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In this paper, the gravitational deflection of relativistic massive particles up to the second post-
Minkowskian order by static and spherically symmetric wormholes is investigated in the weak-field limit.
These wormholes include the Janis-Newman-Winicour wormhole, a class of zero Ricci scalar scalar-tensor
wormholes, and a class of charged Einstein-Maxwell-dilaton wormholes. With the Jacobi metric approach,
the Gauss-Bonnet theorem is employed to study the gravitational deflection. In this scheme, the deflection
angle as a topological effect is considered. Moreover, we analyze the influence of the spacetime parameters
on the results.
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I. INTRODUCTION

Gravitational lensing is one of the most powerful tools in
astrophysics and cosmology. As early as 1921, the gravi-
tational deflection of light due to the Sun was employed to
act as the first test of general relativity [1,2]. Applications
of gravitational lensing nowadays include measuring the
mass of galaxies and clusters [3–5], distinguishing between
wormholes and black holes [6–8], detecting dark matter
and dark energy [9–13], and so on.
To our knowledge, there are several analytical methods

devoted to studying gravitational lensing of light, contain-
ing the common geodesics approach [14]. Recently,
Gibbons and Werner [15] proposed an elegant geometrical
method to study the weak gravitational deflection of light in
a static and spherically symmetric spacetime. Namely, they
applied the Gauss-Bonnet (GB) theorem to the correspond-
ing optical geometry and obtained a beautiful expression to
calculate the deflection angle. The significance of this
method lies in the fact that it indicates the deflection angle
can be regarded as a topological effect. This method was
later extended to a stationary and axisymmetric spacetime
byWerner [16], in which the optical geometry is defined by
the relevant Finsler-Randers metric and thus the author
applied Nazım’s method to construct an osculating
Riemannian manifold where one could conveniently use
the GB theorem. The geometrical method in Refs. [15,16]
was applied not only to black hole lensing [17–23], but
also to the gravitational lensing caused by other objects
such as wormholes [22–31], cosmic strings [32–37], global
monopoles [38], or mass distributions of two-power-law
densities [39], in different gravitational theories. On the
other hand, Ishihara et al. [40–44] adopted the GB theorem

to study the finite-distance corrections for gravitational
deflection of light, where the source and observer were no
longer assumed to be infinitely far from the lens.
Compared to the case of light, the gravitational deflec-

tions of massive particles also have extensive applications,
such as analyzing the properties of massive neutrinos and
cosmic rays [45–47], and attract more and more attention of
the relativity community [48–57]. It is expected that the
new geometrical method in Refs. [15,16] can be applied to
investigate massive particle lensing. Actually, several
works on gravitational deflection of relativistic massive
particles via the GB theorem have recently been proposed
in the weak field limit. Crisnejo and Gallo [58] utilized
the GB theorem to study the gravitational deflections
of both light in a plasma medium in a static and
spherically symmetric spacetime and massive particles in
Schwarzschild spacetime. This technique was later adopted
to study the Reissner-Nordström deflection of charged
massive particles [59]. By viewing the propagating par-
ticles as the de Broglie wave packets [60], Jusufi [61]
calculated the deflection angles of massive particles by
Kerr black hole and Teo wormhole, respectively, based on
the corresponding isotropic type metrics, the refractive
index of the corresponding optical media, and the GB
theorem. Jusufi’s idea in Ref. [61] was further extended to
distinguish naked singularities and Kerr-like wormholes
[62] and to study the gravitational deflection of charged
particles in Kerr-Newman spacetime [63].
In this work, the Jacobi metric method proposed by

Gibbons [64] to utilize the GB theorem will be used to
derive the gravitational deflection angles of relativistic
neutral massive particles induced, respectively, by three
types of static and spherically symmetric wormholes: the
Janis-Newman-Winicour (JNW) wormhole, a class of zero
Ricci scalar scalar-tensor wormholes, and a class of*taozhou@swjtu.edu.cn
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charged Einstein-Maxwell-dilaton wormholes. The gravi-
tational deflection angles up to the second post-
Minkowskian order are obtained on the basis of the
perturbation method and iterative technique. Our discus-
sions are constrained in the weak-field, small-angle, and
thin-lens approximation.
This paper is organized as follows. In Sec. II, we shall set

up the general framework for our calculations, including
the static and spherically symmetric Jacobi metric, the GB
theorem applied to the Jacobi geometry, and the asymp-
totically Euclidean case. In Sec. III, we derive the gravi-
tational deflection angle of relativistic massive particles in
three types of static and spherically symmetric wormhole
spacetimes. Finally, we summarize our results in Sec. IV.
Throughout this paper, we use the natural units where G ¼
c ¼ 1 and the metric signature ð−;þ;þ;þÞ. For conven-
ience, gij is used to denote Jacobi metric if no confusion is
caused, and this is followed for the quantities with Jacobi
metric, while the quantities associated with the background
spacetime metric are added a bar above.

II. STATIC AND SPHERICALLY SYMMETRIC
JACOBI METRIC AND THE GAUSS-BONNET

THEOREM

A. Static and spherically symmetric Jacobi metric

According to the principle of least action of Maupertuis,
Gibbons et al. [64–67] established the Jacobi metric frame-
work for curved spacetime. The motion of free massive
particles in background spacetime can be described as a
spatial geodesic in the corresponding Jacobi geometry
defined by the Jacobi metric, which is similar to the case
where the motion of the photon can be described as a spatial
geodesic in the corresponding optical geometry. Even for
charged particles [68], the Jacobi metric approach also
works. For this reason, one can use the Jacobi geometry
as a background space to study the deflection of particles.
For a static metric

ds̄2 ¼ ḡttdt2 þ ḡijdxidxj; ð1Þ

the corresponding Jacobi metric reads [64]

gij ¼ ðE2 þm2ḡttÞgoptij ; ð2Þ

where E and m are the particle energy and mass, respec-
tively, and goptij is the corresponding optical metric of the
static metric given by [15]

goptij ¼ −
ḡij
ḡtt

: ð3Þ

Notice that the Jacobi metric in Eq. (2) is actually the same
with a special optical metric related with massive particles
in Ref. [58].

The general form for a static and spherically symmetric
metric is written as

ds̄2 ¼ −AðrÞdt2 þ BðrÞdr2 þ CðrÞdΩ2; ð4Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2 is the line element of
the unit two-sphere. By Eq. (2), its corresponding Jacobi
metric is

ds2 ¼ ðE2 −m2AÞ
�
B
A
dr2 þ C

A
dΩ2

�
: ð5Þ

Due to spherical symmetry, we study only the motion of
massive particles in the equatorial plane θ ¼ π=2 without
loss of generality. Thus, the Jacobi metric becomes

ds2 ¼ ðE2 −m2AÞ
�
B
A
dr2 þ C

A
dφ2

�
: ð6Þ

Then, one can obtain the conserved angular momentum J
by axial symmetry

J ¼ ðE2 −m2AÞC
A

�
dφ
ds

�
¼ constant; ð7Þ

together with Eq. (7) and Eq. (6), which yields

ðE2 −m2AÞ2 B
A

�
dr
ds

�
2

¼ E2 − A

�
m2 þ J2

C

�
: ð8Þ

This is consistent with the standard result

m2AB

�
dr
dτ

�
2

¼ E2 − A

�
m2 þ J2

C

�
; ð9Þ

where τ is used to denote the proper time along the
geodesic, and then

E ¼ mA
dt
dτ

; J ¼ mC
dφ
dτ

; ð10Þ

with

dτ ¼ mA
E2 −m2A

ds: ð11Þ

Introducing the inverse radial coordinate u ¼ 1=r, the orbit
equation can be obtained from Eqs. (7) and (8) as follows:

�
du
dφ

�
2

¼ C2u4

AB

��
ε

h

�
2

− A

�
1

h2
þ 1

C

��
; ð12Þ

where h ¼ J=m is the angular momentum per unit mass
and ε ¼ E=m is the energy per unit mass. The energy and
angular momentum for an asymptotic observer at infinity
are [58]
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E ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; J ¼ mvbffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ð13Þ

where v is the particle velocity and b is the impact
parameter defined by

J
E
¼ vb: ð14Þ

Via Eq. (13), Jacobi metric (6) becomes

ds2 ¼ m2

�
1

1 − v2
− A

��
B
A
dr2 þ C

A
dφ2

�
; ð15Þ

and the trajectory Eq. (12) comes to

�
du
dφ

�
2

¼ C2u4

AB

�
1

v2b2
− A

�
1 − v2

v2b2
þ 1

C

��
: ð16Þ

B. The Gauss-Bonnet theorem and lens geometry

Let D be a compact oriented surface with a Riemannian
metric ĝij, Gaussian curvature K, and Euler characteristic
χðDÞ. Its boundary ∂D∶R ⊃ I → D is a piecewise smooth
curve with geodesic curvature kg. The GB theorem states
that [15]Z Z

D
KdSþ

I
∂D

kgdlþ
X
i

αi ¼ 2πχðDÞ; ð17Þ

where dS is the area element of the surface, dl is the line
element along the boundary, and αi is the exterior angle
defined for the ith vertex in the positive sense, as shown
in Fig. 1.
Next, the GB theorem will be employed to the Riemann-

Jacobi geometry defined by Eq. (15). Consider a Jacobi
regionD with boundary ∂D ¼ γg ⋃CR. Here CR is a curve
defined by rðφÞ ¼ R ¼ constant, which intersects the
particle trajectory γg at two points, the source S, and the
observer O, respectively. γg is a spatial geodesic leading to
kgðγgÞ ¼ 0, and one has χðDÞ ¼ 1 because the region D
does not contain the gravitational lens L. This paper mainly
focuses on the deflection angle for the source and the
observer at infinite distance from the lens. Notice that αO þ
αS → π as R → ∞, and then applying the GB theorem to
region D leads to

lim
R→∞

Z
πþα

0

�
kg

ds
dφ

�����
CR

dφ ¼ π − lim
R→∞

Z Z
D
KdS; ð18Þ

with the deflection angle α (which can be described by
impact parameter b) shown in Fig. 2.
The Gaussian curvature with respect to Jacobi metric gij

can be calculated by [16]

K ¼ 1ffiffiffiffiffiffiffiffiffi
det g

p
� ∂
∂φ

� ffiffiffiffiffiffiffiffiffi
det g

p
grr

Γφ
rr

�
−

∂
∂r

� ffiffiffiffiffiffiffiffiffi
det g

p
grr

Γφ
rφ

��
; ð19Þ

where det g denotes the determinant of Jacobi metric and
Γi
jk is the Christoffel symbol. From Jacobi metric in

Eq. (15), one has

ds
dφ

����
CR

¼
�
m2

�
1

1 − v2
− AðRÞ

�
CðRÞ
AðRÞ

�
1=2

: ð20Þ

Furthermore, one can choose the velocity along the curve
CR as _Ci

R ¼ ð0; dφðRÞ=dsÞ, which satisfies unit speed
condition gij _C

i
R
_Cj
R ¼ 1. This condition yields

ð∇ _CR
_CRÞr ¼ Γr

φφðRÞð _Cφ
RÞ2; ð∇ _CR

_CRÞφ ¼ 0; ð21Þ

and now, the geodesic curvature of CR can be expressed as
follows:

FIG. 1. A region D with boundary ∂D ¼ ⋃i∂Di. αi is the
exterior angle at the ith vertex in the positive sense.

FIG. 2. The region D belongs to the two-dimensional Jacobi
space with boundary ∂D ¼ γg⋃CR. The particle trajectory γg is a
spatial geodesic and CR is a curve defined by rðφÞ ¼
R ¼ constant. S, O, and L denote the particle source, the
observer, and the gravitational lens, respectively. α is the
deflection angle and b is the impact parameter. Note that S
and O are both assumed to be at infinite distance from L in our
lensing setup (i.e., R → ∞).
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kgðCRÞ ¼ j∇ _CR
_CRj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrðΓr

φφÞ2
q �

dφ
ds

�
2
����
CR

: ð22Þ

Together with Eqs. (20) and (22), one can obtain

�
kg

ds
dφ

�����
CR

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðRÞ
CðRÞ ðΓ

r
φφðRÞÞ2

s
: ð23Þ

C. Asymptotically Euclidean space

At this point, a special case can be considered,

lim
R→∞

�
kg

ds
dφ

�����
CR

¼ 1; ð24Þ

which means that the two-dimensional Jacobi geometry
in Eq. (15) is asymptotically Euclidean. Then, Eq. (18)
leads to

α ¼ − lim
R→∞

Z Z
D
KdS: ð25Þ

This expression is the same to the result obtained by applying
the GB theorem to the optical metric [15,16,58,61]. From
Eq. (25), the deflection angle of massive particles can be
obtained by integrating the intrinsic curvature of space, and
the integral region is an infinite Jacobi domain outside the
particle ray relative to the lens. Therefore, the deflection
angle can be regarded as a global topological effect [16,61].
In this paper, we mainly focus on the weak deflection

limit and the deflection angle up to second order in lens
parameter ε is calculated. For this purpose, the iterative
method is reasonable to carry out, and we first consider the
first-order approximation. Notice that the Gaussian curva-
ture contains at least the first-order term, and thus it is
sufficient to use only the zero-order particle trajectory
r ¼ b=sinðφÞ, 0 ≤ φ ≤ π. As a result, Eq. (25) can be
expressed as

α1 ≈ −
Z

π

0

Z
∞

b= sinφ
K

ffiffiffiffiffiffiffiffiffi
det g

p
drdφ: ð26Þ

Moreover, the second-order deflection angle can be
expressed as

α ≈ −
Z

πþα1

0

Z
∞

b= sinφþr1ðφÞε
K

ffiffiffiffiffiffiffiffiffi
det g

p
drdφ; ð27Þ

where the first-order trajectory r ¼ b= sinðφÞ þ r1ðφÞε,
0 ≤ φ ≤ π þ α1.
In short, we can use Eq. (27) to calculate the second-

order deflection angle in asymptotically Euclidean space.
However, Eq. (18) is required if the Jacobi metric is not
asymptotically Euclidean. Therefore, before calculating the

deflection angle, one should first check whether the
Eq. (24) is satisfied for a specific spacetime.

III. DEFLECTION ANGLE OF MASSIVE
PARTICLES BY WORMHOLES

A wormhole is a speculative structure connecting far-
separated spacetime points, predicted by a special solution
of the Einstein field equations in general relativity and
modified theories of gravity. Though there is no direct
experimental evidence that wormholes exist, the worm-
holes may be created in the early Universe, and the original
wormholes may have survived to these days [69–71]. Since
wormholes can explain typical phenomena usually attrib-
uted to black holes, the objects generally considered to be
black holes in the center of galaxies may be wormholes
created in the early Universe [71]. For this reason, some
authors have proposed different methods to probe worm-
holes [72–74]. In addition, how to distinguish black
hole, wormhole, and naked singularity was studied in
Refs. [6–8,62]. In these studies, the gravitational lensing
as a basic tool was considered. In the following, we will
consider the gravitational deflection of relativistic massive
particles by three types of wormholes, and this may be
helpful to the studies on the wormholes.

A. The JNW wormhole

The famous JNW wormhole, a class of static and
spherically symmetric exact solutions for the Einstein
minimally coupled scalar theory, is given by [75,76]

AðrÞ ¼ BðrÞ−1 ¼
�
1 −

2MJ

r

�
γ

;

CðrÞ ¼ r2
�
1 −

2MJ

r

�
1−γ

; ð28Þ

with γ ¼ MADM=MJ. HereMADM is the ADMmass related
to the asymptotic scalar charge q byM2

ADM ¼ M2
J − kq2=2,

where k > 0 is the matter-scalar field coupling constant.
This solution corresponds to the naked singularity for γ < 1
with real scalar charge, to the Schwarzschild black hole for
γ ¼ 1 with zero scalar charge, and to the wormhole for
γ > 1 with complex scalar charge [75]. Recently, Formiga
and Almeida have shown that this wormhole (γ > 1) cannot
be traversed by humans, but it can be traversed by particles
and objects that last long enough [77].
Substituting (28) into (15), one can find the JNW-Jacobi

metric induced in the equatorial plane as follows:

ds2 ¼ m2

�
1

1 − v2
−
�
1 −

2MJ

r

�
γ
�

×

�
dr2

ð1 − 2MJ
r Þ2γ þ

r2dφ2

ð1 − 2MJ
r Þ2γ−1

�
; ð29Þ
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with determinant

det g ¼ m4r2½1 − ð1 − v2Þð1 − 2MJ
r Þγ�2

ð1 − v2Þ2ð1 − 2MJ
r Þ4γ−1 : ð30Þ

The Gaussian curvature up to second order in MJ can be
obtained by Eq. (19) as follows:

K ¼ −
1 − v2

m2v2r2

�ð1þ v2ÞγMJ

v2r
−
�
1 −

3ð1þ v2Þγ
v2

þ 2ð3þ v4Þγ2
v4

�
M2

J

r2

	
þOðM3

JÞ: ð31Þ

Next, we will check if the JNW-Jacobi geometry is
asymptotically Euclidean. Considering Eq. (23), by some
algebra, one has

�
kg

ds
dφ

�����
CR

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðRÞ
CðRÞ ðΓ

r
φφðRÞÞ2

s

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2MJ

R Þ
q

R

�
R − ð1þ γÞMJ

−
γMJ

1 − ð1 − v2Þð1 − 2MJ
R Þγ

�
; ð32Þ

which leads to

lim
R→∞

�
kg

ds
dφ

�����
CR

¼ 1; ð33Þ

and this means that JNW-Jacobi metric Eq. (29) is
asymptotically Euclidean and Eq. (27) is efficient to
calculate the deflection angle for JNW spacetime.
By Eq. (26), the first-order deflection angle can be

obtained as follows:

α1 ≈ −
Z

π

0

Z
∞

b= sinφ
K

ffiffiffiffiffiffiffiffiffi
det g

p
drdφ

≈
Z

π

0

Z
∞

b= sinφ

ð1þ v2ÞγMJ

v2r2
drdφ

¼ 2ð1þ v2ÞγMJ

bv2
: ð34Þ

On the other hand, the first-order trajectory of massive
particles obtained by perturbation method is discussed in
the Appendix. Then, based on the second-order Gaussian
curvature in Eq. (31), the first-order particle ray in Eq. (A5),
and the deflection angle α1 in Eq. (34), the second-order
deflection angle can be obtained according to Eq. (27),

α ¼ 2ð1þ v2ÞγMJ

bv2
þ
�
1þ 3

v2
−

1

4γ2

�
πγ2M2

J

b2

þOðM3
JÞ: ð35Þ

Now, two limiting cases for Eq. (35) can be considered.
First, for v ¼ 1, the second-order deflection angle for light
can be recovered,

α ¼ 4γMJ

b
þ ð−1þ 16γ2ÞπM2

J

4b2
þOðM3

JÞ; ð36Þ

which is in agreement with the result in Refs. [78,79]. Here,
one should notice that only the first-order term is consistent
with the results by Jusufi [24] using the GB theorem, and
this difference comes from the fact that the straight line
approximation rðφÞ ¼ b= sinφwas used in Ref. [24], where
the first-order perturbation termof gravitywas ignored. In the
latest work [62], Jusufi et al. used the geodesics approach to
obtain the consistent result with Eq. (35).
Second, for γ ¼ 1 and MJ ¼ MS, the Schwarzschild

spacetime can be recovered, and the second-order deflec-
tion angle becomes

αS ¼
2ð1þ v2ÞMS

bv2
þ 3ð4þ v2ÞπM2

S

4b2v2
þOðM3

SÞ; ð37Þ

where MS is the mass of the Schwarzschild black hole.
Equation (35) shows that the deflection angle increases as γ
increases. Therefore, it is obvious that αworm > αS > αsing
for MJ ¼ MS and the same v and b, where αworm and αsing
are the second-order deflection angles for the wormhole
and naked singularity, respectively. This difference may be
used to distinguish the black hole from wormhole or naked
singularity. For the study on the discrimination between
black hole, wormhole and naked singularity by the gravi-
tational lensing, we refer the reader to Refs. [6–8,62].
Moreover, for massive particles in Schwarzschild space-
time, there are two different results, one obtained by
Accioly and Ragusa [48] and the other by Bhadra et al.
[50]. Our expression (37), with other work by He and Lin
[53] using the post-Minkowskian iterative method and by
Crisnejo and Gallo [58] using GB theorem, is in agreement
with the result by Accioly and Ragusa [48].

B. A class of R̄= 0 scalar-tensor wormholes

In this subsection, we consider a class of wormholes with
R̄ ¼ 0 in the context of the scalar-tensor theory of gravity,
where R̄ is the Ricci scalar. Shaikh and Kar [80] first
obtained these solutions and subsequently studied the
deflection angle of light [81]. For Shaikh-Kar wormhole,
one has [80,81]
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AðrÞ ¼

�
1þ β

M2
M
r þ η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r − β
M2

M2

r2

q �
2

ð1þ ηÞ2 ;

BðrÞ ¼
�
1 −

2M
r

−
β

M2

M2

r2

�−1
;

CðrÞ ¼ r2; ð38Þ

where β=M2 ¼ ð1 − μ2Þ=μ2 with M being the ADM mass,
and μ and η are two constants. These solutions correspond
to the naked singularities when n < −1 and to the travers-
able wormholes when n > −1 [80,81]. Now, Shaikh-Kar-
Jacobi metric induced in the equatorial plane can be
obtained by Eq. (15) as follows:

ds2 ¼ m2

�
1

1 − v2
− AðrÞ

�
BðrÞdr2 þ r2dφ2

AðrÞ : ð39Þ

One can obtain the corresponding Gaussian curvature by
Eq. (19) and the result to second order is

K ¼ −
1 − v2

m2v2r2

��
1þ v2 −

1

ð1þ ηÞμ2
�
M
rv2

þ
�
1 − v2 −

6

v2
þ 2þ v2

μ2
−

6ð1 − v2Þ
v2ð1þ ηÞ2μ4

þ 3ð4 − 3v2Þ
v2ð1þ ηÞμ2

�
M2

r2v2

	
þOðM3Þ: ð40Þ

Similar to the last subsection, one can easily verify that
Eq. (24) holds here, which implies Shaikh-Kar-Jacobi
geometry is asymptotically Euclidean, and thus the deflec-
tion angle of massive particles can be obtained by Eq. (27).
In addition, the first-order particle trajectory is given in
Appendix. Finally, after calculating the first-order deflec-
tion angle α1 by Eq. (26), considering the Gauss curvature
(40) and particle ray (A9), the deflection angle up to second
order can be obtained as follows:

α ¼
�
1þ v2 −

1

ð1þ ηÞμ2
�
2M
bv2

þ
�
5þ v2 þ 2þ v2

2μ2
−

9

ð1þ ηÞμ2

þ 3

ð1þ ηÞ2μ4
�
πM2

2b2v2
þOðM3Þ: ð41Þ

This result shows that the naked singularities ðη < −1Þ add
a positive term to the deflection angle and the deflection
angle is always positive, whereas the wormhole solutions
ðη > −1Þ add a negative term to the deflection angle, at
each order.

For the photon v ¼ 1, expression (41) reduces to

α¼
�
1−

1

2μ2ð1þηÞ
�
4M
b

þ
�
1þ 1

4μ2
−

3

2μ2ð1þηÞþ
1

2μ4ð1þηÞ2
�
3πM2

b2
þOðM3Þ;

ð42Þ

which is consistent with the results in Ref. [81]. In the limit
η → ∞, M ¼ MRN, and μ2 → 1

1−q2=M2
RN
, the result for the

Reissner-Nordström black hole can be recovered,

αRN ¼ 2ð1þ v2ÞMRN

bv2
þ 3ð4þ v2ÞπM2

RN

4b2v2

−
ð2þ v2Þπq2

4b2v2
þOðM3

RN; q
4Þ; ð43Þ

where MRN and q are the mass and electrical charge of the
Reissner-Nordström black hole, respectively. This expres-
sion is in agreement with the results in Refs. [55,56]. One
can also obtain the result in Eq. (37) for Schwarzschild
spacetime as η → ∞, M ¼ MS, and μ2 → 1.

C. A class of charged Einstein-Maxwell-dilaton
wormholes

In this subsection, we consider a class of charged worm-
holes which arise as solutions in the Einstein-Maxwell-
dilaton theory obtained by Goulart [82] as follows:

AðrÞ ¼ r2

r2 þ 2PQ
;

BðrÞ ¼ r2 þ 2PQ
r2 þ Σ2 þ 2PQ

;

CðrÞ ¼ r2 þ 2PQ; ð44Þ

where P is the magnetic charge,Q is the electric charge, and
Σ is the dilaton charge. There are two interesting facts about
Goulart wormhole. First, it is shown that the massless
solution seems physically acceptable. Second, it is also
shown that a wormhole satisfying the null energy condition
in the classical theory can be constructed. Furthermore, it is
meaningful to study the traversability of this wormhole [82].
For Goulart wormhole, the leading-order term of deflec-

tion angle for light was obtained by Jusufi [25] with the
Gibbons-Werner method and by Lukmanova et al. [83]
with the parametric post-Newtonian method as follows:

α ¼ 3πPQ
2b2

−
πΣ2

4b2
þOðP2; Q2;Σ4Þ: ð45Þ

Obviously, the electric chargeQ and the magnetic charge P
contribute to the deflection angle, whereas the dilaton
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charge Σ decreases it [25]. In order to see the effect of the
dilaton in more details on deflection angle of massive
particles, it is expected to obtain the result of orders PQ, Σ2,
P2Q2, PQΣ2. Thus, the term of Σ2 cannot be ignored for
particle trajectory and this is dealt with in Appendix.
Substitution Eq. (44) into Eq. (15), one can deduce the

Goulart-Jacobi metric in the equatorial plane as follows:

ds2 ¼ m2ðr2 þ 2PQÞ2
�

1

1 − v2
−

r2

r2 þ 2PQ

�

×

�
dr2

r2ðr2 þ Σ2 þ 2PQÞ þ
1

r2
dφ2

�
; ð46Þ

with the Gaussian curvature

K ¼ 1 − v2

m2r4v2

�
Σ2 −

2ð2þ v2ÞPQ
v2

−
8ð1þ v2ÞPQΣ2

r2v2
þ 8ð3þ v4ÞP2Q2

r2v4

�
þOðP3; Q3;Σ4Þ: ð47Þ

For Goulart-Jacobi geometry, one can easily check that
Eq. (24) also holds, and thus the deflection angle can be
derived by Eq. (27). We calculate the leading order of
deflection angle of massive particles α1 by Eq. (26) and
then consider the Gaussian curvature (47) and particle ray
(A14). Finally, the deflection angle can be obtained by
Eq. (27) as follows:

α ¼ πð2þ v2ÞPQ
2b2v2

−
πΣ2

4b2
−
3πð4þ v2ÞPQΣ2

16b4v2

þ 3πð8þ 24v2 þ 3v4ÞP2Q2

16b4v4
þOðP3; Q3;Σ4Þ: ð48Þ

From Eq. (48) one can observe that the terms containing Σ2

are all negative no matter they contain P and Q or not,
while the terms without Σ2 are always positive.
Considering the deflection angle for light, Eq. (48)

leads to

α ¼ 3πPQ
2b2

−
πΣ2

4b2
−
15πPQΣ2

16b4

þ 105πP2Q2

16b4
þOðP3; Q3;Σ4Þ; ð49Þ

and the leading-order terms are consistent with Eq. (45).

IV. CONCLUSION

In this work, we study the gravitational deflection of
relativistic neutral massive particles in static and spherically
symmetric wormhole spacetimes. First, we derive the
static and spherically symmetric Jacobi metric and the
corresponding orbit equation in the equatorial plane. Second,

following Gibbons andWerner [15], we use the GB theorem
to the Jacobi geometry and obtain the expression to calculate
the deflection angle from Gaussian curvature. In particular,
we focus on the asymptotically Euclidean Jacobi space and
show that the deflection angle can be viewed as a topological
effect. Finally, we study in detail the gravitational deflection
in three types of wormholes: JNW wormhole, a class of
R̄ ¼ 0 scalar-tensor wormholes, and a class of charged
Einstein-Maxwell-dilaton wormholes.
The deflection angles up to the second post-

Minkowskian order are obtained in Eqs. (35), (41), and
(48), where the perturbation method is applied to obtain the
first-order particle trajectory and then iterative technique is
available to obtain these results. According to Eq. (27),
first-order deflection angle is necessary to calculate the
second-order deflection angle in the iterative procedure.
Thus, to calculate a higher-order angle, one first needs to
obtain low-order results, which makes the calculation
cumbersome. How to avoid this iteration is an interesting
question and we will leave this as our future work. In
addition, the influence of the spacetime parameters for
different gravitational theories on the results are analyzed.
In Refs. [24,25,62], the authors show that the method using
the GB theorem is consistent with standard geodesics
method in the first-order terms. Compared with the results
in these previous literatures, our work shows that the
equivalence between the geometric method and other meth-
ods also holds in the second-order terms. Furthermore, it
would be interesting to see if this geometric method can
calculate the exact deflection angle.
In summary, this work contributes to the applications of

Jacobi metric approach. In the future work, we hope that the
same method can be employed to investigate the stationary
spacetime and the finite-distance corrections, as well as the
deflection of the charged particles.
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APPENDIX: THE PARTICLE TRAJECTORIES
IN WORMHOLE SPACETIMES

Here, we mainly focus on gravitational deflection in the
weak limit, and then the particle trajectory Eq. (16) can be
solved with perturbation method. Specifically, it is assumed
that the solution can be expressed in powers of ε [58,84],

uðφÞ ¼ 1

b
½sinφþ u1ðφÞεþ u2ðφÞε2 þ � � ��: ðA1Þ
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Furthermore, the condition that uðφÞ ¼ 1
rðφÞ takes a maxi-

mum value at φ ¼ π=2 could be used.

1. The JNW wormhole

Substituting (28) into (16), the orbit differential equation
of massive particle in JNW equatorial plane is given by�
du
dφ

�
2

¼ ð1 − 2MJuÞ2ð1−γÞ
�

1

v2b2
− ð1 − 2MJuÞγ

×

�
1 − v2

v2b2
þ u2

ð1 − 2MJuÞ1−γ
��

: ðA2Þ

By letting ε ¼ MJ and substituting (A1) into (A2), consider
the first-order term, and one can obtain a ordinary differ-
ential equation for u1ðφÞ as follows:

0 ¼ _u1ðφÞ þ tanφu1ðφÞ

−
ðγ − 2v2 þ γv2 þ v2sin2φÞ tanφ

bv2
¼ 0; ðA3Þ

where a dot denotes the derivative with respect to φ. With
the mentioned condition and solving the above equation,
one can obtain

u1ðφÞ ¼
ð1þ 1

v2Þγ − sin2 φ

b
: ðA4Þ

This leads to

rðφÞ ¼ b
sinφ

þ
�
1 −

ð1þ v2Þγ
v2sin2φ

�
MJ þOðM2

JÞ: ðA5Þ

2. A class of R̄= 0 scalar-tensor wormholes

Substituting (38) into (16), the orbit differential equation
of massive particle in Shaikh-Kar spacetime is given by�

du
dφ

�
2

¼ ΞðuÞ
b2v2

�
−1þ v2 − u2b2v2

þ ð1þ ηÞ2
ð1þ ð1−μ2ÞMu

μ2
þ η

ffiffiffiffiffiffiffiffiffiffi
ΞðuÞp Þ

�
; ðA6Þ

with ΞðuÞ ¼ 1–2Mu − ð1−μ2ÞM2u2

μ2
. Letting ε ¼ M and sub-

stituting (A1) into (A6), only keeping the first-order term,
we can obtain the following differential equation:

0 ¼ _u1ðφÞ þ tanφu1ðφÞ

þ
�
−1þ v2cos2φþ 1

ð1þ ηÞμ2
�
tanφ
bv2

: ðA7Þ

It is easy to get the solution of this equation as

u1ðφÞ ¼
1

bv2

�
1þ v2cos2φ −

1

ð1þ ηÞμ2
�
: ðA8Þ

Thus, the trajectory of massive particles is

rðφÞ ¼ b
sinφ

−
�
1þ v2cos2φ −

1

ð1þ ηÞμ2
�

×
M

v2sin2φ
þOðM2Þ: ðA9Þ

3. A class of charged Einstein-Maxwell-dilaton
wormholes

For Goulart wormhole, substituting (44) into (16), the
corresponding particle trajectory equation can be obtained,

�
du
dφ

�
2

¼
�
1

b2
− u2

�
ð1þ u2Σ2Þ

−
2u2ð−1 − 2v2 þ b2u2v2ÞPQ

b2v2

þ 4u4ð2þ v2ÞP2Q2

b2v2
þ 2u4ð1þ v2ÞPQΣ2

b2v2

þ 4u6P2Q2Σ2

b2v2
þ 8u6P3Q3

b2v2
: ðA10Þ

Now, u ¼ uðφÞ can be expanded to

uðφÞ ¼ 1

b
½sinφþ u1ðφÞPQþ u2ðφÞΣ2�

þOðP2; Q2;Σ4Þ: ðA11Þ

By substituting this equation into Eq. (A10), one can obtain
the following equations:

0 ¼ _u1ðφÞ þ tanφu1ðφÞ

þ ð−1 − 2v2 þ v2sin2φÞ sinφ tanφ
b2v2

;

0 ¼ _u2ðφÞ þ tanφu2ðφÞ −
cosφsin2φ

2b2
: ðA12Þ

Solving the above equations, one can come to

u1ðφÞ ¼
cosφ
4b2v2

½ð2þ v2Þðπ − 2φÞ
− v2 sin ð2φÞ þ 4ð1þ v2Þ tanφ�;

u2ðφÞ ¼ −
½π − 2φþ sin ð2φÞ� cosφ

8b2
: ðA13Þ

This leads to the following relation:

ZONGHAI LI, GUANSHENG HE, and TAO ZHOU PHYS. REV. D 101, 044001 (2020)

044001-8



rðφÞ ¼ b
sinφ

þ½π− 2φþ sinð2φÞ�cosφΣ2

8b sin2φ
−

cosφPQ
4bv2 sin2φ

½ð2þv2Þðπ−2φÞ−v2 sinð2φÞþ 4ð1þ v2Þ tanφ� þOðP2;Q2;Σ4Þ:

ðA14Þ
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