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Measurements of the Hubble constant and, more generally, measurements of the expansion rate and
distances over the interval 0 < z < 1 appear to be inconsistent with the predictions of the standard
cosmological model (ΛCDM) given observations of cosmic microwave background temperature and
polarization anisotropies. Here we consider a variety of types of departures from ΛCDM that could, in
principle, restore concordance among these datasets, and we explain why we find almost all of them
unlikely to be successful. We single out the set of solutions that increases the expansion rate in the decade
of scale factor expansion just prior to recombination as the least unlikely. These solutions are themselves
tightly constrained by their impact on photon diffusion and on the gravitational driving of acoustic
oscillations of the modes that begin oscillating during this epoch—modes that project on to angular scales
that are very well measured. We point out that a general feature of such solutions is a residual to fits to
ΛCDM, like the one observed in Planck power spectra. This residual drives the modestly significant
inferences of angular-scale dependence to the matter density and anomalously high lensing power, puzzling
aspects of a dataset that is otherwise extremely well fit by ΛCDM.
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I. INTRODUCTION

Estimates of the Hubble constant from a distance ladder
approach are generally higher than those derived from
cosmic microwave background (CMB) data, assuming the
standard “ΛCDM” cosmological model [2]. The SH0ES
team calibrates a supernova sample with Cepheids and
finds H0 ¼ 74.03� 1.42 km=s=Mpc [[3], hereafter R19].
Comparedwith the value inferred fromPlanckCMB temper-
ature and polarization power spectra plus CMB lensing,
assuming ΛCDM, H0 ¼ 67.27� 0.60 km=s=Mpc, there is
a 4.4σ discrepancy. The most recent result from strong-
lensing time delays, from the H0LiCoW team [4,5], assum-
ing the standard cosmological model and a prior of
Ωm ∈ ½0.05; 0.5�, ofH0 ¼ 73.3� 1.8 km=s=Mpc is consis-
tent withR19 and discrepant with theΛCDMPlanck value at
3.1σ. The Carnegie-Chicago Hubble Project have used their
own Hubble flow set of supernovae that they have calibrated
with the tip of the red giant branch method. They findH0 ¼
69.8� 0.8ðstatÞ � 1.7ðsysÞ km=s=Mpc [[6], see also [7]],
which at the 2σ level is consistent with all of these results.
Bernal et al. [8] showed that in addition to a discrepancy in

the Hubble constant, there is a discrepancy in the comoving
sound horizon at the end of the baryon drag epoch, rdrags .
They used Cepheid-calibrated supernovae [9,10] to infer
distances out to redshifts with precise measurements of
the baryon acoustic oscillation feature [11–13]. With these

distances, they could convert the baryon acoustic oscillations
(BAO) angles to inferences of rdrags . Using supernova data to
control the shape of DðzÞ they obtained relatively model-
independent inferences of this empirically determined sound
horizon and showed that it is lower than the ΛCDM Planck-
determined sound horizon by 7%, amounting to a 2.6σ
difference.
Aylor et al. [[14], hereafter A19] repeated this analysis

with updated data, and found the sound horizon tension to
be robust to choice of CMB dataset, and thereby argued
against systematic errors in CMB data as a source of the
discrepancy.1 A19 argued that the sound horizon tension
implies that any cosmological solution to the discrepancy
between distance ladder and CMB measurements is likely
to include changes to the cosmological model in the two
decades of scale factor evolution prior to recombination.
Many attempts at solutions do indeed take this route.

These include the extension of additional light relics [e.g.,
[24]] and an extension to includewhat is traditionally called
“early dark energy.” For examples of the latter see [25–32].
The authors of [28] find 66.7 < H0 < 70.6 km=s=Mpc
(95% confidence region) from CMBþBAOþuncalibrated
supernova data. Other prerecombination efforts include
[33] who propose a modified gravity solution.

1Similar arguments have been made with the inverse distance
ladder approach [8,15–23].
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The well-motivated extension to light relics has become
more tightly constrained as the CMB data improve. The
current constraints from the combination of BAO and
Planck temperature, polarization, and lensing power spec-
tra, is H0 ¼ 67.3� 1.1 km=s=Mpc [34]. Modifications in
the light relic sector are being explored in order to
circumvent these bounds. These extensions include the
introduction of strong scattering interactions between the
neutrinos or between other additional light relics [35–37] or
between the dark matter and the tightly coupled gauge
bosons of an associated hidden sector gauge field [38].
Kreisch et al. [37] find that by including interactions in the
light relics sector (including the neutrinos) and allowing
Neff to be a free parameter, a combination of Planck data,
BAO data, and the Hubble constant measurement from [9]
yields H0 ¼ 72.3� 1.4 km=s=Mpc.2

Others have been motivated to pursue late-time solutions
(model changes that are not important prior to recombi-
nation), despite the conclusions in A19, citing the chal-
lenges faced by the prerecombination solutions. For
example [22,39,40] use an extended parameter space and
point out that an interacting phantomlike dark energy with
equation of state wDE < −1 can reduce the tension in H0

measurements. More recent attempts at late-time solutions
include [41] and [42].
In this paper we revisit the claim of A19 about where in

redshift the departures from ΛCDM need to be important.
We do so by thinking as broadly as we can about
possiblesolutions and the measurements that constrain
them. We qualitatively assess the challenges they face and
their likelihood of successful implementation in a specific
model. We intend our analysis to be a guide to further
theoretical exploration of possible cosmological solutions
to the H0 discrepancy. We also hope to provide all readers
with an appreciation of the significant challenges con-
fronted by any model builder looking for cosmological
solutions.
In considering the challenges faced by the prerecombi-

nation alteration solutions we have been led to an interest-
ing conclusion: these solutions generically lead to features
in the CMB power spectra that we may already be seeing in
the Planck data. Oscillatory residuals to the ΛCDM fit to
the Planck temperature power spectrum are responsible
for an anomalously high preference for additional lensing
power parametrized by AL. Planck Collaboration VI [2]
find that from the Planck 2018 TTþ TEþ EEþ lowE data
that there is a preference for excess lensing power of
between 2σ and 3σ depending on which likelihood is used.
These oscillatory residuals are also partially responsible
for some mild tension (2.3σ) between estimates of the
matter density inferred from different l ranges [43,43,44].

In Sec. II we review how H0 is determined from CMB
data under the assumption of ΛCDM. In Sec. III we review
constraints in the rdrags −H0 plane from SH0ES, BOSS
BAO [45], Pantheon Supernovae [46], and CMB data [34].
The constraints in this plane help us to understand the
challenge of reconciling these four datasets and why we are
driven toward solutions that reduce the sound horizon.
In Sec. IV we revisit the question of solutions that do

not change cosmology prior to recombination, discuss two
such solutions in the literature [22,41,42], and introduce
and discuss a couple of exotic scenarios. In Sec. V we
consider solutions that do make changes to the ΛCDM
model prior to recombination. We group these into four
categories: sound speed reduction, “confusion sowing,”
high temperature recombination, and increased HðzÞ. We
consider three different ways of achieving this time
reduction: high-temperature recombination, faster-than-
adiabatic photon cooling, and additional components to
increase the expansion rate at a given temperature.
For all of these classes of models we present the

challenges to successful implementation. Reducing the
sound horizon pushes us toward changes in either recom-
bination or in the ingredients of the model in the decade of
scale factor evolution immediately prior to recombination.
The observed CMB spectra are highly sensitive to the
process of recombination, as photon diffusion has a large
impact on the spectra and the damping tail has been
measured very precisely. The observed CMB spectra are
also highly sensitive to the acoustic dynamics of modes
that begin oscillating in that final decade of scale factor
evolution prior to recombination. In short, it is hard to
reduce the sound horizon without creating additional
consequences that disagree with observations.
In assessing the observable consequences of additional

contributions to the expansion rate near the epoch of
recombination, we point out the important role played by
the radiation-driving phenomenon [47]. In Sec. VII we
note that for data generated in a universe with additional
components, we generically expect that an analysis of
such data, assuming ΛCDM, would lead to angular scale-
dependent inferences of the matter density. We then
summarize the existing evidence for such scale depend-
ence, before giving final remarks and conclusions. For
convenience, we have summarized all symbols used in
this work in Table I. Code to produce the figures in this
paper is available here: .3

II. ESTIMATING H0 FROM CMB DATA
ASSUMING ΛCDM

In practice, to determine H0 from CMB data one
calculates a Monte Carlo Markov Chain (MCMC) which

2The reduction in tension here is hard to infer from this result
because of the inclusion of the prior on H0 in the reported H0

determination.

3https://github.com/marius311/hubblehunters/releases/tag/
arxiv_v1; We acknowledge use of Millea [48].
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involves evaluation of the likelihood of parameter values
(and their associated spectra) at tens to hundreds of
thousands of points in the parameter space, and then one
uses this chain to infer the posterior density of H0, or any
other cosmological parameter of interest. It is possible to
perform this calculation, and get reliable results, without any
thought about what is happening physically. Here our goal is
to provide some physical insight into what makes itpossible
to constrain H0 from CMB data, given the ΛCDM model.
We can think of the estimation of H0 from CMB data as

proceeding in three steps: 1) determine the baryon density
and matter density to allow for calculation of r⋆s , 2) infer θ⋆s
from the spacing between the acoustic peaks to determine
the comoving angular diameter distance to last scattering
D⋆

A ¼ r⋆s =θ⋆s , 3) adjust the only remaining free density
parameter in the model so thatD⋆

A ¼ R z�
0 dz=HðzÞ gives this

inferred distance. With this last step complete we now have
HðzÞ determined for all z, including z ¼ 0. We now
describe these steps in more detail.

A. Calibrating the ruler

The sound horizon at CMB last-scattering is

r⋆s ¼
Z

t⋆

0

dt
aðtÞ csðtÞ ¼

Z
∞

z⋆

dz
HðzÞ csðtÞ; ð1Þ

where t⋆ and z⋆ are the time and redshift for which the
optical depth to Thomson scattering reaches unity. This
scale is closely related to rdrags , which is given by the same
integrand but instead integrated until the end of the baryon
drag epoch, which comes slightly later. It is rdrags that is
relevant for baryon acoustic oscillations and r⋆s for the
CMB power spectra. Despite their significant difference
(the latter is about 2% smaller in ΛCDM) we expect a
negligible amount of model dependence in this difference.
Hence, for the remainder of the work, we implicitly assume
that knowing one quantity allows us to determine the other
in a way that is unlikely to be significantly affected by any
possible cosmological solution to the tension.
In the ΛCDM model, the cosmological parameter

dependence of t⋆ and z⋆ is also small enough as to have
a subdominant impact on the parameter dependence of r⋆s ,
and we neglect this dependence for the remainder of this
subsection. In terms of determining r⋆s from Eq. (1), that
leaves us with csðzÞ and HðzÞ. The sound speed depends
on the ratio of baryon density to photon density. In the
standard cosmological model the radiation density is
entirely determined by the highly precise determination
of the temperature of the CMB [49,50]; thus we can think
of csðzÞ as dependent on ωb alone. To determine HðzÞ we
need to know the mean densities. The remainder of the
radiation density is determined by assumptions that end
up determining neutrino density as a function of photon
temperature. The only other densities that are free param-
eters are the matter density and the energy density

associated with the cosmological constant. Of these
two, only the matter density affects the sound horizon.
Thus, to determine r⋆s , we only need to know the values

of ωb and ωm. A review of the physics of CMB parameter
estimation in ΛCDM was recently given in Sec. 4
of [43]. Here we briefly summarize this for just these
two parameters.
One can estimate ωm from CMB power spectra due to

its impact on the early Integrated Sachs-Wolfe (ISW)
effect, the “potential envelope,” and the gravitational-
lensing-induced smoothing of the spectra. The most
precise determinations of ωm to date depend primarily
on the potential envelope effect, so we focus on that here.
As a given Fourier mode crosses the horizon, the resulting
gravitational potential decay provides a near-resonant
driver of the oscillation. The greater the ratio of matter
to radiation at horizon crossing, the less the decay, and
the lower the amplitude of the resulting oscillation. The
“potential envelope” refers to the scale-dependent boost-
ing of oscillation power, a boost that slowly plateaus to a
peak value at angular scales smaller than θEQs , the angular
extent of the sound horizon at matter-radiation equality,
projected from the last-scattering surface.4

In the ΛCDM model, θEQs depends primarily on ρm=ρrad
(with additional weak dependence on ρb=ργ and Ωm).
Thus, from the impact of the potential envelope on the
spectra, we can infer θEQs and then ρm=ρrad. Given that ρrad
is completely determined in ΛCDM by the temperature of
the CMB we can thus infer the matter density.
For determining ωb, an increasing baryon-to-photon

ratio decreases the pressure-to-density ratio of the plasma,
altering the zero point of the acoustic oscillations. Modes
that compress (into potential wells at the time of decou-
pling) compress more deeply, while those that rarify do not
rarify as much. The net result is a boost to compression
(odd) peaks and a suppression of rarefaction (even) peaks in
the temperature power spectrum. Variation of ωb also
affects the density of free electrons through recombination
and, hence, the damping scale. Both of these effects allow
for tight constraints on the baryon density.

B. Applying the ruler

The amplitudes of the Fourier modes of density pertur-
bations in the primordial plasma undergo damped and
driven harmonic oscillation. Starting from rest, the solution
in the radiation-dominated era well after horizon crossing

4We note though that the earlier work used the particle horizon
at matter-radiation equality rather than the sound horizon at
matter-radiation equality. Both the particle horizon and the sound
horizon at matter-radiation equality are important scales for the
radiation-driving effect, and the particle horizon is the important
scale for the early ISWeffect. The distinction is not too important
in practice though, as, to a very good approximation they only
differ by a factor (

ffiffiffi
3

p
) that is independent of cosmological

parameters, absent radical changes to the sound speed.
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is δðk; ηÞ ∝ cosðkrsðηÞ þ δϕðkÞÞ. Since they start from zero
initial momentum, the phase shift, δϕ, would be zero if it
were not for the time-dependent driving caused by potential
decay. Approximating projection from three dimensions to
two as a mapping from k to l ¼ kD⋆

A, we find that the
modes that give rise to the pth peak, kp, project to

lp ¼ kpD⋆
A ¼ pðπ − δϕðkpÞÞD⋆

A=r
⋆
s : ð2Þ

Approximating δϕðkpÞ ¼ δϕðkpþ1Þ and defining Δl ¼
lpþ1 − lp we find

θ⋆s ¼ π=Δl: ð3Þ
We thus see that the angular size of the sound horizon can
be directly read off of the peak spacing [51]. Although this
is a good approximation, we note that the actual peak
spacing differs somewhat due to details including geo-
metric projection, gravitational lensing, contributions from
velocity perturbations, breakdown of the tight coupling
approximation, and the breadth of the visibility function.
See [52] for a complete accounting.
With r⋆s calculated, and θ⋆s inferred from the peak

spacing, we can determine D⋆
A ¼ r⋆s =θ⋆s . In ΛCDM, the

comoving angular diameter distance to z ¼ z� is related to
energy densities via

D⋆
A ¼

Z
z�

0

dz
HðzÞ ¼ 2; 998 Mpc

×
Z

z�

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωΛ þ ωmð1þ zÞ3 þ ωγð1þ zÞ4 þ ωνðzÞ

q :

ð4Þ
We assume neutrino masses are specified5 so the only
remaining density we can adjust is ωΛ, which can be
adjusted so that the model D⋆

A is equal to the one inferred
from r⋆s and θ⋆s . With this adjustment made, HðzÞ is

completely specified for all redshifts, including z ¼ 0,
and therefore we have determined H0.

III. THE rdrags −H0 PLANE

To understand the difficulty of reconciling CMB, BAO,
and Cepheid-calibrated supernovae within ΛCDM it is
helpful to examine constraints in the rdrags −H0 plane. In
Fig. 1 we show the Planck TT constraints from l < 800
and from l > 800, together with color coding of the mean
value of ωm.
We see that increasing ωm leads to decreased rdrags (and

similarly decreased r⋆s ), and also decreased H0. This effect
is straightforward to understand. A fractional change to ωm
gives a fractional change in the sound horizon of δr⋆s =r⋆s ≈
−1=4δωm=ωm (this would be δr⋆s =r⋆s ≈ −1=2δωm=ωm in
the absence of radiation, but the radiation softens the
response [53]). To then keep θ⋆s fixed, we need to adjust
D⋆

A downward by the same fraction. The increase to the
matter density does indeed serve to decreaseD⋆

A, but by too
much. To keep the distance from overshooting, ωΛ must
be adjusted downward. The net result is an HðzÞ that is
increased in the matter-dominated era, and decreased in the
dark energy-dominated era, including a lower H0 today.
In Fig. 1 we also show constraints from the SH0ES

distance ladder determination of H0 [R19] and from BOSS
BAO plus Pantheon SNe distance measurements, both
made without assumption of ΛCDM. In place of the
ΛCDM assumption for the BOSS BAO plus Pantheon
result we parametrize HðzÞ with a spline with parameters
controlling HðzÞ at five points in redshift exactly as in [8]
and [14]. To calculate a modelDðzÞ given a modelHðzÞwe
assume zero mean curvature. The BAO points are measure-
ments of HðzÞrdrags and DðzÞ=rdrags . The Pantheon data are
uncalibrated but constrain the shape ofDðzÞ [and thereby the
shape of HðzÞ]. The net result is we are able to extract a
constraint on βBAO ≡ c=ðrdrags H0Þ of 29.54� 0.406.
Although one can reduce the sound horizon within

ΛCDM by increasing the matter density, there is no value
of the matter density that can simultaneously satisfy, within

TABLE I. Summary of different symbols used in this work. Throughout, r refers to a comoving length scale, k to a
comoving wave number, θ≡ r=D⋆

A to an angular scale on the last-scattering surface, and l to a multipole moment.
Subscripts refer to the quantity being integrated, i.e., “s” for the sound horizon or “d” for the diffusion length.
Superscripts (where applicable) refer to the limit of integration.

Quantity Description

zdrag, z⋆, zEQ Redshift of the baryon drag epoch, of CMB last-scattering, and of matter-radiation equality

rdrags , r⋆s , rEQs Comoving sound horizon at these three respective redshifts (see Eq. (1))

r⋆d Comoving diffusion length at CMB last-scattering
r̄s, r̄d Visibility-averaged sound horizon and diffusion length, respectively (see the Appendix)
D⋆

A Angular diameter distance to last-scattering (see Eq. (4))

θ⋆d , θ⋆s , θ
EQ
s Angular size on the last-scattering surface of r⋆d , r⋆s , and rEQs , respectively

ωxð≡Ωxh2Þ Cosmological density today of ingredient “x” in units of ≃1.878 × 10−26 kg=m3

5Note that increasing neutrino mass means increasing ωνðzÞ
and thus ωΛ has to be reduced even further, driving H0 down.
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ΛCDM, the distance ladder H0, the BOSSþ Pantheon
constraint on H0r

drag
s , and Planck CMB data. Indeed,

variation of the matter density takes the ΛCDM prediction
in a direction that is nearly orthogonal to the BAOþ SNe
constraint. These datasets thus severely restrict such var-
iations, localizing them near the Planck prediction of H0.
Incidentally, this localization is why use of the inverse
distance ladder tightens up the spread of ΛCDM-predicted
H0 values coming from various CMB datasets.
Note that the calibration of supernovae that leads to the

R19 value ofH0 also leads to an empirical determination of
rdrags near 137Mpc, as this is where their confidence regions
overlap [8,14,20]. These datasets push us toward cosmo-
logical solutions that can lower the sound horizon inferred
from CMB data.

IV. POSTRECOMBINATION SOLUTIONS

This argument in favor of cosmological solutions that
lower the sound horizon was made in A19. Implicit in this
argument are some minimal cosmological assumptions
necessary for the empirical determination of rdrags . In this
section we consider a few potential solutions that violate
these minimal assumptions and thereby do not require a
reduced model sound horizon at recombination.

We also revisit and improve an argument in A19 against
the possibility of postrecombination solutions. A19 pointed
out that the generation of new CMB anisotropies at late
times, due to some beyond-ΛCDM effects, could conceiv-
ably confuse our inference of cosmological parameters
from CMB data. In such a scenario the sound horizon,
inferred assuming ΛCDM, could be larger than in reality.
A19 then argued against this possibility; we improve upon
that argument here.

A. High sound horizon solutions

1. HðzÞ wiggles
An example of a solution that reduces the tension with

changes at low redshift is given by Joudaki et al. [22] and
Keeley et al. [41]. They both consider distance-redshift
measurements at z < 3, including a BAO constraint from
autocorrelation of flux transmission through the Lyman-α
forest and cross correlation with quasars at z ≃ 2.4 [54], as
well as constraints from Planck on the distance to the last-
scattering surface. The constraints at z ¼ 2.4 on DðzÞ=rdrags

and HðzÞrdrags , assuming ΛCDM values for rdrags are
inconsistent with ΛCDM at the 2 to 3σ level. Keeley et al.
[41] consider two different models for the dark energy and
find they can restore consistency. The tension with the
BOSS BAO points remains though as long as they set rdrags

to the ΛCDM value preferred by Planck, just as one would
expect from the analyses in [8,14,20].
Recently Raveri [42] has explored a low-redshift

reconstruction with even more degrees of freedom
(d.o.f.). He introduces, in an extension of the standard
cosmological model, a large number of d.o.f. affecting the
expansion rate at redshifts between 0 and 9. One can think
of this as a logical extension of the 5-point spline model
used by [8] and subsequently by [14], or as an extension of
the approach in [41]. Raveri’s effective field theory
approach ensures that the d.o.f. in HðzÞ include additional
space and time-dependent perturbations that must also be
present in a relativistically covariant theory. He finds, for
the Scalar Horndeski model, an improvement in χ2 over the
ΛCDM case of 13.0, with 8.3 of that coming from the R18
likelihood. This improvement comes from a model space
with 19.8 more effective d.o.f. than in the ΛCDM case.
We see Raveri’s work as opening up the possibility that

there may be a late-time solution to theH0 discrepancy, i.e.,
one that does not require a departure from ΛCDM prior to
recombination. It is interesting as an existence proof, but
there are some things to keep in mind about the particular
solution. First, it comes at the cost of a large number of
new d.o.f.; Raveri finds that most of the statistical evidence
for any particular model is erased when including a penalty
for the heavily widened prior parameter space. This is
largely in line with Poulin et al. [55], who showed that a
penalization technique known as “cross-validation” also

FIG. 1. ΛCDM tensions in the rdrags −H0 plane. The orange and
green shaded regions are 68% and 95% confidence regions from
SH0ES and from BOSS galaxy BAOþ Pantheon, respectively.
These inferences are largely independent of assumed cosmologi-
cal model, as explained in the text. Conversely, the Planck
contours assume ΛCDM is the correct model at all redshifts. We
show three versions of the Planck constraints: those from the full
Planck TT;TE;EEþ lowE likelihood, and those from Planck
TTþ lowE with TT limited to either l < 800 or l > 800. The
color coding indicates values of the matter density, ωm. We see a
strong correlation between ωm,H0, and r

drag
s . The direction swept

out in the rdrags −H0 plane by variations in ωm is not a direction
that can reconcile all three datasets.
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disfavors several models which are qualitatively similar to
Raveri’s. Second, a critical aspect of the solution is some
fast wiggles in HðzÞ, and therefore also in DðzÞ, in the
redshift region of the three BOSS BAO redshifts. These
wiggles might invalidate assumptions made in the reduc-
tion of BOSS data from a near-continuum of redshifts, to
the publicly available constraints at three discrete redshifts.

2. Violation of the distance duality relation

The distance duality relation is the relation between
luminosity distance and angular diameter distance. In any
metric theory of gravity, and as long as the photon number
is conserved, the comoving angular diameter distance is
related to the luminosity distance via DAðzÞ ¼ ð1þ zÞ
DLðzÞ [56]. This relationship is assumed in our earlier
discussion of empirical calibration of the sound horizon by
the combination of Cepheid-calibrated supernovae and
BAO angles. The mismatch between the empirical sound
horizon and the ΛCDM-determined sound horizon could
arise due to a violation of one of the two assumptions
underlying the distance-duality relation. See [57,58] for
constraints on violations of the distance-duality relation
from the combination of supernova and BAO data.
For an example of a model in which such a violation

occurs we point to the axion dimming phenomenon
proposed by Csáki et al. [59] in 2002 as an acceleration-
free means of explaining the dimness of high-redshift
supernovae. In our case, Cepheid-calibrated supernovae
appear too bright at redshifts z ∼ 0.6 where there are the
high-precision BOSS galactic BAO measurements. Rather
than axion dimming, we appear to want axion brightening.
This could be achieved if particles produced in a supernova
explosion later converted to photons. If the amount of
conversion is much less for more nearby supernovae, due
to their shorter path lengths, then the Cepheid and BAO
calibrations of supernova peak absolutemagnitudes could be
reconciled.
This scenario faces a number of challenges. First, it does

not a priori solve the problem of the CMB prediction of a
lowerH0, nor does it solve the 3.1σ tension betweenΛCDM
and gravitational lensing time delays [5]. For those, we
would also need HðzÞ to depart from a ΛCDM-compatible
shape at z < 0.6. If we do that by varying the dark energy
equation of state parameter, it will push it to less than −1.
This has difficulties from a theoretical standpoint, and also
makes the scenario seem complicated for explaining a
supernova distance-redshift relation shape that is compatible
with ΛCDM in the absence of new physics.
Finally, there is also the challenge of building a viable

particle physics model that would deliver an appropriate
spectrum of photons. Can the photon coupling be suffi-
ciently weak so as to prevent lack of neutrino production
from SN 1987A, and yet strong enough for creation of
sufficient photons over cosmological distances? Presumably
the weakness of the interaction means the particles will

decouple much deeper in the explosion than the photosphere
and will therefore have a much hotter distribution than the
photons coming directly from the photosphere. Meyer et al.
[60] claim that this is the case for axion production in core
collapse supernovae, finding that for a 10 solar mass star,
the resulting photon spectrum peaks near∼100 MeV. This is
well above the energy of the photons relevant for the
observations of Type Ia supernovae involved in SH0ES
measurement of H0. We caution though that the above is for
core collapse supernovae; we are unaware of a calculation of
the spectrum from Type Ia supernovae.

3. Cepheid (mis)-calibration

Desmond et al. [61] consider the possibility of a fifth force
that impacts the Cepheid period-luminosity relation in an
environmentally dependent manner. The fifth force is a
long-range force that augments the gravitational force. It is
“screened” at sufficiently high densities as to avoid solar
system constraints on such fifth forces. They argue that some
of the Cepheids used for calibrating supernovae may be
unscreened while the LMC, Milky Way and, NGC 4258
Cepheids that are calibrated via geometrical methods, are
screened. The unscreened Cepheids effectively experience a
larger gravitational constant G that alters the period-lumi-
nosity relationship. The net result is a bias in supernova
calibration resulting in an increase in the inferred H0.
The impact of some new physics on Cepheid dynamics is

a logical possibility for a reduction in H0 discord. The
Desmond et al. [61] paper is the only proposal of this kind
of which we are aware. In general, and in particular with
[61], such solutions do not impact the 3.1σ tension between
ΛCDM and gravitational lensing time delays [5].

B. Low sound horizon solutions

We consider here two distinct paths toward lowering the
sound horizon with only postrecombination changes to the
cosmological model. The second of these is not aimed at
lowering the sound horizon at recombination, but rather at
reducing the size of the comoving feature in the galaxy
2-point correlation function, and thereby lowering the model
prediction for the distance-ladder-determined sound horizon.
We see neither of these as likely paths toward a viable
solution. Our discussion here serves to support the case that
lowering the sound horizon requires changes to the cosmo-
logical model that are important prior to recombination.

1. Late-time confusion sowing

To reduce the sound horizon without a departure from
the ΛCDM model prior to recombination, the matter and
baryon densities, which uniquely control the sound horizon
in ΛCDM, must actually be different than what we have
inferred by fitting the ΛCDM model to CMB data. This
could arise because departures from ΛCDM after recombi-
nation have confused our interpretation of the CMB data.
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We can immediately eliminate the possibility of a con-
fused ωb resolving the tension. We would have to nearly
double the baryon density to achieve a 7% reduction in r⋆s .
This would be severely at odds with the baryon density
inferred, using minimal late-time cosmological assumptions,
from primordial elemental abundances [62,63].
A confusion in the determination ofωm seems initially, at

least, more plausible. We can think of three postrecombi-
nation effects that can alter or create new CMB anisotropies
and cause this confusion: deflection due to spatially varying
gravitational potentials (gravitational lensing), anisotropies
induced by time-varying potentials [the Integrated Sachs
Wolfe (ISW) effect], and geometric projection, which could
be altered by changing the angular-diameter distance to
recombination.
We view the first two of these to be exceedingly unlikely

solutions. Regarding ISW, A19 report that Planck EE and
TE spectra give an rdrags that is larger than the distance
ladder determination by 2.3σ and 2.7σ, respectively. There
is no ISW effect on polarization, so these results are
unaffected by model changes that alter anisotropies solely
through ISW effects.
For gravitational lensing, the impact on the CMB spectra

is determined by the lensing potential power spectrum, upon
which there are already strong constraints based on
reconstruction from the CMB four-point functions [64].
The reconstructions of the lensing potential power spectrum
are fairly model independent; hence, any effort to introduce
significant changes to the CMB spectra from nonstandard
lensing have to take these into account. Changes to the CMB
spectra, resulting from lensing changes, respond more
slowly than the lensing power spectrum itself, and lensing
power measurements have sufficient sensitivity to determine
the amplitude of the lensing power to better than 3% [65].
Our third postrecombination effect is simply a change to

the angular-diameter distance. But there is no change to the
angular-diameter distance that can bring down r⋆s (by
increasing ωm) and keep both θ⋆s and θEQs within acceptable
ranges for the data.
The reason the CMB data cannot tolerate much of a

change to θEQs has to do with the resonant enhancement of
acoustic oscillation amplitudes that occurs for modes that
begin oscillating in the radiation-dominated era, due to
gravitational potential decay, the radiation-driving phenome-
non of Hu and White [47] that we discussed in Sec. II A.
Modes that begin oscillating closer to matter-radiation
equality suffer less potential decay and therefore enjoy less
of a boost in their amplitudes. In the ΛCDM model the
radiation-driving envelope is parametrized by one number:
θEQs . Defining lEQ

s ≡ kEQs D⋆
A ¼ 1=θEQs ,6 the Planck data tell

us lEQ
s ≃ 223.

Assuming ΛCDM prior to matter-radiation equality we
have

kEQs ≡ 1=rEQs ≃
ffiffiffi
3

p
ρm

ffiffiffiffiffiffiffiffiffiffiffi
16πG
3ρrad

s
; ð5Þ

where ρm and ρrad are the matter and radiation densities that
we would have today if these were to scale with redshift
as ð1þ zÞ3 and ð1þ zÞ4, respectively, from the epoch of
equality, and kEQs is the comoving wave number of a mode
that “crosses the (sound) horizon” at matter-radiation
equality. We see from this that kEQs ∝ ωm.
Suppose then that we reduced r⋆s by 7% by increasing the

matter density according to δr⋆s =r⋆s ≃ −1=4δωm=ωm, while
simultaneously reducing D⋆

A by the same amount via some
new physics so as to keep θ⋆s fixed. However, in doing so
we have also changed δlEQ

s =lEQ
s by −1=4δωm=ωm þ

δωm=ωm ¼ 3δr⋆s =r⋆s . For the 7% change in r⋆s necessary,
this is a shift in lEQ

s that is not reconcilable with the CMB
power spectra determinations. The shift in the matter
density would also impact the scale of the turnover in
the matter power spectrum, a scale that itself responds four
times more rapidly than does rs [66].
We conclude that if we are to have a cosmological model

solution to the H0 problem, it is highly likely that it would
include departures from the standard cosmological model
prior to recombination. To reduce the sound horizon, these
changes have to be important near recombination, as A19
pointed out, and as we will see shortly from Fig. 2.

2. Postrecombination evolution of rdrags

Evolution of the BAO feature in the galaxy two-point
correlation function toward smaller comoving distance
between recombination and its observation at z≲ 1 could,
in principle, reconcile the model rdrags with its empirical
determination.
Such a scenario almost certainly requires new physics.

The relevant length scales are sufficiently large that we can
expect perturbation theory to be an accurate approximation.
Fluctuations are less than unity in the mass density today
when smoothed on scales larger than about 10 Mpc.
Nonlinear evolution, redshift-space distortions, and galaxy
biasing effects are important at the subpercent level, e.g.,
[67]. These effects are small, and taken into account in the
recovery of the angular and redshift acoustic scales from
the galaxy two-point correlation function. Use of an
especially robust feature in the correlation function, the
so-called linear point, achieves similar results [68].
Perhaps a modification of gravity, making it stronger on

large scales, could alter the Green’s function, increasing the
rate of infall of the shell of matter around an initial
overdensity toward the location of the initial overdensity.
However, for the peak to move inward would require
transport of mass, which, if the process were still ongoing

6The absence of a factor of π in the relationship between l and
the corresponding θ here has to do with the definition of θEQs as a
projection of 1=kEQs rather than a half wavelength.
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today, and had not somehow come to a halt by z < 1, would
result in much larger peculiar velocities than predicted by
standard theory.
The peculiar velocities associated with this infall have

not been observed. The observed redshift-space maps are
consistent on large scales with the expected relationship
between the density and velocity fields. The success of
BAO peak reconstruction [69] argues that standard theory
accounts for the relationship between the density field and
the peculiar velocities. In this process, large-scale peculiar
velocities are estimated from the observed redshift-space
distribution of galaxies, using perturbation theory. These
velocities are then used to reconstruct the original density
field. This process is intended to sharpen up the acoustic
feature in the correlation function, which gets smeared out
by transport. Its success in application to data, e.g., [45]
argues that we understand transport of mass on the relevant
length scales, and argues against any models in which this
is significantly different.

V. PRERECOMBINATION SOLUTIONS

In this section we consider cosmological solutions that
depart from ΛCDM prior to recombination. In general they
have departures after recombination as well. We group
them into four categories: confusion sowing (Sec. VA),
sound speed reduction (Subsection V B), high-temperature
recombination (Sec. V C), and increased HðzÞ (Sec. V D
and Sec. V E).

Models in the confusion sowing category sow confusion
in parameter determination in the same sense as in the late-
time confusion sowing scenario. The difference is that here
we have concrete examples as there are many in the
literature, and they all include model changes away from
ΛCDM that are important prior to recombination.

A. Confusion sowing

Models in this category have the same matter content as
ΛCDM: radiation, nonrelativistic matter, and a cosmological
constant. The differences are in initial conditions or some
additional interactions (ones which do not change the sound
speed of the plasma or substantially alter recombination, as
these are discussed separately in other subsections). These
differences change the value of ωm inferred from data, from
what it would be if the inference were done assuming
ΛCDM; i.e., if the model is correct, then the beyond-ΛCDM
aspects of the model have confused the ΛCDM-based
inference of ωm. Examples include the interacting neutrino
model [35,36], the modified gravity model of [33], the
introduction of extra freedom in the primordial power
spectrum, and the super-sample covariance model of [64].
We find this category of interest because we can show

that models in this category cannot produce a complete
reconciliation of CMB, Cepheid, supernovae, and galactic
BAO data. Assuming the models do not confuse our
interpretation of θ⋆s substantially, then the predictions of
r⋆s and H0 are both controlled by one parameter: H0. We
have already seen in Fig. 1 that fluctuations in ωm move the
predictions in the rdrags −H0 space in a direction that either
improves agreement with BAOþ uncalibrated SNe, or
with Cepheidsþ SNe, but not both.
Placing the interacting neutrino case in this category

comes with a caveat as these models do have an important
impact on our inference of θ⋆s—large enough to have a
significant influence on the inference ofH0 even at fixedωm.
The interactions reduce or eliminate the free-streaming-
induced temporal phase shifts of the acoustic oscillations
[70]. These shifts alter peak locations, have been detected
in the CMB temperature power spectrum [71,72], and affect
our inference of θ⋆s as described in Sec. II B. This impact
on θ⋆s inference from the free-streaming-induced phase shift
was first noted in [73] with the combination ofWMAP7 [74]
and SPT-SZ survey data [75]. With Planck temperature and
polarization data, Kreisch et al. [37] found that the reduction
in phase shift caused by neutrino interactions led to a > 10σ
upward shift in θ⋆s of 0.5%. Variation of the cosmological
constant to achieve a corresponding 0.5% decrease to the
distance to last scattering, at fixedωm, increasesH0 by 2.6%,
a non-negligible shift.

B. Sound speed reduction

The adiabatic sound speed, cs, is related to the baryon-
photon plasma density and pressure via c2s ¼ ∂P=∂ρ.

FIG. 2. On the left axis (the filled curves), we show the
fractional linear response of the “visibility-averaged” r̄s and r̄d
to a fractional change in HðzÞ in some logarithmic interval in z
(see the Appendix for exact definitions). For each curve, the dot-
dashed line shows what the response would be without account-
ing for the dependence of the visibility function on HðzÞ. The
right axes (dashed curves) show the fractional change in HðzÞ
relative to our ΛCDM fiducial model for two cases which reduce
r̄s. The first has Neff ¼ 4.2 (which lowers r̄s by 7%) and the
second is the best-fit ϕ4 model from Agrawal et al. [28]. One can
read off the (linearized) change to r̄s and r̄d from these two
models by multiplying the dashed lines by either the blue or
orange regions, respectively, then integrating across z.
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For the baryon-photon plasma, the inertia of the baryons
reduces the pressure from the pure relativistic gas case of
P ¼ ρ=3 to P ¼ ρ=ð3ð1þ RÞÞ where R ¼ 3ρb=ð4ργÞ. The
sound speed could potentially be reduced further by
introduction of a new nonrelativistic species tightly coupled
either to the photons or to the baryons, species x, so that R
becomes 3ðρb þ ρxÞ=ð4ργÞ. However, this species x would,
due to this reduction of pressure (at fixed photon density),
contribute in the same way that baryons do to the odd-even
peak height modulation. Thus, if species x is really there,
we already have its influence included in our estimate of
the sound speed from CMB data.
Constraints on dark matter–proton interactions have

been studied in [76,77]. Boddy et al. [76] studied such a
scenario and found that in the case with a fraction of the
dark matter strongly coupled to baryons and dark matter,
the fraction had to be less than 0.4% to be consistent
with the 2015 Planck temperature, polarization, and lensing
data. This upper limit is sufficiently low that these
interactions have negligible impact on the sound speed
compared to the 7% discrepancy in ΛCDM and empirically
determined sound horizons. Further, we expect anticorre-
lation between this fraction and the baryon-to-photon ratio,
for reasons given in the preceding paragraph, that further
reduce the impact on the sound speed.

C. High-temperature recombination

The remainder of our solutions are all ways to reduce the
conformal time to the end of the baryon-drag epoch,

ηd ¼
Z

td

0

dt
aðtÞ ¼

Z
∞

zd

dz
HðzÞ ; ð6Þ

which, ignoring time-dependence of the sound speed,
gives the comoving sound horizon via r⋆s ¼ csηd. In this
subsection we consider reducing this conformal time by
reducing zd by having the baryon drag epoch end at a
higher photon temperature. Such a solution was in fact
presented by [78]. However, the question remains of the
underlying physics that would lead to a high-temperature
recombination.
In principle, it could be achieved with time variation of

the fine structure constant, since a stronger electromagnetic
interaction would lead to recombination at a higher temper-
ature. Based on CMB power spectra [79] finds the change
in the value of α between recombination and today to be
δα=α ¼ ð:7� 2.5Þ × 10−3. Since atomic physics energies
are linearly proportional to α, this indicates only subpercent
changes in recombination temperature are permissible.
These are too small to achieve a 7% change in the sound
horizon.
The failure of α variation as a way to get to small r⋆s is a

specific example of what we expect to be true in general:
changes to the physics of recombination sufficient to
change the sound horizon by 7% will wreak havoc on
the shape of the damping tail. Admittedly, we have no proof

that such a solution is not possible. But it seems highly
unlikely that new physics alters r⋆s by changing recombi-
nation, while having an acceptably small impact on the
shape of the CMB damping tail.
The unlikeliness is underscored by the fact that recom-

bination occurs out of chemical equilibrium—the relevant
atomic per-particle reaction rates are not much faster than
the Hubble rate. The particular details of the ionization
history resulting from this out-of-equilibrium recombination
are marvelously consistent with the shape of the damping
tail. Thus the task is more challenging than simply repro-
ducing a generic equilibrium ionization history at a higher
temperature.

D. Photon cooling/conversion

The conformal time to recombination could also be
reduced if the photons cooled more rapidly than adiabati-
cally just prior to recombination. Some unknown species,
via some unknown (and previously ineffective) interaction,
could cool the photons, so that their temperature drops
more rapidly than in the absence of such cooling.
[78] points out that spectral distortions, and measure-

ments of the CMB spectrum, constrain this manner of
solution. Since photon number decreasing and increasing
reactions are slow at z≲ 107, we generically expect CMB
photon cooling to lead to observable spectral distortions.
They also point out that this can be avoided if all the action
is sufficiently far out on the Wien tail. This is the region of
the spectrum that needs to be affected to push recombina-
tion back earlier, and it is also a region of the spectrum that
is much less well constrained by observations of the CMB
spectrum.
However, the shape of the damping tail is impacted

exactly by these Wien tail photons. Again, we find it
exceedingly unlikely that the observed damping tail shape
consistency (with the standard model nonequilibrium
calculation) follows from a coincidence.

E. Increasing HðzÞ with additional components

We consider several different types of additional con-
tributors to the energy density that could increase HðzÞ just
prior to recombination.
The increased expansion rate leads to two physical

effects, both of which decrease r⋆s . First, there is the
reduction in conformal time required to cool to a given
temperature. Second, we find that the temperature at last-
scattering (i.e., z⋆) increases very slightly, as we discuss in
the Appendix. The former is, by far, the dominant effect.
To understand the challenges faced by model solutions,

like ΛCDMþ Neff , that increase HðzÞ prior to recombina-
tion, it is helpful to think of their impact on three angular
scales: θEQs , θ⋆s , and θ⋆d . These are, respectively, the angular
sizes of these length scales projected to today from the last-
scattering surface: the comoving size of the sound horizon
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at matter-radiation equality rEQs , the comoving size of the
sound horizon at recombination r⋆s , and the comoving size of
the photon diffusion scale at recombination r⋆d . The impor-
tance of these scales for thinking about light relics has been
emphasized previously in [47,70,80].
To keep θ⋆s from changing too much we have

δD⋆
A=D

⋆
A ≃ δr⋆s =r⋆s . To keep all three angular scales thus

requires the ratios of their associated length scales to also
not change by too much.
The data also do not tolerate too much of a change to the

photon diffusion scale. Photon diffusion has a huge impact
on the amplitudes of the power spectra, reducing fluc-
tuation power by a factor of ∼30 at l ¼ 2000. The impact
of photon diffusion is largely, though not entirely, captured
by the photon diffusion scale, computed to second order in
tight coupling, r⋆d ¼ π=kd [81]. From Planck data we have
ld ≡ kdD⋆

A ≃ 1950. How much a model can depart from
this θ⋆d depends on how well other parameter variations can
mimic the impact of photon diffusion.
It is conventional to calculate r⋆s and r⋆d via integrals from

very early times to the midpoint of recombination. These
choices are all artificial to some degree. Here we introduce
averaged quantities, r̄s and r̄d, that remove some of the
arbitrariness of the choice of a particular redshift. See the
Appendix for details.
In Fig. 2 we show how r̄s and r̄d respond to changes in

HðzÞ. The left vertical axis tells us the fractional change in
length scale for a given fractional variation in HðzÞ per
logarithmic redshift interval. Notice that, as pointed out in
A19 the sound horizon is most sensitive to the expansion
rate in the decade of expansion just prior to recombina-
tion. In contrast, the diffusion scale sensitivity to expan-
sion rate is more compactly contained near recombination.
We will refer to the model curves and the vertical axis
further below.
Figure 2 does not include a similar response for rEQs to

variation in HðzÞ. The reason is that as soon as we have
components contributing toHðzÞ that are neither matter nor
radiation, the length scale becomes poorly defined. What
matters physically is the radiation-driving envelope which,
in general, is not parametrized by just one number, and
whose shape will change away from the ΛCDM shape as
HðzÞ is varied prior to recombination. As we discuss in
Sec. VI, the oscillatory residuals in the Planck data, fit to
ΛCDM, that drive the high AL and angular-scale-dependent
values of ωm, might find an explanation in a model with a
different shape to the radiation-driving envelope.
With these preliminary remarks out of the way, we are

now ready to discuss particular approaches to increasing
HðzÞ by adding new components, beginning with addi-
tional light relics.

1. Additional thermal relativistic species

Additional light d.o.f. are ubiquitous in extensions
of the standard model of particle physics. Thermally

produced, relativistic species are an extremely well
motivated extension of ΛCDM to consider, and one that
will increase HðzÞ in the necessary window in redshift.
It is thus not surprising that increasing Neff (which is the
common parameter for quantifying an increase in energy
density from relativistic particles) is a well-considered
way to improve agreement between H0 from CMB data
with H0 from Cepheidsþ SNe; e.g., [82].
Hou et al. [80] describe how other parameters shift in

order to still fit the CMB data as we allow Neff to vary. To
keep variation in the redshift of matter-radiation equality
within the tight range allowed by the CMB data, the matter
density must scale just like the radiation density, i.e., by
1þ Rν where Rν ≡ 7=8ð4=11Þ4=3Neff is the ratio of non-
photon radiation energy density to photon energy density.
This then implies that r⋆s ∝ ð1þ RνÞ−1=2, meaning that Neff
would have to increase to around Neff ¼ 4.2 to achieve a
7% reduction in r⋆s .
To keep θ⋆s fixed while changing r⋆s , we must also have

D⋆
A ∝ r⋆s ∝ ð1þ RνÞ−1=2. Since the matter density is already

varying in a way to provide this scaling, the other dominant
component, ρΛ, must as well. Neglecting effects of neutrino
mass, we thus also have the low-redshiftHðzÞ [and therefore
DAðzÞ] also changing amplitude but not shape. Thus an
increased Neff leads to decreased sound horizon, increased
H0, and almost no change toHðzÞr⋆s andDðzÞ=r⋆s and hence
to the BAO observables.
Because the shape of HðzÞ does not change, we then

have the simple relation δr⋆d=r⋆d ≃ 1=2δr⋆s =r⋆s . One can
also infer this relation from Fig. 2. With the dashed
magenta line, we show the change toHðzÞ from increasing
Neff to 4.2 while holding rEQs constant. Multiplying this
line by either of the r̄s or r̄d visibility-averaged (dot-
dashed) contours and integrating across redshift gives the
total linearized change to these parameters due to the
change in HðzÞ. As the HðzÞ change is, in this case,
constant, this is just the total area under each curve.
Indeed, the area is about twice as large under the blue
curve vs the orange curve, as expected from the discus-
sion above.
We thus find that a change to Neff ends up affecting the

ratio of r⋆d=r⋆s , which is undesirable as the observed θ⋆d=θ⋆s
is consistent with the standard model value. The unavoid-
able altering of θ⋆d=θ⋆s , in the case of ΛCDMþ Neff is one
of two main reasons the CMB data do not prefer larger
values of Neff . The other is the shift in the temporal phase
of the acoustic oscillations and the associated shifts in
acoustic peak and trough locations [71,72].
Additional interactions between the light relics, or

between the light relics and the dark matter, make the
phenomenology more complicated and, as has been
shown in, for example, Kreisch et al. [37], can increase
the value of Neff that the CMB data can tolerate. With a
dataset combination that includes R19, Kreisch et al. [37]
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find Neff ¼ 4.02� 0.29 (as well as the H0 ¼ 72.3�
1.4 km=s=Mpc mentioned in the Introduction). Blinov
et al. [83] explore constraints from laboratory experiments
on models that can deliver the neutrino-neutrino scattering
cross sections desired by these fits to data, that are larger
than those in the standard model by 8 orders of magnitude.
While they find highly significant constraints, not every
possibility is ruled out. A light relic solution to the Hubble
tension remains an intriguing possibility.

2. Early dark energy

Models that also change the shape ofHðzÞ, such as early
dark energy models [25,84,85], have a chance of avoiding
this fate, since the r⋆s and r⋆d integrands are different. The
extra component in these models is a scalar field that,
at least temporarily, near recombination, behaves like a
cosmological constant. More recently Poulin et al. [27],
Agrawal et al. [28], and Lin et al. [31] considered a class
of scalar field models due to the expectation that they might
be able to solve the r⋆d=r⋆s problem faced by light relics.
The model curves in Fig. 2 are for a ΛCDMþ Neff

model and for one of the Agrawal et al. [28] best-fit ϕ4

models. The ΛCDMþ Neff model has, in addition to the
increase in Neff , an increase in ωm that preserves rEQs =r⋆s by
design. As we discussed in the previous subsection, this
model delivers δr⋆d=r⋆d ≃ 1=2δr⋆s =r⋆s , and so r⋆d does not
decrease enough to preserve r⋆d=r⋆s . The Agrawal et al. [28]
model does not remedy this challenge. In fact, since more
of its change to HðzÞ is under the blue rather than the
orange curve, the r⋆d=r⋆s ratio is even more affected, leading
to additional (seemingly unwanted) damping in the power
spectrum at fixed l.
Nevertheless, the Agrawal et al. [28] model provides a

better fit to the CMB data. The increase in damping is
partially compensated by an increase in ns and shifts in
other parameters. Thus it is a demonstration that the data
can tolerate a model with a fairly large departure of r⋆d=r⋆s
from its ΛCDM value, as also seen in [27]. We suspect that
the Agrawal et al. [28] solution is being driven more by
the impact of the increased expansion rate on the ampli-
tude of acoustic oscillations via the radiation driving
effect. Similar conclusions were reached in [27]. It may
be explaining the residuals in the fit to ΛCDM that lead to
the anomalously large AL [2] and somewhat inconsistent
values of the matter density inferred from different
angular scales [43,44,86]. We will discuss these possibil-
ities more in Sec. VI below.
While we have chosen the specific example of ϕ4 as it

was the monomial potential found by [28] to best alleviate
tension among the combined datasets, we should point out
that Lin et al. [33] and Smith et al. [32] find that Planck
data are better accommodated by a potential that flattens
at high field value, a preference primarily driven by the
polarization.

3. Designer HðzÞ
Hojjati et al. [87] study parametrized departures from

HðzÞ in the standard model between z ¼ 105 and z ¼ 0.1
with an effective dark component with several different
choices of the sound speed, as constrained by the first
release of Planck data. The upper limits to the fractional
perturbations to HðzÞ are at the 4 to 10% level depending
on a and sound speed. Such changes may be sufficient to
reduce the sound horizon by the 7% required for optimal
agreement with the cosmic distance ladder. It would be
interesting to redo their analysis with the Planck 2018
data, including polarization, and to determine the resulting
constraints on r⋆s .

VI. EXCESS SCATTER IN INFERENCES OF
MATTER DENSITY ACROSS

ANGULAR SCALE

Above we discussed the angular scale θEQs and the desire
to preserve it, since this scale controls the radiation-driving
envelope. However, in general, the shape of the radiation-
driving envelope depends on more than just this one
number. The impact on acoustic oscillation amplitude from
gravitational potential decay varies with perturbation wave-
length, or angular scale, quite slowly, since mean matter
and radiation densities redshift differently only by one
power of the scale factor. There is information in this
envelope about the history of the expansion rate over a wide
range of redshifts.
If HðzÞ is varied by an overall rescaling, such as by an

increase in the radiation density and the matter density in
proportion, then θEQs does not change, and the entire shape
of the radiation-driving envelope is also unchanged. In
general though, a change to the shape ofHðzÞ in the decade
of scale factor evolution prior to recombination will alter
the shape of the radiation-driving envelope, even if θEQs is
kept fixed.
How would these radiation-driving envelope shape

changes show up in analyses of CMB data? The primary
source of information about the matter density at l < 1400
or so7 stems from its impact on the radiation-driving
envelope. Therefore, if these analyses are done assuming
ΛCDM then radiation-driving envelope shape changes
would likely show up as excess scatter in the matter density,
ωm, inferred across different angular scales.
There is some evidence of this excess scatter. Addison

et al. [44] compared parameters inferred from Planck
TT power spectra at l < 1000 with l > 1000 and found
ωc discrepant at 2.5σ. The Planck Collaboration found,
in [43], for the same dataset and the same angular-
scale split, that ωm was the most discrepant of the five
parameters evaluated, although with a slightly lower

7At smaller scales the impact of ωm on lensing becomes an
important source of information about ωm [43].
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statistical significance at 2.3σ.8 The dependence of the
inferred ωm on chosen angular scale can also be seen in our
Fig. 1, for the split at l ¼ 800 instead of 1000.
We have some additional evidence of angular-scale

dependence of ωm inferences from [88]. They used a τ
prior and South Pole Telescope (SPT) TT data from 650 <
l < 3000 to determine best-fit parameters and compared
them with the parameters derived from the full Planck
CMB power spectra data. They found the χ2 for the
parameter differences exceeded in only 3.2% of simu-
lations. A major driver of this low PTE (probability to
exceed) was the matter density. When both the SPT and
Planck datasets were restricted to the region of sky and
angular scales measured by both, the low PTE went away.
As data at l > 1800 is progressively added to the SPT
data, increasing lmax to 2000, then 2500, and then 3000,
the matter density decreases at each step, pulling ωm
downward from the best-fit Planck value. Intriguingly,
SPTpol data at l > 1000 also favor the same low matter
density of ωm ≃ 0.13 [89], while the l < 1000 data are
more consistent with ωm from all the Planck CMB power
spectra data.
What to conclude from this scatter in inferences of ωm

is not at all clear. The significance of the SPT trend with
lmax is unclear. Simulations indicate that the shift in ωm
from 1800 to 3000 is not unexpectedly large. What is
potentially unusual is the absence of any scatter in the
trend, but any attempt to quantify how unexpected this is
would suffer from the usual problem of a posteriori
statistics. Also, what are we to make of the fact that
the trend is reverse to what we see from Planck where
smaller angular scales deliver a larger ωm? Perhaps this is
not the influence of the radiation-driving envelope, but
instead the stabilizing influence of gravitational lensing,
which becomes relatively more important as a source of
information about the matter density at smaller angular
scales.
We conclude that, although the situation is not yet clear,

we may already be seeing, in the CMB data, additional
evidence in favor of a cosmological solution to the H0

discordance. Low-noise and high angular resolution meas-
urement of temperature anisotropy over more sky than
observed by SPT will potentially shed light, and may be
coming soon from data already acquired by the Atacama
Cosmology Telescope (ACT) collaboration. Improved
measurements of polarization anisotropy at intermediate
to small angular scales will help as well, as will tighter
determination of the matter density from CMB lensing
reconstructions. We can expect these from the SPT-3G [90]
and AdvACT [91] surveys now under way.

VII. SUMMARY AND CONCLUSIONS

As a guide to ourselves and others, we have attempted to
consider the broadest possible set of potential cosmological
solutions to reconcile distance ladder, BAO and CMB
observations. We divided the solutions into those that do
not depart substantially from ΛCDM prior to recombina-
tion, and those that do.
Before exploring the possible cosmological solutions

we reviewed the prediction of ΛCDM for the Hubble
constant and the comoving sound horizon, with special
attention paid to the rdrags −H0 plane. We saw that, with θ⋆s
determined highly precisely, the spread of ΛCDM pre-
dictions in this plane is almost entirely due to variation in
the inferred matter density, ωm. Further, we saw that
variation of ωm does not generate movement in the plane
that could simultaneously reconcile with the R19 value
of H0 and the relatively model-independent constraint
on H0r

drag
s one can infer from BOSS BAOþ Pantheon

supernova uncalibrated distance measurements. We also
saw that this combination of data prefers a lower value of
rdrags than predicted by ΛCDM.
We divided the postrecombination solutions into those

with a high r⋆s , as preferred when one assumes the ΛCDM
model, and those with a low r⋆s , as preferred by the distance
ladder. For the high r⋆s ones we discussed two ways of
circumventing the distance ladder determination of r⋆s : that
proposed by Raveri [42], and new-physics alterations to the
supernova luminosity-flux-distance relationship to violate
the usual relationship between luminosity distance and
angular-diameter distance inspired by [59]. Raveri’s sol-
ution relies on the introduction of a large number of
additional parameters, which we find somewhat discour-
aging. It is possible that new photon interactions, to make
distant supernovae brighter could solve the sound horizon
tension. But such a solution would have to also explain the
consistency of the shape of the supernova distance-redshift
relation with ΛCDM—a consistency that risks becoming
coincidental.
We then discussed two postrecombination solutions with

low sound horizons. The first was a very general class of
potential solutions we called “late-time confusion sowing.”
In this general class of models the CMB anisotropies are
altered, and new ones are added, by effects important after
recombination. The goal here is to increase the inference of
the matter density and thereby lower the sound horizon. We
argue that with this general class of models one cannot
reduce r⋆s sufficiently without altering θEQs by too much.
Our second type of postrecombination solution with a

low r⋆s achieves, stated more precisely, a prediction of a low
distance-ladder-determined r⋆s . This predicted quantity is
reduced by postrecombination evolution of the acoustic
feature in the matter (or galaxy) two-point correlation
function. This evolution appears to require transport of
mass. We argue that the associated peculiar velocities, and

8The lower significance is due to a more accurate calculation
that used simulations to avoid some approximations. We also note
that [43] showed that the significance of finding any one of the
parameters this discrepant or more is only 1.6σ.
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the success of BAO reconstruction, pose a major challenge
to a successful implementation of such a solution.
We grouped our prerecombination solutions into four

categories: late-time confusion sowing, sound speed reduc-
tion, high-temperature recombination, and increased HðzÞ.
Models in the late-time confusion sowing category (of
which there are several in the literature) can not simulta-
neously bring both H0 and r⋆s into agreement. Models that
reduce the sound horizon by reducing the sound speed are
unlikely to work as we already infer the sound speed fairly
directly from its influence on the zero-point of the acoustic
oscillations. In analyses assuming ΛCDM this sound speed
inference is the chief source of information about the
baryon-to-photon ratio, which is in agreement with infer-
ences from light element abundances [2].
High-temperature recombination is an exotic solution that

would require something like time variation of the fine
structure constant. Constraints in the ΛCDMþ α model
space have been studied [79]. The constraints on the allowed
variation of the fine structure constant are substantially
tighter than the variation that would be required to reduce
the sound horizon by 7%. Although this is a specific model,
we expect the result is general: the damping tail, which is
highly sensitive to the history of recombination, and quite
preciselymeasured, is not likely to allow solutions of this type.
We also considered lowering the sound horizon by

faster-than-adiabatic loss of energy from the photon
background. Such a scenario would reduce the conformal
time to recombination, and hence the sound horizon.
In general, such a scenario would be tightly constrained
by spectral measurements. These can, in principle, be
evaded, as pointed out by [78], but, as we point out, face
the same challenge from the CMB damping tail as is the
case for the high-temperature recombination scenario we
just discussed.
The final category is the set of solutions that introduces

new components to increase HðzÞ in the decade of scale
factor evolution prior to recombination. We see these as
the most likely category of solutions. They are also
tightly constrained by the data. Changes here have an
influence on the dynamics of mode evolution at horizon
crossing, for all observable modes, and therefore have, in
general, a significant influence on CMB power spectra.
We discussed the radiation-driving envelope and how its
shape will, in general, be altered with any altering ofHðzÞ
in this redshfit range. We speculated that we may already
be seeing evidence of this altering of HðzÞ in the
oscillatory residuals in fits of ΛCDM parameters to
Planck TT data, the oscillatory residuals largely respon-
sible for the anomalously high AL and variations of
ΛCDM-based matter density inferences across angular
scale.
Models which posit new additional components

include ΛCDMþ Neff and the scalar field models
explored in [27,28,33]. It is notable that none of these
models alters the Planckþ BAO predictions to be

completely consistent with the central R19 value for H0.
They mostly serve to reduce the tension by broadening
the uncertainty some. Perhaps further exploration of
variation to HðzÞ will provide us with a more complete
resolution of the tension.
We have been explicitly providing guidance to model

builders. But our work has guidance for future observations
as well. We can expect important clues, or a tightening of
constraints, from a variety of CMB measurements. They
include improved measurements of the CMB temperature
anisotropy at 1400 < l < 3000 (the angular scales for
which Planck did not achieve the cosmic-variance limit),
polarization measurements from l ≃ 100 to 4000, and
reconstructions of the CMB lensing spectrum for precise
and less radiation-driving-envelope-sensitive inferences of
the matter density.
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APPENDIX: VISIBILITY-AVERAGED r̄s AND r̄d

As usually defined, the sound horizon, r⋆s or rdrags , and the
damping scale, r⋆d , are quantities which come from per-
forming integrals up to a certain cutoff redshift. However,
the observables that we are attempting to describe with
these quantities are sensitive to a range of redshifts around
this cutoff. For example, the midpoint of the CMB visibility
function is at around z⋆ ≃ 1100, but the full width at half
maximum is around 200, with this entire range of redshifts
contributing at some level to the way in which the sound
horizon is imprinted in the final shape of the CMB power
spectra. To better capture possible model changes across
this range of redshifts, we introduce the “visibility-averaged”
r̄s and r̄d, defined as

r̄s ¼
Z

∞

0

dzgvisðzÞrsðzÞ ðA1Þ

e−ðr̄d=r0Þ2 ¼
Z

∞

0

dzgvisðzÞe−ðrdðzÞ=r0Þ2 ; ðA2Þ

where the fact that the averaging happens with rdðzÞ in the
exponential reflects the exponential suppression of the
damping, and r0 ≡ 30 Mpc, which corresponds to l ¼
1500, is where we expect most of the damping information
to be coming from in the Planck data.
This choice of derived parameters better captures the

impact of model changes. As an extreme example, consider
a model which looked exactly like ΛCDM at z > z⋆, then
had a significantly differentHðzÞ at z < z⋆. Since r⋆s and r⋆d
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involve integrals only up to z⋆, they would be unchanged in
the modified model despite the fact that we would expect a
large change to the CMB spectra. Conversely, r̄s and r̄d
would capture the impact of changes anywhere in the main
support of the visibility function.
Another advantage of r̄s and r̄d is that they give us a

straightforward way to judge the relative sensitivity at
various redshifts near last-scattering to changes in the
Hubble rate (the very type of changes which we argue
are likely to play a role in any cosmological resolution to
the tension). To do so, we can compute a functional
derivative of r̄s and r̄d with respect to HðzÞ. This is exactly
the quantity plotted in Fig. 2. The derivation proceeds by
writing out the integral for r̄s or r̄d within the expression
for r̄s or r̄d, e.g.,

r̄s ¼
Z

∞

0

dz0gvisðz0Þ
Z

∞

z0
dz

drs
dz

ðzÞ; ðA3Þ

and then taking a functional derivative with respect to
lnHðzÞ, repeatedly making use of the fact that

δ

δ lnHðzÞ
Z

∞

z⋆
dz0

fðz0Þ
Hðz0Þ ¼

�
− fðzÞ

HðzÞ z > z⋆
0 z < z⋆;

ðA4Þ

where fðzÞ is any other function that does not depend on
the Hubble rate. After differentiating several terms and
simplifying the resulting expressions, we arrive at

δ

δ lnHðzÞ r̄s ¼
dr⋆s
dz

ðzÞ½e−τðzÞ − 1� − gvisðzÞrsðzÞ

þ dτ
dz

ðzÞ
Z

∞

z
dz0gvisðz0Þrsðz0Þ ðA5Þ

δ

δ lnHðzÞ e
−ðr̄d=r0Þ2 ¼ dr2d

dz
ðzÞ½e−τðzÞ − 1�½−e−ðrdðzÞ=rÞ2Þ=r2�

− gvisðzÞe−ðrdðzÞ=rÞ2Þ þ
dτ
dz

ðzÞ

×
Z

∞

z
dz0gvisðz0Þe−ðrdðz0Þ=rÞ2Þ: ðA6Þ

The curves plotted in Fig. 2 differ from these expressions
only in that one final chain rule is performed to compute
δr̄d=δ lnHðzÞ, and an extra factor of z is included in each
which corresponds to taking the functional derivation with
respect to Hðln zÞ rather than HðzÞ.
We note that in taking this functional derivative, we have

kept xeðzÞ (and hence xe as a function of temperature)
unchanged. This would only be true if recombination
happened in thermal equilibrium, which is a poor approxi-
mation. For the sound horizon calculation, xeðzÞ appears
only inside of gvisðzÞ, and the final two terms in Eq. (A5)
correspond to varying gvisðzÞ with xeðzÞ held constant. The
term we have not calculated, which would come from a
chain rule variation of xeðzÞ, can however be shown to go in
the opposite direction and hence at least partially cancel.
This is because more rapid expansion leads to increased
number density of free electrons at a given scale factor
[92], canceling the fact that with more rapid expansion we
also reach a given scale factor in less time. For the case of
the damping scale calculation, a factor of xeðzÞ addition-
ally appears in the photon mean-free-path, which will add
rather than cancel. Although we have not calculated this
effect, we do not expect this to change the qualitative fact
that r̄d is more sensitive to changes in HðzÞ at later times
as compared to r̄s.
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