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Statistics of peaks of weakly non-Gaussian random fields:
Effects of bispectrum in two- and three-dimensions
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Analytic expressions for the statistics of peaks of random fields with weak non-Gaussianity are
provided. Specifically, the abundance and spatial correlation of peaks are represented by formulas which
can be evaluated only by virtually one-dimensional integrals. We assume the non-Gaussianity is weak
enough such that it is represented by linear terms of the bispectrum. The formulas are formally given in
N-dimensional space, and explicitly given in the case of N = 1, 2, 3. Some examples of peak statistics in
cosmological fields are calculated for the cosmic density field and weak lensing field, assuming the weak
non-Gaussianity is induced by gravity. The formulas of this paper would find a fit in many applications to

statistical analyses of cosmological fields.
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I. INTRODUCTION

The statistics of peaks of random fields have been
attracting a lot of interest for applications to cosmology.
The density peaks are obvious sites for the formation
of nonlinear structures [1]. The amplitude of spatial
clustering of biased objects is enhanced relative to that
of density field [2,3]. This property is naturally expected by
statistics of high-density peaks in a Gaussian random field.
Mathematical formalism to calculate statistics of peaks in
random Gaussian fields is given in seminal papers by
Doroshkevich [4] and Bardeen et al. [5]. Statistics of peaks,
such as abundances, profiles, and correlation functions, in
Gaussian random fields have been extensively studied in
the literature [6—15]. The clustering of dark matter halos
can be modeled by the peaks approach under the
assumption that halos form from peaks in the initial
Lagrangian density field (for a review, see Ref. [16] and
references therein). Lagrangian density field is reasonably
assumed to obey Gaussian statistics, as long as the initial
condition of the density field in the Universe is Gaussian.

Most of the analytic work on the statistics of peaks
assumes the Gaussian statistics of density fields. One of the
main reasons for this assumption stems from technical
limitations. It is extremely difficult to analytically describe
the statistics of peaks in generally non-Gaussian fields,
which have infinite degrees of freedom. However, there
are several reasons to consider the statistics of peaks in
non-Gaussian density fields in cosmology.

“tmats @post.kek.jp

2470-0010/2020/101(4)/043532(22)

043532-1

For example, the initial density field is not necessarily a
Gaussian random field, depending on generation mecha-
nisms of the initial fluctuations (see, e.g., Ref. [17] and
references therein). The gravitational evolution induces non-
Gaussianity in the density field (see, e.g., Ref. [18] and
references therein), and therefore, when the peaks are
defined in Eulerian density field, they are not described
by the peak theory assuming Gaussian statistics of density
fields. The statistics of peaks in the weak lensing fields are
also useful in cosmology [19-38]. The weak lensing fields
on interested scales are not Gaussian because of the non-
linear evolution of the density field which is the source of the
weak lensing. The effects of non-Gaussianity are taken into
account only numerically in the previous analyses of the
weak lensing. Another example of the interest in peaks in
non-Gaussian fields is the application to the primordial black
holes (PBHs), which is assumed to be formed in the very
early Universe [39-42]. The peaks theory of Ref. [5] is
applied to the formation of PBHs [43-48].

While deriving analytically complete expressions of
the statistics of peaks in generally non-Gaussian fields is
difficult, that is possible in some limited cases. For the
peak abundance in a special type of non-Gaussian field,
chi-square field, an analytic expression can be derived
[49,50]. A theory for the abundance of peaks in weakly
non-Gaussian fields is pioneered by Refs. [51,52], which
generalize the earlier work on the genus statistic and
Minkowski functionals in weakly non-Gaussian fields
[53,54]. In these papers, the peak abundances in two and
three dimensions are expanded in Gram-Charlier series
[55-58]. When the non-Gaussianity is weak, and the higher-
order cumulants of the distribution do not significantly
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contribute to the statistics of peaks, one obtains an approxi-
mate expression for peak abundances by only taking lower-
order terms of the series into account. The peak correlations
in weakly non-Gaussian fields are derived [59] and are
applied to a local-type non-Gaussianity in the primordial
density field. Abundances and correlations of peaks in
weakly non-Gaussian field in the high-peak limit are also
derived [60-63].

In this paper, we follow and extend the methods of
those previous papers for peaks in weakly non-Gaussian
field, and give explicit formulas with lowest-order non-
Gaussianity in two and three dimensions. We consider the
abundances and spatial correlations of peaks in a unified
formalism, which is developed by Ref. [57]. We first show
a formal derivation of the peak statistics in N dimensions,
and then find explicit expressions for N =1, 2, 3. In
Ref. [52], the formulas for the abundance of peaks are given
in a form with multidimensional integrations, which should
be evaluated by a semi-Monte-Carlo integration. We find
this kind of multidimensional integrations reduces to lower-
dimensional integrals, which can be evaluated very fast,
extending techniques developed by Refs. [64,65]. This
paper contains a set of newly useful formulas for statistics
of peaks of weakly non-Gaussian fields, which can be
potentially applied to many problems regarding statistics of
peaks, such as the peaks in the density field of large-scale
structure, and those in weak lensing fields, etc.

This paper is organized as follows. In Sec. II, a formal
expression of the number density of peaks in a weakly non-
Gaussian field in an N-dimensional space is given, and then
analytically explicit expressions for N = 1, 2, 3 are derived.
In Sec. III, formal expressions of the power spectrum and
correlation function of peaks in a weakly non-Gaussian
field in an N-dimensional space is given, and then
analytically explicit expressions for N = 2, 3 are derived.
In Sec. IV, three examples of the possible applications to
cosmology are presented, i.e., the number density of peaks
in a three-dimensional density field, the number density of
peaks in a two-dimensional weak lensing field, and three-
dimensional correlations of peaks. In these examples, the
weak non-Gaussianity is assumed to emerge from weakly
nonlinear evolutions by gravitational instability. Finally,
conclusions are given in Sec. V.

II. ABUNDANCE OF PEAKS IN WEAKLY
NON-GAUSSIAN FIELDS

A. Lowest-order non-Gaussianity

We generally consider a random field f(x) in
N-dimensional space, where x is the N-dimensional coor-
dinates. The field is assumed to have a zero mean,

(f(x)) =0, (1)

and the random field is statistically homogeneous and
isotropic. We consider expectation values of peak statistics

in non-Gaussian fields. We apply a method of Ref. [57],
which provides a general way of evaluating a given
expectation value in weakly non-Gaussian fields. The
method is based on the expansion by generalized
Wiener-Hermite functionals, which is a generalization of
the Edgeworth expansion of a single variable in weakly
non-Gaussian fields. This basic method is briefly reviewed
in the Appendix A.

In this paper, we consider the lowest-order non-
Gaussianity, i.e., contributions from the three-point corre-
lation at the lowest order, assuming the higher-order
correlations are small enough. In cosmological fields,
higher-order correlations frequently obey the so-called
hierarchical ordering, in which n-point correlation function
EM s of order O(&""), where & = £?) is the two-point
correlation function. In this case, the non-Gaussianity is
weak when the two-point correlation £ is small enough.

Having such a case in our mind, we consider only the
linear contribution of the three-point correlation function,
or the bispectrum in Fourier space. The expectation value of
a functional F[f] is given by Eq. (A19). When we take into
account only the lowest-order non-Gaussianity, we have

(FUD = {Flfha
1 [ dVk d"ky dVks 5, = =
+ 6/ 2n) ) 2y E )T E )

x Gs(ky. ks, ks3), (2)

where f(k) is the Fourier transform of f(x), (---).
represents the (three-point) cumulant, and

5 FIf)
R -«sf<kn>>c, ®)

represents a Gaussian n-point response function, and the
expectation value (- - -) is taken for Gaussian distributions
with the same power spectrum of the field f(x) (see
Appendix A for details).

Due to statistical homogeneity, the three-point cumulant
has a form,

(flky)fka) Fks))e = (2m)V Y (ky + ko +k3)B(ky k. k3),
(4)

where 8N (k) is the N-dimensional Dirac’s delta function
and B(ky,k,,k3) is the bispectrum. Due to statistical
homogeneity and isotropy, the bispectrum is a function
of only magnitudes of three wave vectors, k;, k,, and k5.
However, we keep the vector notation in the argument of
the bispectrum. Thus, Eq. (2) can also be represented by

gn(kl, ""kn) = (zﬂ-)Nn<

(Zﬂ)Nég(kl +k2 +k3)

1 [ dk, dVk, dk;
FUN=G+g | iz

x B(ky.ky.k3)Gs(ky ks . k3). (5)
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B. Statistics of field derivatives

Equation (5) is the basic formula of the weakly non-
Gaussian expectation values of any kind. In this section,
we are interested in the peak abundance of the weakly non-
Gaussian field. The peak number density depends on
spatial derivatives of the field up to the second order,
ie, f, 0,f, and 9,;0;f. To evaluate Eq. (3), we need the
Gaussian statistics of the peak number density.

The power spectrum P(k) of the random field f is
defined by

(Fk)F () = (2m)"5(k + K')P(k). (6)

where the appearance of the delta function is a consequence
of the statistical homogeneity, and the power spectrum is a
function of only the magnitude of the wave vector k = |k|
due to the statistical isotropy. The spectral moment o, is
defined by

dk
2= kK" P(k 7
0= [ Sap. 7
and the normalized field variables are defined by
f oif 9:0,f
a=—, i = ) ij = = ’ ( )
0o 0] 03

where 0; = 0/0x; is the spatial derivative.
The Gaussian statistics of the field variables are com-
pletely determined by their covariances. They are given by

@ =1 {an)=0.  (aly) =5
(nin;) = %51']'7 mi¢ix) =0,
(CiiCu) = m (6611 + 661 + 646 1.), )
where
=2 (10)

Since the set of variables {;; is a symmetric tensor, only
components with i > j are independent.
We denote the set of independent variables as

Y= (0!,111, s Ivs S5 G2 ---’gN—l,N’gNN)~ (11)

The number of components of this vectoris Ny =1+ N +
N(N+1)/2=(N+1)(N+2)/2. The multivariate
Gaussian distribution function for these variables at a
single point is given by

Pa(Y) = —lYTM“Y>, (12)

1
————————¢€X
/20" detM p< 2

where M, = (X,X,,) is a Ny X N covariance matrix given
by Eq. (9). It is useful to define the rotationally invariant
quantities,

’725”‘”’ JIE_Cii’ (13)
N . -
Jr = ﬁﬁfz‘jé’ji’ (N>2), (14)
2 ~ ~ ~
J CiiCikCris (N>3), (15)

ST NN =-2)
where repeated indices are summed over and

- 1
Z:ijEZ:ij"f'ﬁéij‘]l (16)
is the traceless part of {;;. The variable J, is considered
only for N > 2, and the variable J; is considered only
for N > 3.

In terms of the rotationally invariant variables, the
multivariate Gaussian distribution of Eq. (12) is represented
by [51,52]

Pa(¥) & N (@, J;) exp [—%nz —WJQ],

4
(17)
up to the normalization constant, where
2+ 02 =2yal
N(a,Jl)ziexp{—a + zya 1} (18)
2my/1 =92 2(1-79)

is the Gaussian joint distribution function of variables a
and J;.

C. Number density of peaks in a weakly
non-Gaussian field

The number density of peaks above a threshold f > vo,
is given by [5]

) = (

where ©(x) is the Heaviside’s step function and Ay is the
smallest eigenvalue of the N x N matrix (—(;;). In order to
obtain the weakly non-Gaussian corrections of Eq. (5), the
Gaussian expectation value of Eq. (3) should be evaluated
for ' = ny. The calculation is straightforward but some-
how complicated, and the detailed derivation is given in

2) “0(a-1)8 Oy datcl.  (19)

01
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Appendix B. The result is usefully represented by using
coefficients defined by

Grim (V) = <—1>k<npk<u>H,-,<a,Jl>
x L7 (g’ nz) Fin(J, Js)>G, (20)

where

Hy(v Jy) = m (— %)i(— %)j/v(a, J) @)

is the multivariate Hermite polynomials,

—a ,x dk
X e _(xk+ae—x) (22)

L) =5

is the generalized Laguerre polynomials,

ﬁpk(y) = <npk(y)>

=G
00000 + 6

+6}’2G10010(S§ N_1

where

():<f3>c (1) — <f2Af>
SO_004’ Sh=- 4 6426,
STaw-n et ST e

R —— Lﬁ<(Af)> §9 = - %(f,,f,,Aﬂ (26)

} '"The function F,(J,.J5) corresponds to the function
F,,(5J5,J3) of Ref. [64] and the function F,(5J,,J3) of
Ref. [66] in three dimensions, but the normalization is different.

Denoting the latter function as FP, they are related by

Fp,,(572,73)
= (5/2)>"/2\/(2m + 1)[(5/2)/T(L + 3m + 5/2)F,,(J2, J3)

and

FDi2(5],,J5) =

Im

(5/2)"2\/T(5/2)/T(3m +5/2)F ,(J2, J5)

when N = 3 (a factor s3/2 is missing in Eq. (2.18) of Ref. [66]).
Accordingly, the normalizations of bias parameters c;j;,, defined
later in this paper are different from this literature for m # 0.

G3000()S( )+ 4yG31000S"Y + 37’2G120005g2) + 73Go30005<13) + 4G 0008

6 3(N =2)(N +2)? N +2
Y- 5@) +773G01010(NS§3) - 5(13)) + ( ) ) > Goooor <S( ) —NS?))],

Flm("2’ J3) = (_1)1]23m/2

(N~ N - 1)(N +2
« LOmHN-DN3)/4 <( (N +2) Jz)

I3
X P, <J 3/2> (23)
and
1 dm
P — — (2 =1)m 24
() = g (2 = 1) (24)

is the Legendre polynomiads.1 We assume m = 0 when
N=2and [ =m =0 when N = 1. The result of G5 is
given by Eq. (B21) in Appendix B. In the case of N = 1,
the terms of Gy, with [ # 0 or m # 0 should be omitted.
In the case of N =2, the terms with Gjj;,, with m #0
should be omitted. These rules always apply in the
following. Substituting Eq. (B21) into Eq. (5), we derive

4N -1
+¥7G011005(2)

2(N +4) 3

(25)

For N = 1, we define S = 0 because we have the identity
{(fH%f") =0.In deriving Eq. (25), we use identities

<fo Vf> :—Go 0125(1>

N-1
(ffiifip). =on* <S§2) - TS(Z)>,
N-—-1
(fififii)e = N c*S?),

01° (B _ 2
<fijfjkfki>c = 2002 (S1 - 352 )» (27)
0o

which are shown by integrations by parts.

D. Calculating coefficients
The remaining task is to calculate the coefficients G,
of Eq. (20). Substituting Eqgs. (17) and (19) into Eq. (20),
we have

N/ N\N/2
Gijum(v) = Ny (?) (ﬁ) Xk/gdé“ij@(ﬁzvﬂdetﬁ
XHi—l,j(V’Jl)Flm(JQ’13)N(V’Jl)

N—l)(N+2)J2]’

X exp [— ( 4 (28)
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where

- - (k+ N/2)
X, = (=)L ) = ¢ 29
and N, is a normalization factor defined by

N, = / da] [diiN (. J;) exp {—M&h]

) J%’/"Hd fyosp -2 LD )

i<j

(30)

For i = 0, the functions H_, ;(v,J;) are defined by

H_y (b)) = /m da Hoj(a. J)N (. J,). (31)

1
N(”?‘]l) v

In deriving Egs. (28) and (30), we use the property
[daN(a,J)) = e/""/?/\/2z and the fact that the
Gaussian probability distribution function of # is given
by Pg(n)d"n = (N/27)Ne N7 /24Ny We change the inte-
gration variables as

NlHd(:ij _Ql

= —dxd""'WdQy, (32)
i<j N

where x = J; = A; + -+ + Ay, dV"'W represents the vol-
ume element of the other (traceless components of) rota-
tionally invariant variables, and dQy represents the
volume element of the rotationally variant (angular) com-
ponents, and

ON—1 L (N-1)(N+2)/4

e

(33)

QN = /dQN = VO]SO(N) =

is the volume of N-dimensional rotation group SO(N).
In practice, the volume element dV~'W is obtained by
rotating the orthogonal set of coordinates to the principal
axes of {;; to have the diagonal form —(4;.4,,....dy),
ordered by 4; >4, > -+ > Ay.

Because of Egs. (30) and (32), the normalization con-
dition of variables W should be

/dN‘IWexp[—WJz =1, (34)

where D is the integration domain to satisfy the ordering
Ay > -+ > Ay. Thereby, Eq. (28) can be represented as

1 c N
Gijklm(y) = W (\/_T20'1> Xk
« / " dx Hiy (0, N () fi(x), (35)

where

Ffim(x) = NN/dN_IW(a(/IN)/h o AnF (T2, J3)

5 exp[_ (N - 1)4(N+2)

In the formula of Eq. (25), a limited number of the
coefficients Gjjy,, is needed. For X, of Eq. (29), we need
only Xy =1 and X; = —N/2. For H;_; ;(v,x), we need
Only H—I,O’ H_]y], H_1.3, Hoo, Hoz, H”, and H20. These
functions are straightforwardly evaluated by Eqgs. (21) and
(31). For f,,(x), we need only fo5, fi9, and fg,. The
necessary functions f;,,(x) are evaluated for N = 1, 2, 3 in
the following subsection.

I|. (36)

E. Specific formulas in one-, two-, and
three-dimensional spaces

1. One-dimensional case

In one-dimensional space, N = 1, only the terms of
Gijroo = G;ji should be retained. Equations (25) and (35) in
this case reduce to

_ O 2
A (V) = Gooo + go [G3005 ) + 4yG,1oSY + 372G1205§ )
+ 73Go305(13) + 4G, 8], (37)

Gijk(’/) = \/—Z_ﬂﬁ_lxk /oo dXHi—l.j(l/’ N (v, x)f (x),

0
(38)

where Xy = 1, X; = —1/2. Putting N =1, (N=1)J, =0
and / = m = 0 in Eq. (36), we have

F(x) = foolx) = x. (39)

for x > 0. The differential number density —diiy /dv can
be evaluated by replacing H;_; ; — H,; in Eq. (38), and the
resulting expression can be found analytically in this
one-dimensional case. Although we do not reproduce the
result here, the analytic expression is straightforwardly
obtained by using a software package such as Mathematica.

2. Two-dimensional case

In two-dimensional space, N =2, only the terms of
Gijuio = Gijiy should be retained. Equations (25) and (35)
in this case reduce to

043532-5
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A (V) = Goooo + 6 [G%OOOS( )+ 4yGy10SV
+ 3}’2G12005(2) + }’3Go3005(3) + 4G oSV
+2yGo1108? + 672G1001(S( - 5@)
+ 6y Goml(zsé /- 5(1 ))] (40)
and
1 62 2
Gijkl( v) = X dXHz 1;( ) (v, x)f1(x),
4717 0

(41)

where X, = 1, X; = —1. To evaluate Eq. (36) in the case of
N = 2, we introduce a set of variables,

_ A=A

X:/11+/12, y 2

(42)
and we have J| =x, J, =4y?, and | det¢| = [x* — (2y)?]/4.
The transformation of the volume element, Eq. (32), in the
case of N =2 results in dW o« y dy [67]. Because of the
ordering 4; > 4,, the integration domain is given by y > 0,

and in order to meet the normalization condition, Eq. (34),
we have dW = 8y dy. Thus, we have

Fi(x) = folx) = 8 / T2 dy ye 7 (2 — ay?) (1)L, (4y2).

(43)

For the evaluation of Eq. (40), we need only
folx) =e™ +x2 -1, (44)
filx)=(1+x2)e™ - L. (45)

The differential number density —dfi,/dv can be evaluated
by replacing H;_; ; = H;; in Eq. (41), and the resulting
expression can be found analytically also in this two-
dimensional case. Although the resulting expression is
extremely long and we do not reproduce the result here, the
analytic expression is straightforwardly obtained by using a
software package such as Mathematica.

3. Three-dimensional case

In three-dimensional space, N = 3, Egs. (25) and (35)
reduce to

iy (V) = G00000+ {G%oooos( + 4yG000SY

+ 372G1200052 it }’3G030005(13) + 4G 0100V

8

+ gyG"”OOS(Z) + 672G o010 (S5 — S@)

+ 373Go1010(35§3) - 5(13))
75 5
v >Goooor <3 s - 359)} (46)

and
1 () 3
Gi' m =——5|— 1 X
) = (o)

XA dxH,_y j(v, x)N (v, x) f(x),  (47)

where X, = 1, X; = —3/2. To evaluate Eq. (36) in the case
of N = 3, we introduce a set of variables [5],

W=k _h=2th
2 2
(48)

x:/11—|—/12—|—/13, y =

and we have J, = x, J, =3y + 7%, J3; = 22 — 9y?z, and
|det¢| = (x —2z2)[(x + 2)* = (3y)?]/27. The transforma-
tion of the volume element, Eq. (32), in the case of N =3
results in dW « y(y*> —z%)dydz [5]. Because of the
ordering A; > 1, > A3, the integration domain is given by
—y < z £y, and in order to meet the normalization condition,
Eq. (34), we have dW = (27)71/2325%/2y(y? — 72)dy dz.
Thus, we have

255/2

fim(x) = > (/ d)’/ dz+//4 dy/3_ dz)
Xe—5(3v +72 /2()C 2Z)[(X+Z) (3)7)] (y —Z)
XF1m(3y +22,22 -9 7). (49)

For the evaluation of Eq. (40), we need only

sesfoy3) el 5)

31 8
+ (_x2+_> /] (50)

foo(x)
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oty =2 (15 a5

12 2] .. 15
T 2 emSx2 _—
5 Vsz {e (1 Ty )

1 2
x <1 +—fg >e—5x2/8}, (51)

_ _E%x{erf g;[\z/i) ¥ rf<\/§>}

10 V5z|15

11 2 4
+ (— +5 4 51) e/ 8] : (52)

for(x)

2
e—Sx /2

5 4 16

The differential number density —dfii /dv can be evaluated
by replacing H;_; ; — H,; in Eq. (47).

The generalized version of multivariate Hermite poly-
nomials, H;; with i> -1, have analytic expressions:
Eq. (31) can be analytically integrated. Therefore, the
expression of Gy, (v) of Eq. (47) is just a one-
dimensional integration.

III. CORRELATIONS OF PEAKS IN WEAKLY
NON-GAUSSIAN FIELDS

A. General formula

The lowest-order non-Gaussian correction to the
power spectrum of peaks can be calculated by a method
of generalized Wiener-Hermite expansions [57], which is
described in Appendix A. The result is given by Eq. (A30).
Identifying the biased field F as the peak number density
Npi, We have

Ppk<k) =9 (k)]2p(k)

+3 [ Gabelanlok=p)P(p) (k=)

ey (‘Z’NT)%gmk—p)B(p,k—p,—k>+---,
(53)

where g,(k,....k,) = G,(ky,....k,)/Gy. Specifically for
peaks, from Egs. (B18)—(B20), we have

g1(k) = g10000 + Yo1000k>. (54)

92 (k1. k2) = 920000 + G11000(k1? + ko?)
+ goooook12ka? — 2900100k - k2

2N 1
ot |ty - k2| (59

+ N -1

where

Gijklm
i o 2k j+2143m :
60'017" 0y’ Gooooo

YGijkim =

(56)

In the case of one dimension, N = 1, the last term of
Eq. (55) should be omitted. The last coefficient g;j,, is
calculated by Eq. (35), or we have

X [ dx Hi_y j(v. x)N (v, x) f 1 (x)
00’01k oyTHEM [ dx H_y o (v, x)N (v, x) foo(x)

(57)

YGijkim =

The power spectrum of peaks is affected by exclusion
effects: the peaks of a smoothed field cannot be too close to
each other. Although the exclusion effects affect the small-
scale behavior of the correlation function of peaks, the
power spectrum of peaks on all scales is largely affected
by the effect [15,68—70]. Therefore, the predictions of the
perturbative method in this paper are more robust for
the correlation function of peaks on large scales [15].
Once the power spectrum of peaks, Eq. (53), is calculated,
the correlation function of peaks is given by

i) = [ Gawe Pa®. (6)

B. Angular integrations

For fast and accurate evaluations of Eq. (53), one can
analytically perform angular integrations, and the resulting
expression can be evaluated by one-dimensional fast-
Fourier transforms (FFTs). In the case of three dimensions,
such a technique is developed in a context of nonlinear
perturbation theory [71-74]. We extend the same technique
to the two-dimensional case below.

For this purpose, we rewrite the expression of Eq. (53) as

Pulk) = [P0 +5 [ (k)PP Pk
+ 91(k) K ek 92(ky. k) B(ky by, —ky — k)
4+ (59)

where we use a simplified notation,

= [ Lk L n)N&y —k)---
lﬁkzk”':/(zﬂ)]v 2m)N (27)"op (ky +ky =) -+
(60)

Because of the rotational symmetry, the integrands in the
second and third terms besides the delta function are

functions of only kj, k, and k, - ko, where k; =k;/|k;|.
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The factor g,(k,k,) and its square are given by a super-
position of a form (k, - k,)'X(k;)Y (k,), where [ is a non-
negative integer. When the bispectrum B(k,k,, —k; — k)
is also given by a superposition of the same form, the
integrals in Eq. (59) are given by a superposition of
integrals with the following form:

/ (k, - ko)X (k)Y (ko)
ki +h,—k

. dk, d"k, . PN
_ /dN’,.e—lkr/(zﬂ)]lv (Zn)i’ el(lirkz)-r(kl -k2)7

x X(k))Y (k). (61)

The angular integration of the above integral is analytically
possible as follows. First, we notice that the integrals over
k, and k, on the right-hand side give a function of r due
to rotational symmetry. Therefore, one can replace factors
e~ and ¢'kitk2)T by their averages over angle of 7. In two
and three dimensions (2D and 3D, respectively), we have

e™* — Jo(kr), btk — Jo(Jky +ka|r),  (2D),
(62)

e~ s jo(kr) etk s jo(lkey + ky|r),  (3D),
(63)

where J,(x) and j,(x) are Bessel functions and spherical
Bessel functions, respectively.

1. Two-dimensional case

In two dimensions, the integral of Eq. (61) reduces to

/ (ky - ko)X (k)Y (ko)
ki +hko=k

2 2
_27r/rer0(kr) x/é:;z%loﬂkl +ky|r)
x (’A‘] ~I}2)1X(k])Y(k2). (64)

We apply an addition theorem of the Bessel function,

[se]

D (=0 kar) T, (kor)ez,  (65)

n=—oo

Jo(lky +ky|r) =

where 6, is the angle between k; and k,, ie., k, -k, =
cos 6,. The angular dependence can be written as

[

PRI | l .
(k1 . k2)l — ?e—tlﬁlz Z( >621m6‘]2_

m=0 \ 11

(66)

Substituting the above equations into Eq. (64), we have
[ kX e
Ky +ho =k

= 27r/rdr10 kr) x

X Xiom (7)Y 10w (1), (67)

where
X, (r) = / %"Jn(kr);((k), (68)
Y, (r) = / %"J,,(kr)y(k). (69)

The last integrals are the one-dimensional Hankel trans-
forms, which can be efficiently evaluated with the one-
dimensional FFT using a software package FFTLog [75].

Adopting the formula of Eq. (67) in the explicit
expression of Eq. (59), the power spectrum of peaks,
P (k), can be evaluated by using the one-dimensional
(1D) FFT. The correlation function of peaks, Eq. (58), is
also evaluated by

(70)

2. Three-dimensional case

In three dimensions, the integral of Eq. (61) reduces to

1+ks
. Pk, Pk, .
:4ﬂ/r2dr]0(kr) X / (277)13 (2”)2 Jo(lki + ko|r)
x (ky ko)X (ky) Y (ks). (71)

We apply an addition theorem of the Bessel function,

Jo(|ky +ky|r)

Il
[M]s

(=1)"(2n + 1), (ky7)j,(kor)P,(cos 0y,),  (72)

3
Il
=}

where 6, is the angle between k, and k,, i.e., k; -k, =
cosBpy, and P, (u) = (2"m)~"(d/dx)"[(x* — 1)"] are
Legendre polynomials, which satisfy the orthogonality
relation,
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1 [1 0
— [ duP,(n)P =" 73
3 PP = 5 73)
The angular dependence can be written as
o !
(ky - Jeo)' = " (2m+ Day, P,y (cos0pp),  (74)
m=0
where
1 [1 ;
A = 5 dlulu Pm(ﬂ)
-1
i [=m,
— ) 2U=m2[([—m) 2\ (I+m A1) I+m=even /)’
0 (otherwise).
(75)

Substituting Egs. (72) and (74) into Eq. (71), we have
|ty vGe)
ky+ky=k

]
= 47:/ r2dr jo(kr) > (=1)"(2m + 1), X, (r)Y (),
m=0

(76)

where
X = [ S5 inlk0x®. 1
Y, (r) = / "z—ﬁ (kP Y (k). (78)

The last integrals are the one-dimensional Hankel trans-
forms, which can be efficiently evaluated with the one-
dimensional FFT.

Adopting the formula of Eq. (76) in the explicit
expression of Eq. (59), the power spectrum of peaks,
Py (k), can be evaluated by using the 1D FFT. The

correlation function of peaks, Eq. (58), is also evaluated by

2
) = [ S lenPul. (19

IV. WEAK NON-GAUSSIANITY DUE TO
NONLINEAR EVOLUTIONS IN THE
LARGE-SCALE STRUCTURE

In this section, we numerically calculate the formulas
derived in previous sections when the weak non-
Gaussianity is evaluated by nonlinear perturbation theory
of gravitational instability in the large-scale structure of the

Universe. In the numerical evaluations below, the power
spectrum of the three-dimensional density field is
calculated by Boltzmann code crAsS [76,77] with a
flat Lambda cold dark matter (ACDM) model and cosmo-
logical ~ parameters & = 0.6732, Qoh* = 0.02238,
Q.amh? = 0.1201, ny = 0.9660, and 65 = 0.8120 (Planck
2018 [78]).

A. Number density of peaks in a three-dimensional
density field with weak non-Gaussianity
induced by gravity

In a three-dimensional space, we consider an example
of peaks in the dark matter distribution in three-
dimensional space. When the peaks of matter density field
are considered, we first smooth the density field with a
smoothing kernel W(kR) in Fourier space, where R is the
smoothing radius. The field variable f(k) in Fourier space
corresponds to

fk) = W(kR)3(k), (80)
where 6(k) is the density field in Fourier space. In this
paper, we adopt a Gaussian smoothing kernel, W(kR) =
¢ F*R*/2_ Denoting the linear power spectrum by Py (k) at
an arbitrary redshift, the power spectrum of the smoothed
density field at the lowest order is given by

P(k) = W?(kR)Py (k). (81)

Adopting the nonlinear perturbation theory of gravita-
tional instability [18], the bispectrum of smoothed matter
density field at the lowest order is given by

B(ky.ky. k3) = W(kiR)W (koR)W (k3R)

NCNCINAY R SR RIAL
7 kz kl k1k2 7 k1k2

x Py (ki) PL(ks) + cyc. (82)

The parameters of Egs. (26) are given by integrations of the
bispectrum in a form,

(m_0o"™ ()
Sj =" S (ky.ky.ke3)B(ky ky ks), (83)
(23] ki +hky+hk3 =0
where
3 9
s(o) — 1’ s(l) — stz’ s(z) — _Z(kl 'k2)k32,
Sg2> = k12k22, S§3> = k12k 2](32, S?) = (k] ’k2)2k32.

(84)
Symmetrizing the arguments of sﬁ-")

first term of Eq. (82), Eq. (83) reduces to an expression of
three-dimensional integrals,

, and using only the
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s — o> /°° kydky ky*dk,
/ o Jo 27* 22°
< U ko) Blks o). (85)
where
E(kl’kz,/«‘)

= 3W(k;R)W (kaR)W/[(k\? + ko? + 2k kopt)'/?R]

10 ki ky 4 )
10 (ki Kk 4 5] yp
) {7 i (k2+k1)'“+7'“] L(ki)PL(k2),  (86)

1
O~ 50— 5(kl2 + ko? + ki kop),
3
5(2) — 5k12k22(1 _/42)1

1
Egz) =3 [ki* + kot + 3k 2ky? + 2k ky (ki + ko?)ul,

5V = k22 (k2 + ko + 2k kope),
1
st = kP2 + ) (202 + 1) + 2kikop(s® + 2)]
(87)

The integrals of Eq. (85) with Eqgs. (86) and (87) are
numerically evaluated. Substituting the results into
Eq. (46), the number density of peaks 7y (v) in three
dimensions can be evaluated.

In Fig. 1, the differential number density of peaks,
—di/dy, is plotted. The Gaussian prediction without
the effect of the bispectrum is represented by a dashed line.
The gravitational non-Gaussianity increases the number of
high-threshold (v 2 2.4) peaks, because of the positive
skewness in the underlying field.

B. Number density of peaks in a two-dimensional
weak lensing field with weak non-Gaussianity
induced by gravity

In a two-dimensional space, we consider an example of
peaks in the weak lensing field. When the peaks of weak
lensing field are considered, we first smooth the lensing
field with a smoothing kernel W(k9), where 9 is the
smoothing angle. The field variable f (k) in Fourier space
corresponds to

Flky = W(k9)x(k), (88)

where «(k) is the two-dimensional convergence field of
weak lensing in Fourier space.

For simplicity, we adopt the flat-sky and Limber’s
approximations [79] in this paper. Assuming a flat

0.004 | 7 “\\ ----- Gaussian
. ,’/ \\\ non-Gaussian
2 0.003 | 1
Fi ,’/ ‘\
< [ / \
= 0.002
i3 / \
' 0.001
0.000 | —— | — .
300 ‘ ‘ ‘
2.5
L 20
e
05 7
0.0
-2 0 2 4 6
v
FIG. 1. The differential number density of peaks in three

dimensions. In the upper panel, predictions of Gaussian (dashed
line) and non-Gaussian (solid line) fields are shown, where the
number density is measured in units of the smoothing radius
R=20h"" Mpc. In the lower panel, the ratio of the non-
Gaussian prediction to the Gaussian prediction is plotted.

Universe, the power spectrum and the bispectrum of
convergence field are given by [54,80]

P = | x%fmzmpm(f;x) (39)

and

ki ky ks
B (ki ko, k :/xzd;(cf B <—,—,—;){ , 90
(k1. ko, k3) (X)SD)()()( (90)
where Psp(k,y) and Bsp(ky, ko, k3, x) are respectively the
power spectrum and bispectrum of a three-dimensional
density field at a conformal time, 7, — y (7 is the conformal
time at the present),

3H029m0){s —X
q¥) =————
) 2a(y)  xxs

is a weight function of the convergence field, and y; is the
comoving distance to the source galaxies at a fixed redshift.
In reality, the source redshift has a distribution, and the
weight function should be replaced by an integral over the
source redshift. In this paper, we assume a single redshift
for source galaxies just for simplicity.

The two-dimensional power spectrum and bispectrum
of the smoothed convergence field are given by P(k)=
W2(k8) P, (k) and B(ky,ky,k3) =W (k;9)W (ko8)W (k38)x
B, (ky,ko,k3). The three-dimensional power spectrum and
bispectrum are given by Egs. (81) and (82) at the tree level
(lowest order) in the perturbation theory. However, one

o1
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should apply the nonlinear power spectrum and bispectrum
for quantitative predictions for the weak lensing field.
For that purpose, we need analytic fitting functions of
the nonlinear power spectrum like HaloFit [81,82] and the
counterpart of the nonlinear bispectrum [83—85].

The spectral moments of Eq. (7) in the two-dimensional
convergence field are given by

kdk
0= [ a0 [ SRR P (k). (92
T

The skewness parameters of Eq. (26) in the two-
dimensional convergence field are given by integrations
of the bispectrum in a form,

S(Vl) _ 602}1—4

n /d)()(2"+6q3()()/ Sﬁ'n)(k1,k2,k3)
01 Ky 4y +h3 =0
x W(ky8)W (kyy®)W (k3x8)Bsp (ki ky k33 ),

(93)
where sAE»") are given by
0 — M3 @
A = 1, S —Zk3 s S ——3(k1'k2)k3 s
s =kt s =kt sE) = (k).
(94)

Although we use the same notation sﬁ") as those in Eq. (84)

of the three-dimensional case, the coefficient of s is
different in this two-dimensional case, and k, k,, k5 are
two-dimensional vectors. Integrations over these vectors
are also two dimensional in Eq. (93).

5."), we can replace
the bispectrum Bsp by an asymmetric counterpart, B3p .,
which is defined by

After symmetrizing the arguments of s

1 m
Bip(ky.ky . ks; x) = 3 (B33 (ky.kyx) +cycl.  (95)

Since we have k; + k, + k3 = 0, the bispectrum B;p can
be always expressible in the form of right-hand side of
Eq. (95), even though the choice of functional form of B33
is not necessarily unique.

In the case of the tree-level perturbation theory, we have

P3D(k2)() = Dz()()PLO(k) (96)

and

B33 (k. ks ) = 3D (y) Pro (k1) Pro(k»)

10 ki k\ky-ky 4k ky\2
| (M e R ) T
7 \k, k) kiky T\ kK,

97)

where D(y) is the linear growth factor at a conformal time
79—y and Ppy(k) is the linear power spectrum at the
present time. Beyond the tree-level perturbation theory,
one can apply appropriate nonlinear forms of Psp, and B33
instead of Egs. (96) and (97), using, e.g., the HaloFit
approaches. For quantitative predictions of the weak
lensing field, it is necessary to adopt the nonlinear power
spectrum and bispectrum in most of the cases. We use
the tree-level perturbation theory in this paper just for
simplicity.

The skewness parameters of Eq. (93) reduces to an
expression,

2n—4
(.n) _ (o) 21+6 3 kldkl kzdkz
5 o, /d)”( 1 (Z)/ 2r  2r;

bodp B :
[ Bt ).
where
B(ki, ko, us ) = W(kip®)W (kox8)

X W[(ky? + kp? + 2k kopt) /% 9]
x Byp " (k. ka3 ), (99)

1
§(O> = 1’ §(l) :E(k12+k22+klk2ﬂ)’
§(2> = 2k12k22(1 —/42)7

1
2
sg>—§

5 = k22 (kg + ko? + 2k keope),

[ki* + ko + 3k 2kg® + 2k ko (ki + ko,

1
55 = k22 ((ki? 4 ko) (27 1) + 2kikop (4 +2)].
(100)

In the case of the tree-level bispectrum, Eq. (97), the
function B of Eq. (99) is equivalent to the one defined
in Eq. (86) with replacements R — y9 and Py (k) —
D*(y)Pyy(k). The functions §7 in this two-dimensional
case are nearly the same as Eq. (87), but the coefficient of
§) is different from that in the three-dimensional case.
The integrals of Eq. (98) with Egs. (99) and (100) are
numerically evaluated. For efficient evaluations, the results
of the three-dimensional integrations for fixed values of y
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FIG. 2. The differential number density of peaks in two-
dimensional weak lensing field. In the upper panel, predictions
of Gaussian (dashed line) and non-Gaussian (solid line) fields are
shown, where the number density is measured in units of the
smoothing angle 9 = 10 arc min. In the lower panel, the ratio of
the non-Gaussian prediction to the Gaussian prediction is plotted.
Nonlinearity and noise effects are not included.

are tabulated and interpolated, and finally integrated over y.
Substituting the results into Eq. (40), the number density of
peaks 7, (v) in two dimensions can be evaluated. In the
following example, we simply use the tree-level power
spectrum and bispectrum of Eqs. (96) and (97) for
illustrative purposes. However, more quantitative evalua-
tions of the weak lensing field require the use of nonlinear
power spectrum and bispectrum by, e.g., HaloFit, etc.

In Fig. 2, the differential number density of peaks in the
weak lensing field, —diiy /dv, is plotted. The Gaussian
prediction without the effect of the bispectrum is repre-
sented by a dashed line. We apply the Gaussian smoothing
function with a smoothing angle 9 = 2 arc min, and the
source redshift is assumed to be fixed at z, = 1.5. In
this plot, we simply use the tree-level predictions of the
power spectrum and bispectrum by the perturbation theory,
Egs. (96) and (97) as noted above. The gravitational non-
Gaussianity increases the number of high-threshold (v 2 2)
peaks, because of the positive skewness in the under-
lying field.

The shape of the differential number density of peaks
relative to the Gaussian prediction in this plot explains
qualitative behavior of the results from the analysis of
numerical simulations presented in Refs. [24,38], although
the adopted parameters are different. In order to quantita-
tively compare the prediction with the results of numerical
simulations, one needs to use nonlinear fitting functions
for the power spectrum and bispectrum, and also needs to
take noise effects into account. It is beyond the scope of
this paper to make detailed comparison with numerical

108 '
105 L
S
g
|
< . \
—— Total \
= oqetp ik
et Gaussian 1st \‘
"""" Gaussian 2nd
------ non-Gaussian
1000 ¢ — by Pl WAk R)
0.001 0.005 0.010 0.050 0.100
k [hMpc™]
FIG. 3. The power spectrum of peaks in three-dimensional

density field with a smoothing radius R = 20 h~! Mpc. Predic-
tions of Gaussian field with first-order and second-order approx-
imations are shown in dashed and dotted lines, respectively (the
second-order approximation contains the first-order and second-
order contributions). The component of non-Gaussian correction
is shown in a dot-dashed line. The total correlation function is
shown in a solid line. The scaled power spectrum of the
underlying smoothed density field, b;o>P (k)W?(kR), is also
plotted in a lower solid line.

simulations of weak lensing field, which is one of the
interesting future applications of this paper.

C. Correlations of peaks with weak non-Gaussianity
induced by gravity

For the last example of numerical demonstration, we
consider the spatial correlation of peaks with weak non-
Gaussianity induced by gravity in three-dimensional space,
N = 3. Substituting Egs. (81) and (82) into Eq. (59), we
obtain an expression which consists of a superposition of
integrals with a form of Eq. (76). Consequently, we need
the functions

&= [ S preweeRp®, (101
AW (r) = / kz—]‘;k jm(kr)K"W(KR)PL (), (102)

B (r) = / Kk (kr)k"W (kR), (103)

to represent the final result. The final expression has the
form

Puh) = ax [ Parjo(k) [ (1) + 620

+ 91(K)Sna k. 7). (104)

043532-12



STATISTICS OF PEAKS OF WEAKLY NON-GAUSSIAN RANDOM ...

PHYS. REV. D 101, 043532 (2020)

6x 108
4x10% ¢
2x 108+
= 0
X
N5
. —2x108
—— Total
—4x108 Gaussian 1st
exw0tl 0\ T/ Gaussian 2nd
_Bx ]
------ non-Gaussian
-8x10°
100 150 200 250
r [kt Mpc]

FIG. 4. The correlation function of peaks in three-dimensional
density field with a smoothing radius R = 20 h~'Mpc. Predic-
tions of Gaussian field with first-order and second-order approx-
imations are shown in dotted and dashed lines, respectively. The
component of non-Gaussian correction is shown in a dot-dashed
line. The total correlation function is shown in a solid line.

where fl()L)(r), fl()?(r), and Syg(k, r) are polynomials of
the functions of Egs. (101)-(103). Their explicit forms
are somewhat tedius and given in Appendix C,
Egs. (C2)-(C4).

For the numerical evaluation of Eq. (104), we just need
Hankel transforms, which can be efficiently performed by
the use of FFTLog. In Fig. 3, the result of Eq. (104) is plotted,
together with partial components of the integral. We
subtract off the zero-lag value P(k — 0) from the power
spectrum for the following reason: As noted in the last
paragraph of Sec. Il A, it has been suggested that
the behavior of the correlation function below the scales
of the exclusion zone (<R) nontrivially affects the power
spectrum on large scales (k — 0) [15,68-70]. Accordingly,
the second-order approximation of the power spectrum

[the contribution of cféi)(r) in Eq. (104)] has a nonzero

value in the limit of kX — 0, which corresponds to unphys-
ical component in the perturbative expansion. To remove
this unphysical effect, we subtract off the zero-lag value
P(k — 0) from the second-order approximation of the
power spectrum. Other components do not have the
zero-lag value.

The second-order approximation of the power spec-
trum with Gaussian components [the first two terms in the
integrand of Eq. (104)] is considered to be accurate on
scales <0.1h Mpc™! according to the previous analysis
[15]. The shape of the non-Gaussian correction is almost
proportional to the Gaussian contribution on most of the
scales. Thereby, the total shape of the peak power
spectrum does not change much by the effect of non-
Gaussianity, but the amplitude does change.

6x10°

4x10% ¢

2x 108+

— Total
4% 10° Gaussian 1st
rrrrrrrr Gaussian 2nd
-6x10° ]
------ non-Gaussian
-8x10% L— : ‘ ‘
100 150 200 250
r [h™' Mpc]
FIG. 5. Same as Fig. 4, but the underlying power spectrum is

given by that of a CDM power spectrum without baryons.

Physical implications of the peak clustering are more
apparent in configuration space. The corresponding corre-
lation function, Eq. (58), and its components are plotted
in Fig. 4. The vertical axis corresponds to r* times the
correlation function of peaks. Striking features are the
existence of peaks at around 100 2~! and 200 ~~'Mpc and a
trough at around 150 A~'Mpc. These features are largely
due to the effect of baryon acoustic oscillations (BAOs) in
the underlying power spectrum. In fact, if the underlying
power spectrum is replaced by the those of cold dark matter
(CDM) with no baryon, the resulting correlation function
is given by Fig. 5. The amplitude of the peak around
100 h~'"Mpc is significantly reduced, and the trough and
peak on larger scales both vanish. The fact that baryonic
features in the peak correlation are significantly enhanced
is already pointed out by previous work with Gaussian
statistics [14,86]. Here, we see the same property holds
with weakly non-Gaussian statistics.

V. CONCLUSIONS

In this paper, analytic formulas for the statistics of peaks
of weakly non-Gaussian random field are derived. We
consider the lowest-order corrections of non-Gaussianity
to the Gaussian predictions, taking the linear terms of the
bispectrum into account. First, we generally consider the
statistics of peaks in N-dimensional space, and derive formal
expressions of number densities, Eq. (25), and the power
spectrum, Eq. (53). In order to evaluate the formal expres-
sions, one needs to evaluate G, of Eq. (35). The functions
fim(x) are evaluated in each dimension N =1, 2, 3 as
Egs. (39), (43), and (49). The above equations are our main
results of this paper. Useful formulas of angular integrations
to evaluate the power spectrum and the correlation functions
of peaks for N =2, 3 are given by Eqgs. (67) and (76). In
order to illustrate possible applications of our results, we

043532-13



TAKAHIKO MATSUBARA

PHYS. REV. D 101, 043532 (2020)

calculate three examples of statistics of peaks for cosmo-
logical fields: the number density of peaks in a three-
dimensional density field, the number density of peaks in
a two-dimensional weak lensing field, and correlations of
peaks in a three-dimensional density field. In these exam-
ples, the non-Gaussianity is assumed to be induced by
nonlinear evolutions of gravitational instability.

The expansion scheme of the peak abundance by the weak
non-Gaussianity in this paper is equivalent to the pioneering
work of Ref. [52]. In this previous work, the coefficients
of the expansion for the three-dimensional peaks involves
multidimensional integrations which should be evaluated by
semi-Monte-Carlo integration. As for the peak abundance,
one of the new developments in this paper is to provide new
formulas for the coefficients, all of which can be evaluated
by virtually one-dimensional integrations. The new formulas
are much easier to evaluate than the previous method, and we
believe they can be widely applied to many problems
involving peak statistics in cosmology.

For another new development in this paper, we provide
new formulas for the peak correlations in the presence of
weak non-Gaussianity. The methods of deriving general
formulas in two and three dimensions are depicted, and a
concrete formula in three dimensions with weak non-
Gaussianity induced by gravity is presented [Eqgs. (104)
and (C2)—(C4)]. Although we do not give the explicit
result, the corresponding formula for two-dimensional
lensing field can be straightforwardly derived.

An interesting feature of the peak correlations of the
matter density field is the enhancement of the effect of BAO
in the correlation function of peaks (Fig. 4). Even though
the BAO peaks in the correlation function of the density
field are smeared by the smoothing, the scale of BAO is still
encoded in the correlation function of peaks.

The main purpose of this paper is to provide the analytic
formulas for the peak statistics in the presence of the weak
non-Gaussianity. There are several directions for applying
and extending the results of this paper. First, the peaks of
the galaxy number density are obvious sites of the
cosmological structures such as the clusters and super-
clusters of galaxies. While the analytic formulas for
statistics of peaks in Gaussian random fields are only
applicable in the Lagrangian density fields, those in weakly
non-Gaussian fields are applicable in the Eulerian density
fields, which can be directly observable. In the era of large
cosmological surveys, the statistics of peaks in the galaxy
number density fields would be useful tools beyond the
two-point statistics of density fields. Second, analytic
formulas of this paper are also useful for the analysis of
two-dimensional weak lensing fields. The weak lensing
fields on scales of interest are definitely non-Gaussian.
In applying the results of this paper, it is necessary to
include the effects of noise, which should be rather
straightforward. Third, we only take into account the

effect of lowest-order non-Gaussianity characterized by
the bispectrum. The next-order contributions include the
linear effects of the trispectrum and quadratic effects of
the bispectrum. While the next-order contributions of
non-Gaussianity are more complicated than those in this
paper, it is feasible to extend the results in this direction.
Fourth, the analysis of the abundance and correlation of
PBHs in the presence of initial non-Gaussianity will be an
interesting application of the results of this paper. We hope
to address the possibility of the above applications in the
near future.

ACKNOWLEDGMENTS

The author thanks S. Kuriki for helpful discussion.
This work was supported by JSPS KAKENHI Grants
No. JP16H03977 and No. JP19K03835.

APPENDIX A: AN EXPANSION METHOD WITH
THE GENERALIZED WIENER-HERMITE
FUNCTIONALS

In this Appendix, we review a method of Ref. [57] to
derive the weakly non-Gaussian corrections to the statis-
tical quantities. The derivation is based on the method of
generalized Wiener-Hermite expansion of the biased field
[57], and this method is closely related to a method in the
integrated perturbation theory [87]. While the derivation
of Ref. [57] is mostly presented in configuration space,
we present the equivalent method in Fourier space in this
Appendix.

We assume the random field f has a zero mean,
(f) =0, and is statistically homogeneous and isotropic in
N-dimensional space. It is convenient to work in Fourier
space, and each Fourier coefficient is denoted by f (k). Our
convention of the Fourier transform is given by

) = [ setape. )= [ Sgerin,

(A1)

The statistical properties are specified by the probability
distribution functional P[f], which gives the probability
density for a particular form of function f(k).

The partition function is given by a functional integral,

2~ [ prew]i [ %ﬂk)ﬂkﬂpm, (A2)

where Df is the volume element of the functional integral

over the function f (k) with appropriate measures.
According to the cumulant expansion theorem [88], we
have
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In Z[J Zn'/del .. de <]~p( D Fle )T Ry -+ T (K,

where (-

Z[J] —exp{ 1/(de P(k)J(-k

2z)N
where P(k) is the power spectrum defined by

(F)) ko)) =

-). represents the n-point cumulant. From the above equation, the partition function is represented by

)| exp [Zn'/

(A3)

N N
S T ) P - T )| (A4)
(2z)VSN (k) + ky) P (k). (AS)

Inverting Eq. (A2), substituting Eq. (A4), and performing Gaussian integration, the probability distribution functional is

represented by

:/T)JZ[J] exp [—i/%

—exp | O [ i) - )7

n=3

1070

}Pc,m, (A6)

5f ((ky)---of (k,)

where D[J] is the volume element of the functional integral over the function J (k) with appropriate measures, /51 (k) is the

functional derivative, and

7= [ Pilexs |- [ s PWs k00 - [ S5 swih)] weso |- [ S5 <"‘”§( |

(2m)N

is the Gaussian probability distribution functional. The last
expression is the result of the functional integration up to
the normalization constant.

Equation (A6) is a fundamental equation to relate the
non-Gaussian statistics to the Gaussian statistics, and the
latter is analytically easier to calculate than the former in
general. In weakly non-Gaussian cases when the higher-
order cumulants are not important, one can expand the
exponent and can investigate the effects of lower-order
cumulants in the non-Gaussian distributions.

Expanding the exponent of Eq. (A6), we generally have
functional derivatives of Pg, which is straightforwardly
calculated by the last expression of Eq. (A7) and results
in polynomials of f(k) times Pg. The Wiener-Hermite
functionals are the polynomials of this kind. They are
defined by

( 1 ) n 511 PG

M, (k. ... o T

n)_

oy Y

and Hy =1 when n = 0. We also define the dual func-
tionals H;; by
H}‘;(kl’ --'7kn) = (Zﬂ)NnP(kl) T

Pk, M, (=K, ....—k,).

(A9)

P(k

The first several functionals are given by

My =1, (A10)
Hi (k) = f(k), (A11)
H3 (ki ko) = fkey) fley) — 2m)N 6N (ky + k) P(ky ).
(A12)
H; (ki ko ky) = f(ky) f (ko) f (k)
— [(27)V8N (ky + k) P(ky) f (k3) + cyc],
(A13)

and so forth. The following orthogonality relation is shown
in Ref. [57],

HE (s oK Hon (R oo K )
= Syul6" (k; —K,) -V (k,, — k) +sym(ky,....k,)],

(A14)

where (---)g = [Df - Pg is the expectation value of the
Gaussian statistics with the power spectrum P(k), and
sym(ky, ...,k,) indicates (n! — 1) terms to symmetrize the
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previous term with respect to permutations of the arguments &, ..., k,. Using the generalized Wiener-Hermite functionals,
the probability distribution functional of non-Gaussian statistics of Eq. (A6) is represented by

P = HuPo + g [ d¥kid ke ks (7)) ) M . s ks P
s [k ) TR F ) T ) F s P ) P K P

1 ~ ~
+ 2 dVky - dVky(f(Ry) - - fka)) Moy Ky K3 Ky) P + - (A15)
Assuming the higher-order cumulants are small, weakly non-Gaussian statistics are calculated by the above expansion
scheme. This expansion is a generalization of the Edgeworth expansion [56,57,89,90].

Since the generalized Wiener-Hermite functionals are orthogonal functionals with orthogonality given by Eq. (A14), any

given functional F(x) of the random field f can be expanded by the functionals. In Fourier space, the expansion of F (k) is
given by

~ o0 Nk, dVk,
PO =2 1] @y @y

Qr)NoN(ky + - +k, — k)G, (ky, ...k, H} ki, ....k,), (A16)

where the appearance of the delta function in the integrand is a consequence of translational invariance of the space. Due to
the orthogonality relation of Eq. (A14), the coefficient functions G, are given by

5" F (k)
k) ~5f<kn>> o A

Qr)NN (k) + - + k, —k)Gy(ky, ... k) = (2ﬂ)Nn<ﬁ(k)Hn(k1, k) = (27T>Nn<5f~((

Fourier transforming the above equation with respect to k, we have

Gyl ) = ()b F O b1 = et b EE O

Due to the translational invariance, the second and third expressions are independent of the position x. Thus, in practice,
we can conveniently evaluate the function G, by putting x = 0 in the above equation. Using Egs. (A15) and (A18), the
expectation value of any functional F of f at any position is expanded as

N N N
) = [ DIFUIP = Qo+ [ e Gt ) T k) G e

1 d% dVk

(Flley) -+« Fky)) Ga(ky ke hes. ky)

24 ) 2z)N  (2x)N

+2 / ke (F k) f (ko) Fh))o (F (k) f (les) f (K )) G (K- Kes) + (A19)

72 (Zﬂ)N (277:)N 1 2 3 C 4 5 6 C 6 | AL *

|

This expansion has a diagrammatic interpretation [57].  Wick’s theorem for Gaussian statistics, and more conven-
Higher-order correction terms can be efficiently derived by  iently evaluated by the diagrammatic method developed
the diagrammatic rules. in Ref. [57]. In short, contractions of the field which
Similarly, we obtain the expansion of the two-point  are contained in the same H, or Hj should be dropped
statistics in Fourier space (the power spectrum), when applying Wick’s theorem. As a result, the factor

(HyHpH;)g is nonzero only when n + m + [ is an even
<ﬁ-(k)ﬁ-(k/)> — /fo(k)]:(k/)zp (AZO) number, and we have, c.g.,

*(ky YHT (K, = 22)VP(k)oN (k, + K A21
Substituting Eqgs. (Al5) and (A16) into the above (Hi (R JH e ) Ho) g = (2m)TP (kST (R + K. ( )

equation, there appear terms involving factors of the type . o 1
(HyHyH;)g- These factors can be evaluated by applying (M (ki ) H3 (K Ky Ky ) Ho ) = 0. (A22)
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(H5 (key leo ) H5 (K By ) Ho)
= (2m)*N P(ky )P (ko)™ (ky + k})8" (ky + k) + sym,

(A23)
(HHT (k) Hs (K Ky ) g = 0. (A24)

(HEHS (kKo K3 ) Hs (K Ky k) g
= " (ki — k)3" (ky — k3)6" (ks — k) + sym,  (A25)

(Fl)F(K)), = (2m)N&" (k + k)G, (k)G (—k) P(k)
dVk, dVk,
Q2a)V 2z)"

+ % (276" (k + K')

(HT ey ) H (K dey ) Ha (K K s ))

= N (k, — k)N (K| — K5)5N (Ky — k) + sym,  (A26)
and so forth, where +sym represents the symmetrization
terms which symmetrize the previous term with respect to
the arguments of H; or H,,. For example, the symmetriza-
tion terms of Eqs. (A25) correspond to cyclic permutations
with respect to ki, k,, and k5. Substituting Egs. (A15) and
(A16) into Eq. (A20), using Egs. (A21)-(A24), and
subtracting the connected part, we have

(2m)N6N (ky + ky — k)G (ky . ky) Gy (—ky ., —ky) P(ky ) P(ky)

#3010 [ 9 -+ KGR TR )T+ )] -

Q2m) (22)"

This expression also has a diagrammatic interpretation [57].
Higher-order correction terms can be efficiently derived
by the diagrammatic rules. In Egs. (A19) and (A27), the
n-point correlations of the Fourier modes (f(k,) - - - f(k,)).
contain a delta function 8" (k; + - - -ky) due to the trans-
lational invariance of space, and parts of the integrals are
trivially performed. For example, the bispectrum B is

defined by

(flkr) (ko) f(K3))e = (2m)NSN (kg + ky + k3 ) B(ky Ky Ke3).

(A28)

The power spectrum Pg(k) of the biased field F is
given by

(FU)F(K)).

e Qo (k + k)P (k).

(A29)

Thus, from Eqgs. (A19) and (A27) and (A28), we have

Pr(k) = [g1(k)]*P(k)
N
+3 | Gapelontok=p)?
< P(p)P(lk — p|) + 01 (k)
x/(;’NT)%gz@,k—mB(p,k—p,—k)+---,

(A30)

where

(A27)
I
nlh k) = el )
0
and we have used a parity symmetry, g,(=k, ..., —k,) =

gn(kl’ ...,kn> and B(—kl, —kz, —k3) = B(kl,kz,k3). The
non-Gaussian corrections of Eq. (A19) for the denominator
of Eq. (A29) do not contribute to the above lowest-order
correction, although they contribute to higher-order cor-
rections in general. Equation (A30) has the same form as
the result of the integrated perturbation theory [87] if
we identify g, = c¢,, where ¢, is the renormalized bias
function. However, this identification is valid only for the
lowest-order non-Gaussian approximation, because c,, is
defined with non-Gaussian statistics while g, is defined
with Gaussian statistics.

APPENDIX B: GAUSSIAN RESPONSE
FUNCTIONS FOR PEAKS

In this Appendix, we calculate the Gaussian n-point
response functions of Eq. (3) for the peak number density,
F = ny, in a generally N-dimensional space. The func-
tions are defined by

5”npk

5f<k1>---5f<kn>>a' (B1)

gn(kl, ""kn) = (2”)Nn<

The peak number density 7, (v) given by Eq. (19) is a
function of the field derivatives, a, 1;, and {;; of Eq. (8).
Thereby, the functional derivative §/6f (k) acting on Ny 18
replaced by
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S da O on; O oCi; 0
2 NN——) 2 N = —_— = L~ = J
B 55w~ O (5700 00+ 57wy on 7w 02,
10 ik o kki o 4
=0 o on o 0, W (B2

For the operator 9/9(;;, the derivatives are taken as if {;;
and {; are independent for i # j [65]. Thus, Eq. (B1) is
rewritten as

Gk, ... k) = (—1)"/dNYankf)(k1) D) Po(Y).

function of only rotationally invariant variables a, 1°, J;,
and J,. Using the above relations, the first-order derivatives
are given by

0 0

—Pg =2 —— Pa.

on;” ¢~ o) T

0 0 0
aCijPG_ |: 5l]aJ +NC}I :|PG’ (BS)

the second-order derivatives are given by

B3 O d o
( ) WP0—2[,18( )+27’],1’]Ja( ) P(;, (B6)
To calculate the differentiations of the above expression, !
the relations 5 o >
0 0 2N - - 0
————Pg=16;i0y=—————06;i ik + 61l ii) ———
a(n2> 5 611 5 8Cij3Ck1 G |: J kl&llz N—l( jClk lej )8.]18.]2
on; ac; T 4N* gz i
o/, 0, I (V=177 01,2
. = NCJH 9, = 6ubj1 — N‘sij5kl (B4) 0
ij ij +N 1(N5115]k 0; 5kl)8J Pa, (B7)
are useful. The Gaussian probability distribution function
for the field derivatives Pg(Y) given by Eq. (17) is a  and the third-order derivatives are given by
|
0 o? 0
—FP :4{5177 + 6,1 + On + 2ninin }7’, B8
arlla”]ank G ( J k ]k k ]) a( 2)2 ka( ) G ( )
> > 2N . g N &
> - Pc= _51' 6 5mn 51’ 6 nm 6i '5mn 1 5mn i) a7 2971
O 0L G [ 0kl 8]13+ 1( 70kiCnm + 6ij0mnCi + Su C’)ajlz(?]z
N uliom + il + S
(N _ 1)2 ij5lkSnm kIS jiSnm mnS ji%lk 8]10.]22
8N3 03 2N (3 0?
+— (N )3 Cﬂé’lké’nm 8] 3 —1 <N 5ij5k15mn - 5ij5kn51m 5k15m51m - 5i15jk5mn> m
4N? > > > 850ulum + 6ii8mnlik + 616l 0
5 | 816, SinOimCji + 8ubjplm — — == =k Pg. (B9
+ (N _ 1)2 < in jmz.rllk + kn lmz.rl]l + il ]ké.:nm N 8]22 G ( )

The integrand of Eq. (B3) other than the product of operators, f)(kl) D

(k,), contains only rotationally invariant

variables. Thus, we can first average over the angular dependence in the product of operators. Denoting the angular average

by (--)o, we have

1
(ni)a =0, (ninj)g = Néijn27 (€ij)o =0,
Climda = s 163,60
ijoklSmn Q_N3(N+2)(N+4) ijYklYmn

+ N2 (5ik51m5jn + 5./'k61m6in + 5i15km6

- 4N(5ij5km51n + 5ij5kn§lm + 5k15im5jn

. 7

2
= m <5ik5jl + b — Néij‘sld)’ (B10)

+ 5k15inéjm + 5mn5ik5jl + 5mn5i15jk)

jn + 5ik51n5jm + 5]'15km6in + 5i16kn6jm + 5jk61n6im + 5./'l5kn6im)]’

(B11)

due to rotational symmetry. Using the above equations, we have
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10 kK 0
(PP = (- g+ 557 ) Po B12)
(19 KPON(1O kPO 2k-k)[ 2, 8] O
OPkPon = (2 o 3,) (ot o) o N a0 )
N[ oL w, 00
e [("1 ol -k sz1+<N_1)(N+2)a,2 o1,y e (B13)

10 k2oN(10 k2d\(10 k®o
D(ky)D(k>) Dk = — — o s T
< ( 1) (2) (3)>QPG {<606a+02 8]1) (0080(+62 3J1> <O'0(9a+62 8-’1)

2ke) (10 K ON[ 2 0] 0
0'12 0'0(96( () (9.]1 N 6( 2) ( ) <y

N s Lol (LD kD 4, 019
+ (N— 1)022 |:(kl k2) I\v’kl k2 :| (60 8a+ (o) 8]1 1+ (N— 1)(N+2) 8.12 8]2
64N?
(N— )3(N+2)(N+4)623 |:(k1 kZ)(k2k3)(k3 kl)
_ky*(ky - k) + cyc S foa
N +N k 2k 2ks? | T3~ 57 Ps. (B14)

According to the form of Pg in Eq. (17), we have

+cyc +

2 0 0 N N
1+ -2~ | = Pr=—(n*=1 (N/2 1) Bl
[ TN 8(772)] 3(172)7)G 7 (1" = 1)Pa = 27 |Pa: (B15)
910, NSOV
{1 +m8_12} a_JZPG - 4 (J2 = D)Pg = Fio(J2.J3) P, (B16)
&’ N—1)3(N +2)3 N —1)3(N +2)?
J3 @'Pg — _( )65‘ ) J3Pg = _( )651 ) Foi(J2J5)Pe. (B17)

where F,,(J5,J3) is defined by Eq. (23). Substituting Eqs. (B15)-(B17) into Egs. (B12)-(B14), Eq. (B3) is represented in
terms of Gjjy, of Eq. (20). The results are given by

gO = GOOOOOv (BIS)
G G
g] (k) _ 10000 + 01000 kz’ (Blg)
0o )
G G G 2G 2NG 1
g (kl ,kz) 20000 20000 , 711000 11000 (k + k ) 02(;00 k]2k22 _ 002100 kl . k2 + 000102 ( . kz)z _ _k12k22 , (BZO)
GO 000, (o) (o] (N - 1)02 N

G G G
Gy(ky ko, ks) = 30(;00 n 2;000 (k2 + k2 + k32) + 12000 (k
o0 %0 %2 5005°

2ky? + cyc)

G 2G 2G
205000 k2,2 k2 — U0 (), + cye) — 20 (g, - ky )k + cyc]
62 6001 (23] 62
3 o ko k] (R [P eve = bt
N2(N 4 2)*Goooo1

ki ky)?k3® +cyc 2
T (Nt d)oy [(kl 'kz)(kz'k3)(k3'k1)—( 1 2)N3 Y +ﬁk|2k22k32}
2

(B21)
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APPENDIX C: RADIAL FUNCTIONS FOR CORRELATIONS OF PEAKS

In this Appendix, radial functions 51(9}3 (r), .fl(j() (r), and Sng(k, r) in Eq. (104) are explicitly given by the functions 55,;’) (r),
AW (r), and BYY(r) of Eqs. (101)~(103). The relations are derived from Egs. (59), (76), (81), and (82). The results for

.fg()(r) and fg()(r) are already given in Ref. [15]. We reproduce the latter results here for completeness. The result for
Sxg(k, r) below is new in this paper.
In the following, we adopt notations

bii = Gijooo- Xk =900k00  Dim = Jo00im- (1)
The final results are given by
féL) = b1o28y) + 2bioboiéy + boi &y (C2)

2
‘f;()i) = 5202(5(()0))2 + 4b20b11§(()0)§(()2) + 2b1125£)0)5(()4) + 2(1720502 + by + 5112> (5(()2)>2 + 45111702‘5(()2)5(()4) + 4baox (‘5(11))2

4 2 4 2 2 2
+ 8b11%15§1)§§3> + <b022 + 560102) (‘564)) + 4<b02 + 6010))(1 (5(13)) + 4<b206010 + )(12> (552))

5 3
+ 8b11a)10§§2)§é4) + 4(1902 + %G)lo)wlo(f?))z + %)(10)10( §3))2 + %0)102(54(;4))27 (C3)
and
Sxe = 2bsg [g(AO(’))z+;—1(A§°>)2—A<,‘”A§”+§A§)°)B§°)+A§‘”B§” 717 sl)Bgl)_i_ﬁ g°>35)2>+%2/4g°)3g2>]
+2by, %AB”ASO’ - (A" + %Aéo)A(zz) —ATAP + ;Aff)Béo) +4"B{" + ;AEO)B?) + 4y VB
_3 qwgo_ L epm S ope) 8 jepe) 1 mpe 4 jopw 8 40 <4)}
T T 3T/ S S SR T TS
+ 260, [g(AOZ))Z %(Agz)f—A(ll)Af) +3A<()2)B§>2) + AP
_% (()4>B<02)_% OB 4 A 84)+T,(2A§2>B§4)}
+4y [— %A(@AE}’) + g—; Ay + % (A&)? - §A;°>A;2> + %Aﬁ”B‘l” + §A50>332> + §Ag°>sg2>
A AT 2 A 2 a0 S a0
oo |1 (AR 4 T (AP o (AR = 2A0AD ~2A0AD 4 ZaP B 4 2alBE 4 Sl B
oA~ AP B =S AV B AT B AR AR (o
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