
 

Statistics of peaks of weakly non-Gaussian random fields:
Effects of bispectrum in two- and three-dimensions

Takahiko Matsubara 1,2,*

1Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK),
Oho 1-1, Tsukuba 305-0801, Japan

2The Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Ibaraki 305-0801, Japan

(Received 16 January 2020; accepted 6 February 2020; published 25 February 2020)

Analytic expressions for the statistics of peaks of random fields with weak non-Gaussianity are
provided. Specifically, the abundance and spatial correlation of peaks are represented by formulas which
can be evaluated only by virtually one-dimensional integrals. We assume the non-Gaussianity is weak
enough such that it is represented by linear terms of the bispectrum. The formulas are formally given in
N-dimensional space, and explicitly given in the case of N ¼ 1, 2, 3. Some examples of peak statistics in
cosmological fields are calculated for the cosmic density field and weak lensing field, assuming the weak
non-Gaussianity is induced by gravity. The formulas of this paper would find a fit in many applications to
statistical analyses of cosmological fields.
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I. INTRODUCTION

The statistics of peaks of random fields have been
attracting a lot of interest for applications to cosmology.
The density peaks are obvious sites for the formation
of nonlinear structures [1]. The amplitude of spatial
clustering of biased objects is enhanced relative to that
of density field [2,3]. This property is naturally expected by
statistics of high-density peaks in a Gaussian random field.
Mathematical formalism to calculate statistics of peaks in
random Gaussian fields is given in seminal papers by
Doroshkevich [4] and Bardeen et al. [5]. Statistics of peaks,
such as abundances, profiles, and correlation functions, in
Gaussian random fields have been extensively studied in
the literature [6–15]. The clustering of dark matter halos
can be modeled by the peaks approach under the
assumption that halos form from peaks in the initial
Lagrangian density field (for a review, see Ref. [16] and
references therein). Lagrangian density field is reasonably
assumed to obey Gaussian statistics, as long as the initial
condition of the density field in the Universe is Gaussian.
Most of the analytic work on the statistics of peaks

assumes the Gaussian statistics of density fields. One of the
main reasons for this assumption stems from technical
limitations. It is extremely difficult to analytically describe
the statistics of peaks in generally non-Gaussian fields,
which have infinite degrees of freedom. However, there
are several reasons to consider the statistics of peaks in
non-Gaussian density fields in cosmology.

For example, the initial density field is not necessarily a
Gaussian random field, depending on generation mecha-
nisms of the initial fluctuations (see, e.g., Ref. [17] and
references therein). The gravitational evolution induces non-
Gaussianity in the density field (see, e.g., Ref. [18] and
references therein), and therefore, when the peaks are
defined in Eulerian density field, they are not described
by the peak theory assuming Gaussian statistics of density
fields. The statistics of peaks in the weak lensing fields are
also useful in cosmology [19–38]. The weak lensing fields
on interested scales are not Gaussian because of the non-
linear evolution of the density field which is the source of the
weak lensing. The effects of non-Gaussianity are taken into
account only numerically in the previous analyses of the
weak lensing. Another example of the interest in peaks in
non-Gaussian fields is the application to the primordial black
holes (PBHs), which is assumed to be formed in the very
early Universe [39–42]. The peaks theory of Ref. [5] is
applied to the formation of PBHs [43–48].
While deriving analytically complete expressions of

the statistics of peaks in generally non-Gaussian fields is
difficult, that is possible in some limited cases. For the
peak abundance in a special type of non-Gaussian field,
chi-square field, an analytic expression can be derived
[49,50]. A theory for the abundance of peaks in weakly
non-Gaussian fields is pioneered by Refs. [51,52], which
generalize the earlier work on the genus statistic and
Minkowski functionals in weakly non-Gaussian fields
[53,54]. In these papers, the peak abundances in two and
three dimensions are expanded in Gram-Charlier series
[55–58]. When the non-Gaussianity is weak, and the higher-
order cumulants of the distribution do not significantly*tmats@post.kek.jp
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contribute to the statistics of peaks, one obtains an approxi-
mate expression for peak abundances by only taking lower-
order terms of the series into account. The peak correlations
in weakly non-Gaussian fields are derived [59] and are
applied to a local-type non-Gaussianity in the primordial
density field. Abundances and correlations of peaks in
weakly non-Gaussian field in the high-peak limit are also
derived [60–63].
In this paper, we follow and extend the methods of

those previous papers for peaks in weakly non-Gaussian
field, and give explicit formulas with lowest-order non-
Gaussianity in two and three dimensions. We consider the
abundances and spatial correlations of peaks in a unified
formalism, which is developed by Ref. [57]. We first show
a formal derivation of the peak statistics in N dimensions,
and then find explicit expressions for N ¼ 1, 2, 3. In
Ref. [52], the formulas for the abundance of peaks are given
in a form with multidimensional integrations, which should
be evaluated by a semi-Monte-Carlo integration. We find
this kind of multidimensional integrations reduces to lower-
dimensional integrals, which can be evaluated very fast,
extending techniques developed by Refs. [64,65]. This
paper contains a set of newly useful formulas for statistics
of peaks of weakly non-Gaussian fields, which can be
potentially applied to many problems regarding statistics of
peaks, such as the peaks in the density field of large-scale
structure, and those in weak lensing fields, etc.
This paper is organized as follows. In Sec. II, a formal

expression of the number density of peaks in a weakly non-
Gaussian field in anN-dimensional space is given, and then
analytically explicit expressions forN ¼ 1, 2, 3 are derived.
In Sec. III, formal expressions of the power spectrum and
correlation function of peaks in a weakly non-Gaussian
field in an N-dimensional space is given, and then
analytically explicit expressions for N ¼ 2, 3 are derived.
In Sec. IV, three examples of the possible applications to
cosmology are presented, i.e., the number density of peaks
in a three-dimensional density field, the number density of
peaks in a two-dimensional weak lensing field, and three-
dimensional correlations of peaks. In these examples, the
weak non-Gaussianity is assumed to emerge from weakly
nonlinear evolutions by gravitational instability. Finally,
conclusions are given in Sec. V.

II. ABUNDANCE OF PEAKS IN WEAKLY
NON-GAUSSIAN FIELDS

A. Lowest-order non-Gaussianity

We generally consider a random field fðxÞ in
N-dimensional space, where x is the N-dimensional coor-
dinates. The field is assumed to have a zero mean,

hfðxÞi ¼ 0; ð1Þ
and the random field is statistically homogeneous and
isotropic. We consider expectation values of peak statistics

in non-Gaussian fields. We apply a method of Ref. [57],
which provides a general way of evaluating a given
expectation value in weakly non-Gaussian fields. The
method is based on the expansion by generalized
Wiener-Hermite functionals, which is a generalization of
the Edgeworth expansion of a single variable in weakly
non-Gaussian fields. This basic method is briefly reviewed
in the Appendix A.
In this paper, we consider the lowest-order non-

Gaussianity, i.e., contributions from the three-point corre-
lation at the lowest order, assuming the higher-order
correlations are small enough. In cosmological fields,
higher-order correlations frequently obey the so-called
hierarchical ordering, in which n-point correlation function
ξðnÞ is of order Oðξn−1Þ, where ξ ¼ ξð2Þ is the two-point
correlation function. In this case, the non-Gaussianity is
weak when the two-point correlation ξ is small enough.
Having such a case in our mind, we consider only the

linear contribution of the three-point correlation function,
or the bispectrum in Fourier space. The expectation value of
a functional F ½f� is given by Eq. (A19). When we take into
account only the lowest-order non-Gaussianity, we have

hF ½f�i ¼ hF ½f�iG
þ 1

6

Z
dNk1
ð2πÞN

dNk2
ð2πÞN

dNk3
ð2πÞN hf̃ðk1Þf̃ðk2Þf̃ðk3Þic

× G3ðk1; k2; k3Þ; ð2Þ
where f̃ðkÞ is the Fourier transform of fðxÞ, h� � �ic
represents the (three-point) cumulant, and

Gnðk1;…; knÞ≡ ð2πÞNn

�
δnF ½f�

δf̃ððk1Þ � � � δf̃ðknÞ

�
G

ð3Þ

represents a Gaussian n-point response function, and the
expectation value h� � �iG is taken for Gaussian distributions
with the same power spectrum of the field fðxÞ (see
Appendix A for details).
Due to statistical homogeneity, the three-point cumulant

has a form,

hf̃ðk1Þf̃ðk2Þf̃ðk3Þic ¼ ð2πÞNδNDðk1 þ k2 þ k3ÞBðk1;k2;k3Þ;
ð4Þ

where δNDðkÞ is the N-dimensional Dirac’s delta function
and Bðk1; k2; k3Þ is the bispectrum. Due to statistical
homogeneity and isotropy, the bispectrum is a function
of only magnitudes of three wave vectors, k1, k2, and k3.
However, we keep the vector notation in the argument of
the bispectrum. Thus, Eq. (2) can also be represented by

hF ½f�i¼G0þ
1

6

Z
dNk1
ð2πÞN

dNk2
ð2πÞN

dNk3
ð2πÞN ð2πÞ

NδNDðk1þk2þk3Þ

×Bðk1;k2;k3ÞG3ðk1;k2;k3Þ: ð5Þ
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B. Statistics of field derivatives

Equation (5) is the basic formula of the weakly non-
Gaussian expectation values of any kind. In this section,
we are interested in the peak abundance of the weakly non-
Gaussian field. The peak number density depends on
spatial derivatives of the field up to the second order,
i.e., f, ∂if, and ∂i∂jf. To evaluate Eq. (3), we need the
Gaussian statistics of the peak number density.
The power spectrum PðkÞ of the random field f is

defined by

hf̃ðkÞf̃ðk0Þic ¼ ð2πÞNδðkþ k0ÞPðkÞ; ð6Þ

where the appearance of the delta function is a consequence
of the statistical homogeneity, and the power spectrum is a
function of only the magnitude of the wave vector k ¼ jkj
due to the statistical isotropy. The spectral moment σn is
defined by

σn
2 ¼

Z
dNk
ð2πÞN k2nPðkÞ; ð7Þ

and the normalized field variables are defined by

α≡ f
σ0

; ηi ≡ ∂if
σ1

; ζij ≡ ∂i∂jf

σ2
; ð8Þ

where ∂i ¼ ∂=∂xi is the spatial derivative.
The Gaussian statistics of the field variables are com-

pletely determined by their covariances. They are given by

hα2i ¼ 1; hαηii ¼ 0; hαζiji ¼ −
γ

N
δij;

hηiηji ¼
1

N
δij; hηiζjki ¼ 0;

hζijζkli ¼
1

NðN þ 2Þ ðδijδkl þ δikδjl þ δilδjkÞ; ð9Þ

where

γ ≡ σ1
2

σ0σ2
: ð10Þ

Since the set of variables ζij is a symmetric tensor, only
components with i ≥ j are independent.
We denote the set of independent variables as

Y ¼ ðα; η1;…; ηN; ζ11; ζ12;…; ζN−1;N; ζNNÞ: ð11Þ

The number of components of this vector is N0 ≡ 1þ N þ
NðN þ 1Þ=2 ¼ ðN þ 1ÞðN þ 2Þ=2. The multivariate
Gaussian distribution function for these variables at a
single point is given by

PGðYÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞN0 detM
p exp

�
−
1

2
YTM−1Y

�
; ð12Þ

whereMab ≡ hXaXbi is aN0 × N0 covariance matrix given
by Eq. (9). It is useful to define the rotationally invariant
quantities,

η2 ≡ η · η; J1 ≡ −ζii; ð13Þ

J2 ≡ N
N − 1

ζ̃ijζ̃ji; ðN ≥ 2Þ; ð14Þ

J3 ≡ N2

ðN − 1ÞðN − 2Þ ζ̃ijζ̃jkζ̃ki; ðN ≥ 3Þ; ð15Þ

where repeated indices are summed over and

ζ̃ij ≡ ζij þ
1

N
δijJ1 ð16Þ

is the traceless part of ζij. The variable J2 is considered
only for N ≥ 2, and the variable J3 is considered only
for N ≥ 3.
In terms of the rotationally invariant variables, the

multivariate Gaussian distribution of Eq. (12) is represented
by [51,52]

PGðYÞ ∝ N ðα; J1Þ exp
�
−
N
2
η2 −

ðN − 1ÞðN þ 2Þ
4

J2

�
;

ð17Þ

up to the normalization constant, where

N ðα; J1Þ ¼
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p exp

�
−
α2 þ J12 − 2γαJ1

2ð1 − γ2Þ
�

ð18Þ

is the Gaussian joint distribution function of variables α
and J1.

C. Number density of peaks in a weakly
non-Gaussian field

The number density of peaks above a threshold f ≥ νσ0
is given by [5]

npkðνÞ ¼
�
σ2
σ1

�
N
Θðα − νÞδNðηÞΘðλNÞj det ζj; ð19Þ

where ΘðxÞ is the Heaviside’s step function and λN is the
smallest eigenvalue of the N × N matrix ð−ζijÞ. In order to
obtain the weakly non-Gaussian corrections of Eq. (5), the
Gaussian expectation value of Eq. (3) should be evaluated
for F ¼ npk. The calculation is straightforward but some-
how complicated, and the detailed derivation is given in
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Appendix B. The result is usefully represented by using
coefficients defined by

GijklmðνÞ≡ ð−1Þk
�
npkðνÞHijðα; J1Þ

× LðN=2−1Þ
k

�
N
2
η2
�
FlmðJ2; J3Þ

�
G
; ð20Þ

where

Hijðν; J1Þ ¼
1

N ðα; J1Þ
�
−

∂
∂α

�
i
�
−

∂
∂J1

�
j
N ðα; J1Þ ð21Þ

is the multivariate Hermite polynomials,

LðaÞ
k ðxÞ ¼ x−aex

k!
dk

dxk
ðxkþae−xÞ ð22Þ

is the generalized Laguerre polynomials,

FlmðJ2; J3Þ≡ ð−1ÞlJ23m=2

× Lð3mþðN−2ÞðNþ3Þ=4Þ
l

�ðN − 1ÞðN þ 2Þ
4

J2

�

× Pm

�
J3

J23=2

�
; ð23Þ

and

PmðxÞ ¼
1

2mm!

dm

dxm
ðx2 − 1Þm ð24Þ

is the Legendre polynomials.1 We assume m ¼ 0 when
N ¼ 2 and l ¼ m ¼ 0 when N ¼ 1. The result of G3 is
given by Eq. (B21) in Appendix B. In the case of N ¼ 1,
the terms of Gijklm with l ≠ 0 or m ≠ 0 should be omitted.
In the case of N ¼ 2, the terms with Gijklm with m ≠ 0

should be omitted. These rules always apply in the
following. Substituting Eq. (B21) into Eq. (5), we derive

n̄pkðνÞ≡ hnpkðνÞi

¼ G00000 þ
σ0
6

�
G30000Sð0Þ þ 4γG21000Sð1Þ þ 3γ2G12000S

ð2Þ
2 þ γ3G03000S

ð3Þ
1 þ 4G10100Sð1Þ þ

4ðN − 1Þ
N

γG01100Sð2Þ

þ 6γ2G10010ðSð2Þ2 − Sð2ÞÞ þ 6

N − 1
γ3G01010ðNSð3Þ2 − Sð3Þ1 Þ þ 3ðN − 2ÞðN þ 2Þ2

2ðN þ 4Þ γ3G00001

�
N þ 2

3
Sð3Þ1 − NSð3Þ2

��
;

ð25Þ

where

Sð0Þ ≡ hf3ic
σ0

4
; Sð1Þ ≡ −

3

4

hf2Δfic
σ0

2σ1
2
;

Sð2Þ ≡ −
3N

2ðN − 1Þ
hð∇f · ∇fÞΔfic

σ1
4

; Sð2Þ2 ≡ hfðΔfÞ2ic
σ1

4
;

Sð3Þ1 ≡ −
σ0

2

σ1
6
hðΔfÞ3ic; Sð3Þ2 ≡ −

σ0
2

σ1
6
hfijfijΔfic: ð26Þ

For N ¼ 1, we define Sð2Þ ≡ 0 because we have the identity
hðf0Þ2f00i ¼ 0. In deriving Eq. (25), we use identities

hf∇f · ∇fic ¼
2

3
σ0

2σ1
2Sð1Þ

hffijfijic ¼ σ1
4

�
Sð2Þ2 −

N − 1

N
Sð2Þ

�
;

hfifjfijic ¼
N − 1

3N
σ1

4Sð2Þ;

hfijfjkfkiic ¼
σ1

6

2σ0
2
ðSð3Þ1 − 3Sð3Þ2 Þ; ð27Þ

which are shown by integrations by parts.

D. Calculating coefficients

The remaining task is to calculate the coefficients Gijklm

of Eq. (20). Substituting Eqs. (17) and (19) into Eq. (20),
we have

GijklmðνÞ ¼ N1

�
σ2
σ1

�
N
�
N
2π

�
N=2

Xk

Z Y
i≤j

dζijΘðλNÞj det ζj

×Hi−1;jðν; J1ÞFlmðJ2; J3ÞN ðν; J1Þ

× exp

�
−
ðN − 1ÞðN þ 2Þ

4
J2

�
; ð28Þ

1The function FlmðJ2; J3Þ corresponds to the function
F̃lmð5J2; J3Þ of Ref. [64] and the function Flmð5J2; J3Þ of
Ref. [66] in three dimensions, but the normalization is different.
Denoting the latter function as FDiz

lm , they are related by

F̃lmð5J2; J3Þ
¼ ð5=2Þ3m=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mþ 1ÞΓð5=2Þ=Γðlþ 3mþ 5=2Þ

p
FlmðJ2; J3Þ

and

FDiz
lm ð5J2; J3Þ ¼ ð5=2Þ3m=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð5=2Þ=Γð3mþ 5=2Þ

p
FlmðJ2; J3Þ

when N ¼ 3 (a factor s3m=2 is missing in Eq. (2.18) of Ref. [66]).
Accordingly, the normalizations of bias parameters cijklm defined
later in this paper are different from this literature for m ≠ 0.
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where

Xk ≡ ð−1ÞkLðN=2−1Þ
k ð0Þ ¼ ð−1ÞkΓðkþ N=2Þ

Γðkþ 1ÞΓðN=2Þ ð29Þ

and N1 is a normalization factor defined by

N1
−1 ≡

Z
dα

Y
i≤j

dζijN ðα; J1Þ exp
�
−
ðN − 1ÞðN þ 2Þ

4
J2

�

¼ 1ffiffiffiffiffiffi
2π

p
Z Y

i≤j
dζij exp

�
−
J12

2
−
ðN − 1ÞðN þ 2Þ

4
J2

�
:

ð30Þ

For i ¼ 0, the functions H−1;jðν; J1Þ are defined by

H−1;jðν; J1Þ≡ 1

N ðν; J1Þ
Z

∞

ν
dαH0jðα; J1ÞN ðα; J1Þ: ð31Þ

In deriving Eqs. (28) and (30), we use the propertyR
dαN ðα; J1Þ ¼ e−J1

2=2=
ffiffiffiffiffiffi
2π

p
and the fact that the

Gaussian probability distribution function of η is given
by PGðηÞdNη ¼ ðN=2πÞNe−Nη2=2dNη. We change the inte-
gration variables as

N1

Y
i≤j

dζij ¼
1

ΩN
dx dN−1WdΩN; ð32Þ

where x ¼ J1 ¼ λ1 þ � � � þ λN , dN−1W represents the vol-
ume element of the other (traceless components of) rota-
tionally invariant variables, and dΩN represents the
volume element of the rotationally variant (angular) com-
ponents, and

ΩN ¼
Z

dΩN ¼ VolSOðNÞ ¼
2N−1πðN−1ÞðNþ2Þ=4Q

N
n¼2 Γðn=2Þ

; ðN ≥ 2Þ;

ð33Þ

is the volume of N-dimensional rotation group SOðNÞ.
In practice, the volume element dN−1W is obtained by
rotating the orthogonal set of coordinates to the principal
axes of ζij to have the diagonal form −ðλ1; λ2;…; λNÞ,
ordered by λ1 ≥ λ2 ≥ � � � ≥ λN.
Because of Eqs. (30) and (32), the normalization con-

dition of variables W should be

Z
D
dN−1W exp

�
−
ðN − 1ÞðN þ 2Þ

4
J2

�
¼ 1; ð34Þ

where D is the integration domain to satisfy the ordering
λ1 ≥ � � � ≥ λN . Thereby, Eq. (28) can be represented as

GijklmðνÞ ¼
1

ð2πÞN=2

�
σ2ffiffiffiffi
N

p
σ1

�
N
Xk

×
Z

∞

0

dxHi−1;jðν; xÞN ðν; xÞflmðxÞ; ð35Þ

where

flmðxÞ≡ NN

Z
dN−1WΘðλNÞλ1 � � � λNFlmðJ2; J3Þ

× exp

�
−
ðN − 1ÞðN þ 2Þ

4
J2

�
: ð36Þ

In the formula of Eq. (25), a limited number of the
coefficients Gijklm is needed. For Xk of Eq. (29), we need
only X0 ¼ 1 and X1 ¼ −N=2. For Hi−1;jðν; xÞ, we need
only H−1;0, H−1;1, H−1;3, H00, H02, H11, and H20. These
functions are straightforwardly evaluated by Eqs. (21) and
(31). For flmðxÞ, we need only f00, f10, and f01. The
necessary functions flmðxÞ are evaluated for N ¼ 1, 2, 3 in
the following subsection.

E. Specific formulas in one-, two-, and
three-dimensional spaces

1. One-dimensional case

In one-dimensional space, N ¼ 1, only the terms of
Gijk00 ≡Gijk should be retained. Equations (25) and (35) in
this case reduce to

n̄pkðνÞ ¼ G000 þ
σ0
6
½G300Sð0Þ þ 4γG210Sð1Þ þ 3γ2G120S

ð2Þ
2

þ γ3G030S
ð3Þ
1 þ 4G101Sð1Þ�; ð37Þ

and

GijkðνÞ ¼
1ffiffiffiffiffiffi
2π

p σ2
σ1

Xk

Z
∞

0

dxHi−1;jðν; xÞN ðν; xÞfðxÞ;

ð38Þ
where X0 ¼ 1, X1 ¼ −1=2. Putting N ¼ 1, ðN − 1ÞJ2 ¼ 0
and l ¼ m ¼ 0 in Eq. (36), we have

fðxÞ≡ f00ðxÞ ¼ x; ð39Þ
for x ≥ 0. The differential number density −dn̄pk=dν can
be evaluated by replacingHi−1;j → Hij in Eq. (38), and the
resulting expression can be found analytically in this
one-dimensional case. Although we do not reproduce the
result here, the analytic expression is straightforwardly
obtained by using a software package such as Mathematica.

2. Two-dimensional case

In two-dimensional space, N ¼ 2, only the terms of
Gijkl0 ≡Gijkl should be retained. Equations (25) and (35)
in this case reduce to
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n̄pkðνÞ ¼ G0000 þ
σ0
6
½G3000Sð0Þ þ 4γG2100Sð1Þ

þ 3γ2G1200S
ð2Þ
2 þ γ3G0300S

ð3Þ
1 þ 4G1010Sð1Þ

þ 2γG0110Sð2Þ þ 6γ2G1001ðSð2Þ2 − Sð2ÞÞ
þ 6γ3G0101ð2Sð3Þ2 − Sð3Þ1 Þ�; ð40Þ

and

GijklðνÞ ¼
1

4π

�
σ2
σ1

�
2

Xk

Z
∞

0

dxHi−1;jðν; xÞN ðν; xÞflðxÞ;

ð41Þ

where X0 ¼ 1, X1 ¼ −1. To evaluate Eq. (36) in the case of
N ¼ 2, we introduce a set of variables,

x ¼ λ1 þ λ2; y ¼ λ1 − λ2
2

; ð42Þ

and we have J1¼x, J2¼4y2, and j det ζj ¼ ½x2 − ð2yÞ2�=4.
The transformation of the volume element, Eq. (32), in the
case of N ¼ 2 results in dW ∝ y dy [67]. Because of the
ordering λ1 ≥ λ2, the integration domain is given by y > 0,
and in order to meet the normalization condition, Eq. (34),
we have dW ¼ 8y dy. Thus, we have

flðxÞ≡ fl0ðxÞ ¼ 8

Z
x=2

0

dy ye−4y
2ðx2 − 4y2Þð−1ÞlLlð4y2Þ:

ð43Þ

For the evaluation of Eq. (40), we need only

f0ðxÞ ¼ e−x
2 þ x2 − 1; ð44Þ

f1ðxÞ ¼ ð1þ x2Þe−x2 − 1: ð45Þ

The differential number density −dn̄pk=dν can be evaluated
by replacing Hi−1;j → Hij in Eq. (41), and the resulting
expression can be found analytically also in this two-
dimensional case. Although the resulting expression is
extremely long and we do not reproduce the result here, the
analytic expression is straightforwardly obtained by using a
software package such as Mathematica.

3. Three-dimensional case

In three-dimensional space, N ¼ 3, Eqs. (25) and (35)
reduce to

n̄pkðνÞ ¼ G00000 þ
σ0
6

�
G30000Sð0Þ þ 4γG21000Sð1Þ

þ 3γ2G12000S
ð2Þ
2 þ γ3G03000S

ð3Þ
1 þ 4G10100Sð1Þ

þ 8

3
γG01100Sð2Þ þ 6γ2G10010ðSð2Þ2 − Sð2ÞÞ

þ 3γ3G01010ð3Sð3Þ2 − Sð3Þ1 Þ

þ 75

14
γ3G00001

�
5

3
Sð3Þ1 − 3Sð3Þ2

��
ð46Þ

and

GijklmðνÞ ¼
1

ð2πÞ3=2
�

σ2ffiffiffi
3

p
σ1

�
3

Xk

×
Z

∞

0

dxHi−1;jðν; xÞN ðν; xÞflmðxÞ; ð47Þ

where X0 ¼ 1, X1 ¼ −3=2. To evaluate Eq. (36) in the case
of N ¼ 3, we introduce a set of variables [5],

x ¼ λ1 þ λ2 þ λ3; y ¼ λ1 − λ3
2

; z ¼ λ1 − 2λ2 þ λ3
2

;

ð48Þ

and we have J1 ¼ x, J2 ¼ 3y2 þ z2, J3 ¼ z3 − 9y2z, and
j det ζj ¼ ðx − 2zÞ½ðxþ zÞ2 − ð3yÞ2�=27. The transforma-
tion of the volume element, Eq. (32), in the case of N¼3

results in dW ∝ yðy2 − z2Þdy dz [5]. Because of the
ordering λ1 ≥ λ2 ≥ λ3, the integration domain is given by
−y ≤ z ≤ y, and in order tomeet the normalization condition,
Eq. (34), we have dW ¼ ð2πÞ−1=23255=2yðy2 − z2Þdy dz.
Thus, we have

flmðxÞ ¼
3255=2ffiffiffiffiffiffi

2π
p

�Z
x=4

0

dy
Z

y

−y
dzþ

Z
x=2

x=4
dy

Z
y

3y−x
dz

�

× e−5ð3y2þz2Þ=2ðx− 2zÞ½ðxþ zÞ2 − ð3yÞ2�yðy2 − z2Þ
×Flmð3y2 þ z2; z3 − 9y2zÞ: ð49Þ

For the evaluation of Eq. (40), we need only

f00ðxÞ ¼
x
2
ðx2 − 3Þ

�
erf

�
1

2

ffiffiffi
5

2

r
x

�
þ erf

� ffiffiffi
5

2

r
x

��

þ
ffiffiffiffiffiffi
2

5π

r ��
x2

2
−
8

5

�
e−5x

2=2

þ
�
31

4
x2 þ 8

5

�
e−5x

2=8

�
; ð50Þ
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f10ðxÞ ¼ −
3x
2

�
erf

�
1

2

ffiffiffi
5

2

r
x

�
þ erf

� ffiffiffi
5

2

r
x

��

−
12

5

ffiffiffiffiffiffi
2

5π

r �
e−5x

2=2 −
�
1þ 15x2

8

�

×

�
1þ 15x2

16

�
e−5x

2=8

�
; ð51Þ

f01ðxÞ ¼ −
21

25

�
erf

�
1

2

ffiffiffi
5

2

r
x

�
þ erf

� ffiffiffi
5

2

r
x

��

þ 27x
10

ffiffiffiffiffiffi
2

5π

r �
2

15
e−5x

2=2

þ
�
11

5
þ x2

4
þ 5x4

16

�
e−5x

2=8

�
: ð52Þ

The differential number density −dn̄pk=dν can be evaluated
by replacing Hi−1;j → Hij in Eq. (47).
The generalized version of multivariate Hermite poly-

nomials, Hij with i ≥ −1, have analytic expressions:
Eq. (31) can be analytically integrated. Therefore, the
expression of GijklmðνÞ of Eq. (47) is just a one-
dimensional integration.

III. CORRELATIONS OF PEAKS IN WEAKLY
NON-GAUSSIAN FIELDS

A. General formula

The lowest-order non-Gaussian correction to the
power spectrum of peaks can be calculated by a method
of generalized Wiener-Hermite expansions [57], which is
described in Appendix A. The result is given by Eq. (A30).
Identifying the biased field F as the peak number density
npk, we have

PpkðkÞ ¼ ½g1ðkÞ�2PðkÞ

þ 1

2

Z
dNp
ð2πÞN ½g2ðp;k− pÞ�2PðpÞPðjk−pjÞ

þ g1ðkÞ
Z

dNp
ð2πÞN g2ðp;k− pÞBðp;k− p;−kÞþ � � � ;

ð53Þ

where gnðk1;…; knÞ ¼ Gnðk1;…; knÞ=G0. Specifically for
peaks, from Eqs. (B18)–(B20), we have

g1ðkÞ ¼ g10000 þ g01000k2; ð54Þ

g2ðk1; k2Þ ¼ g20000 þ g11000ðk12 þ k22Þ
þ g02000k12k22 − 2g00100k1 · k2

þ 2Ng00010
N − 1

�
ðk1 · k2Þ2 −

1

N
k12k22

�
; ð55Þ

where

gijklm ≡ Gijklm

σ0
iσ1

2kσ2
jþ2lþ3mG00000

: ð56Þ

In the case of one dimension, N ¼ 1, the last term of
Eq. (55) should be omitted. The last coefficient gijklm is
calculated by Eq. (35), or we have

gijklm ¼ Xk

R∞
0 dxHi−1;jðν; xÞN ðν; xÞflmðxÞ

σ0
iσ1

2kσ2
jþ2lþ3m

R∞
0 dxH−1;0ðν; xÞN ðν; xÞf00ðxÞ

:

ð57Þ

The power spectrum of peaks is affected by exclusion
effects: the peaks of a smoothed field cannot be too close to
each other. Although the exclusion effects affect the small-
scale behavior of the correlation function of peaks, the
power spectrum of peaks on all scales is largely affected
by the effect [15,68–70]. Therefore, the predictions of the
perturbative method in this paper are more robust for
the correlation function of peaks on large scales [15].
Once the power spectrum of peaks, Eq. (53), is calculated,
the correlation function of peaks is given by

ξpkðrÞ ¼
Z

dNk
ð2πÞN eik·rPpkðkÞ: ð58Þ

B. Angular integrations

For fast and accurate evaluations of Eq. (53), one can
analytically perform angular integrations, and the resulting
expression can be evaluated by one-dimensional fast-
Fourier transforms (FFTs). In the case of three dimensions,
such a technique is developed in a context of nonlinear
perturbation theory [71–74]. We extend the same technique
to the two-dimensional case below.
For this purpose, we rewrite the expression of Eq. (53) as

PpkðkÞ ¼ ½g1ðkÞ�2PðkÞ þ
1

2

Z
k1þk2¼k

½g2ðk1; k2Þ�2Pðk1ÞPðk2Þ

þ g1ðkÞ
Z
k1þk2¼k

g2ðk1; k2ÞBðk1; k2;−k1 − k2Þ

þ � � � ; ð59Þ

where we use a simplified notation,

Z
k1þk2¼k

� � �≡
Z

dNk1
ð2πÞN

dNk2
ð2πÞN ð2πÞNδNDðk1 þ k2 − kÞ � � � :

ð60Þ

Because of the rotational symmetry, the integrands in the
second and third terms besides the delta function are
functions of only k1, k2 and k̂1 · k̂2, where k̂i ≡ ki=jkij.
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The factor g2ðk1; k2Þ and its square are given by a super-
position of a form ðk̂1 · k̂2ÞlXðk1ÞYðk2Þ, where l is a non-
negative integer. When the bispectrum Bðk1; k2;−k1 − k2Þ
is also given by a superposition of the same form, the
integrals in Eq. (59) are given by a superposition of
integrals with the following form:

Z
k1þk2¼k

ðk̂1 · k̂2ÞlXðk1ÞYðk2Þ

¼
Z

dNr e−ik·r
Z

dNk1
ð2πÞN

dNk2
ð2πÞN eiðk1þk2Þ·rðk̂1 · k̂2Þl

× Xðk1ÞYðk2Þ: ð61Þ

The angular integration of the above integral is analytically
possible as follows. First, we notice that the integrals over
k1 and k2 on the right-hand side give a function of r due
to rotational symmetry. Therefore, one can replace factors
e−ik·r and eiðk1þk2Þ·r by their averages over angle of r. In two
and three dimensions (2D and 3D, respectively), we have

e−ik·r → J0ðkrÞ; eiðk1þk2Þ·r → J0ðjk1 þ k2jrÞ; ð2DÞ;
ð62Þ

e−ik·r → j0ðkrÞ eiðk1þk2Þ·r → j0ðjk1 þ k2jrÞ; ð3DÞ;
ð63Þ

where JnðxÞ and jnðxÞ are Bessel functions and spherical
Bessel functions, respectively.

1. Two-dimensional case

In two dimensions, the integral of Eq. (61) reduces to

Z
k1þk2¼k

ðk̂1 · k̂2ÞlXðk1ÞYðk2Þ

¼ 2π

Z
rdr J0ðkrÞ ×

Z
d2k1
ð2πÞ2

d2k2
ð2πÞ2 J0ðjk1 þ k2jrÞ

× ðk̂1 · k̂2ÞlXðk1ÞYðk2Þ: ð64Þ

We apply an addition theorem of the Bessel function,

J0ðjk1 þ k2jrÞ ¼
X∞
n¼−∞

ð−1ÞnJnðk1rÞJnðk2rÞeinθ12 ; ð65Þ

where θ12 is the angle between k1 and k2, i.e., k̂1 · k̂2 ¼
cos θ12. The angular dependence can be written as

ðk̂1 · k̂2Þl ¼
1

2l
e−ilθ12

Xl

m¼0

�
l

m

�
e2imθ12 : ð66Þ

Substituting the above equations into Eq. (64), we have

Z
k1þk2¼k

ðk̂1 · k̂2ÞlXðk1ÞYðk2Þ

¼ 2π

Z
rdr J0ðkrÞ ×

1

2l

Xl

m¼0

ð−1Þl−2m
�

l

m

�

× Xl−2mðrÞYl−2mðrÞ; ð67Þ

where

XnðrÞ≡
Z

kdk
2π

JnðkrÞXðkÞ; ð68Þ

YnðrÞ≡
Z

kdk
2π

JnðkrÞYðkÞ: ð69Þ

The last integrals are the one-dimensional Hankel trans-
forms, which can be efficiently evaluated with the one-
dimensional FFT using a software package FFTLog [75].
Adopting the formula of Eq. (67) in the explicit

expression of Eq. (59), the power spectrum of peaks,
PpkðkÞ, can be evaluated by using the one-dimensional
(1D) FFT. The correlation function of peaks, Eq. (58), is
also evaluated by

ξpkðrÞ ¼
Z

kdk
2π

J0ðkrÞPpkðkÞ: ð70Þ

2. Three-dimensional case

In three dimensions, the integral of Eq. (61) reduces to

Z
k1þk2¼k

ðk̂1 · k̂2ÞlXðk1ÞYðk2Þ

¼ 4π

Z
r2dr j0ðkrÞ ×

Z
d3k1
ð2πÞ3

d3k2
ð2πÞ3 j0ðjk1 þ k2jrÞ

× ðk̂1 · k̂2ÞlXðk1ÞYðk2Þ: ð71Þ

We apply an addition theorem of the Bessel function,

j0ðjk1 þ k2jrÞ

¼
X∞
n¼0

ð−1Þnð2nþ 1Þjnðk1rÞjnðk2rÞPnðcos θ12Þ; ð72Þ

where θ12 is the angle between k1 and k2, i.e., k̂1 · k̂2 ¼
cos θ12, and PmðμÞ ¼ ð2mmÞ−1ðd=dxÞm½ðx2 − 1Þm� are
Legendre polynomials, which satisfy the orthogonality
relation,
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1

2

Z
1

−1
dμPnðμÞPmðμÞ ¼

δnm
2nþ 1

: ð73Þ

The angular dependence can be written as

ðk̂1 · k̂2Þl ¼
Xl

m¼0

ð2mþ 1ÞαlmPmðcos θ12Þ; ð74Þ

where

αlm ≡ 1

2

Z
1

−1
dμ μlPmðμÞ

¼
8<
:

l!
2ðl−mÞ=2½ðl−mÞ=2�!ðlþmþ1Þ!!

�
l ≥ m;

lþm ¼ even

�
;

0 ðotherwiseÞ:
ð75Þ

Substituting Eqs. (72) and (74) into Eq. (71), we have

Z
k1þk2¼k

ðk̂1 · k̂2ÞlXðk1ÞYðk2Þ

¼ 4π

Z
r2dr j0ðkrÞ

Xl

m¼0

ð−1Þmð2mþ 1ÞαlmXmðrÞYmðrÞ;

ð76Þ

where

XmðrÞ≡
Z

k2dk
2π2

jmðkrÞXðkÞ; ð77Þ

YmðrÞ≡
Z

k2dk
2π2

jmðkrÞYðkÞ: ð78Þ

The last integrals are the one-dimensional Hankel trans-
forms, which can be efficiently evaluated with the one-
dimensional FFT.
Adopting the formula of Eq. (76) in the explicit

expression of Eq. (59), the power spectrum of peaks,
PpkðkÞ, can be evaluated by using the 1D FFT. The
correlation function of peaks, Eq. (58), is also evaluated by

ξpkðrÞ ¼
Z

k2dk
2π2

j0ðkrÞPpkðkÞ: ð79Þ

IV. WEAK NON-GAUSSIANITY DUE TO
NONLINEAR EVOLUTIONS IN THE

LARGE-SCALE STRUCTURE

In this section, we numerically calculate the formulas
derived in previous sections when the weak non-
Gaussianity is evaluated by nonlinear perturbation theory
of gravitational instability in the large-scale structure of the

Universe. In the numerical evaluations below, the power
spectrum of the three-dimensional density field is
calculated by Boltzmann code CLASS [76,77] with a
flat Lambda cold dark matter (ΛCDM) model and cosmo-
logical parameters h ¼ 0.6732, Ωb0h2 ¼ 0.02238,
Ωcdmh2 ¼ 0.1201, ns ¼ 0.9660, and σ8 ¼ 0.8120 (Planck
2018 [78]).

A. Number density of peaks in a three-dimensional
density field with weak non-Gaussianity

induced by gravity

In a three-dimensional space, we consider an example
of peaks in the dark matter distribution in three-
dimensional space. When the peaks of matter density field
are considered, we first smooth the density field with a
smoothing kernel WðkRÞ in Fourier space, where R is the
smoothing radius. The field variable f̃ðkÞ in Fourier space
corresponds to

f̃ðkÞ ¼ WðkRÞδðkÞ; ð80Þ
where δðkÞ is the density field in Fourier space. In this
paper, we adopt a Gaussian smoothing kernel, WðkRÞ ¼
e−k

2R2=2. Denoting the linear power spectrum by PLðkÞ at
an arbitrary redshift, the power spectrum of the smoothed
density field at the lowest order is given by

PðkÞ ¼ W2ðkRÞPLðkÞ: ð81Þ
Adopting the nonlinear perturbation theory of gravita-

tional instability [18], the bispectrum of smoothed matter
density field at the lowest order is given by

Bðk1; k2; k3Þ ¼ Wðk1RÞWðk2RÞWðk3RÞ

×

�
10

7
þ
�
k1
k2

þ k2
k1

�
k1 · k2
k1k2

þ 4

7

�
k1 · k2
k1k2

�
2
�

× PLðk1ÞPLðk2Þ þ cyc: ð82Þ
The parameters of Eqs. (26) are given by integrations of the
bispectrum in a form,

SðnÞj ¼σ0
2n−4

σ1
2n

Z
k1þk2þk3¼0

sðnÞj ðk1;k2;k3ÞBðk1;k2;k3Þ; ð83Þ

where

sð0Þ ¼ 1; sð1Þ ¼ 3

4
k32; sð2Þ ¼ −

9

4
ðk1 · k2Þk32;

sð2Þ2 ¼ k12k22; sð3Þ1 ¼ k12k22k32; sð3Þ2 ¼ ðk1 · k2Þ2k32:
ð84Þ

Symmetrizing the arguments of sðnÞj , and using only the
first term of Eq. (82), Eq. (83) reduces to an expression of
three-dimensional integrals,
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SðnÞj ¼ σ0
2n−4

σ1
2n

Z
∞

0

k12dk1
2π2

k22dk2
2π2

×
Z

1

−1

dμ
2
s̃ðnÞj ðk1; k2; μÞB̃ðk1; k2; μÞ; ð85Þ

where

B̃ðk1; k2; μÞ
≡ 3Wðk1RÞWðk2RÞW½ðk12 þ k22 þ 2k1k2μÞ1=2R�

×

�
10

7
þ
�
k1
k2

þ k2
k1

�
μþ 4

7
μ2
�
PLðk1ÞPLðk2Þ; ð86Þ

and

s̃ð0Þ ¼ 1; s̃ð1Þ ¼ 1

2
ðk12 þ k22 þ k1k2μÞ;

s̃ð2Þ ¼ 3

2
k12k22ð1 − μ2Þ;

s̃ð2Þ2 ¼ 1

3
½k14 þ k24 þ 3k12k22 þ 2k1k2ðk12 þ k22Þμ�;

s̃ð3Þ1 ¼ k12k22ðk12 þ k22 þ 2k1k2μÞ;

sð3Þ2 ¼ 1

3
k12k22½ðk12 þ k22Þð2μ2 þ 1Þ þ 2k1k2μðμ2 þ 2Þ�:

ð87Þ

The integrals of Eq. (85) with Eqs. (86) and (87) are
numerically evaluated. Substituting the results into
Eq. (46), the number density of peaks n̄pkðνÞ in three
dimensions can be evaluated.
In Fig. 1, the differential number density of peaks,

−dn̄pk=dν, is plotted. The Gaussian prediction without
the effect of the bispectrum is represented by a dashed line.
The gravitational non-Gaussianity increases the number of
high-threshold (ν≳ 2.4) peaks, because of the positive
skewness in the underlying field.

B. Number density of peaks in a two-dimensional
weak lensing field with weak non-Gaussianity

induced by gravity

In a two-dimensional space, we consider an example of
peaks in the weak lensing field. When the peaks of weak
lensing field are considered, we first smooth the lensing
field with a smoothing kernel WðkϑÞ, where ϑ is the
smoothing angle. The field variable f̃ðkÞ in Fourier space
corresponds to

f̃ðkÞ ¼ WðkϑÞκðkÞ; ð88Þ

where κðkÞ is the two-dimensional convergence field of
weak lensing in Fourier space.
For simplicity, we adopt the flat-sky and Limber’s

approximations [79] in this paper. Assuming a flat

Universe, the power spectrum and the bispectrum of
convergence field are given by [54,80]

PκðkÞ ¼
Z

χ2dχq2ðχÞP3D

�
k
χ
; χ

�
ð89Þ

and

Bκðk1; k2; k3Þ ¼
Z

χ2dχq3ðχÞB3D

�
k1
χ
;
k2
χ
;
k3
χ
; χ

�
; ð90Þ

where P3Dðk; χÞ and B3Dðk1; k2; k3; χÞ are respectively the
power spectrum and bispectrum of a three-dimensional
density field at a conformal time, τ0−χ (τ0 is the conformal
time at the present),

qðχÞ≡ 3H0
2Ωm0

2aðχÞ
χs − χ

χχs
ð91Þ

is a weight function of the convergence field, and χs is the
comoving distance to the source galaxies at a fixed redshift.
In reality, the source redshift has a distribution, and the
weight function should be replaced by an integral over the
source redshift. In this paper, we assume a single redshift
for source galaxies just for simplicity.
The two-dimensional power spectrum and bispectrum

of the smoothed convergence field are given by PðkÞ¼
W2ðkϑÞPκðkÞ and Bðk1;k2;k3Þ¼Wðk1ϑÞWðk2ϑÞWðk3ϑÞ×
Bκðk1;k2;k3Þ. The three-dimensional power spectrum and
bispectrum are given by Eqs. (81) and (82) at the tree level
(lowest order) in the perturbation theory. However, one

FIG. 1. The differential number density of peaks in three
dimensions. In the upper panel, predictions of Gaussian (dashed
line) and non-Gaussian (solid line) fields are shown, where the
number density is measured in units of the smoothing radius
R ¼ 20 h−1 Mpc. In the lower panel, the ratio of the non-
Gaussian prediction to the Gaussian prediction is plotted.
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should apply the nonlinear power spectrum and bispectrum
for quantitative predictions for the weak lensing field.
For that purpose, we need analytic fitting functions of
the nonlinear power spectrum like HaloFit [81,82] and the
counterpart of the nonlinear bispectrum [83–85].
The spectral moments of Eq. (7) in the two-dimensional

convergence field are given by

σn
2¼

Z
dχ χ2nþ4q2ðχÞ

Z
kdk
2π

k2nW2ðkχϑÞP3Dðk;χÞ: ð92Þ

The skewness parameters of Eq. (26) in the two-
dimensional convergence field are given by integrations
of the bispectrum in a form,

SðnÞj ¼ σ0
2n−4

σ1
2n

Z
dχ χ2nþ6q3ðχÞ

Z
k1þk2þk3¼0

sðnÞj ðk1; k2; k3Þ

×Wðk1χϑÞWðk2χϑÞWðk3χϑÞB3Dðk1; k2; k3; χÞ;
ð93Þ

where sðnÞj are given by

sð0Þ ¼ 1; sð1Þ ¼ 3

4
k32; sð2Þ ¼ −3ðk1 · k2Þk32;

sð2Þ2 ¼ k12k22; sð3Þ1 ¼ k12k22k32; sð3Þ2 ¼ ðk1 · k2Þ2k32:
ð94Þ

Although we use the same notation sðnÞj as those in Eq. (84)

of the three-dimensional case, the coefficient of sð2Þ is
different in this two-dimensional case, and k1, k2, k3 are
two-dimensional vectors. Integrations over these vectors
are also two dimensional in Eq. (93).

After symmetrizing the arguments of sðnÞj , we can replace
the bispectrum B3D by an asymmetric counterpart, Basym

3D .,
which is defined by

B3Dðk1; k2; k3; χÞ ¼
1

3
½Basym

3D ðk1; k2; χÞ þ cyc�: ð95Þ

Since we have k1 þ k2 þ k3 ¼ 0, the bispectrum B3D can
be always expressible in the form of right-hand side of
Eq. (95), even though the choice of functional form of Basym

3D
is not necessarily unique.
In the case of the tree-level perturbation theory, we have

P3Dðk; χÞ ¼ D2ðχÞPL0ðkÞ ð96Þ

and

Basym
3D ðk1;k2;χÞ¼3D4ðχÞPL0ðk1ÞPL0ðk2Þ

×

�
10

7
þ
�
k1
k2
þk2
k1

�
k1 ·k2
k1k2

þ4

7

�
k1 ·k2
k1k2

�
2
�
;

ð97Þ

where DðχÞ is the linear growth factor at a conformal time
τ0 − χ and PL0ðkÞ is the linear power spectrum at the
present time. Beyond the tree-level perturbation theory,
one can apply appropriate nonlinear forms of P3D and Basym

3D
instead of Eqs. (96) and (97), using, e.g., the HaloFit

approaches. For quantitative predictions of the weak
lensing field, it is necessary to adopt the nonlinear power
spectrum and bispectrum in most of the cases. We use
the tree-level perturbation theory in this paper just for
simplicity.
The skewness parameters of Eq. (93) reduces to an

expression,

SðnÞj ¼ σ0
2n−4

σ1
2n

Z
dχ χ2nþ6q3ðχÞ

Z
k1dk1
2π

k2dk2
2π

×
Z

1

−1

dμ

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p s̃ðnÞj ðk1; k2; μÞB̃ðk1; k2; μ; χÞ; ð98Þ

where

B̃ðk1; k2; μ; χÞ≡Wðk1χϑÞWðk2χϑÞ
×W½ðk12 þ k22 þ 2k1k2μÞ1=2χϑ�
× Basym

3D ðk1; k2; χÞ; ð99Þ

and

s̃ð0Þ ¼ 1; s̃ð1Þ ¼ 1

2
ðk12 þ k22 þ k1k2μÞ;

s̃ð2Þ ¼ 2k12k22ð1 − μ2Þ;

s̃ð2Þ2 ¼ 1

3
½k14 þ k24 þ 3k12k22 þ 2k1k2ðk12 þ k22Þμ�;

s̃ð3Þ1 ¼ k12k22ðk12 þ k22 þ 2k1k2μÞ;

sð3Þ2 ¼ 1

3
k12k22½ðk12 þ k22Þð2μ2 þ 1Þ þ 2k1k2μðμ2 þ 2Þ�:

ð100Þ

In the case of the tree-level bispectrum, Eq. (97), the
function B̃ of Eq. (99) is equivalent to the one defined
in Eq. (86) with replacements R → χϑ and PLðkÞ →
D2ðχÞPL0ðkÞ. The functions s̃nj in this two-dimensional
case are nearly the same as Eq. (87), but the coefficient of
s̃ð2Þ is different from that in the three-dimensional case.
The integrals of Eq. (98) with Eqs. (99) and (100) are

numerically evaluated. For efficient evaluations, the results
of the three-dimensional integrations for fixed values of χ
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are tabulated and interpolated, and finally integrated over χ.
Substituting the results into Eq. (40), the number density of
peaks n̄pkðνÞ in two dimensions can be evaluated. In the
following example, we simply use the tree-level power
spectrum and bispectrum of Eqs. (96) and (97) for
illustrative purposes. However, more quantitative evalua-
tions of the weak lensing field require the use of nonlinear
power spectrum and bispectrum by, e.g., HaloFit, etc.
In Fig. 2, the differential number density of peaks in the

weak lensing field, −dn̄pk=dν, is plotted. The Gaussian
prediction without the effect of the bispectrum is repre-
sented by a dashed line. We apply the Gaussian smoothing
function with a smoothing angle ϑ ¼ 2 arc min, and the
source redshift is assumed to be fixed at zs ¼ 1.5. In
this plot, we simply use the tree-level predictions of the
power spectrum and bispectrum by the perturbation theory,
Eqs. (96) and (97) as noted above. The gravitational non-
Gaussianity increases the number of high-threshold (ν≳ 2)
peaks, because of the positive skewness in the under-
lying field.
The shape of the differential number density of peaks

relative to the Gaussian prediction in this plot explains
qualitative behavior of the results from the analysis of
numerical simulations presented in Refs. [24,38], although
the adopted parameters are different. In order to quantita-
tively compare the prediction with the results of numerical
simulations, one needs to use nonlinear fitting functions
for the power spectrum and bispectrum, and also needs to
take noise effects into account. It is beyond the scope of
this paper to make detailed comparison with numerical

simulations of weak lensing field, which is one of the
interesting future applications of this paper.

C. Correlations of peaks with weak non-Gaussianity
induced by gravity

For the last example of numerical demonstration, we
consider the spatial correlation of peaks with weak non-
Gaussianity induced by gravity in three-dimensional space,
N ¼ 3. Substituting Eqs. (81) and (82) into Eq. (59), we
obtain an expression which consists of a superposition of
integrals with a form of Eq. (76). Consequently, we need
the functions

ξðnÞm ðrÞ≡
Z

k2dk
2π2

jmðkrÞknW2ðkRÞPLðkÞ; ð101Þ

AðnÞ
m ðrÞ≡

Z
k2dk
2π2

jmðkrÞknWðkRÞPLðkÞ; ð102Þ

BðnÞ
m ðrÞ≡

Z
k2dk
2π2

jmðkrÞknWðkRÞ; ð103Þ

to represent the final result. The final expression has the
form

PpkðkÞ ¼ 4π

Z
r2dr j0ðkrÞ

h
ξð1Þpk ðrÞ þ ξð2Þpk ðrÞ

þ g1ðkÞSNGðk; rÞ
i
; ð104Þ

FIG. 2. The differential number density of peaks in two-
dimensional weak lensing field. In the upper panel, predictions
of Gaussian (dashed line) and non-Gaussian (solid line) fields are
shown, where the number density is measured in units of the
smoothing angle ϑ ¼ 10 arc min. In the lower panel, the ratio of
the non-Gaussian prediction to the Gaussian prediction is plotted.
Nonlinearity and noise effects are not included.

FIG. 3. The power spectrum of peaks in three-dimensional
density field with a smoothing radius R ¼ 20 h−1 Mpc. Predic-
tions of Gaussian field with first-order and second-order approx-
imations are shown in dashed and dotted lines, respectively (the
second-order approximation contains the first-order and second-
order contributions). The component of non-Gaussian correction
is shown in a dot-dashed line. The total correlation function is
shown in a solid line. The scaled power spectrum of the
underlying smoothed density field, b102PLðkÞW2ðkRÞ, is also
plotted in a lower solid line.
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where ξð1Þpk ðrÞ, ξð2Þpk ðrÞ, and SNGðk; rÞ are polynomials of
the functions of Eqs. (101)–(103). Their explicit forms
are somewhat tedius and given in Appendix C,
Eqs. (C2)–(C4).
For the numerical evaluation of Eq. (104), we just need

Hankel transforms, which can be efficiently performed by
the use of FFTLog. In Fig. 3, the result of Eq. (104) is plotted,
together with partial components of the integral. We
subtract off the zero-lag value Pðk → 0Þ from the power
spectrum for the following reason: As noted in the last
paragraph of Sec. III A, it has been suggested that
the behavior of the correlation function below the scales
of the exclusion zone (≲R) nontrivially affects the power
spectrum on large scales (k → 0) [15,68–70]. Accordingly,
the second-order approximation of the power spectrum

[the contribution of ξð2Þpk ðrÞ in Eq. (104)] has a nonzero
value in the limit of k → 0, which corresponds to unphys-
ical component in the perturbative expansion. To remove
this unphysical effect, we subtract off the zero-lag value
Pðk → 0Þ from the second-order approximation of the
power spectrum. Other components do not have the
zero-lag value.
The second-order approximation of the power spec-

trum with Gaussian components [the first two terms in the
integrand of Eq. (104)] is considered to be accurate on
scales ≲0.1h Mpc−1 according to the previous analysis
[15]. The shape of the non-Gaussian correction is almost
proportional to the Gaussian contribution on most of the
scales. Thereby, the total shape of the peak power
spectrum does not change much by the effect of non-
Gaussianity, but the amplitude does change.

Physical implications of the peak clustering are more
apparent in configuration space. The corresponding corre-
lation function, Eq. (58), and its components are plotted
in Fig. 4. The vertical axis corresponds to r4 times the
correlation function of peaks. Striking features are the
existence of peaks at around 100 h−1 and 200 h−1Mpc and a
trough at around 150 h−1Mpc. These features are largely
due to the effect of baryon acoustic oscillations (BAOs) in
the underlying power spectrum. In fact, if the underlying
power spectrum is replaced by the those of cold dark matter
(CDM) with no baryon, the resulting correlation function
is given by Fig. 5. The amplitude of the peak around
100 h−1Mpc is significantly reduced, and the trough and
peak on larger scales both vanish. The fact that baryonic
features in the peak correlation are significantly enhanced
is already pointed out by previous work with Gaussian
statistics [14,86]. Here, we see the same property holds
with weakly non-Gaussian statistics.

V. CONCLUSIONS

In this paper, analytic formulas for the statistics of peaks
of weakly non-Gaussian random field are derived. We
consider the lowest-order corrections of non-Gaussianity
to the Gaussian predictions, taking the linear terms of the
bispectrum into account. First, we generally consider the
statistics of peaks inN-dimensional space, and derive formal
expressions of number densities, Eq. (25), and the power
spectrum, Eq. (53). In order to evaluate the formal expres-
sions, one needs to evaluateGijklm of Eq. (35). The functions
flmðxÞ are evaluated in each dimension N ¼ 1, 2, 3 as
Eqs. (39), (43), and (49). The above equations are our main
results of this paper. Useful formulas of angular integrations
to evaluate the power spectrum and the correlation functions
of peaks for N ¼ 2, 3 are given by Eqs. (67) and (76). In
order to illustrate possible applications of our results, we

FIG. 4. The correlation function of peaks in three-dimensional
density field with a smoothing radius R ¼ 20 h−1Mpc. Predic-
tions of Gaussian field with first-order and second-order approx-
imations are shown in dotted and dashed lines, respectively. The
component of non-Gaussian correction is shown in a dot-dashed
line. The total correlation function is shown in a solid line.

FIG. 5. Same as Fig. 4, but the underlying power spectrum is
given by that of a CDM power spectrum without baryons.
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calculate three examples of statistics of peaks for cosmo-
logical fields: the number density of peaks in a three-
dimensional density field, the number density of peaks in
a two-dimensional weak lensing field, and correlations of
peaks in a three-dimensional density field. In these exam-
ples, the non-Gaussianity is assumed to be induced by
nonlinear evolutions of gravitational instability.
The expansion scheme of the peak abundance by the weak

non-Gaussianity in this paper is equivalent to the pioneering
work of Ref. [52]. In this previous work, the coefficients
of the expansion for the three-dimensional peaks involves
multidimensional integrations which should be evaluated by
semi-Monte-Carlo integration. As for the peak abundance,
one of the new developments in this paper is to provide new
formulas for the coefficients, all of which can be evaluated
by virtually one-dimensional integrations. The new formulas
are much easier to evaluate than the previous method, andwe
believe they can be widely applied to many problems
involving peak statistics in cosmology.
For another new development in this paper, we provide

new formulas for the peak correlations in the presence of
weak non-Gaussianity. The methods of deriving general
formulas in two and three dimensions are depicted, and a
concrete formula in three dimensions with weak non-
Gaussianity induced by gravity is presented [Eqs. (104)
and (C2)–(C4)]. Although we do not give the explicit
result, the corresponding formula for two-dimensional
lensing field can be straightforwardly derived.
An interesting feature of the peak correlations of the

matter density field is the enhancement of the effect of BAO
in the correlation function of peaks (Fig. 4). Even though
the BAO peaks in the correlation function of the density
field are smeared by the smoothing, the scale of BAO is still
encoded in the correlation function of peaks.
The main purpose of this paper is to provide the analytic

formulas for the peak statistics in the presence of the weak
non-Gaussianity. There are several directions for applying
and extending the results of this paper. First, the peaks of
the galaxy number density are obvious sites of the
cosmological structures such as the clusters and super-
clusters of galaxies. While the analytic formulas for
statistics of peaks in Gaussian random fields are only
applicable in the Lagrangian density fields, those in weakly
non-Gaussian fields are applicable in the Eulerian density
fields, which can be directly observable. In the era of large
cosmological surveys, the statistics of peaks in the galaxy
number density fields would be useful tools beyond the
two-point statistics of density fields. Second, analytic
formulas of this paper are also useful for the analysis of
two-dimensional weak lensing fields. The weak lensing
fields on scales of interest are definitely non-Gaussian.
In applying the results of this paper, it is necessary to
include the effects of noise, which should be rather
straightforward. Third, we only take into account the

effect of lowest-order non-Gaussianity characterized by
the bispectrum. The next-order contributions include the
linear effects of the trispectrum and quadratic effects of
the bispectrum. While the next-order contributions of
non-Gaussianity are more complicated than those in this
paper, it is feasible to extend the results in this direction.
Fourth, the analysis of the abundance and correlation of
PBHs in the presence of initial non-Gaussianity will be an
interesting application of the results of this paper. We hope
to address the possibility of the above applications in the
near future.
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APPENDIX A: AN EXPANSION METHOD WITH
THE GENERALIZED WIENER-HERMITE

FUNCTIONALS

In this Appendix, we review a method of Ref. [57] to
derive the weakly non-Gaussian corrections to the statis-
tical quantities. The derivation is based on the method of
generalized Wiener-Hermite expansion of the biased field
[57], and this method is closely related to a method in the
integrated perturbation theory [87]. While the derivation
of Ref. [57] is mostly presented in configuration space,
we present the equivalent method in Fourier space in this
Appendix.
We assume the random field f has a zero mean,

hfi ¼ 0, and is statistically homogeneous and isotropic in
N-dimensional space. It is convenient to work in Fourier
space, and each Fourier coefficient is denoted by f̃ðkÞ. Our
convention of the Fourier transform is given by

f̃ðkÞ ¼
Z

dNxe−ik·xfðxÞ; fðxÞ ¼
Z

dNk
ð2πÞN eik·xf̃ðkÞ:

ðA1Þ

The statistical properties are specified by the probability
distribution functional P½f̃�, which gives the probability
density for a particular form of function f̃ðkÞ.
The partition function is given by a functional integral,

Z½J� ¼
Z

Df̃ exp

�
i
Z

dNk
ð2πÞN JðkÞf̃ðkÞ

�
P½f̃�; ðA2Þ

where Df̃ is the volume element of the functional integral
over the function f̃ðkÞ with appropriate measures.
According to the cumulant expansion theorem [88], we

have
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lnZ½J� ¼
X∞
n¼1

in

n!

Z
dNk1
ð2πÞN � � � d

Nkn
ð2πÞN hf̃ðk1Þ � � � f̃ðknÞicJðk1Þ � � � JðknÞ; ðA3Þ

where h� � �ic represents the n-point cumulant. From the above equation, the partition function is represented by

Z½J� ¼ exp

�
−
1

2

Z
dNk
ð2πÞN PðkÞJð−kÞJðkÞ

�
exp

�X∞
n¼3

in

n!

Z
dNk1
ð2πÞN � � � d

Nkn
ð2πÞN hf̃ðk1Þ � � � f̃ðknÞicJðk1Þ � � � JðknÞ

�
; ðA4Þ

where PðkÞ is the power spectrum defined by

hf̃ðk1Þf̃ðk2Þic ¼ ð2πÞNδNðk1 þ k2ÞPðkÞ: ðA5Þ

Inverting Eq. (A2), substituting Eq. (A4), and performing Gaussian integration, the probability distribution functional is
represented by

P½f̃� ¼
Z

D̄JZ½J� exp
�
−i

Z
dNk
ð2πÞN JðkÞf̃ðkÞ

�

¼ exp

�X∞
n¼3

ð−1Þn
n!

Z
dNk1 � � � dNkNhf̃ðk1Þ � � � f̃ðknÞic

δn

δf̃ððk1Þ � � � δf̃ðknÞ

�
PG½f̃�; ðA6Þ

where D̄½J� is the volume element of the functional integral over the function JðkÞwith appropriate measures, δ=δf̃ðkÞ is the
functional derivative, and

PG½f̃� ¼
Z

D̄½J� exp
�
−
1

2

Z
dNk
ð2πÞN PðkÞJð−kÞJðkÞ − i

Z
dNk
ð2πÞN JðkÞf̃ðkÞ

�
∝ exp

�
−
1

2

Z
dNk
ð2πÞN

f̃ð−kÞf̃ðkÞ
PðkÞ

�
ðA7Þ

is the Gaussian probability distribution functional. The last
expression is the result of the functional integration up to
the normalization constant.
Equation (A6) is a fundamental equation to relate the

non-Gaussian statistics to the Gaussian statistics, and the
latter is analytically easier to calculate than the former in
general. In weakly non-Gaussian cases when the higher-
order cumulants are not important, one can expand the
exponent and can investigate the effects of lower-order
cumulants in the non-Gaussian distributions.
Expanding the exponent of Eq. (A6), we generally have

functional derivatives of PG, which is straightforwardly
calculated by the last expression of Eq. (A7) and results
in polynomials of f̃ðkÞ times PG. The Wiener-Hermite
functionals are the polynomials of this kind. They are
defined by

Hnðk1;…; knÞ≡ ð−1Þn
PG

δnPG

δf̃ðk1Þ � � � δf̃ðknÞ
; ðA8Þ

and H0 ¼ 1 when n ¼ 0. We also define the dual func-
tionals H⋆

n by

H⋆
nðk1;…; knÞ≡ ð2πÞNnPðk1Þ � � �PðknÞHnð−k1;…;−knÞ:

ðA9Þ

The first several functionals are given by

H⋆
0 ¼ 1; ðA10Þ

H⋆
1ðkÞ ¼ f̃ðkÞ; ðA11Þ

H⋆
2ðk1; k2Þ ¼ f̃ðk1Þf̃ðk2Þ − ð2πÞNδNðk1 þ k2ÞPðk1Þ;

ðA12Þ

H⋆
3ðk1; k2; k3Þ ¼ f̃ðk1Þf̃ðk2Þf̃ðk3Þ

− ½ð2πÞNδNðk1 þ k2ÞPðk1Þf̃ðk3Þ þ cyc�;
ðA13Þ

and so forth. The following orthogonality relation is shown
in Ref. [57],

hH⋆
nðk1;…; knÞHmðk01;…; k0mÞiG
¼ δnm½δNðk1 − k01Þ � � � δNðkm − k0nÞ þ symðk1;…; knÞ�;

ðA14Þ

where h� � �iG ¼ R
Df̃ � � �PG is the expectation value of the

Gaussian statistics with the power spectrum PðkÞ, and
symðk1;…; knÞ indicates ðn! − 1Þ terms to symmetrize the
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previous term with respect to permutations of the arguments k1;…; kn. Using the generalized Wiener-Hermite functionals,
the probability distribution functional of non-Gaussian statistics of Eq. (A6) is represented by

P ¼ H0PG þ 1

6

Z
dNk1dNk2dNk3hf̃ðk1Þf̃ðk2Þf̃ðk3ÞicH3ðk1; k2; k3ÞPG

þ 1

72

Z
dNk1 � � � dNk6hf̃ðk1Þf̃ðk2Þf̃ðk3Þichf̃ðk4Þf̃ðk5Þf̃ðk6ÞicH6ðk1;…; k6ÞPG

þ 1

24

Z
dNk1 � � � dNk4hf̃ðk1Þ � � � f̃ðk4ÞicH4ðk1; k2; k3; k4ÞPG þ � � � : ðA15Þ

Assuming the higher-order cumulants are small, weakly non-Gaussian statistics are calculated by the above expansion
scheme. This expansion is a generalization of the Edgeworth expansion [56,57,89,90].
Since the generalized Wiener-Hermite functionals are orthogonal functionals with orthogonality given by Eq. (A14), any

given functional F ðxÞ of the random field f can be expanded by the functionals. In Fourier space, the expansion of F̃ ðkÞ is
given by

F̃ ðkÞ ¼
X∞
n¼0

1

n!

Z
dNk1
ð2πÞN � � � d

Nkn
ð2πÞN ð2πÞNδNðk1 þ � � � þ kn − kÞGnðk1;…; knÞH⋆

nðk1;…; knÞ; ðA16Þ

where the appearance of the delta function in the integrand is a consequence of translational invariance of the space. Due to
the orthogonality relation of Eq. (A14), the coefficient functions Gn are given by

ð2πÞNδNðk1 þ � � � þ kn − kÞGnðk1;…; knÞ ¼ ð2πÞNnhF̃ ðkÞHnðk1;…; knÞiG ¼ ð2πÞNn

�
δnF̃ ðkÞ

δf̃ððk1Þ � � � δf̃ðknÞ

�
G

: ðA17Þ

Fourier transforming the above equation with respect to k, we have

Gnðk1;…; knÞ ¼ ð2πÞNneiðk1þ·þknÞ·xhF ðxÞHnðk1;…; knÞiG ¼ ð2πÞNneiðk1þ·þknÞ·x
�

δnF ðxÞ
δf̃ððk1Þ � � � δf̃ðknÞ

�
G

: ðA18Þ

Due to the translational invariance, the second and third expressions are independent of the position x. Thus, in practice,
we can conveniently evaluate the function Gn by putting x ¼ 0 in the above equation. Using Eqs. (A15) and (A18), the
expectation value of any functional F of f at any position is expanded as

hF i ¼
Z

DfF ½f�P ¼ G0 þ
1

6

Z
dNk1
ð2πÞN

dNk2
ð2πÞN

dNk3
ð2πÞN hf̃ðk1Þf̃ðk2Þf̃ðk3ÞicG3ðk1; k2; k3Þ

þ 1

24

Z
dNk1
ð2πÞN � � � d

Nk4
ð2πÞN hf̃ðk1Þ � � � f̃ðk4ÞicG4ðk1; k2; k3; k4Þ

þ 1

72

Z
dNk1
ð2πÞN � � � d

Nk6
ð2πÞN hf̃ðk1Þf̃ðk2Þf̃ðk3Þichf̃ðk4Þf̃ðk5Þf̃ðk6ÞicG6ðk1;…; k6Þ þ � � � : ðA19Þ

This expansion has a diagrammatic interpretation [57].
Higher-order correction terms can be efficiently derived by
the diagrammatic rules.
Similarly, we obtain the expansion of the two-point

statistics in Fourier space (the power spectrum),

hF̃ ðkÞF̃ ðk0Þi ¼
Z

Df̃F ðkÞF ðk0ÞP: ðA20Þ

Substituting Eqs. (A15) and (A16) into the above
equation, there appear terms involving factors of the type
hH⋆

nH⋆
mHliG. These factors can be evaluated by applying

Wick’s theorem for Gaussian statistics, and more conven-
iently evaluated by the diagrammatic method developed
in Ref. [57]. In short, contractions of the field which
are contained in the same Hn or H⋆

n should be dropped
when applying Wick’s theorem. As a result, the factor
hH⋆

nH⋆
mHliG is nonzero only when nþmþ l is an even

number, and we have, e.g.,

hH⋆
1ðk1ÞH⋆

1ðk01ÞH0iG ¼ ð2πÞNPðk1ÞδNðk1 þ k01Þ; ðA21Þ

hH⋆
1ðk1ÞH⋆

3ðk01; k02; k03ÞH0iG ¼ 0; ðA22Þ

TAKAHIKO MATSUBARA PHYS. REV. D 101, 043532 (2020)

043532-16



hH⋆
2ðk1; k2ÞH⋆

2ðk01; k02ÞH0iG
¼ ð2πÞ2NPðk1ÞPðk2ÞδNðk1 þ k01ÞδNðk2 þ k02Þ þ sym;

ðA23Þ

hH⋆
0H

⋆
1ðk1ÞH3ðk01; k02; k03ÞiG ¼ 0; ðA24Þ

hH⋆
0H

⋆
3ðk1; k2; k3ÞH3ðk01; k02; k03ÞiG

¼ δNðk1 − k01ÞδNðk2 − k02ÞδNðk3 − k03Þ þ sym; ðA25Þ

hH⋆
1ðk1ÞH⋆

2ðk01; k02ÞH3ðk001; k002; k003ÞiG
¼ δNðk1 − k001ÞδNðk01 − k002ÞδNðk02 − k003Þ þ sym; ðA26Þ

and so forth, where þsym represents the symmetrization
terms which symmetrize the previous term with respect to
the arguments of H⋆

n or Hn. For example, the symmetriza-
tion terms of Eqs. (A25) correspond to cyclic permutations
with respect to k1, k2, and k3. Substituting Eqs. (A15) and
(A16) into Eq. (A20), using Eqs. (A21)–(A24), and
subtracting the connected part, we have

hF̃ ðkÞF̃ ðk0Þic ¼ ð2πÞNδNðkþ k0ÞG1ðkÞG1ð−kÞPðkÞ

þ 1

2
ð2πÞNδNðkþ k0Þ

Z
dNk1
ð2πÞN

dNk2
ð2πÞN ð2πÞNδNðk1 þ k2 − kÞG2ðk1; k2ÞG2ð−k1;−k2ÞPðk1ÞPðk2Þ

þ 1

2

�
G1ðkÞ

Z
dNk1
ð2πÞN

dNk2
ð2πÞN ð2πÞNδNðk1 þ k2 − k0ÞG2ðk1; k2Þhf̃ðkÞf̃ðk1Þf̃ðk2Þic þ ðk ↔ k0Þ

�
þ � � � :

ðA27Þ

This expression also has a diagrammatic interpretation [57].
Higher-order correction terms can be efficiently derived
by the diagrammatic rules. In Eqs. (A19) and (A27), the
n-point correlations of the Fourier modes hf̃ðk1Þ � � � f̃ðknÞic
contain a delta function δNðk1 þ � � � kNÞ due to the trans-
lational invariance of space, and parts of the integrals are
trivially performed. For example, the bispectrum B is
defined by

hf̃ðk1Þf̃ðk2Þf̃ðk3Þic ¼ ð2πÞNδNðk1 þ k2 þ k3ÞBðk1; k2; k3Þ:
ðA28Þ

The power spectrum PF ðkÞ of the biased field F is
given by

hF̃ ðkÞF̃ ðk0Þic
hF i2 ¼ ð2πÞNδNðkþ k0ÞPF ðkÞ: ðA29Þ

Thus, from Eqs. (A19) and (A27) and (A28), we have

PF ðkÞ ¼ ½g1ðkÞ�2PðkÞ

þ 1

2

Z
dNp
ð2πÞN ½g2ðp; k − pÞ�2

× PðpÞPðjk − pjÞ þ g1ðkÞ

×
Z

dNp
ð2πÞN g2ðp; k − pÞBðp; k − p;−kÞ þ � � � ;

ðA30Þ

where

gnðk1;…; knÞ≡ Gnðk1;…; knÞ
G0

; ðA31Þ

and we have used a parity symmetry, gnð−k1;…;−knÞ ¼
gnðk1;…; knÞ and Bð−k1;−k2;−k3Þ ¼ Bðk1; k2; k3Þ. The
non-Gaussian corrections of Eq. (A19) for the denominator
of Eq. (A29) do not contribute to the above lowest-order
correction, although they contribute to higher-order cor-
rections in general. Equation (A30) has the same form as
the result of the integrated perturbation theory [87] if
we identify gn ¼ cn, where cn is the renormalized bias
function. However, this identification is valid only for the
lowest-order non-Gaussian approximation, because cn is
defined with non-Gaussian statistics while gn is defined
with Gaussian statistics.

APPENDIX B: GAUSSIAN RESPONSE
FUNCTIONS FOR PEAKS

In this Appendix, we calculate the Gaussian n-point
response functions of Eq. (3) for the peak number density,
F ¼ npk, in a generally N-dimensional space. The func-
tions are defined by

Gnðk1;…; knÞ≡ ð2πÞNn

�
δnnpk

δf̃ðk1Þ � � � δf̃ðknÞ

�
G

: ðB1Þ

The peak number density npkðνÞ given by Eq. (19) is a
function of the field derivatives, α, ηi, and ζij of Eq. (8).
Thereby, the functional derivative δ=δf̃ðkÞ acting on npk is
replaced by
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ð2πÞN δ

δf̃ðkÞ → ð2πÞN
�

δα

δf̃ðkÞ
∂
∂αþ δηi

δf̃ðkÞ
∂
∂ηi þ

δζij
δf̃ðkÞ

∂
∂ζij

�

¼ 1

σ0

∂
∂αþ iki

σ1

∂
∂ηi −

kikj
σ2

∂
∂ζij ≡ D̂ðkÞ: ðB2Þ

For the operator ∂=∂ζij, the derivatives are taken as if ζij
and ζji are independent for i ≠ j [65]. Thus, Eq. (B1) is
rewritten as

Gnðk1;…; knÞ ¼ ð−1Þn
Z

dNYYnpkD̂ðk1Þ � � � D̂ðknÞPGðYÞ:

ðB3Þ

To calculate the differentiations of the above expression,
the relations

∂ðη2Þ
∂ηi ¼ 2ηi;

∂J1
∂ζij ¼ −δij;

∂J2
∂ζij ¼ Nζ̃ji;

∂ζ̃kl
∂ζij ¼ δikδjl −

1

N
δijδkl ðB4Þ

are useful. The Gaussian probability distribution function
for the field derivatives PGðYÞ given by Eq. (17) is a

function of only rotationally invariant variables α, η2, J1,
and J2. Using the above relations, the first-order derivatives
are given by

∂
∂ηi PG ¼ 2ηi

∂
∂ðη2ÞPG;

∂
∂ζij PG ¼

�
−δij

∂
∂J1 þ Nζ̃ji

∂
∂J2

�
PG; ðB5Þ

the second-order derivatives are given by

∂2

∂ηi∂ηj PG ¼ 2

�
δij

∂
∂ðη2Þ þ 2ηiηj

∂2

∂ðη2Þ2
�
PG; ðB6Þ

∂2

∂ζij∂ζklPG¼
�
δijδkl

∂2

∂J12−
2N
N−1

ðδijζ̃lkþδklζ̃jiÞ
∂2

∂J1∂J2
þ 4N2

ðN−1Þ2 ζ̃jiζ̃lk
∂2

∂J22

þ 2

N−1
ðNδilδjk−δijδklÞ

∂
∂J2

�
PG; ðB7Þ

and the third-order derivatives are given by

∂3

∂ηi∂ηj∂ηk PG ¼ 4

�
ðδijηk þ δjkηi þ δkiηjÞ

∂2

∂ðη2Þ2 þ 2ηiηjηk
∂3

∂ðη2Þ3
�
PG; ðB8Þ

∂3

∂ζij∂ζkl∂ζmn
PG ¼

�
−δijδklδmn

∂3

∂J13 þ
2N

N − 1
ðδijδklζ̃nm þ δijδmnζ̃lk þ δklδmnζ̃jiÞ

∂3

∂J12∂J2
−

4N2

ðN − 1Þ2 ðδijζ̃lkζ̃nm þ δklζ̃jiζ̃nm þ δmnζ̃jiζ̃lkÞ
∂3

∂J1∂J22

þ 8N3

ðN − 1Þ3 ζ̃jiζ̃lkζ̃nm
∂3

∂J23 þ
2N

N − 1

�
3

N
δijδklδmn − δijδknδlm − δklδinδjm − δilδjkδmn

� ∂2

∂J1∂J2
þ 4N2

ðN − 1Þ2
�
δinδjmζ̃lk þ δknδlmζ̃ji þ δilδjkζ̃nm −

δijδklζ̃nm þ δijδmnζ̃lk þ δklδmnζ̃ji
N

� ∂2

∂J22
�
PG: ðB9Þ

The integrand of Eq. (B3) other than the product of operators, D̂ðk1Þ � � � D̂ðknÞ, contains only rotationally invariant
variables. Thus, we can first average over the angular dependence in the product of operators. Denoting the angular average
by h� � �iΩ, we have

hηiiΩ ¼ 0; hηiηjiΩ ¼ 1

N
δijη

2; hζ̃ijiΩ ¼ 0; hζ̃ijζ̃kliΩ ¼ J2
NðN þ 2Þ

�
δikδjl þ δilδjk −

2

N
δijδkl

�
; ðB10Þ

hζ̃ijζ̃klζ̃mniΩ ¼ J3
N3ðN þ 2ÞðNþ 4Þ ½16δijδklδmn − 4Nðδijδkmδln þ δijδknδlm þ δklδimδjn þ δklδinδjm þ δmnδikδjl þ δmnδilδjkÞ

þN2ðδikδlmδjn þ δjkδlmδin þ δilδkmδjn þ δikδlnδjm þ δjlδkmδin þ δilδknδjm þ δjkδlnδim þ δjlδknδimÞ�;
ðB11Þ

due to rotational symmetry. Using the above equations, we have
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hDðkÞPGiΩ ¼
�
1

σ0

∂
∂αþ k2

σ2

∂
∂J1

�
PG; ðB12Þ

hDðk1ÞDðk2ÞPGiΩ ¼
	�

1

σ0

∂
∂αþ k12

σ2

∂
∂J1

��
1

σ0

∂
∂αþ k22

σ2

∂
∂J1

�
−
2ðk1 · k2Þ

σ1
2

�
1þ 2

N
η2

∂
∂ðη2Þ

� ∂
∂ðη2Þ

þ 2N
ðN − 1Þσ22

�
ðk1 · k2Þ2 −

1

N
k12k22

��
1þ 4J2

ðN − 1ÞðN þ 2Þ
∂
∂J2

� ∂
∂J2



PG; ðB13Þ

hDðk1ÞDðk2ÞDðk3ÞiΩPG ¼
	�

1

σ0

∂
∂αþ k12

σ2

∂
∂J1

��
1

σ0

∂
∂αþ k22

σ2

∂
∂J1

��
1

σ0

∂
∂αþ k32

σ2

∂
∂J1

�

−
2ðk1 · k2Þ

σ1
2

�
1

σ0

∂
∂αþ k32

σ2

∂
∂J1

��
1þ 2

N
η2

∂
∂ðη2Þ

� ∂
∂ðη2Þ þ cyc

þ 2N
ðN − 1Þσ22

�
ðk1 · k2Þ2 −

1

N
k12k22

��
1

σ0

∂
∂αþ k32

σ2

∂
∂J1

��
1þ 4J2

ðN − 1ÞðN þ 2Þ
∂
∂J2

� ∂
∂J2

þ cycþ 64N2

ðN − 1Þ3ðN þ 2ÞðN þ 4Þσ23
�
ðk1 · k2Þðk2 · k3Þðk3 · k1Þ

−
k12ðk2 · k3Þ þ cyc

N
þ 2

N2
k12k22k32

�
J3

∂3

∂J23


PG: ðB14Þ

According to the form of PG in Eq. (17), we have

�
1þ 2

N
η2

∂
∂ðη2Þ

� ∂
∂ðη2ÞPG ¼ N

2
ðη2 − 1ÞPG ¼ −LðN=2−1Þ

1

�
N
2
η2
�
PG; ðB15Þ

�
1þ 4J2

ðN − 1ÞðN þ 2Þ
∂
∂J2

� ∂
∂J2 PG ¼ ðN − 1ÞðN þ 2Þ

4
ðJ2 − 1ÞPG ¼ F10ðJ2; J3ÞPG; ðB16Þ

J3
∂3

∂J23 PG ¼ −
ðN − 1Þ3ðN þ 2Þ3

64
J3PG ¼ −

ðN − 1Þ3ðN þ 2Þ3
64

F01ðJ2; J3ÞPG; ðB17Þ

where FlmðJ2; J3Þ is defined by Eq. (23). Substituting Eqs. (B15)–(B17) into Eqs. (B12)–(B14), Eq. (B3) is represented in
terms of Gijklm of Eq. (20). The results are given by

G0 ¼ G00000; ðB18Þ

G1ðkÞ ¼
G10000

σ0
þ G01000

σ2
k2; ðB19Þ

G2ðk1; k2Þ ¼
G20000

σ0
2

þ G11000

σ0σ2
ðk12 þ k22Þ þ

G02000

σ2
2

k12k22 −
2G00100

σ1
2

k1 · k2 þ
2NG00010

ðN − 1Þσ22
�
ðk1 · k2Þ2 −

1

N
k12k22

�
; ðB20Þ

G3ðk1; k2; k3Þ ¼
G30000

σ0
3

þ G21000

σ0
2σ2

ðk12 þ k22 þ k32Þ þ
G12000

σ0σ2
2
ðk12k22 þ cycÞ

þ G03000

σ2
3

k12k22k32 −
2G10100

σ0σ1
2
ðk1 · k2 þ cycÞ − 2G01100

σ1
2σ2

½ðk1 · k2Þk32 þ cyc�

þ 2NG10010

ðN − 1Þσ0σ22
�
ðk1 · k2Þ2 −

1

N
k12k22

�
þ 2NG01010

ðN − 1Þσ23
�
ðk1 · k2Þ2k32 þ cyc −

3

N
k12k22k33

�

−
N2ðN þ 2Þ2G00001

ðN þ 4Þσ23
�
ðk1 · k2Þðk2 · k3Þðk3 · k1Þ −

ðk1 · k2Þ2k32 þ cyc
N

þ 2

N2
k12k22k32

�
: ðB21Þ

STATISTICS OF PEAKS OF WEAKLY NON-GAUSSIAN RANDOM … PHYS. REV. D 101, 043532 (2020)

043532-19



APPENDIX C: RADIAL FUNCTIONS FOR CORRELATIONS OF PEAKS

In this Appendix, radial functions ξð1Þpk ðrÞ, ξð2Þpk ðrÞ, and SNGðk; rÞ in Eq. (104) are explicitly given by the functions ξðnÞm ðrÞ,
AðnÞ
m ðrÞ, and BðnÞ

m ðrÞ of Eqs. (101)–(103). The relations are derived from Eqs. (59), (76), (81), and (82). The results for

ξð1Þpk ðrÞ and ξð2Þpk ðrÞ are already given in Ref. [15]. We reproduce the latter results here for completeness. The result for
SNGðk; rÞ below is new in this paper.
In the following, we adopt notations

bij ≡ gij000; χk ≡ g00k00; ωlm ≡ g000lm: ðC1Þ

The final results are given by

ξð1Þpk ¼ b102ξ
ð0Þ
0 þ 2b10b01ξ

ð2Þ
0 þ b012ξ

ð4Þ
0 ; ðC2Þ

ξð2Þpk ¼ b202ðξð0Þ0 Þ2 þ 4b20b11ξ
ð0Þ
0 ξð2Þ0 þ 2b112ξ

ð0Þ
0 ξð4Þ0 þ 2

�
b20b02 þ b112 þ

2

3
χ1

2

�
ðξð2Þ0 Þ2 þ 4b11b02ξ

ð2Þ
0 ξð4Þ0 þ 4b20χ1ðξð1Þ1 Þ2

þ 8b11χ1ξ
ð1Þ
1 ξð3Þ1 þ

�
b022 þ

4

5
ω10

2

�
ðξð4Þ0 Þ2 þ 4

�
b02 þ

4

5
ω10

�
χ1ðξð3Þ1 Þ2 þ 4

�
b20ω10 þ

2

3
χ1

2

�
ðξð2Þ2 Þ2

þ 8b11ω10ξ
ð2Þ
2 ξð4Þ2 þ 4

�
b02 þ

2

7
ω10

�
ω10ðξð4Þ2 Þ2 þ 24

5
χ1ω10ðξð3Þ3 Þ2 þ 72

35
ω10

2ðξð4Þ4 Þ2; ðC3Þ

and

SNG ¼ 2b20

�
17

21
ðAð0Þ

0 Þ2 þ 4

21
ðAð0Þ

2 Þ2 − Að−1Þ
1 Að1Þ

1 þ 3

7
Að0Þ
0 Bð0Þ

0 þ Að−1Þ
1 Bð1Þ

1 −
1

7k2
Að1Þ
1 Bð1Þ

1 þ 4

21k2
Að0Þ
0 Bð2Þ

0 þ 8

21k2
Að0Þ
2 Bð2Þ

2

�

þ 2b11

�
34

21
Að2Þ
0 Að0Þ

0 − ðAð1Þ
1 Þ2 þ 8

21
Að0Þ
2 Að2Þ

2 − Að−1Þ
1 Að3Þ

1 þ 3

7
Að2Þ
0 Bð0Þ

0 þ Að1Þ
1 Bð1Þ

1 þ 3

7
Að0Þ
0 Bð2Þ

0 þ Að−1Þ
1 Bð3Þ

1

−
3

7k2
Að4Þ
0 Bð0Þ

0 −
1

7k2
Að3Þ
1 Bð1Þ

1 −
5

21k2
Að2Þ
0 Bð2Þ

0 þ 8

21k2
Að2Þ
2 Bð2Þ

2 −
1

7k2
Að1Þ
1 Bð3Þ

1 þ 4

21k2
Að0Þ
0 Bð4Þ

0 þ 8

21k2
Að0Þ
2 Bð4Þ

2

�

þ 2b02

�
17

21
ðAð2Þ

0 Þ2 þ 4

21
ðAð2Þ

2 Þ2 − Að1Þ
1 Að3Þ

1 þ 3

7
Að2Þ
0 Bð2Þ

0 þ Að1Þ
1 Bð3Þ

1

−
3

7k2
Að4Þ
0 Bð2Þ

0 −
1

7k2
Að3Þ
1 Bð3Þ

1 þ 4

21k2
Að2Þ
0 Bð4Þ

0 þ 8

21k2
Að2Þ
2 Bð4Þ

2

�

þ 4χ1

�
−
1

3
Að2Þ
0 Að0Þ

0 þ 31

35
ðAð1Þ

1 Þ2 þ 4

35
ðAð1Þ

3 Þ2 − 2

3
Að0Þ
2 Að2Þ

2 þ 3

7
Að1Þ
1 Bð1Þ

1 þ 1

3
Að0Þ
0 Bð2Þ

0 þ 2

3
Að0Þ
2 Bð2Þ

2

−
3

7k2
Að3Þ
1 Bð1Þ

1 −
1

21k2
Að2Þ
0 Bð2Þ

0 −
2

21k2
Að2Þ
2 Bð2Þ

2 þ 12

35k2
Að1Þ
1 Bð3Þ

1 þ 8

35k2
Að1Þ
3 Bð3Þ

3

�

þ 4ω10

�
4

105
ðAð2Þ

0 Þ2 þ 127

147
ðAð2Þ

2 Þ2 þ 24

245
ðAð2Þ

4 Þ2 − 2

5
Að1Þ
1 Að3Þ

1 −
3

5
Að1Þ
3 Að3Þ

3 þ 3

7
Að2Þ
2 Bð2Þ

2 þ 2

5
Að1Þ
1 Bð3Þ

1 þ 3

5
Að1Þ
3 Bð3Þ

3

−
3

7k2
Að4Þ
2 Bð2Þ

2 −
2

35k2
Að3Þ
1 Bð3Þ

1 −
3

35k2
Að3Þ
3 Bð3Þ

3 þ 8

105k2
Að2Þ
0 Bð4Þ

0 þ 44

147k2
Að2Þ
2 Bð4Þ

2 þ 48

245k2
Að2Þ
4 Bð4Þ

4

�
: ðC4Þ
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