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Future galaxy clustering surveys will probe small scales where nonlinearities become important. Since the
number ofmodes accessible on intermediate to small scales is very high, having a precisemodel at these scales
is important especially in the context of discriminating alternative cosmological models from the standard
one. In the mildly nonlinear regime, such models typically differ from each other, and galaxy clustering data
will become very precise on these scales in the near future. As the observable quantity is the angular power
spectrum in redshift space, it is important to study the effects of nonlinear density and redshift space distortion
(RSD) in the angular power spectrum. We compute nonlinear contributions to the angular power spectrum
using a flat-sky approximation, and compare the results of different perturbative and nonperturbative
approaches. We find that the Taruya-Nishimichi-Saito (TNS) perturbative approach is significantly closer to
the comoving Lagrangian acceleration approximation than Eulerian or partially resummed-Lagrangian one-
loop approximations, effective field theory of large scale structure or a halofit-inspiredmodel. However, none
of these prescriptions agreewith each other in the nonlinear regime.A surprising and new result of the present
analysis is that for narrow redshift bins, Δz ≲ 0.01, the angular power spectrum acquires nonlinear
contributions on all scales, right down to l ¼ 2, and is hence not a reliable tool at this time. To overcome this
problem, we need to model nonlinear RSD terms, for example as TNS does, but for a matter power spectrum
that remains reasonably accurate well into the deeply nonlinear regime, such as halofit.
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I. INTRODUCTION

After the tremendous success of cosmic microwave
background observations [1], presently major efforts in
cosmology are going into the observation and modeling of
the distribution of galaxies [2–10]. As this data set is three
dimensional, it is potentially much richer and may allow us
to study the evolution of cosmic structure formation.
However, on small scales the fluctuations in the matter

density can become large at the present time. Therefore,
first order cosmological perturbation theory is not sufficient
to describe structure formation on these scales and numeri-
cal N-body simulations, in principle including also hydro-
dynamic effects, are needed. This is a very complicated
process and usually many phenomenological parameters
have to be used to describe the highly nonlinear hydro-
dynamic processes which are affected by star formation,
active galactic nuclei feedback and more [11–13].
On intermediate scales, higher order perturbation theory

and phenomenological modeling of the galaxy power

spectrum can be used [14–18]. This is the topic of the
present work. In the past, people have mainly looked at the
power spectrum in Fourier space [4,8]. Within linear
perturbation theory this is approximated by the so-called
Kaiser formula [14], which includes redshift space dis-
tortions (RSD), i.e., the fact that the observed redshift is
affected by peculiar velocities which are in turn correlated
with matter overdensities,

Pðk; μ; z̄Þ ¼ D2
1ðz̄Þ½bðz̄Þ þ fðz̄Þμ2�2PmðkÞ; ð1Þ

where μ ¼ k̂ · n is the cosine of the angle between the unit
vector in direction k, k̂, and the observation direction n,
which is a unit vector. Here z̄ is a mean redshift of the
survey under consideration, PmðkÞ is the linear matter
density power spectrum today (in real space), D1ðz̄Þ is the
linear growth factor normalized to D1ð0Þ ¼ 1, bðz̄Þ is the
galaxy bias and

fðz̄Þ ¼ −
D0

1

D1

ð1þ z̄Þ ¼ d lnD1

d lnðaÞ ð2Þ

is the growth rate, where the prime denotes the derivative
with respect to the redshift z̄. This formula has been
generalized in the literature to include nonlinearities
in the matter power spectrum, usually by replacing
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D2
1ðz̄ÞPmðkÞ by a one-loop or two-loop power spectrum

[15] or by a phenomenological approximation like halofit
[16,19]. Workers in the field have also corrected the
“Kaiser relation” fðzÞðk̂ · nÞ2 for the peculiar velocity with
a nonlinear and phenomenological description [20]. With
the increasing precision of the data available from galaxy
surveys such as Euclid [21–23], WFIRST [24,25], 4MOST
[26] and DESI [27,28], and with the upcoming HI surveys
(e.g., [29–31]) that have a very high redshift resolution, it is
important to model the theoretical galaxy power spectrum
as accurately as possible. Even at scales as large as those of
baryon acoustic oscillations, we need to go beyond linear
perturbation theory [8,32].
Equation (1) is a good approximation to cosmological

observations only if we have a small, far away galaxy
survey in a fixed direction n at nearly fixed redshift z̄.
A true galaxy survey lives on our background light cone
and the radial distance between galaxies is related to their
redshift difference. The correlation function therefore is
truly a function of two directions, n1, n2 and two redshifts,
z1, z2. Assuming statistical isotropy it depends only on
cos θ ¼ n1 · n2, z1 and z2. A harmonic transform in cos θ
yields the spherical power spectrum Clðz1; z2Þ. This has
been derived at first order in perturbation theory in [33,34].
Apart from density and RSD, the complete formula
includes several relativistic effects like the integrated
Sachs Wolfe effect, the Shapiro time delay, the gravitational
potential at the source and gravitational lensing conver-
gence (also termed “magnification bias”). Apart from the
last term, all relativistic contributions are relevant only on
very large scales corresponding to l≲ 10. The gravita-
tional lensing contribution is relevant in wide redshift bins,
at relatively high redshifts, z≳ 1, or in widely separated
redshift bins [33,35,36]. For the redshift bin widths used in
this work, we discuss briefly in the Appendix E the
importance of lensing in angular power spectra, relative
to the RSD contribution.
Here, we consider spectroscopic surveys which have a

very precise redshift distribution and we neglect lensing.
We want to determine the effect of loop corrections in
Eulerian and Lagrangian perturbation theory as well as
other phenomenological approaches to the nonlinear matter
power spectrum. We study how these corrections affect the
observable angular power spectrum, Cl, when considering
density and redshift space distortions, and we compare
them with results from the more accurate comoving
Lagrangian acceleration (COLA) [37–40] simulations.
The density and RSD contributions are dominant at
relatively low redshifts and for spectroscopic surveys like
Euclid; furthermore, it is these terms which are most
affected by nonlinearities. The main point of this paper
is not to make precise forecasts for which certainly the
lensing term should not be neglected, but to study the effect
of nonlinear corrections in the Cl’s coming from clustering
and RSD.

In the next section, we derive a flat-sky approximation
for density and RSD which is surprisingly accurate even at
low l. In Sec. III we compute the Cl’s from the different
approximations for nonlinear power spectrum in redshift
space (described in Appendix A) and compare them with
the linear and halofit results. This section contains our main
findings. We also compare our theoretical predictions to
measurements made from a set of COLA N-body simu-
lations. In Sec. IV we discuss our findings and conclude.

II. THE FLAT-SKY APPROXIMATION

In this section, we discuss a flat-sky approximation
[41–43] which we use to compute the angular power
spectrum Clðz1; z2Þ for galaxy number counts from the
three-dimensional power spectrum, where z1 and z2 are two
(relatively close) redshifts. We start from the correlation
function in configuration space which in principle depends
on two spatial positions and two redshifts, ξðx1; z1; x2; z2Þ,
where ðx1; z1Þ and ðx2; z2Þ are constrained to lie on our
background light cone. We assume that the redshifts are
relatively close so that the time evolution between z1 and z2
can be neglected. Then the correlation function depends
only on r ¼ x2 − x1 and z̄ ¼ ðz1 þ z2Þ=2 (see Fig. 1). This
correlation function in real space, ξðr; z̄Þ, is the Fourier
transform of the power spectrum

ξðr; z̄Þ ¼ 1

ð2πÞ3
Z

d3kPðk; z̄Þe−ik·r: ð3Þ

Let us now consider the flat-sky approximation, which
amounts to assuming that the direction from the observer to
the points x1 and x2 is nearly equal, n1 ≃ n2 ¼ n; i.e., the
survey covers a relatively small patch of the sky in a fixed
direction n. This is the situation for which Eq. (1) can be
used as an approximation for the power spectrum. In this
case we can also decompose the separation vector r into
components perpendicular and parallel to the line-of-sight
direction n, as shown in Fig. 1, so we have

r ¼ r⊥ þ rkn;

rk ¼ rν ≃ χðz2Þ − χðz1Þ ≃
Δz
Hðz̄Þ ; ð4Þ

where χðzÞ is the comoving distance to redshift z, ν ¼ r̂ · n̂
as shown in Fig. 1. Similarly in k-space we define

k ¼ k⊥ þ kkn;

kk ¼ kμ ¼ kk̂ · n: ð5Þ

We introduce the dimensionless two-dimensional (2D)
vector l by k⊥ ≡ l=χðz̄Þ. Therefore by using Eqs. (4)
and (5) we can rewrite Eq. (3) as
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ξðr; z̄Þ ¼ 1

ð2πÞ3
Z

d2l
χ2ðz̄Þ dkkPðk; z̄Þe

−iðl·r⊥χðz̄Þ þkk
ðz2−z1Þ
Hðz̄Þ Þ: ð6Þ

On the other hand, we know how to compute ξðr; zÞ from
the angular power spectrum. In the flat-sky approximation
this yields (see e.g., [44])

ξðr⊥; z1; z2Þ ¼
1

ð2πÞ2
Z

d2lClðz1; z2Þe−il·r⊥=χðz̄Þ: ð7Þ

By comparing Eqs. (6) and (7), we find the relation
between the angular power spectrum and the three-dimen-
sional power spectrum in Fourier space as

Clðz1; z2Þ ¼
1

2πχ2ðz̄Þ
Z þ∞

−∞
dkkPðk; z̄Þe−ikkðz2−z1Þ=Hðz̄Þ; ð8Þ

for k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þ ðl=χÞ2

q
. Note that this approximation is not

equivalent to the Limber approximation [45], which is
often used for weak lensing calculations where k≃
ðlþ 1=2Þ=χðzÞ is used instead of an integration of the
power spectrum times the Bessel function. In this flat-sky
approximation we identify the flat-sky vectors

k⊥ ≡ l=χðz̄Þ; ð9Þ

and integrate over kk. Contrary to Limber’s approximation,
which is bad for the density and RSD contributions to
number counts (see e.g., [46]), this approximation turns out
to be excellent for close redshifts z1 ≃ z2, when compared
to the exact definition ofClðz1; z2Þwhich, at low l, is given
by (see Appendix B of [33], where we have added the bias
dependence)

Clðz1; z2Þ ¼
2

π
bðz1Þbðz2Þ

Z
dkk2Pmðk; z1; z2Þ

×

�
jlðkχðz1ÞÞjlðkχðz2ÞÞ

−
fðz2Þ
bðz2Þ

jlðkχðz1ÞÞj00lðkχðz2ÞÞ

−
fðz1Þ
bðz1Þ

j00lðkχðz1ÞÞjlðkχðz2ÞÞ

þ fðz1Þ
bðz1Þ

fðz2Þ
bðz2Þ

j00lðkχðz1ÞÞj00lðkχðz2ÞÞ
�
: ð10Þ

Here Pmðk; z1; z2Þ is the matter power spectrum and
bðz1Þ, bðz2Þ are the linear tracer biases at z1 and z2. For
large redshift separations the flat-sky approximation gets
worse. This is because this approximation corresponds to
replacing the spherical Bessel function by their lowest
frequency modes, assuming that jχðz1Þ − χðz2Þj ≪ χðz1Þ,
χðz2Þ which is no longer valid when the redshift difference
becomes large—for large redshift differences we addition-
ally need to model the decoherence in Pðk; z1; z2Þ correctly,
e.g., with the fitting function of [47]. In Fig. 2 we compare
the angular power spectrum for z1 ¼ z2 ¼ 1 computed in
the flat-sky approximation Eq. (8) with the one computed
with the exact formula of Eq. (10). The differences are at
most 1%.

III. NONLINEAR CORRECTION TO THE
ANGULAR POWER SPECTRUM

To profit optimally from future galaxy redshift surveys
(Euclid, DESI, 4MOST, SKA, etc.) [23,26,28,49] we must
also be able to model scales where nonlinearities become
relevant. Since the angular power spectrum is the true
observable, it is important to study directly this quantity. In
this section, we discuss the effects of nonlinearities on the
angular power spectrum considering four different
approaches: one-loop corrections from standard Eulerian
perturbation theory which we term SPT, one-loop partially
resummed Lagrangian perturbation theory (pr-LPT), cor-
rections from effective field theory of large scale structure
(EFT) and the Taruya-Nishimichi-Saito (TNS) model [16].
We compare them on the one hand with COLA simulations
[38,40] and on the other hand with the halofit power
spectrum from CAMBwhere we introduce RSD simply via
the Kaiser term. More details on the simulations and on
these approximations are given in Appendix A where we
also discuss the nonlinear correction to the power spectrum
in redshift space. The aim of the present work is the study
of nonlinear corrections of the ClðzÞ power spectra. We
study their effects at different redshifts and for different
widths of the redshift bins considered.
Although the power spectrumPsðk; μ; zÞ in Fourier space,

and its counterpart, the correlation function ξðr; μ; zÞ,
provide some insight into galaxy observations on small

FIG. 1. We show the positions ðx1; z1Þ and ðx2; z2Þ on the
background light cone of an observer situated at X and their flat-
sky approximations.
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scales, here we investigate how these nonlinearities project
onto the sky, i.e., onto the directly observable angular power
spectrum.
In the top panel of Fig. 3 we compare the Cl’s from the

different nonlinear approximations discussed in Appendix A
all at redshift z ¼ 0.5 using different bin widths Δz. For
Δz ¼ 0.1 and l≲ 150, which corresponds roughly to the
nonlinearity scale at z ¼ 0.5, the spectra agree relatively
well. Beyond that scale they become very different, and even
though in k-space TNS is a better approximation to the
numerical results this is no longer true in l space where the
CAMB halofit (red line) does best mimic the COLA result
(grey line), but also this result is more than 20% off at
l ¼ 1000 from the COLA simulation and a better approxi-
mation is certainly needed.
When smaller bin widths are chosen, Δz ¼ 0.01 for the

middle panel and Δz ¼ 0.001 for the lower panel, the
difference between the approximations and the COLA
simulations becomes even worse. For these bin widths
more small scale power enters the Cl’s which not only
increases their amplitude but also makes them more
sensitive to the treatment of nonlinearities. Let us inves-
tigate this important new finding in more detail.
We define the nonlinearity scale through the condition

σðRNL; zÞ ¼ 0.2 ð11Þ

that was also used by Euclid [22,50]. Here σ2ðR; zÞ is
the usual variance of the mass fluctuation in a sphere of
radius R,

σ2ðR; zÞ≡ 1

2π2

Z
∞

0

dk
k

�
3j1ðkRÞ

kR

�
2

k3jδðk; zÞj2; ð12Þ

so that σðR ¼ 8 Mpc=h; z ¼ 0Þ ¼ σ8. We then associate a
nonlinearity scale in Fourier space through

FIG. 2. The left panel shows the comparison between the flat-sky approximation of Eq. (8) and the angular power spectrum computed
by code for anisotropies in the microwave background [48] (CAMB) that uses Eq. (10) at z ¼ 1, using a top hat window function with
Δz ¼ 0.1. The right panel shows the relative difference between the two.

FIG. 3. The plot shows the Cl’s in redshift space at z ¼ 0.5
computed using the different approaches discussed in the text:
PsSPT
one−loop, Eq. (A2), P

sLPT
one−loop, Eq. (A3), P

sEFT
one−loop, Eq. (A5), and

PsTNS
one−loop, Eq. (A7), as well as the nonlinear Cl computed by

CAMB using the halofit model, and the simulated multipoles
from COLA. The redshift bin width is Δz ¼ 0.1 for the top panel,
Δz ¼ 0.01 for the middle panel and Δz ¼ 0.001 for the bottom
panel. None of the models shown here manages to agree with the
numerical simulations except on the largest scales and for wide
redshift bins.
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kNLðzÞ ¼
2π

RNLðzÞ
: ð13Þ

A given transversal wave number k⊥ at redshift z roughly
corresponds to a multipole

lðk; zÞ ≃ k⊥χðzÞ: ð14Þ

In Fig. 4 we show lðk⊥; zÞ for three different values of k⊥
as well as lNLðzÞ ¼ lðkNLðzÞ; zÞ.
In Fig. 5 we compare linear and nonlinear spectra for

different redshifts for the TNS model in Fourier space. For
k < 0.15 h=Mpc the real space spectra (dashed lines) are
closer to the linear result than the redshift space spectra
with μ ¼ 1 (solid lines). This indicates that velocities
exhibit nonlinearities already on larger scales than the
density. Roughly at k ¼ 0.15 h=Mpc this trend is reversed.
When we enter a more nonlinear regime (after shell
crossing), the velocities tend to damp the power in redshift
space, so the redshift space spectra are less nonlinear than
the real space spectra on these scales. Interestingly, the

“crossover” scale of k ¼ 0.15 h=Mpc seems to be nearly
redshift independent.
In Fig. 6 we compare linear and nonlinear angular

spectra for different redshifts using the TNS model for
the nonlinear case. We use here the TNS model and not
halofit since, as we explain later in Figs. 10 and 11, for the
smaller redshift bins which are sensitive to RSD; TNS
follows the simulation results better than CAMB halofit.
For Δz ¼ 0.1, the higher the redshift the higher the value
of l below which our model deviates by less than 10%
(black dotted line) from the linear result. Furthermore,
redshift space distortions are not very visible in l space for
Δz ¼ 0.1 (see the top panel of Fig. 6).
For Δz ¼ 0.01 and Δz ¼ 0.001 (middle and low panels

of Fig. 6), RSDs are very prominent but now, even for very
low l, the linear approximation is no longer sufficient. This
is due to the fact that a very precise redshift resolution in the
spectrum is sensitive to very small radial modes, hence to
very high values of kk which are affected by nonlinearities.
Physically this just means that we are sensitive to non-
linearities if we want high resolution in any direction, radial

FIG. 4. We show lðk⊥; zÞ for k⊥ ¼ ð0.01; 0.1; 1Þ h=Mpc as
well as lNLðzÞ ¼ lðkNLðzÞ; zÞ as a function of redshift z.

FIG. 5. Relative differences between Psðk; μÞNL and Psðk; μÞlin
for the TNS model for different redshifts. The dashed lines
represent the real space case (μ ¼ 0), and the solid ones represent
the redshift space case (μ ¼ 1). The horizontal dotted black line is
the 10% line. For the real space spectrum nonlinearities become
important around k ¼ 0.1 h=Mpc, while in the μ ¼ 1 spectrum
with RSD the nonlinearities appear on much larger scales.

FIG. 6. Relative difference between CNL
l and Clin

l for the
TNS model for different redshifts. The dashed lines represent
the real space case (neglecting any RSD terms in the power
spectrum), and the solid ones represent the redshift space case.
The horizontal dotted black line is the 10% line.
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or transversal. This shift of the nonlinearity scale to lower
l’s for narrow redshift bins is also what we see in the lower
panels of Fig. 3.
This is a very important result of the present paper: if we

want to resolve RSD in the angular power spectrum we
must have sufficiently precise redshift measurements, in
which case the Cl’s are sensitive to nonlinearities in the
radial power spectrum for virtually all l’s.
At the highest redshift, z ¼ 2 and for the most narrow

redshift bin, Δz ¼ 0.001 this yields simply a nearly
constant offset from the linear results by about 5%. For
lower redshifts and/or larger bin widths the difference from
the linear result grows with l as one naively expects. It is
also interesting to note that for the smallest bin width
(bottom panel of Fig. 6), the deviation never exceeds 10%
for z ≥ 1 or z ¼ 0.5 and l≲ 500. This can be understood
by noting that RSDs which are most significant for the
smallest bin width damp the nonlinearities.
Mathematically, the fact that nonlinearities at small Δz

enter already at low l can be understood very nicely from
the flat-sky approximation. Convolving Eq. (8) with a
tophat window function of width Δz we find for a mean
redshift denoted by z̄

Clðz̄;ΔzÞ ¼
1

πχ2

Z
dkkj20

�
kkΔz
2Hðz̄Þ

�
P

�
kk;

l
χ

�
: ð15Þ

Here the spherical Bessel function j20ðkkΔz=2HÞ acts as a
“low pass filter” which filters out modes with
kk ≫ 2HðzÞ=Δz. For very small Δz the integral therefore

extends to high values of k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þ ðl=χÞ2

q
for any l, and

these modes can become large and nonlinear. In this case
nonlinearities affect the result even at the lowest l values.
In other words, for linear perturbation theory to apply it is
not sufficient that the relevant transverse modes k⊥ ¼
l=χðzÞ are well in the linear regime; the relevant radial
modes kk ≤ 2HðzÞ=Δz must also be in the linear regime.
A crude approximation yields

kk;max ≃
2πHðz̄Þ
Δz

< kNLðz̄Þ
or

Δz≳ ðΔzÞmin ¼
2πHðz̄Þ
kNLðz̄Þ

: ð16Þ

We show ðΔzÞmin as a function of z̄ in Fig. 7. Interestingly,
ðΔzÞmin actually grows somewhat with growing redshift.
This is due to the fact that HðzÞ grows faster with redshift
than kNLðzÞ. The critical width is of the order of Δz ≈ 0.01
to 0.02. For narrower redshift bins (higher redshift reso-
lution) we have to expect that (radial) nonlinearities affect
the Cl for all values of l, not only for l > lNL.

The radial cutoff scale kk;max, also shown in Fig. 7, lies
well below the nonlinear scale forΔz ¼ 0.1, while forΔz ¼
0.01 it is in the range of k ≈ 0.3 h=Mpc to 0.8 h=Mpc,
depending on redshift, already in the nonlinear regime. For
narrow redshift bins,Δz ¼ 0.001, it becomes larger than the
“absolute” convergence scale of k ≈ 2 h=Mpc, for which
theCl integral (15) convergeswithout any damping from the
Bessel function, i.e., also forΔz → 0 (except for very high l
where the effective starting value of the integration, l=χ, is
pushed to higher k).
To illustrate clearly the relevance of RSDs we show the

difference between the real space spectra (dashed) and
redshift space spectra (solid) in the nonlinear predictions in
Fig. 8 using the TNS approximation. For the widest redshift
bin, Δz ¼ 0.1, redshift space distortions are not very
relevant. For small Δz, however, they significantly reduce
the Cl spectrum at high l. As for the power spectrum, on
linear scales RSD enhances the power spectrum via the
Kaiser effect while on nonlinear scales it reduces it due to
the velocity overshoot (shell crossing) which damps the
density contribution to power spectrum in redshift space.
The crossover between the dashed and the solid line
roughly corresponds to the nonlinearity scale at a given
redshift. This explains also why the crossover location is
nearly independent of the bin width Δz.

FIG. 7. Top: ðΔzÞmin defined in Eq. (16) as a function of z̄. For
redshift bins narrower than ðΔzÞmin we expect radial nonlinear-
ities to affect the Cl’s also for low values of l. Bottom: The radial
scale kk;max above which the integrand of the Cl integral is
damped by the Bessel function, as a function of bin width Δz, for
different redshifts. We also show as a dashed line the convergence
scale of the integral in the limit Δz → 0.
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To quantify the importance of RSD terms, we have
performed a simple Fisher forecast for several bin widths.
We modeled the RSDs with the Kaiser formula applied to
halofit, and only kept the cosmic variance contribution to

FIG. 8. The comparison between CNL
l in real space and redshift

space for different mean redshifts and with width Δz ¼ 0.1, 0.01,
0.001 from top to bottom. NL stands for nonlinear, and in this
plot we show the case of the TNS model. The dashed lines
represent real space while the solid lines represent redshift space.

FIG. 9. Signal-to-noise ratio for detecting RSD as a function of
Δz for different redshifts. Dashed lines represent SNR using
linear Cl’s and solid lines represent SNR using nonlinear Cl’s.
For z ¼ 1 and z ¼ 2 we sum up to lmax ¼ 1000 and for z ¼ 0.5,
we sum up to lmax ¼ 600 which is 2lNL.

FIG. 10. Comparison between CAMB halofit (dashed) and the
COLA simulations (solid) for the redshifts z ¼ 0.5, 1.0, 1.5, 2.0
and for different redshift bin widths.
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the noise (neglecting survey-dependent contributions like
shot noise and sky fraction). More details about the Fisher
analysis are given in Appendix F. The signal-to-noise ratio
(SNR) is shown in Fig. 9 as a function of redshift bin
width, Δz, for three different redshifts. As we see, the RSD
signal drops by an order of magnitude when going from
Δz ¼ 0.01 to Δz ¼ 0.1, highlighting the importance of
using narrow redshift bins for measuring RSD. The RSD
signal is however still detectable even for wide bins, and it
should therefore be included in the Cl also for Δz ¼ 0.1.
In Fig. 10 we compare also the result of halofit from

CAMB (dashed) with the one from the COLA simulations
(solid) for redshift space angular power spectra. For the bin
width Δz ¼ 0.1 we only have a slight enhancement of the
CAMB spectrum at l > 400 for z ¼ 0.5; all other spectra
are in good agreement. However, for small bin widths
Δz ≤ 0.01, and especially for Δz ¼ 0.001, the insufficient
treatment of the RSD in the halofit model where they are
taken into account simply by the linear Kaiser formula
leads to a significant spurious amplification of the power
spectrum already at low values of l. This enhancement is
more significant at lower redshifts, where nonlinearities are
more relevant, but it is already visible at z ¼ 2.
In Fig. 11 we compare the results using the TNS

approximation (dashed) with the ones from the COLA
simulations (solid) for redshift space angular power spectra.
Clearly, the TNS approximation handles redshift space
distortions much better that halofit and the spurious excess
is reduced and no longer visible for z ¼ 1.5 and 2.0.
However, we have checked that the relative difference
between the simulation result and TNS is larger than
cosmic variance for z ¼ 2 and l > 200 as well as z ≤
1.5 and l ¼ 100 for narrow bins, Δz ¼ 0.001. It becomes
larger than cosmic variance at l ¼ 700, 350 and 200 for
z̄ ¼ 1.5, 1 and 0.5, respectively, for both bin widths, Δz ¼
0.01 and Δz ¼ 0.1. This indicates again that for slim
redshift bins, Δz ¼ 0.001, nonlinearities are relevant
already at low l (where however cosmic variance is very
large). For wide redshift bins,Δz ¼ 0.1, where RSD are not
significant, the halofit model from CAMB is actually a
better approximation than TNS. We have already seen this
in Fig. 3.

IV. DISCUSSION AND CONCLUSION

In this paper we have compared different perturbation
theory-based schemes, SPT, pr-LPT, the EFT, the TNS
model, and halofit to treat nonlinearities in the angular
power spectrum. We also compare these predictions with
COLA simulations. These simulations are percent level
accurate within k≲ 1 h=Mpc when compared to full N-
body measurements of the matter power spectrum [40]. At
the level of the redshift space multipoles, the simulations
still provide fair accuracy up to k ∼ 0.3 h=Mpc [32]. All
other models considered here are less accurate in the
modeling of RSD and so we use the COLA simulations

FIG. 11. Comparison between TNS (dashed) and COLA
simulations (solid) for the redshifts z ¼ 0.5, 1.0, 1.5, 2.0 and
for different redshift bin widths.
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as our benchmark in accuracy. Since the angular power
spectrum is more directly related to observations, we
concentrate on this variable. Our main conclusions are
summarized here:

(i) We find that the flat-sky approximation is valid at
percent level accuracy and so adopt this for all our
comparisons of Cl.

(ii) For large bin widths (Δz ∼ 0.1), RSD is much less
important and the main contributor to nonlinear
information is within the matter power spectrum.
At this bin width halofit combined with the Kaiser
factor agrees within a few percent with our bench-
mark model, the COLA simulation up to l≲ 400 at
z ¼ 0.5 and higher for higher z.

(iii) Small bin widths greatly enhance the impact of
nonlinear RSD. Because of this, the TNS model
outperforms all other models for Δz ¼ 0.01 and
Δz ¼ 0.001. Despite this, it is still a poor approxi-
mation, being accurate to within a few percent only
for l≲ 150 at z ¼ 0.5.

(iv) The most surprising result is that for small bin
widths, nonlinear RSD information becomes impor-
tant also for very low l, with significant nonlinear
effects (∼10%) being found at l ≤ 50 at z ¼ 0.5 for
the TNS model.

(v) For large bin widths, the effect of lensing, which is
not easy to incorporate in Pðk; μÞ, but is straight-
forwardly included in the Cl’s, cannot be ignored,
and at z ¼ 0.5 with Δz ¼ 0.1, it is already equal in
magnitude to the RSD signal at l ≤ 150. This is
discussed in Appendix E.

In conclusion, at the level of the angular power spectrum,
it becomes very difficult to disentangle nonlinearities and
various contributions to the signal. In particular, at low
redshift, nonlinear RSD can play a large role at l ≤ 150 for
small bin width, while for large bin widths lensing begins to
affect the signal. At high redshift (z > 1) nonlinear RSD is
better controlled, but lensing becomes more important for
large bin widths. At z ¼ 1 lensing is subdominant to RSD
up to l≲ 500 for small and large bin width choices. The
TNS model offers a relatively good prescription to model
the nonlinear effects of RSD in the angular power spec-
trum, but is still very limited, especially at low redshift
where nonlinearities are enhanced.
While this can be circumvented for wide redshift

bins by only considering spectra for linear l’s, this
becomes impossible for narrow redshift bins. In fact, for
Δz≲ 0.001, we need to accurately model the nonlinear
spectrum to high k for all values of l. No prescription is
currently accurate enough to do this. It appears therefore
that, at least for now, the angular spectrum is less well
suited to measure RSDs than the correlation function.
We have found that while the TNS approximation is the

only one with a reasonably good treatment of velocities, it
does not reproduce well the COLA angular power spectra

for wide redshift bins,Δz ≥ 0.1. For such wide-bin spectra,
RSDs are not important and halofit, which gives the better
fit to the real space power spectrum than TNS, is actually
preferable. On the other hand, for slim redshift bins, Δz ≤
0.01 TNS is a much better approximation. For such bin
widths, radial nonlinearities are already relevant for very
low l’s which renders halofit, or even more so the linear
power spectrum, simply useless. On the other hand, on
scales l > lNLðzÞ, where also the transverse wave number
enters the nonlinear regime, also the TNS approximation
which models the real space power spectrum purely
becomes insufficient, especially at low redshift, z ≃ 0.5.
From this work it is clear that we are still far away from

modeling the angular power spectrum at 1% precision over
a reasonable range of l. But we now know better in which
direction we have to make progress. We need to model the
real space power spectrum similar to halofit but then correct
for nonlinear RSD like in the TNS model to obtain a good
approximation for the redshift space power spectrum,
especially if we want to model the Cl’s in narrow redshift
bins where they are sensitive to redshift space distortions.
This is essential if we wish to safely extract very important
cosmological information. We must make sure to model
RSDs very precisely, as they can enter the Cl’s at small
l ≪ lNLðzÞ depending on the bin width.
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APPENDIX A: NONLINEAR CORRECTIONS
TO THE POWER SPECTRUM

IN REDSHIFT SPACE

In this Appendix we give a summary of different
nonlinear corrections to the power spectrum that can be
found in the literature. More precisely we consider four
different approaches: one-loop corrections from standard
Newtonian (Eulerian) perturbation theory which we term
SPT, pr-LPT, corrections from EFT and the TNS model.
Some important references for each of these approaches
are [16,51–53], respectively. We perform all perturbative
calculations at the one-loop level (see Appendix B for
details). We also make use of a set of measurements of the
redshift power spectrum from COLA simulations. These
represent our most accurate prediction, with which we can
compare the perturbative approaches. These simulations
are described briefly below. At the end of this section we
compare the different approximations to these simulations.
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1. COLA

We have run a set of 10 parallel comoving Lagrangian
acceleration (PICOLA) simulations [38,40] of box size
1024 Mpc=h with 10243 dark matter particles and a
starting redshift zini ¼ 49. These are all run under a similar
ΛCDM cosmology with Planck parameters [1]: Ωm ¼
0.315,Ωb¼0.0493, h¼0.674, ns¼0.965 and σ8ðz ¼ 0Þ ¼
0.811. The simulation redshift space power spectrum
multipoles are measured using the distant-observer (or
flat-sky) approximation [54] and are then averaged over
three line-of-sight directions. We further average over the
10 PICOLA simulations. We measure the first three even
multipoles, the monopole, quadrupole and hexadecapole.
Using these we can then construct the full anisotropic
power spectrum, Pðk; μÞ [55],

PsCOLA
tot ðk; zÞ ¼ 2P0ðk; zÞ þ

2

5
L2ðμÞP2ðk; zÞ

þ 2

9
L4ðμÞP4ðk; zÞ

þ ½higher order multipoles�; ðA1Þ

where Li is the Legendre polynomial of order “i” and
Pi is the ith multipole which is an average over the

measurements made from the COLA simulations.
Finally, we note that the COLA method is an approximate
method and has been shown to deviate from the full N-body
approach at smaller scales [56–58]. This issue can be
ignored as we simply use these simulations as a benchmark
in accuracy with which to compare the less accurate
perturbative predictions outlined next. For example, the
redshift space monopole for lowly biased halos was shown
to be accurate to full N body to within a few percent at
z ≤ 1 up to k ¼ 0.7 h=Mpc in [56]. On the other hand, the
quadrupole deviates by up to 10% at z ¼ 1 at k ¼
0.7 h=Mpc in the same paper. Regarding this issue, we
expect the dark matter monopole and quadrupole to
perform better than the halo multipoles, and for their
accuracy to improve at higher redshifts. Furthermore, we
expect the theoretical models discussed in this section to
perform significantly worse at these scales.

2. SPT

One-loop contributions to the power spectrum in redshift
space (denoted by superscript s) in the context of SPT are
already well established and have previously been calcu-
lated in the literature (for a review see e.g., [59]). Here as a
reference we point to Eq. (15) of [51],

PsSPT
tot ðk; zÞ≡ Ps

lin þ PsSPT
one−loop ¼ Ps

lin þ Ps
22 þ Ps

13

¼ ð1þ βμ2Þ2b2Plinðk; zÞ þ 2

Z
d3q
ð2πÞ3 Plinðq; zÞPlinðjk − qj; zÞ½FS

2ðq;k − qÞ�2

þ 6ð1þ βμ2ÞbPlinðk; zÞ
Z

d3q
ð2πÞ3 Plinðq; zÞFS

3ðq;−q;kÞ; ðA2Þ

where Plinðk; zÞ is the linear power spectrum in real space,
β≡ f=b, f being the linear growth rate and b being the
linear bias, μ ¼ k̂ · n, and FS

2ðq;k − qÞ and FS
3ðq;−q;kÞ

are the kernels of higher order perturbations. Their ex-
pressions are computed from Eq. (13) of Ref. [51] by
neglecting higher order biases. The details of the integra-
tions that appear in Eq. (A2) are given in Appendix B for
completeness. Furthermore, since we only consider dark
matter we set b ¼ 1.

3. pr-LPT

Here we consider a specific case of pr-LPT introduced in
[52]. The power spectrum using pr-LPT is given in Eq. (63)
of Ref. [52],

PsLPT
tot ðk; zÞ ¼ exp f−k2½1þ fðf þ 2Þμ2�Ag × fPsSPT

tot ðk; zÞ
þð1þ fμ2Þ2½1þ fðf þ 2Þμ2�k2Plinðk; zÞAg;

ðA3Þ

where

A ¼ 1

6π2

Z
dqPlinðq; zÞ: ðA4Þ

The prefactor encodes a damping on small scales from
velocity dispersion.

4. EFT

We also consider effective field theory of large scale
structure [60–65] where counterterms are added to the SPT
power spectrum, for which we refer to Eq. (3.8) of
Ref. [53],

PsEFT
tot ðk; zÞ ¼ PsSPT

tot ðk; zÞ − 2
X3
n¼0

c2jδs;2nμ
2n k

2

k2nl
Plinðk; zÞ;

ðA5Þ

where
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c2jδs;6 ¼ f3c2jδs;0 − f2c2jδs;2 þ fc2jδs;4: ðA6Þ

We do not apply a resummation scheme as is commonly
done in the literature. The effect of resummation has been
shown to have a low impact on the fitting to COLA data
conducted in [53]. The values of the counterterm coef-
ficients are determined by fitting to the COLA simu-
lations. This follows a similar procedure to [32]. We refer
the reader to this work for justifications and details of
this procedure. This is briefly described in Appendix D

where also the numerical values of the fitting parameters
are given.

5. TNS

The last model we consider is the one-loop TNS model.
This model was introduced in [16] and is one of the best
approaches to perturbation theory known at present, having
been applied in the recent BOSS galaxy clustering analysis
[4,8]. It has also been thoroughly validated against simu-
lations and has stood up to other perturbative models
[9,18,20,32,57,66–71]. The model is given by [16]

PsTNS
tot ðk; zÞ ¼ 1

1þ ðk2μ2σ2vÞ=2
½Pδδ

one−loopðk; zÞ þ 2μ2Pδθ
one−loopðk; zÞ þ μ4Pθθ

one−loopðk; zÞ

þ Aðk; μ; zÞ þ Bðk; μ; zÞ þ Cðk; μ; zÞ�: ðA7Þ

The terms in brackets are all constructed within SPT, with
δδ, δθ and θθ denoting density-density, density-velocity and
velocity-velocity one-loop power spectra. The perturbative
correction terms A, B and C are nonlinear corrections
coming from the RSD modeling while the prefactor is
added for phenomenological modeling of the fingers-of-
God effect.Within this prefactor, σv is a free parameter that is
fit to the COLA simulations (see Appendix D). We refer the
reader to [16,32] for a detailed description of the compo-
nents A, B and C of the model, but we give some basic
expressions inAppendixC.We stick to one-loopTNS in this
study; the reason is that although the two-loop version is
shown to do marginally better than the one loop at higher
redshifts (look at [72] for example), the addition of loops in
standard PT is not guaranteed to improve predictions and
our aim is to quantify how nonlinearities (here expressed
through the one-loop and fingers-of-God damping) translate
to the angular spectra, and in particular, how redshift bin
width acts as a filter for these redshift anisotropy non-
linearities, highlighted in Fig. 3.

6. Comparisons

We compare Eq. (A2) (SPT, blue), Eq. (A3) (pr-LPT,
green), Eq. (A5) (EFT, magenta) and Eq. (A7) (TNS,
orange) with Eq. (A1) (COLA reconstructed 2D spectrum,
grey dots) in Fig. 12. We also compare Eq. (1) with PmðkÞ
given by linear theory (linear Kaiser, dashed black), non-
linear halofit power spectrum [19] (halofit, red) and the
matter power spectrum as measured from the simulations
(black dots). These comparisons are done at z ¼ 0.5 and are
shown in the left and right column of the Fig. 12 for μ ¼ 0
(transversal direction) and μ ¼ 1 (radial direction), respec-
tively. We expect that the grey dots marking the recon-
structed COLA 2D spectrum of Eq. (A1) provide the
most accurate modeling for the full spectrum. This is
our benchmark for accuracy.

We also show the one-loop contributions to Plin, P13 and
P22, of Eq. (A2) in the upper panel of Fig. 12. They start to
become important at k ∼ 0.1 h=Mpc for μ ¼ 0, which is
well known from the literature, and on smaller scales for
μ ¼ 1 that we also discuss later. Furthermore, P13 and P22

have opposite signs and their amplitudes are individually
much larger than their sum, which is an indication for the
well-known bad convergence properties of SPT [73].
The one-loop SPT power spectrum (blue line) at z ¼ 0.5

is shown in the middle panel of Fig. 12 for μ ¼ 0 on the
left (in this plot the blue line is covered by the orange line)
and for μ ¼ 1 on the right. One sees clearly that SPT
has too much power at small scales and fits the COLA
simulations (grey dots) in a satisfactory way only for
k≲ 0.1 h=Mpc.
The black dots are the COLA matter power spectrum

multiplied by the Kaiser factor ð1þ βμ2Þ2. They are
accurate until about k ¼ 0.13 h=Mpc. The keen reader
may ask why the grey dots and black dots do not overlap in
the left, middle and lower panels of Fig. 12 at small scales.
This could be due to inaccuracies in the COLA velocities
used in computing the multipoles as well as the exclusion
of higher order multipoles in Eq. (A1).
Next we consider pr-LPT (green curves). It is clear from

Fig. 12 that the damping introduced in the pr-LPT model is
much too strong. Nevertheless, this correction can fit the
power spectrum roughly until k < 0.13 h=Mpc which is
already better than the SPT fit.
The EFT power spectrum is plotted as the magenta line

(in Fig. 12 this line is covered by the orange line).
Somewhat surprisingly, this fit is only a little but not
significantly better than pr-LPT for the angular scales
considered. It represents a reasonable approximation until
k ≃ 0.15 h=Mpc. One key reason for the poor fit at μ ¼ 1 is
the lack of damping within the SPT spectrum which
the EFT counterterms cannot suppress efficiently. The
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inclusion of resummation is expected to improve the fit (see
for example [32]) but we leave this to future work.
Lastly, the TNS model is shown in orange. Clearly, this

model represents the best fit to the full reconstructed
simulated power spectrum for μ ¼ 1 (compare the orange
line and the grey dots in Fig. 12, the right lower panel). It
can be used roughly until k ≃ 0.2 h=Mpc. This is somewhat
disappointing, as we aspire to achieve a good fit until
k ≃ 1 h=Mpc—to reach convergence in the Cl integral.
For narrow redshift bins we find that we need to go even
to 2 h=Mpc. On even smaller scales, corrections from
baryonic physics that are not present in the simulations
used here can at any rate no longer be ignored.
We also note that for μ ¼ 0 the SPT, EFTand TNS power

spectra are identical; i.e., in the left column of Fig. 12, the

blue, magenta and orange lines overlay. These spectra only
differ in their treatment of redshift space distortions which
are absent in the transversal direction, μ ¼ 0.
In Fig. 12, we also show the comparison of the COLA

measurements with the halofit model given in Eq. (1) (red
curve). This approximation is excellent for μ ¼ 0 when
fitted to the COLA matter power spectrum, but for μ ¼ 1 it
does not correctly model the redshift space distortions.
Hence, the higher order RSD and the nonlinearity in the
continuity equation which is not taken into account in this
formula is very relevant. This is also clear from comparing
the black dots, obtained from the matter power spectrum of
the COLA simulations by multiplication with the Kaiser
term, and the grey dots which represent the full sum of the
simulated multipoles. It is also interesting to note that while

FIG. 12. The figures on the left are for the case with μ ¼ 0 in Psðk; μÞ (effectively the real space power spectrum) and the figures on the
right are for μ ¼ 1. The upper panel shows the linear spectrum Ps

11 (blue) along with the one-loop contributions Ps
22 (orange) and Ps

13

(green). The middle panel shows the comparison between PsSPT
one−loop, P

sLPT
one−loop, and PsEFT

one−loop and PsTNS
one−loop defined, respectively, in

Eqs. (A2), (A3), (A5) and (A7). In the lower panel the ratios of the corresponding nonlinear spectra and the linear one are shown. The
black dots show the monopole of the N-body simulations times the Kaiser term while the grey dots also include the quadrupole and the
hexadecapole available from COLA.
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the matter power spectrum of the simulations on small
scales is larger than the linear power spectrum, adding all
the multipoles actually reduces the power spectrum in
redshift space on small scales when compared to the linear
power spectrum. While the pr-LPT approximation exag-
gerates this reduction of power, all other approximations
either cannot model it at all or (in the case of TNS)
underestimate this effect. This is most visible in radial
direction, μ ¼ 1. In the transversal direction, μ ¼ 0, the
nonlinear corrections from SPT, EFT and TNS all over-
shoot significantly while pr-LPT is still too small. Here
halofit provides the best approximation; see Fig. 12. In the

radial direction, μ ¼ 1, only TNS manages to provide a
reasonable fit for k≳ 0.1 h=Mpc, but for k≳ 0.2 h=Mpc it
also starts to overestimate the power significantly so that
there is effectively no good analytical prescription available
to model the redshift space power spectrum into the
nonlinear regime.

APPENDIX B: DERIVATION OF
THE ONE-LOOP TERMS

Following the notations in [51] for Eq. (A2), we have

Ps
totðkÞ≡ Ps

11 þ Ps
22 þ Ps

13

¼ ð1þ βμ2Þ2b21P11ðkÞ þ 2

Z
d3q
ð2πÞ3 P11ðqÞP11ðjk − qjÞ½FS

2ðq;k − qÞ�2

þ 6ð1þ βμ2Þb1P11ðkÞ
Z

d3q
ð2πÞ3 P11ðqÞFS

3ðq;−q;kÞ; ðB1Þ

where β≡ f=b1 and b1 denotes the linear bias. The
symmetrized expression for FS

2ðk1;k2Þ and the unsymme-
trized one for F3ðk1;k2;k3Þ are shown in Eq. (13) of [51].
We symmetrize F3ðk1;k2;k3Þ and find FS

3ðq;−q;kÞ,
neglecting higher order biases.
As can be seen in Eq. (13) of [51], the expressions for FS

2

and FS
3 are given in terms of JS2 , J

S
3 , K

S
2 and KS

3 , which can
be computed from the general nth order expression as

found in the literature [see for example Eqs. (10a) and (10b)
of [74] ]. While Eqs. (B2) and (B3) given below are easily
available in literature, for obtaining Eq. (B4) and Eq. (B5),
we have used the expression for n ¼ 3 and symmetrized it.
However, our results did not match very accurately with the
symmetrized expression obtained from Eq. (11) of [51],
and therefore we explicitly write them below in Eqs. (B4)
and (B5). We find these relations to be as follows:

JS2ðq1;q2Þ ¼
5

7
þ 1

2

q1:q2

q1q2

�
q1
q2

þ q2
q1

�
þ 2

7

ðq1:q2Þ2
q21q

2
2

ðB2Þ

KS
2ðq1;q2Þ ¼

3

7
þ 1

2

q1:q2

q1q2

�
q1
q2

þ q2
q1

�
þ 4

7

ðq1:q2Þ2
q21q

2
2

ðB3Þ

JS3ðq1;q2;q3Þ ¼
1

3
Sym

�
7
q:q1

q21
JS2ðq2;q3Þ þ

q2q1:ðq2 þ q3Þ
q21jq2 þ q3j2

KS
2ðq2;q3Þ

þ
�
7
q:ðq1 þ q2Þ
jq1 þ q2j2

þ q2ðq1 þ q2Þ:q3

jq1 þ q2j2q23

�
KS

2ðq1;q2ÞÞ
�

ðB4Þ

KS
3ðq1;q2;q3Þ ¼

1

3
Sym

�
q1:q
q21

JS2ðq2;q3Þ þ
q2q1:ðq2 þ q3Þ
q21jq2 þ q3j2

KS
2ðq2;q3Þ

þ
�
q:ðq1 þ q2Þ
jq1 þ q2j2

þ q2ðq1 þ q2Þ:q3

jq1 þ q2j2q23

�
KS

2ðq1;q2Þ
�
: ðB5Þ

Here Sym indicates symmetrization in q1, q2 and q3.
One can replace q1, q2, q3 and k ¼ q1 þ q2 þ q3 as
required and effectively calculate these kernels.

The final expressions for FS
2ðq; k − qÞ and FS

3ðq;−q;kÞ
along with subsequent calculations can be found in a
Mathematica notebook [75].
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In the kernels FS
2 and FS

3 we encounter the scalar
products q̂ · n≡ μq ¼ cosðγÞ, k̂ · n≡ μ ¼ cosðαÞ, and

k̂ · q≡ x ¼ cosðβÞ. We also define r ¼ jqj=jkj. We can
write μq in terms of μ, x, and ϕq, where ϕq is the angle
between the projection of q and n onto the plane
perpendicular to k̂ (see Fig. 13),

μq ¼ xμþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − μ2Þ

q
cosðϕqÞ: ðB6Þ

For an arbitrary function ψðk;qÞ, we can write
Z

ψðk;qÞd3q¼
Z

∞

0

q2dq
Z

1

−1
dx

Z
2π

0

dϕqψðk;qÞ: ðB7Þ

Therefore the integration corresponding to Ps
22ðk; μÞ in

Eq. (B1) reduces to

Ps
22 ¼

2k3

ð2πÞ3
Z

∞

0

drr2P11ðrÞ
Z

1

−1
dxP11

�
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 − 2rx

p �

×
Z

2π

0

dϕq½FS
2ðr;ϕq; x; μ; b1; fÞ�2; ðB8Þ

where we take the integral over ϕq analytically, and the
result can be found in our Mathematica notebook [75]. We
write Ps

22 as a sum over powers of μ, b1 and f as

Ps
22 ¼

Xl¼4

l¼0

Xm¼2

m¼0

Xn¼4

n¼0

μ2lbm1 f
nAlmnðkÞ; ðB9Þ

and finally by integrating over r and x we find the
coefficients AlmnðkÞ numerically.
Next, we explain the computation of Ps

13ðk; μÞ, where the
integration is as follows:

Ps
13 ¼ 6ð1þ βμ2Þb1P11ðkÞ

1

ð2πÞ3
Z

∞

0

drr2P11ðrÞ
Z

1

−1
dμq

×
Z

2π

0

dϕqFS
3ðr;ϕq; x; μ; b1; fÞ: ðB10Þ

We integrate over ϕq and μq analytically, the result of
which is contained in our Mathematica notebook [75].
Then similar to Ps

22, we write P
s
13 as a sum over powers of

μ, b1 and f as

Ps
13 ¼

Xl¼2

l¼0

Xm¼1

m¼0

Xn¼3

n¼0

μ2lbm1 f
nBlmnðkÞ; ðB11Þ

and by integrating over r numerically, we find the coef-
ficients BlmnðkÞ which are given in our Mathematica
notebook [75]. We use the minimum and maximum values
of wave number that we have from our CLASS output, kmin,
kmax, for the limits of q.
In order to avoid numerical problems, we employ the

following algorithm for computing the integrals in case of
P13. We divide the integration range in two large parts.

(i) For kmin < q < k: If k < 1000kmin, we integrate the
original term(s) from qmin ¼ kmin to k. Or else, we
take the sum of the integration of the series expansion
around q ¼ 0 from qmin to q < k=1000 and integra-
tion of the original term(s) from k=1000 to q < k.

(ii) For k < q < kmax: If 10k > kmax, we integrate the
original term(s) (with the signs corrected for argu-
ment of Logarithm) from k to kmax. Or else, we take
the sum of the integration of the original term(s)
from k to 10k and the integration of the series
expansion around q ¼ ∞ from 10k to kmax.

APPENDIX C: TNS MODEL, THE A, B AND C
CORRECTION TERMS

In this Appendix we present the basic forms of the RSD
correction terms appearing in Eq. (A7). These terms are
given in terms of the linear power spectrum at k and q
multiplied by coefficients Amn, Ãmn, amn and Bn

ab integrated
over r ¼ k=q and x ¼ k̂ · q̂ as follows,

Aðk; μÞ ¼
X3
m;n¼1

μ2mfn
k3

ð2πÞ2
�Z

dr
Z

dxðAmnðr; xÞPlinðkÞ þ Ãmnðr; xÞPlinðkr; zÞÞ
Plinðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 − 2rx

p
; zÞ

ð1þ r2 − 2rxÞ

þ Plinðk; zÞ
Z

dramnðrÞPlinðkr; zÞ
�
; ðC1Þ

FIG. 13. Vectors and angles involved in the calculations of P13

and P22: k̂ is the direction of the wave vector k of Eq. (A2) and q
is also given in Eq. (A2). n is the line-of-sight direction.
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Bðk; μÞ ¼
X4
n¼1

X2
a;b¼1

μ2nð−fÞaþb k3

ð2πÞ2
Z

dr
Z

dxBn
abðr; xÞ

Pa2ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 − 2rx

p
; zÞPb2ðkr; zÞ

ð1þ r2 − 2rxÞa ; ðC2Þ

Cðk; μÞ ¼ ðkμfÞ2
Z

d3pd3q
ð2πÞ3 δDðk − q − pÞ μ

2
p

p2
ð1þ fx2Þ2Plinðp; zÞPlinðq; zÞ; ðC3Þ

where μp ¼ k̂ · p̂. Explicit expressions for Amn, Ãmn, amn
and Bn

ab can be found in the Appendices of [16]. The
Cðk; μÞ term is known to have small oscillatory features and
thus it is usually omitted in the literature. We choose to
include it in our work.

APPENDIX D: FITTING PROCEDURE
FOR EFT AND TNS MODEL

To fit the RSD free parameters of the EFT [Eq. (A5)] and
TNS [Eq. (A7)] models to the simulation data we simply
minimize the χ2red,

χ2redðkmaxÞ ¼
1

Ndof

Xkmax

k¼kmin

X
l;l0¼0;2

½PS
l;dataðkÞ − PS

l;modelðkÞ�

× Cov−1l;l0 ðkÞ½PS
l0;dataðkÞ − PS

l0;modelðkÞ�; ðD1Þ

where Covl;l0 is the Gaussian covariance matrix between
the different multipoles, and kmin ¼ 0.006 h=Mpc. The
number of degrees of freedom Ndof is given by Ndof ¼
2 × Nbins − Nparams, where Nbins is the number of k bins
used in the summation and Nparams is the number of free
parameters in the theoretical model. Here, Nparams ¼ 2 for
EFT and not 3 because we only fit the first two multipoles
[76], and Nparams ¼ 1 for the TNS model.
We increase kmax until χ2redðkmaxÞ ≥ 1 monotonically.

This gives a good indication of where the model does not fit
the data so well anymore. We checked that for k < kmax,
chisquared scatters around 1 and it is not systematically less

than 1. In the fit we keep cosmology fixed to the COLA
simulation’s fiducial values and only vary the counterterm
coefficients and σv.
We use linear theory to model the covariance between

the multipoles (see Appendix C of [16] for details). This
has been shown to reproduce N-body results up to k ≤
0.300 h=Mpc at z ¼ 1. In the covariance matrix we assume
a number density of n ¼ 1 × 10−3 h3=Mpc3 and a survey
volume of Vs ¼ 4 Gpc3=h3 which are similar specifica-
tions for a Euclid-like survey [23]. The best fit parameters
as well as kmax are shown in Table I.

APPENDIX E: NEGLECTING THE
LENSING TERM

Throughout the paper, we have neglected the lensing
contribution to the angular power spectrum. In this
Appendix, we show that among the three different redshift
bins that we used, namely, Δz ¼ 0.1, Δz ¼ 0.01, and
Δz ¼ 0.001, lensing is of the same order as the RSD
contribution only for Δz ¼ 0.1 while for the other two
redshift bins, it is negligible.
In Fig. 14, we show the ratio of lensing to the RSD term

for different redshifts with Δz ¼ 0.01 (top panel) and Δz ¼
0.1 (bottom panel). For Δz ¼ 0.1, lensing is not negligible
when compared to RSD; however, we have shown that for
this window width, RSD is also not very significant. For
Δz ¼ 0.01 (top panel), the lensing terms are at most 1% of
the RSD terms. It is also interesting to note that for Δz ¼
0.1 and z ¼ 1 the lensing signal is very small at l < 400.
This comes from the fact that the lensing signal is the sum
of the always negative lensing-density correlation and the
positive lensing-lensing term. At low redshift, the density
term is larger than lensing so that the signal is dominated by
the first term and is therefore negative. At sufficiently high
redshift when enough lensing has accumulated, the lensing-
lensing term starts to dominate and the signal becomes
positive. For Δz ¼ 0.1 this happens roughly at z ¼ 1. For
Δz ¼ 0.01 this happens roughly at z ∼ 0.5 for the low
multipoles, l < 200 while for higher multipoles the pos-
itive lensing-lensing signal dominates. Since the cross-
correlation lensing (z2) density (z1) is significant only for
density fluctuations at redshift over which the lensing term
is integrated, z1 < z2, this contribution is smaller for
smaller redshift bins.

TABLE I. Table showing the maximum kmax½h=Mpc� used in
Eq. (D1) and best fit model parameters for TNS and EFT models
found by a least χ2 fit to the COLA data.

Model TNS EFT

z 0.5 1 1.5 2 0.5 1 1.5 2

kmax 0.16 0.21 0.27 0.35 0.16 0.21 0.27 0.311
σv 7.35 6.26 5.12 4.19 � � � � � � � � � � � �
c2jδs;0=k

2
nl � � � � � � � � � � � � 0.05 0.00 0.00 0.13

c2jδs;2=k
2
nl � � � � � � � � � � � � 13.57 8.96 5.66 1.52

c2jδs;4=k
2
nl � � � � � � � � � � � � 7.34 8.03 6.86 5.73
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APPENDIX F: FISHER FORECAST

In this Appendix, we present some details on the Fisher
forecast we have performed for RSD detection. We replace
each μ2 term with Aμ2, where A is an artificial amplitude

with fiducial value of 1, and our aim is to forecast how
precisely we can measure this amplitude. For nonlinear
RSD, we simply use the Kaiser formula applied to halofit
model; basically replacing Pðkk; lχ ; z̄Þ in Eq. (8) with the
Kaiser formula given in Eq. (1), we have

CΔΔ
l ðz;zÞ

¼ 1

2πχ2ðz̄Þ
�Z þ∞

−∞
dkkð1þ2Afμ2þA2f2μ4ÞPðkk;l=χ;zÞ�

≡Cδδ
l þ2ACδθ

l þA2Cθθ
l ; ðF1Þ

where Δ is the density perturbations in redshift space,

Δðn; zÞ ¼ δðn; rÞ −∇zvzðrÞ
aHðzÞ ; ðF2Þ

and θ ¼ ∇zvzðrÞ=aHðzÞ, where z is the line-of-sight
direction. For the Fisher forecast, we follow a similar
approach as the one used in Sec. 4 of [77]. The Fisher
matrix element corresponding to the parameters α and β
with covariance matrix, C, is given by

Fαβ ¼
X
l

2lþ 1

2
½ð∂αCÞðC−1Þð∂βCÞðC−1Þ�; ðF3Þ

which for our case with only one parameter, A, and the
covariance matrix being the Cl’s, reduces to

FAA ¼
Xlmax

l¼2

2lþ 1

2

�∂ACΔΔ
l

CΔΔ
l

�
2

: ðF4Þ

The importance of including RSD for galaxy number
counts angular power spectrum has been studied in a
recent paper [78].

[1] P. A. R. Ade et al. (Planck Collaboration), Astron. As-
trophys. 594, A13 (2016).

[2] L.Anderson et al.,Mon.Not.R.Astron. Soc.427, 3435 (2012).
[3] Y.-S. Song, A. Taruya, E. Linder, K. Koyama, C. G. Sabiu,

G.-B. Zhao, F. Bernardeau, T. Nishimichi, and T. Okumura,
Phys. Rev. D 92, 043522 (2015).

[4] F. Beutler et al. (BOSS Collaboration), Mon. Not. R.
Astron. Soc. 466, 2242 (2017).

[5] C. Blake et al., Mon. Not. R. Astron. Soc. 415, 2876 (2011).
[6] B. A.Reid et al.,Mon.Not. R.Astron. Soc. 426, 2719 (2012).
[7] E. Macaulay, I. K. Wehus, and H. K. Eriksen, Phys. Rev.

Lett. 111, 161301 (2013).
[8] F. Beutler et al. (BOSS Collaboration), Mon. Not. R.

Astron. Soc. 443, 1065 (2014).

[9] H.Gil-Marín et al.,Mon.Not.R.Astron.Soc.460, 4188 (2016).
[10] F. Simpson, C. Blake, J. A. Peacock, I. Baldry, J. Bland-

Hawthorn, A. Heavens, C. Heymans, J. Loveday, and P.
Norberg, Phys. Rev. D 93, 023525 (2016).

[11] M. Rabold and R. Teyssier, Mon. Not. R. Astron. Soc. 467,
3188 (2017).

[12] A. Schneider, R. Teyssier, J. Stadel, N. E. Chisari, A. M. C.
Le Brun, A. Amara, and A. Refregier, J. Cosmol. Astropart.
Phys. 03 (2019) 020.

[13] P. Ocvirk et al., arXiv:1811.11192.
[14] N. Kaiser, Mon. Not. R. Astron. Soc. 227, 1 (1987).
[15] R. Scoccimarro, Phys. Rev. D 70, 083007 (2004).
[16] A. Taruya, T. Nishimichi, and S. Saito, Phys. Rev. D 82,

063522 (2010).

FIG. 14. Ratio of lensing terms to RSD terms for different
redshifts with Δz ¼ 0.01 (top panel) and Δz ¼ 0.1 (bottom
panel).

MONA JALILVAND et al. PHYS. REV. D 101, 043530 (2020)

043530-16

https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1111/j.1365-2966.2012.22066.x
https://doi.org/10.1103/PhysRevD.92.043522
https://doi.org/10.1093/mnras/stw3298
https://doi.org/10.1093/mnras/stw3298
https://doi.org/10.1111/j.1365-2966.2011.18903.x
https://doi.org/10.1111/j.1365-2966.2012.21779.x
https://doi.org/10.1103/PhysRevLett.111.161301
https://doi.org/10.1103/PhysRevLett.111.161301
https://doi.org/10.1093/mnras/stu1051
https://doi.org/10.1093/mnras/stu1051
https://doi.org/10.1093/mnras/stw1096
https://doi.org/10.1103/PhysRevD.93.023525
https://doi.org/10.1093/mnras/stx266
https://doi.org/10.1093/mnras/stx266
https://doi.org/10.1088/1475-7516/2019/03/020
https://doi.org/10.1088/1475-7516/2019/03/020
https://arXiv.org/abs/1811.11192
https://doi.org/10.1093/mnras/227.1.1
https://doi.org/10.1103/PhysRevD.70.083007
https://doi.org/10.1103/PhysRevD.82.063522
https://doi.org/10.1103/PhysRevD.82.063522


[17] T. Okumura, N. Hand, U. Seljak, Z. Vlah, and V. Desjacques,
Phys. Rev. D 92, 103516 (2015).

[18] B. Bose and K. Koyama, J. Cosmol. Astropart. Phys. 08
(2016) 032.

[19] R. Takahashi, M. Sato, T. Nishimichi, A. Taruya, and M.
Oguri, Astrophys. J. 761, 152 (2012).

[20] K.Markovic, B. Bose, andA. Pourtsidou, arXiv:1904.11448.
[21] www.euclid-ec.org.
[22] R. Laureijs et al. (EUCLIDCollaboration), arXiv:1110.3193.
[23] L. Amendola et al., Living Rev. Relativ. 21, 2 (2018).
[24] https://wfirst.gsfc.nasa.gov/.
[25] D. Spergel et al., arXiv:1503.03757.
[26] C. J. Walcher, M. Banerji, C. Battistini, C. P. M. Bell, O.

Bellido-Tirado, T. Bensby, J. M. Bestenlehner, T. Boller, J.
Brynnel, and A. Casey, The Messenger 175, 12 (2019).

[27] www.desi.lbl.gov.
[28] A. Aghamousa et al. (collaboration DESI Collaboration),

arXiv:1611.00036.
[29] K. Bandura et al., Proc. SPIE Int. Soc. Opt. Eng. 9145,

914522 (2014).
[30] L. B. Newburgh et al., Proc. SPIE Int. Soc. Opt. Eng. 9906,

99065X (2016).
[31] D. J. Bacon et al. (SKA Collaboration), arXiv:1811.02743.
[32] B. Bose, A. Pourtsidou, K. Markovič, and F. Beutler,

arXiv:1905.05122.
[33] C. Bonvin and R. Durrer, Phys. Rev. D 84, 063505 (2011).
[34] A. Challinor and A. Lewis, Phys. Rev. D 84, 043516 (2011).
[35] F. Montanari and R. Durrer, J. Cosmol. Astropart. Phys. 10

(2015) 070.
[36] W. Cardona, R. Durrer, M. Kunz, and F. Montanari, Phys.

Rev. D 94, 043007 (2016).
[37] S. Tassev, M. Zaldarriaga, and D. Eisenstein, J. Cosmol.

Astropart. Phys. 06 (2013) 036.
[38] C. Howlett, M. Manera, and W. J. Percival, Astron. Comput.

12, 109 (2015).
[39] G. Valogiannis and R. Bean, Phys. Rev. D 95, 103515

(2017).
[40] H. A. Winther, K. Koyama, M. Manera, B. S. Wright, and

G.-B. Zhao, J. Cosmol. Astropart. Phys. 08 (2017) 006.
[41] S. Bharadwaj and S. S. Ali, Mon. Not. R. Astron. Soc. 356,

1519 (2005).
[42] K. K. Datta, T. R. Choudhury, and S. Bharadwaj, Mon. Not.

R. Astron. Soc. 378, 119 (2007).
[43] E. Castorina and M. White, Mon. Not. R. Astron. Soc. 479,

741 (2018).
[44] R. Durrer, The Cosmic Microwave Background (Cambridge

University Press, Cambridge, England, 2008).
[45] D. N. Limber, Astrophys. J. 119, 655 (1954).
[46] E. Di Dio, R. Durrer, R. Maartens, F. Montanari, and O.

Umeh, J. Cosmol. Astropart. Phys. 04 (2019) 053.
[47] N. E. Chisari and A. Pontzen, Phys. Rev. D 100, 023543

(2019).
[48] A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J. 538,

473 (2000).
[49] M. Santos et al., Proc. Sci., AASKA14 (2015) 019.
[50] A. Rassat, A. Amara, L. Amendola, F. J. Castander, T.

Kitching, M. Kunz, A. Refregier, Y. Wang, and J. Weller,
arXiv:0810.0003.

[51] A. F. Heavens, S. Matarrese, and L. Verde, Mon. Not. R.
Astron. Soc. 301, 797 (1998).

[52] T. Matsubara, Phys. Rev. D 77, 063530 (2008).
[53] L. F. de la Bella, D. Regan, D. Seery, and D. Parkinson,

arXiv:1805.12394.
[54] That is, we assume the observer is located at a distance

much greater then the box size (r ≫ 1024 Mpc=h), and so
all lines of sight are treated as being parallel to the chosen
Cartesian axes of the simulation box. Next, we disturb
the position of the matter particles using their velocity
components (vx, vy or vz).

[55] Note that the hexadecapole at the redshifts considered here
is already very small in magnitude and so the exclusion of
higher order multipoles will only negligibly affect the form
of Pðk; μÞ.

[56] A. Izard, M. Crocce, and P. Fosalba, Mon. Not. R. Astron.
Soc. 459, 2327 (2016).

[57] B. Bose, K. Koyama, and H. A. Winther, J. Cosmol.
Astropart. Phys. 10 (2019) 021.

[58] L. Blot et al., Mon. Not. R. Astron. Soc. 485, 2806 (2019).
[59] F.Bernardeau, S.Colombi,E.Gaztanaga, andR.Scoccimarro,

Phys. Rep. 367, 1 (2002).
[60] D. Baumann, A. Nicolis, L. Senatore, and M. Zaldarriaga,

J. Cosmol. Astropart. Phys. 07 (2012) 051.
[61] J. J. M. Carrasco, M. P. Hertzberg, and L. Senatore, J. High

Energy Phys. 09 (2012) 082.
[62] L. Senatore and M. Zaldarriaga, arXiv:1409.1225.
[63] M. Lewandowski, L. Senatore, F. Prada, C. Zhao, and C.-H.

Chuang, Phys. Rev. D 97, 063526 (2018).
[64] A. Perko, L. Senatore, E. Jennings, and R. H. Wechsler,

arXiv:1610.09321.
[65] S. Foreman, H. Perrier, and L. Senatore, J. Cosmol.

Astropart. Phys. 05 (2016) 027.
[66] T. Nishimichi and A. Taruya, Phys. Rev. D 84, 043526

(2011).
[67] A. Taruya, T. Nishimichi, and F. Bernardeau, Phys. Rev. D

87, 083509 (2013).
[68] T. Ishikawa, T. Totani, T. Nishimichi, R. Takahashi, N.

Yoshida, and M. Tonegawa, Mon. Not. R. Astron. Soc. 443,
3359 (2014).

[69] Y. Zheng and Y.-S. Song, J. Cosmol. Astropart. Phys. 08
(2016) 050.

[70] H. Gil-Marín et al., Mon. Not. R. Astron. Soc. 460, 4210
(2016).

[71] B. Bose, K. Koyama, W. A. Hellwing, G.-B. Zhao, and
H. A. Winther, Phys. Rev. D 96, 023519 (2017).

[72] D. Blas, M. Garny, and T. Konstandin, J. Cosmol. Astropart.
Phys. 01 (2014) 010.

[73] J. Carlson, M. White, and N. Padmanabhan, Phys. Rev. D
80, 043531 (2009).

[74] B. Jain and E. Bertschinger, Astrophys. J. 431, 495 (1994).
[75] B. Ghosh, M. Jalilvand, and E. Majerotto, One loop

standard perturbation theory calculations, https://doi.org/
10.5281/zenodo.3407616 (2019).

[76] The inclusion of the hexadecapole would restrict the
determined range we can safely fit to. Further, the monopole
and quadrupole contain most of the RSD information so we
can omit the hexadecapole from these fits.

[77] M. Jalilvand, E. Majerotto, R. Durrer, and M. Kunz,
J. Cosmol. Astropart. Phys. 01 (2019) 020.

[78] K. Tanidis and S. Camera, Mon. Not. R. Astron. Soc. 489,
3385 (2019).

NONLINEAR CONTRIBUTIONS TO ANGULAR POWER SPECTRA PHYS. REV. D 101, 043530 (2020)

043530-17

https://doi.org/10.1103/PhysRevD.92.103516
https://doi.org/10.1088/1475-7516/2016/08/032
https://doi.org/10.1088/1475-7516/2016/08/032
https://doi.org/10.1088/0004-637X/761/2/152
https://arXiv.org/abs/1904.11448
www.euclid-ec.org
www.euclid-ec.org
www.euclid-ec.org
https://arXiv.org/abs/1110.3193
https://doi.org/10.1007/s41114-017-0010-3
https://wfirst.gsfc.nasa.gov/
https://wfirst.gsfc.nasa.gov/
https://wfirst.gsfc.nasa.gov/
https://wfirst.gsfc.nasa.gov/
https://arXiv.org/abs/1503.03757
https://doi.org/10.18727/0722-6691/5118
www.desi.lbl.gov
www.desi.lbl.gov
www.desi.lbl.gov
www.desi.lbl.gov
https://arXiv.org/abs/1611.00036
https://doi.org/10.1117/12.2054950
https://doi.org/10.1117/12.2054950
https://doi.org/10.1117/12.2234286
https://doi.org/10.1117/12.2234286
https://arXiv.org/abs/1811.02743
https://arXiv.org/abs/1905.05122
https://doi.org/10.1103/PhysRevD.84.063505
https://doi.org/10.1103/PhysRevD.84.043516
https://doi.org/10.1088/1475-7516/2015/10/070
https://doi.org/10.1088/1475-7516/2015/10/070
https://doi.org/10.1103/PhysRevD.94.043007
https://doi.org/10.1103/PhysRevD.94.043007
https://doi.org/10.1088/1475-7516/2013/06/036
https://doi.org/10.1088/1475-7516/2013/06/036
https://doi.org/10.1016/j.ascom.2015.07.003
https://doi.org/10.1016/j.ascom.2015.07.003
https://doi.org/10.1103/PhysRevD.95.103515
https://doi.org/10.1103/PhysRevD.95.103515
https://doi.org/10.1088/1475-7516/2017/08/006
https://doi.org/10.1111/j.1365-2966.2004.08604.x
https://doi.org/10.1111/j.1365-2966.2004.08604.x
https://doi.org/10.1111/j.1365-2966.2007.11747.x
https://doi.org/10.1111/j.1365-2966.2007.11747.x
https://doi.org/10.1093/mnras/sty1437
https://doi.org/10.1093/mnras/sty1437
https://doi.org/10.1086/145870
https://doi.org/10.1088/1475-7516/2019/04/053
https://doi.org/10.1103/PhysRevD.100.023543
https://doi.org/10.1103/PhysRevD.100.023543
https://doi.org/10.1086/309179
https://doi.org/10.1086/309179
https://arXiv.org/abs/0810.0003
https://doi.org/10.1111/j.1365-8711.1998.02052.x
https://doi.org/10.1111/j.1365-8711.1998.02052.x
https://doi.org/10.1103/PhysRevD.77.063530
https://arXiv.org/abs/1805.12394
https://doi.org/10.1093/mnras/stw797
https://doi.org/10.1093/mnras/stw797
https://doi.org/10.1088/1475-7516/2019/10/021
https://doi.org/10.1088/1475-7516/2019/10/021
https://doi.org/10.1093/mnras/stz507
https://doi.org/10.1016/S0370-1573(02)00135-7
https://doi.org/10.1088/1475-7516/2012/07/051
https://doi.org/10.1007/JHEP09(2012)082
https://doi.org/10.1007/JHEP09(2012)082
https://arXiv.org/abs/1409.1225
https://doi.org/10.1103/PhysRevD.97.063526
https://arXiv.org/abs/1610.09321
https://doi.org/10.1088/1475-7516/2016/05/027
https://doi.org/10.1088/1475-7516/2016/05/027
https://doi.org/10.1103/PhysRevD.84.043526
https://doi.org/10.1103/PhysRevD.84.043526
https://doi.org/10.1103/PhysRevD.87.083509
https://doi.org/10.1103/PhysRevD.87.083509
https://doi.org/10.1093/mnras/stu1382
https://doi.org/10.1093/mnras/stu1382
https://doi.org/10.1088/1475-7516/2016/08/050
https://doi.org/10.1088/1475-7516/2016/08/050
https://doi.org/10.1093/mnras/stw1264
https://doi.org/10.1093/mnras/stw1264
https://doi.org/10.1103/PhysRevD.96.023519
https://doi.org/10.1088/1475-7516/2014/01/010
https://doi.org/10.1088/1475-7516/2014/01/010
https://doi.org/10.1103/PhysRevD.80.043531
https://doi.org/10.1103/PhysRevD.80.043531
https://doi.org/10.1086/174502
https://doi.org/10.5281/zenodo.3407616
https://doi.org/10.5281/zenodo.3407616
https://doi.org/10.5281/zenodo.3407616
https://doi.org/10.5281/zenodo.3407616
https://doi.org/10.5281/zenodo.3407616
https://doi.org/10.1088/1475-7516/2019/01/020
https://doi.org/10.1093/mnras/stz2366
https://doi.org/10.1093/mnras/stz2366

