
do so for angular momentum considerations.9

Note, however, that there is a caveat: the asymptotic
conditions normally imposed in the far past and far future
played an essential role in arriving at this conclusion. As we
point out in Appendix, it is possible to weaken these
conditions and still carry out the analysis of Sec. III C and
arrive at Eq. (4.1). However, under these weaker condi-
tions, we can no longer conclude from (4.1) that super-
momentum contributions are Oðv2Þ; a priori the quantities
P̃ðsðkÞÞ and P̃ðgðkÞÞ of Eq. (4.7) could well be Oð1Þ. Thus, if it
should turn out that the asymptotic stationary conditions
normally assumed are too strong for some CBCs, one
would have to revisit the issue of the significance of
supertranslation ambiguities using (4.1).
Finally, there is a broader question for the geometric

analysis community: Does there exist a sufficiently large
class of space-times admitting CBCs that are asymptoti-
cally flat in the sense of Penrose [35], so that Ψ∘

1 is well-
defined on Iþ for all finite values of u? If Ψ∘

1 fails to exist,
then we will not even be able to define angular momentum
J⃗a½C� at cross sectionsC ofIþ. In the early days there were
concerns, based on approximation methods, as to whether
the underlying assumptions are too strong to be satisfied by
realistic isolated systems such as compact binaries (see,
e.g., [49,50]). By now there is a consensus in the physics
community that there is indeed a large class of CBCs with
sufficient regularity at Iþ to make the notion of angular
momentum well defined. In particular, the asymptotic form
of the PN metric is completely consistent with the Bondi-
Sachs-Penrose framework, as shown for instance by
Theorem 4 in [25]. What is the status of rigorous

9At first it seems surprising that the size of the supermomen-
tum contribution is dictated primarily by the kick velocity, and
not by the size of the gravitational memory. This is because of the
boundary conditions that are normally used as u → �∞, dis-
cussed in Sec. III A. The total gravitational memory ½σ�i∘iþ is a sum
of two contributions—a linear (or ordinary) term ½Ψ∘

2�i
∘
iþ and a

nonlinear (or null) term
R j _σ∘j2du. The second is essentially

bounded by the total energy radiated [47,48]. The first could in
principle be large but the boundary conditions tie the correspond-
ing supermomentum to the kick velocity and make it Oðv2Þ.
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mathematical results? There are powerful theorems on
nonlinear stability of Minkowski space [51–53] showing
that the degree of regularity at Iþ depends on the precise
fall-off conditions assumed for the initial data. However, it
is not clear which of these conditions are the most
appropriate ones for CBCs. For, in the analysis of compact
binaries we are interested in solutions in which the Bondi
news vanishes on I−, so that all the radiation at Iþ is
created by the binary. But the only space-time with this
property that is covered by the available results on the
nonlinear stability of Minkowski space is Minkowski space
itself. Consequently, as of now, the nonlinear stability
results do not provide direct guidance for the issue of
regularity at Iþ in generic CBCs.
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APPENDIX: WEAKENING
CONDITION (II) OF SEC. III A

Throughout our analysis of Section III C, we assumed
that space-times under consideration are past and future
tame on Iþ, i.e., that they satisfy conditions (i) and (ii) of
Sec. III A in the limit to i∘ and iþ along Iþ. These
conditions are weaker than the asymptotic stationarity
normally assumed in the CBC community. Still, in light
of our surprising finding in Section IV that the super-
momentum contribution in Eq. (4.1) is negligible in
practice, it is appropriate to reexamine these assumptions.
As we commented after the introduction of these con-
ditions, (i) is compelling on physical grounds because it is
essential to guarantee that the total flux of energy momen-
tum and angular momentum across Iþ is finite. What
about condition (ii)? Justification for it is not as compelling.
Can we then perhaps weaken it? The answer is in the
affirmative. We can replace (ii) on ∂uΨ∘

1 by a weaker
condition that is a consequence of (ii):
(ii)′ ImΨ∘

2 → 0 as u → �∞.
As mentioned in the Remark at the end of Sec. III A, this
condition is directly motivated by considerations of
“classical vacua” ½Do�. But note that (ii)′ is genuinely
weaker than (ii): Since it allows ∂uΨ∘

1 to be nonzero in the

limits u → �∞, now Ψ∘
1 may diverge in these limits.

Nonetheless, condition (ii)′ is necessary and sufficient to
ensure that:
(a) We can introduce cuts that become asymptotically

shearfree as u → �∞, so that we can single out
Poincaré groups pði∘Þ and pðiþÞ in the distant past
and the future; and,

(b) The angular momentum integral (3.9) is well-defined
in the limits u → �∞.

As discussed in the Remark mentioned above, conclusion
(a) is directly implied by condition (ii)′. Conclusion (b) can
be verified simply by integrating the equation that relates
_Ψ°
1 to ðΨ∘

2, shear, and news and using the equation that
relates ImΨ∘

2 to shear and news, both of which are well-
known consequences of the field equations and Bianchi
identities. Alternatively, one can establish it using the fact
that J⃗ðiÞ½C� is manifestly well defined for a finite cross
section [C] since Ψ∘

1 is well-defined there, and the fact that
fluxes of angular momentum between [C] and u ¼ �∞ are
finite in virtue of the assumption (i) on the fall-off of news.
Thus, with these weakened condition, S⃗ðiÞiþ and J⃗ðiÞi∘

continue to be well-defined and their relation continues
to be given by (4.1). However, since now ∂uΨ∘

1→0 as u →
�∞ in general, the limits ψ�ðθ;φÞ of Ψ∘

2 are not neces-
sarily spherically symmetric in the rest frames at iþ and i∘,
respectively. Therefore, in general

lim
u→−∞

Ψ∘
2 ≠ GMi∘ and lim

u→∞
Ψ∘

2 ≠
GMiþ

γ3ð1 − v sin θ cosφÞ3
ðA1Þ

in the past Bondi-frame. The angular dependence of the
limits of Ψ∘

2 is unrestricted. Consequently, (the ordinary or
linear memory can be arbitrarily large and) the super-
momenta in (4.1) need not be Oðv2Þ. Indeed, they need not
vanish even in absence of a kick. It may turn out that there
are physically interesting CBCs that violate condition (ii)—
and therefore also the much stronger asymptotic stationar-
ity condition used in the CBC literature. Then the super-
translation ambiguity in the notion of angular momentum
could be too large to be negligible even for the current
generation of detectors.
Discussion of this Appendix brings out the subtle

interplay between boundary conditions in the asymptotic
past and future, and physical effects.
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