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It has been pointed out that matter bounce cosmology driven by a k-essence field cannot satisfy
simultaneously the observational bounds on the tensor-to-scalar ratio and non-Gaussianity of the curvature
perturbation. In this paper, we show that this is not the case in more general scalar-tensor theories. To do so,
we evaluate the power spectra and the bispectra of scalar and tensor perturbations on a general contracting
background in the Horndeski theory. We then discuss how one can discriminate contracting models from
inflation based on non-Gaussian signatures of tensor perturbations.

DOI: 10.1103/PhysRevD.101.043529

I. INTRODUCTION

Although it is definite that inflation [1–3] is the most
successful early universe model, it is inevitably plagued by
the initial singularity problem [4]. Motivated by this,
alternative scenarios which do not suffer from this problem
have also been explored (see, e.g., [5] for a review).
Nonsingular cosmology has its own difficulty regarding
gradient instabilities when constructed within second-order
scalar-tensor theories [6–10], but its resolution has been
proposed in the context of higher-order scalar-tensor
theories [8,9,11–15]. It is also important to discuss the
validity of nonsingular alternatives from the viewpoint of
cosmological observations.
For example, a matter-dominated contracting (or bounce)

universe can bemimicked by a canonical scalar field and this
model can generate a scale-invariant curvature perturbations
[16–18]. However, this model yields a too large tensor-to-
scalar ratio and thus is excluded [18] (see, however,
Refs. [19,20]). One may use a k-essence field to reduce
the tensor-to-scalar ratio by taking a small sound speed, but
then this in turn enhances the production of non-Gaussianity,
making the model inconsistent with observations [21]. At
this stage, it is not evident whether or not this “no-go
theorem” holds in more general scalar-tensor theories.
The purpose of the present paper is clarifying to what

extent the previous no-go theorem (which was formulated
in the context of a k-essence field minimally coupled to
gravity as an extension of Ref. [18]) holds in more general
setups. To do so, we consider a general power-law
contracting universe in the Horndeski theory [22], the
most general second-order scalar-tensor theory, and

evaluate the power spectra and the bispectra of scalar
and tensor perturbations generated during the contracting
phase. Throughout the paper we assume that the statistical
nature of these primordial perturbations does not change
during the subsequent bouncing and expanding phases. (In
some cases in matter bounce cosmology, this has been
justified. See, e.g., Ref. [23].) In calculating tensor non-
Gaussianity we explore peculiar signatures of a contracting
phase as compared to inflation, and show that the two
scenarios can potentially be distinguishable due to the non-
Gaussian amplitudes and shapes.
This paper is organized as follows. In the next section,

we introduce our setup of the general contracting cosmo-
logical background. In Sec. III, we evaluate the power
spectra for curvature and tensor perturbations, and derive
the conditions under which they are scale-invariant. In
Sec. IV, we calculate primordial non-Gaussianities of
curvature and tensor perturbations, and investigate whether
a small tensor-to scalar ratio and small scalar non-
Gaussianity are compatible or not in the Horndeski theory.
We also discuss how one can distinguish bounce cosmol-
ogy with inflation based on tensor non-Gaussianity. The
conclusion of this paper is drawn in Sec. V.

II. SETUP

We begin with a spatially flat Friedmann-Lemaître-
Robertson-Walker (FLRW) metric

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð1Þ

where the scale factor describes a contracting phase,

a ¼
�
−t
−tb

�
n
¼

�
−η
−ηb

�
n=ð1−nÞ

ð0 < n < 1Þ; ð2Þ
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with dη ¼ dt=a. Here, we denoted the time at the end of the
contracting phase as tbð<0Þ and ηbð<0Þ, and we normal-
ized the scale factor so that aðtbÞ ¼ 1 ¼ aðηbÞ. The two
time coordinates are related with

−η ¼ ð−tbÞn
1 − n

ð−tÞ1−n; ð3Þ

where t and η coordinates run from −∞ to tb and ηb,
respectively. In this paper, we do not assume n to take any
particular value, so that our setup includes models other
than the familiar matter bounce scenario [24]. Note,
however, that it will turn out that models with different
n are related to each other via conformal transformation
(see Sec. III C).
We work with the Horndeski action which is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L; ð4Þ

with

L ¼ G2ðϕ; XÞ −G3ðϕ; XÞ□ϕþG4ðϕ; XÞR
þG4X½ð□ϕÞ2 − ð∇μϕ∇νϕÞ2�

þG5ðϕ; XÞGμν∇μ∇νϕ −
G5X

6
½ð□ϕÞ3

− 3□ϕð∇μ∇νϕÞ2 þ 2ð∇μ∇νϕÞ3�; ð5Þ

where X ≔ −gμν∇μϕ∇νϕ=2 and ∂G=∂X is denoted by GX.
This action gives the most general second-order scalar-
tensor theory, and hence a vast class of contracting scenarios
reside within this theory. Therefore, the Horndeski theory is
adequate for studying generic properties of cosmological
perturbations from contracting models. Note, however, that
nonsingular cosmological solutions suffer from gradient
instabilities if the entire history of the universe were
described by the Horndeski theory [6–10]. We circumvent
this issue by assuming that beyond-Horndeski operators
come into play at some moment, but at least the contracting
phase we are focusing on is assumed to be described by the
Horndeski theory.
The Friedmann and evolution equations are written,

respectively, in the form

E ≔
X5
i¼2

Ei ¼ 0; P ≔
X5
i¼2

Pi ¼ 0; ð6Þ

where Ei ¼ EiðH;ϕ; _ϕÞ and Pi ¼ PiðH; _H;ϕ; _ϕ; ϕ̈Þ come
from the variation of the action involvingGi, whose explicit
expressions are given in Appendix A. Here a dot stands for
differentiation with respect to t andH ≔ _a=a. In this paper,
we do not consider any concrete background models, but
just assume that each term in the background equations
scales as

Ei;Pi ∼ ð−tÞ2α; ð7Þ

where α is a constant to be specified below. The impact
of spatial curvature and anisotropies is discussed in
Appendix B.

III. SCALE-INVARIANT POWER SPECTRA

The perturbed metric in the unitary gauge, δϕðt;xÞ ¼ 0,
is written as

ds2 ¼ −N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; ð8Þ

where

N¼ 1þδn; Ni¼ ∂iχ; gij¼ a2e2ζðehÞij; ð9Þ

ðehÞij ≔ δij þ hij þ
1

2
hikhkj þ

1

6
hikhkl h

l
j þ � � � : ð10Þ

As has been done in Ref. [25], one expands the action to
second order in perturbations and removes the auxiliary
variables δn and χ. The resultant quadratic actions for the
curvature perturbation ζ and the tensor perturbations hij in
the Horndeski theory are written, respectively, as

Sð2Þζ ¼
Z

dtd3xa3
�
GS

_ζ2 −
F S

a2
ð∂iζÞ2

�
; ð11Þ

Sð2ÞT ¼ 1

8

Z
dtd3xa3

�
GT

_hij
2 −

F T

a2
ð∂khijÞ2

�
; ð12Þ

where

GT ¼ 2½G4 − 2XG4X − XðH _ϕG5X − G5ϕÞ�; ð13Þ

F T ¼ 2½G4 − Xðϕ̈G5X þG5ϕÞ�; ð14Þ

GS ¼ GT

�
GTΣ
Θ2

þ 3

�
; ð15Þ

F S ¼
1

a
d
dt

�
aG2

T

Θ

�
− F T; ð16Þ

with

Σ ¼ X
∂E
∂X þH

2

∂E
∂H ; ð17Þ

Θ ¼ −
1

6

∂E
∂H : ð18Þ

(The explicit expressions for Θ and Σ are given in
Appendix C.) As inferred from Eqs. (7), (17), and (18),
it is natural to assume that Σ ∼ ð−tÞ2α and Θ ∼ ð−tÞ2αþ1.
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In addition, it can be seen that GT , F T ∼ E4=H2, E5=H2,
P4=H2, P5=H2. These imply

GT;F T;GS;F S ∼ ð−tÞ2ðαþ1Þ ∝ ð−ηÞ2ðαþ1Þ=ð1−nÞ: ð19Þ

Under these assumptions, the propagation speed of the
curvature perturbation, c2s ¼ F S=GS, and that of the tensor
perturbations, c2t ¼ F T=GT , are constant. Note that only
α ¼ −1 is possible if ϕ is minimally coupled to gravity.
Let us move to derive a relation between α and n by

imposing that the primordial curvature and tensor pertur-
bations have scale-invariant power spectra.

A. Curvature perturbation

We expand and quantize the curvature perturbation as

ζðt;xÞ ¼
Z

d3k
ð2πÞ3 ζ̂ðt;kÞe

ik·x; ð20Þ

¼
Z

d3k
ð2πÞ3 ½ζkðtÞâk þ ζ�−kðtÞâ†−k�eik·x; ð21Þ

where the commutation relations between the creation and
annihilation operators are standard ones,

½âk; â†k0 � ¼ ð2πÞ3δðk − k0Þ; ð22Þ

others ¼ 0: ð23Þ

The mode function ukðηÞ of the canonically normalized
perturbation, uk ¼ ffiffiffi

2
p

aðF SGSÞ1=4ζk, obeys

u00k þ
�
c2sk2 −

1

η2

�
ν2s −

1

4

��
uk ¼ 0; ð24Þ

where a prime denotes differentiation with respect to η and

νs ≔
−1 − 3n − 2α

2ð1 − nÞ : ð25Þ

The positive frequency solution is then given by

ζk ¼ 1ffiffiffi
2

p
aðF SGSÞ1=4

·
ffiffiffi
π

p
2

ffiffiffiffiffiffiffiffiffiffi
−csη

p
Hð1Þ

νs ð−cskηÞ; ð26Þ

whereHð1Þ
ν is the Hankel function of the first kind. Here we

chose the initial condition as

lim
η→−∞

uk ¼ 1ffiffiffiffiffi
2k

p e−icskη: ð27Þ

The power spectrum of the curvature perturbation is
defined by

hζ̂ðkÞζ̂ðk0Þi ¼ ð2πÞ3δðkþ k0Þ 2π
2

k3
PζðkÞ; ð28Þ

and therefore

Pζ ∝ k3−2jνsj: ð29Þ

The spectral index is thus given by

ns − 1 ¼ 3 − 2jνsj: ð30Þ

Let us focus on the exactly scale-invariant spectrum, which
corresponds to

νs ¼
3

2
⇒ α ¼ −2; ð31Þ

νs ¼ −
3

2
⇒ α ¼ 1 − 3n: ð32Þ

On superhorizon scales, cskjηj ≪ 1, we have ζk ∝ jηjνs−jνsj.
Therefore, the perturbations freeze out on superhorizon
scales in the former case (as in the inflationary universe),
while they grow as ζk ∝ jηj−3 in the latter case (as in
the contracting universe). In this paper, we consider
the growing superhorizon perturbations having a scale-
invariant spectrum, which is a characteristic feature of
contracting models. Note that the Planck results [26]
require a slightly red tilted spectrum, ns ≃ 0.96. This can
be obtained by slightly detuning the relation (32) between n
and α, though for simplicity in this paper we only consider
the exactly scale-invariant case.
Taking α ¼ 1 − 3n, the scale-invariant power spectrum

can now be derived as

Pζ ¼
1

8π2
1

F Scs

1

η2

����
t¼tb

¼ 1

8π2

�
1 −

1

n

�
2 H2

F Scs

����
t¼tb

; ð33Þ

where the time-dependent quantities are evaluated at the
end of the contracting phase.

B. Tensor perturbations

The tensor perturbations can be expanded and quan-
tized as

hijðt;xÞ ¼
Z

d3k
ð2πÞ3 ĥijðt;kÞe

ik·x ð34Þ

¼
X
s

Z
d3k
ð2πÞ3 ½h

ðsÞ
k ðtÞâðsÞk eik·xeðsÞij ðkÞ

þ hðsÞ�−k ðtÞâðsÞ†−k eðsÞ�ij ð−kÞ�eik·x; ð35Þ

where the creation and annihilation operators satisfy the
canonical commutation relations
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½âðsÞk ; âðs
0Þ†

k0 � ¼ ð2πÞ3δss0δðk − k0Þ; ð36Þ

others ¼ 0: ð37Þ

The two helicity modes are labeled by s ¼ �, and the

basis eðsÞij satisfies the transverse and traceless condi-

tions, δije
ðsÞ
ij ðkÞ ¼ 0 ¼ kieðsÞij ðkÞ, and it is normalized as

eðsÞij ðkÞeðs
0Þ�

ij ðkÞ ¼ δss0 .
The mode function vðsÞk ðηÞ of the canonically normalized

perturbations, vðsÞk ¼ aðF TGTÞ1=4hðsÞk =2, obeys

vðsÞk
00 þ

�
c2t k2 −

1

η2

�
ν2t −

1

4

��
vðsÞk ¼ 0; ð38Þ

where νt ¼ νs. The positive frequency solution is then
given by

hðsÞk ¼ 2

aðF TGTÞ1=4
·

ffiffiffi
π

p
2

ffiffiffiffiffiffiffiffiffiffi
−ctη

p
Hð1Þ

νt ð−ctkηÞ; ð39Þ

where one can see that

lim
η→−∞

vðsÞk ¼ 1ffiffiffiffiffi
2k

p e−ictkη: ð40Þ

The behavior of the tensor perturbations is essentially the
same as that of ζk. For α ¼ 1 − 3n (νt ¼ νs ¼ −3=2), hk
grows on superhorizon scales as hk ∝ jηj−3 and the tensor
power spectrum is scale invariant.
Let us define Pij;klðkÞ by

hĥijðkÞĥklðk0Þi ¼ ð2πÞ3δðkþ k0ÞPij;klðkÞ: ð41Þ

Then,

Pij;klðkÞ ≔
X
s

jhðsÞk ðtÞj2Πij;klðkÞ; ð42Þ

with

Πij;klðkÞ ≔
X
s

eðsÞij ðkÞeðsÞ�kl ðkÞ; ð43Þ

and the tensor power spectrum is defined as Ph ¼
ðk3=2π2ÞPij;ij. For α ¼ 1 − 3n, we have the scale-invariant
power spectrum

Ph ¼
2

π2
1

F Tct

1

η2

����
t¼tb

¼ 2

π2

�
1 −

1

n

�
2 H2

F Tct

����
t¼tb

; ð44Þ

where time-dependent quantities are evaluated at t ¼ tb.

The tensor-to-scalar ratio is given by

r ¼ Ph

Pζ
¼ 16

F S

F T

cs
ct

����
t¼tb

; ð45Þ

which is constrained as [26]

r < 0.064; ð95% CL; PlanckTT;TE;EE

þ lowEþ lensingþ BK14Þ: ð46Þ

For example, in the case of matter contracting models
within the k-essence theory, we have n ¼ 2=3, α ¼ −1,
ct ¼ 1, and F S ¼ ð3=2ÞF T ¼ const. Therefore, the tensor-
to-scalar ratio is

r ¼ 24cs; ð47Þ

which can satisfy the upper bound on r only for
cs ≪ 1. However, as argued in Ref. [21], small cs implies
large scalar non-Gaussianity, and hence bounce models
within the k-essence theory are ruled out. In the next
section, we revisit this issue and study whether or not
upper bounds on the tensor-to-scalar ratio and non-
Gaussianity can be satisfied at the same time in a wider
class of theories.

C. Conformal frames

At this stage it is instructive to perform a conformal
transformation and clarify the relation among models with
different n.
Let us consider a conformally related metric

eds2¼Ω2ðtÞð−dt2þa2δijdxidxjÞ; Ω∝ ð−tÞαþ1: ð48Þ

In this tilde frame, the time coordinate and the scale factor
are given respectively by

α ¼ −2 ⇒ −t̃ ∝ lnð−tÞ; ã ∝ eH̃ t̃; ð49Þ

α≠−2⇒−t̃∝ ð−tÞαþ2; ã∝ ð−t̃Þðnþαþ1Þ=ðαþ2Þ: ð50Þ

By inspecting the quadratic action for scalar and tensor
perturbations we see that in the tilde frame all the four
coefficients reduce to constants.
We find that the case of νs ¼ νt ¼ 3=2 (α ¼ −2) can be

regarded as de Sitter inflation (see, e.g., Ref. [27]).
In the case of νs ¼ νt ¼ −3=2 (α ¼ 1 − 3n), we have

ã ∝ ð−t̃Þ2=3; ð51Þ

which describes a matter-dominated contracting universe.
Therefore, the dynamics of cosmological perturbations in
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our contracting models (with general n) is equivalent to that
in the more familiar matter-dominated contracting model.
However, it should be emphasized that the magnitudes of
the coefficients in the perturbation action are still arbitrary
even in the tilde frame.

IV. PRIMORDIAL NON-GAUSSIANITIES

A. Scalar perturbations

The three-point correlation function can be computed by
using the in-in formalism as

hζ̂ðk1Þζ̂ðk2Þζ̂ðk3Þi

¼−i
Z

tb

−∞
dt0h½ζ̂ðtb;k1Þζ̂ðtb;k2Þζ̂ðtb;k3Þ;Hintðt0Þ�i; ð52Þ

where

Hint ¼ −
Z

d3xLð3Þ
ζ ; ð53Þ

with Lð3Þ
ζ being the cubic Lagrangian of the curvature

perturbation. It can be written in the form [28–30]

Lð3Þ
ζ ¼ a3GS

�
Λ1

H
_ζ3 þ Λ2ζ _ζ

2 þ Λ3ζ
ð∂iζÞ2
a2

þ Λ4

H2
_ζ2
∂2ζ

a2
þ Λ5

_ζ∂iζ∂iψ þ Λ6∂2ζð∂iψÞ2

þ Λ7

H2

1

a4
½∂2ζð∂iζÞ2 − ζ∂i∂jð∂iζ∂jζÞ�

þ Λ8

H
1

a2
½∂2ζ∂iζ∂iψ − ζ∂i∂jð∂iζ∂jψÞ�

�
þ FðζÞES; ð54Þ

where ψ ≔ ∂−2 _ζ andΛi are dimensionless coefficients. The
complete form of the cubic Lagrangian is summarized in
Appendix C. Based on the scaling argument similar to that
in the previous section, it can be seen that the coefficients
Λi are constant.
The last term in Eq. (54) can be eliminated by means of a

field redefinition

ζ → ζ − FðζÞ: ð55Þ

In Fourier space, this redefinition is equivalent to

ζðkÞ → ζðkÞ − 3ð1 − nÞ
n

Z
d3k0

ð2πÞ3
�
Bþ A

2

�
k0 · ðk − k0Þ

k02
−
ðk · k0Þðk · ðk − k0ÞÞ

k2k02

��
ζðk0Þζðk − k0Þ þ � � � ; ð56Þ

where

A ≔
HGS

ΘGT

∂Θ
∂H −

HGS

G2
T

∂GT

∂H ¼ const; ð57Þ

B ≔
HGTGS

ΘF S
¼ const: ð58Þ

Here we approximated the time derivative of the curvature
perturbation on superhorizon scales as

_ζ ≃ −
3ð1 − nÞ

n
Hζ ð59Þ

and ignored subleading contributions denoted by the
ellipsis (� � �).

The bispectrum Bζ is defined by

hζ̂ðk1Þζ̂ðk2Þζ̂ðk3Þi ¼ ð2πÞ3δðk1 þ k2 þ k3ÞBζ; ð60Þ

where we write

Bζ ≔ ð2πÞ4 P2
ζ

k31k
3
2k

3
3

Atotal; ð61Þ

and evaluate the amplitude Atotal. In our setup, Atotal reads

Atotal ¼ Aoriginal þAredefine; ð62Þ

where Aoriginal and Aredefine are the contributions respec-
tively from the interaction Hamiltonian and from the field
redefinition (56):

Aoriginal ¼
1

8

��
9ð1 − nÞ

n
Λ1 − Λ2 þ

Λ5

2

�X
i

k3i þ
Λ6

2

X
i≠j

k2i kj

þ 1

2k21k
2
2k

2
3

�
Λ6

X
i

k9i − ðΛ5 þ Λ6Þ
X
i≠j

k7i k
2
j − Λ6

X
i≠j

k6i k
3
j þ ðΛ5 þ Λ6Þ

X
i≠j

k5i k
4
j

��
; ð63Þ

PRIMORDIAL NON-GAUSSIANITIES OF SCALAR AND TENSOR … PHYS. REV. D 101, 043529 (2020)

043529-5



Aredefine ¼
3

8

ð1 − nÞ
n

�
ðA − 4BÞ

X
i

k3i þ
A
4

X
i≠j

k2i kj −
A
4

1

k21k
2
2k

2
3

�X
i≠j

k7i k
2
j þ

X
i≠j

k6i k
3
j − 2

X
i≠j

k5i k
4
j

��
: ð64Þ

One can check that the result of the calculation of the
primordial bispectra involving the procedure of the field
redefinition is identical to that involving boundary terms in
the cubic action with the linear equation of motion ES ¼ 0
being imposed. (See Refs. [31–33].) The explicit form of
the boundary terms is given in Appendix C.
Based on the above result we also evaluate the non-

linearity parameter defined as

fNLðk1; k2; k3Þ ¼
10

3

AtotalP
ik

3
i

ð65Þ

at the squeezed limit (k1 ≪ k2 ¼ k3), the equilateral
limit (k1 ¼ k2 ¼ k3), and the folded limit (k1 ¼ 2k,
k2 ¼ k3 ¼ k). At these limits, the parameter is given
respectively by

flocalNL ¼ 5

12

�
9ð1 − nÞ

n
Λ1 − Λ2 þ 3ðA − 4BÞ 1 − n

n

�
; ð66Þ

fequilNL ¼ 5

12

�
9ð1 − nÞ

n
Λ1 − Λ2 þ

Λ5

2
þ Λ6

2

þ
�
9

2
A − 12B

�
1 − n
n

�
; ð67Þ

ffoldedNL ¼ 5

12

�
9ð1−nÞ

n
Λ1−Λ2−

8

5
Λ5þ

16

5
Λ6 −12B

1−n
n

�
:

ð68Þ

(Here we denoted the nonlinearity parameter at the
squeezed limit as flocalNL .)
In the case of the matter contracting models within the k-

essence theory, these are written as

flocalNL ¼ 5

12

�
−6c2s

λ

M2
PlH

2
−
15

2
þ 9

4c2s

�
; ð69Þ

fequilNL ¼ 5

12

�
−6c2s

λ

M2
PlH

2
−
15

2
þ 87

32c2s

�
; ð70Þ

ffoldedNL ¼ 5

12

�
−6c2s

λ

M2
PlH

2
−
15

2
þ 24

5c2s

�
; ð71Þ

where λ ≔ X2G2XX þ ð2=3ÞX3G2XXX. These results repro-
duce those in [21,34]. In order for these nonlinearity
parameters to be ≲Oð1Þ, one requires c2s ¼ Oð1Þ. In the
context of k-essence, this leads to r > Oð10Þ, which is
ruled out. Instead one may take c2s ≪ 1 to have r < 0.064,

but then the nonlinearity parameters are too large to be
consistent with observations:

flocalNL ; fequilNL ; ffoldedNL ∼
1

c2s
¼

�
24

r

�
2

> Oð105Þ; ð72Þ

indicating that any matter bounce models in the k-essence
theory are excluded. (Observational constraints are given
by flocalNL ¼ 0.8� 5.0 and fequilNL ¼ −4� 43 [35].)
Although small r is incompatible with small scalar non-

Gaussianity in the k-essence theory, this is not always the
case in the Horndeski theory. Thanks to a sufficient number
of independent functions, one can make r small while
retaining A, B, and Λi less than Oð1Þ. We will discuss this
point in more detail in the next subsection.

B. Example

Let us consider a concrete Lagrangian characterized by

G2 ¼
M2

Pl

μ2
e−2ϕ=μg2ðYÞ; G3 ¼

M2
Pl

μ
g3ðYÞ;

G4 ¼
M2

Pl

2
; G5 ¼ 0; ð73Þ

where Y ≔ Xe2ϕ=μ. We seek for a solution of the matter-
dominated contracting universe, H ¼ 2=3t, with a time-
dependent scalar field,

ϕ ¼ μ lnð−MtÞ: ð74Þ

It then follows that Y ¼ Ȳ ≔ M2μ2=2 ¼ const. This indeed
solves the background equations provided that the func-
tions g2ðYÞ and g3ðYÞ satisfy

g2ðȲÞ ¼ 0; ð75Þ

g02ðȲÞ þ 2Ȳg03ðȲÞ ¼
4

3
; ð76Þ

where a prime in this subsection denotes differentiation
with respect to Y.
Let us further impose that

Ȳg03ðȲÞ ¼ δ1 − 1; ð77Þ

Ȳ½g002ðȲÞ þ 2Ȳg003ðȲÞ� ¼
1

3
ð21δ1 þ 5δ2 − 14Þ; ð78Þ

where δ1 and δ2 are some small positive numbers,
δ1 ∼ δ2 ≪ 1. We then have
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F S ≃
3

5
δ1M2

Pl; GS ≃
3

5
δ2M2

Pl; ð79Þ

and a small tensor-to-scalar ratio can be obtained, r ¼
16δ3=21 δ−1=22 ≪ 1, while c2s ¼ δ1=δ2 ¼ Oð1Þ, which cannot
be achieved in the k-essence theory.
A would-be dangerous contribution to fNL comes

from Λ1:

Λ1 ¼ −
4

25δ2
½8þ Ȳ2ðg0002 − 12g003 þ 2Ȳg0003 Þ� þOð1Þ: ð80Þ

This can be made safe if one requires

Ȳ2½g0002 ðȲÞ − 12g003ðȲÞ þ 2Ȳg0003 ðȲÞ� ¼ δ3 − 8; ð81Þ

where δ3ð≲δ1Þ is another small number. All the other terms
give at most Oð1Þ contributions.
To sum up, by introducing the functions g2ðYÞ and g3ðYÞ

satisfying the conditions (75), (76), (77), (78), and (81), one
has r ≪ 1 and fNL ≲ 1 simultaneously. Clearly, this is
indeed possible. One can thus circumvent the no-go
theorem presented in [21] by appropriately choosing the
functions in the Lagrangian which is more general than the
k-essence theory. Here, one should note that in the present
case Oð0.01Þ fine-tuning is required for the parameters.
However, our aim is to give a proof of concept. It would
therefore be interesting to explore more natural models
without fine-tuning based on some symmetry argument.

C. Tensor perturbations

The three-point correlation function including inter-
actions among different polarization modes of tensor
perturbations can be computed from

hξ̂s1ðk1Þξ̂s2ðk2Þξ̂s3ðk3Þi

¼−i
Z

tb

−∞
dt0h½ξ̂s1ðtb;k1Þξ̂s2ðtb;k2Þξ̂s3ðtb;k3Þ;Hintðt0Þ�i;

ð82Þ

where ξ̂sðkÞ≔ ĥijðkÞe�ðsÞij ðkÞ. The interaction Hamiltonian,
Hint, is given by

Hint ¼ −
Z

d3xLð3Þ
h ; ð83Þ

where [36]

Lð3Þ
h ¼ a3

�
μ

12
_hij _hjk _hki þ

F T

4a2

�
hikhjl −

1

2
hijhkl

�
hij;kl

�
;

ð84Þ

with μ ≔ −ð1=2Þ∂GT=∂H which scales as μ ∼ ð−tÞ3þ2α, as
seen from Eq. (19). The first term, _h3, is the new

contribution due to G5X ≠ 0, while the second one, which
is of the form h2∂2 h, is identical to the corresponding term
in general relativity except for the overall normalization.
We attach the label “new” (respectively, “GR”) to the
quantities associated with the former (respectively, latter)
interaction.
Similarly to the case of the curvature perturbation, the

bispectrum is defined by

hξ̂s1ðk1Þξ̂s2ðk2Þξ̂s3ðk3Þi ¼ ð2πÞ3δðk1 þ k2 þ k3Þ
× ðBs1s2s3

ðnewÞ þ Bs1s2s3
ðGRÞ Þ; ð85Þ

where

Bs1s2s3
ðnewÞ ¼ ð2πÞ4 P2

h

k31k
3
2k

3
3

As1s2s3
ðnewÞ ; ð86Þ

Bs1s2s3
ðGRÞ ¼ ð2πÞ4 P2

h

k31k
3
2k

3
3

As1s2s3
ðGRÞ ; ð87Þ

and we evaluate the amplitudes As1s2s3
ðnewÞ and As1s2s3

ðnewÞ . In our
setup we obtain

As1s2s3
ðnewÞ ¼

3

16

1 − n
n

Hμ

GT

����
t¼tb

Fðs1k1; s2k2; s3k3Þ
X
i

k3i ; ð88Þ

As1s2s3
ðGRÞ ¼ −

1

128
c2t η2bðs1k1 þ s2k2 þ s3k3Þ2

× Fðs1k1; s2k2; s3k3Þ
X
i

k3i ; ð89Þ

with

Fðx; y; zÞ ≔ 1

64

1

x2y2z2
ðxþ yþ zÞ3

× ðx − yþ zÞðxþ y − zÞðx − y − zÞ: ð90Þ

Figures 1 and 2 show that both Aþþþ
ðnewÞ and Aþþþ

ðGRÞ have

peaks at the squeezed limit. Note that As1s2s3
ðGRÞ has a specific

scale-dependence c2t k2i η
2
b. This has been obtained in the

context of matter bounce cosmology driven by a scalar field
minimally coupled to gravity [37]. However, this factor
makes the detection more challenging [38].
Now let us compare the above results with the prediction

from generalized G-inflation [25]. The amplitudes of non-
Gaussianities of tensor perturbations in (quasi-de Sitter)
inflation are given by [36]

As1s2s3
ðnewÞ ¼

Hμ

4GT

k21k
2
2k

2
3

K3
Fðs1k1; s2k2; s3k3Þ; ð91Þ

As1s2s3
ðGRÞ ¼A

2
ðs1k1þs2k2þs3k3Þ2Fðs1k1;s2k2;s3k3Þ; ð92Þ
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where

A ¼ −
K
16

�
1 −

1

K3

X
i≠j

k2i kj − 4
k1k2k3
K3

�
: ð93Þ

Let us first look at their shapes. As shown in [36],Aþþþ
ðnewÞ of

inflation models has a peak at the equilateral limit. This is
in contrast with the case of contracting models. On the
other hand, Aþþþ

ðGRÞ has a peak at the squeezed limit both in

inflation and contracting models. Therefore, the detection
of the equilateral-type tensor non-Gaussianities would rule
out our contracting models.

Next, let us compare the amplitudes. Squeezed tensor
non-Gaussianity from inflation has the fixed amplitude, as
Eq. (92) is independent of the functions in the Horndeski
action. This is not the case for squeezed non-Gaussianity
from contracting models, as is clear from Eqs. (88) and
(89), whichever is dominant.
Finally, notice that the non-Gaussian amplitudes (88)

and (89) agree with those obtained in a kind of nonattractor
inflation models, where tensor perturbations grow on
superhorizon scales during inflation due to nonattractor
dynamics of the nonminimally coupled inflaton [39]. This
is because both our contracting models and the nonattractor
phase of inflation are conformally equivalent to the matter-
dominated contracting scenario.

V. SUMMARY

In this paper, we have studied the primordial power
spectra and the bispectra of scalar and tensor perturbations
generated during a general contracting phase in the
Horndeski theory. It can be shown that under certain
conditions the power spectra of scalar and tensor perturba-
tions are scale invariant. We have found that the previous
no-go theorem [21] prohibiting the simultaneous realiza-
tion of small tensor-to-scalar ratio and small scalar non-
Gaussianity in matter bounce cosmology driven by a
k-essence field no longer holds in more general setups.
A concrete example with small r and small fNL has been
presented.
Then, we have found that the non-Gaussianities of tensor

perturbations from the contracting universes have two
specific features which are in contrast with the predic-
tions from generalized G-inflation. First, our contracting
models predict only squeezed-type non-Gaussianities,
while inflation can in principle generate both squeezed-
and equilateral-type ones. Second, the squeezed-type non-
Gaussian amplitude from inflation is model-independently
fixed, while that from the contracting scenario is model-
dependent. We thus conclude that our general bounce
model can be distinguished from generalized G-inflation
by combining the information of the non-Gaussian ampli-
tudes and shapes. It would be interesting to investigate the
possibility to detect the non-Gaussian signatures predicted
from the general bounce model through the B-mode
polarization, as argued in Refs. [38,40].
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APPENDIX A: BACKGROUND EQUATIONS

For a flat FLRW universe the gravitational field equa-
tions read [25]

E ≔
X5
i¼2

Ei ¼ 0; P ≔
X5
i¼2

Pi ¼ 0; ðA1Þ

where

E2 ¼ 2XG2X −G2; ðA2Þ

E3 ¼ 6X _ϕHG3X − 2XG3ϕ; ðA3Þ

E4 ¼ −6H2G4 þ 24H2XðG4X þ XG4XXÞ
− 12HX _ϕG4ϕX − 6H _ϕG4ϕ; ðA4Þ

E5 ¼ 2H3X _ϕð5G5X þ 2XG5XXÞ
− 6H2Xð3G5ϕ þ 2XG5ϕXÞ; ðA5Þ

and

P2 ¼ G2; ðA6Þ

P3 ¼ −2XðG3ϕ þ ϕ̈G3XÞ; ðA7Þ

P4 ¼ 2ð3H2 þ 2 _HÞG4 − 12H2XG4X − 4H _XG4X

− 8 _HXG4X − 8HX _XG4XX þ 2ðϕ̈þ 2H _ϕÞG4ϕ

þ 4XG4ϕϕ þ 4Xðϕ̈ − 2H _ϕÞG4ϕX; ðA8Þ

P5 ¼ −2Xð2H3 _ϕþ 2H _H _ϕþ3H2ϕ̈ÞG5X − 4H2X2ϕ̈G5XX

þ 4HXð _X −HXÞG5ϕX þ 2½2ðHXÞ· þ 3H2X�G5ϕ

þ 4HX _ϕG5ϕϕ: ðA9Þ

The scalar-field equation follows from the above two
equations.

APPENDIX B: EFFECTS OF SPATIAL
CURVATURE AND ANISOTROPIES
ON A GENERAL CONTRACTING

BACKGROUND

In the simple, standard case of a scalar field minimally
coupled to gravity, spatial curvature and anisotropies in the
Friedmann and evolution equations evolve in proportion to
a−2 and a−6, respectively. As a result, it has been known that
a contracting universe is plagued with the instability
associated with large anisotropies [41]. Some resolutions

of the problem have been proposed so far. See, e.g.,
Refs. [42–46]. However, the impact of spatial curvature
and anisotropies has not been clear yet in more general cases
where the scalar field is nonminimally coupled to gravity.
Hence, we investigate the evolution of spatial curvature and
anisotropies in a general contracting background in the
Horndeski theory.
First, we investigate the impact of spatial curvature

(denoted hereafter as K). To do so, we consider open
(K < 0) and closed (K > 0) universes in the Horndeski
theory. In the presence of spatial curvature, the background
equations reduce to [47,48]

E þ EK ¼ 0; P þ PK ¼ 0; ðB1Þ

where

EK ¼ −3GT
K
a2

; PK ¼ F T
K
a2

: ðB2Þ

It can be seen from the scaling argument that EK=E,
PK=P ∝ ð−tÞ2ð1−nÞ, which implies that the relative magni-
tudes of the curvature terms decrease with time so that the
effect of the spatial curvature on the background equations
can be neglected in our setups.
Next, let us consider the effect of anisotropies on the

contracting background by investigating an anisotropic
Kasner universe whose metric is written as

ds2 ¼ −dt2 þ a2½e2ðβþþ
ffiffi
3

p
β−Þdx2

þ e2ðβþ−
ffiffi
3

p
β−Þdy2 þ e−4βþdz2�: ðB3Þ

The differences between the expansion rates in different
directions, β�, obey [47,49]

d
dt
fa3½GT

_βþ − 2μð _β2þ − _β2−Þ�g ¼ 0; ðB4Þ

d
dt
fa3½GT

_β− þ 4μ _βþ _β−�g ¼ 0: ðB5Þ

Since we haveOðGTÞ ≳OðμHÞ, the nonlinear terms can be
ignored as long as initially small anisotropies are consid-
ered, _β� ≪ H. Then, these equations can be integrated to
give _β� ∝ ða3GTÞ−1 ∝ ð−tÞ−ð2þ2αþ3nÞ. We thus see that
_β�=H ∝ ð−tÞ−ð1þ2αþ3nÞ, which decreases with time if
1þ 2αþ 3n < 0 and increases if 1þ 2αþ 3n > 0. The
case of α ¼ −2 (νs ¼ νt ¼ 2=3) corresponds to the former,
while α ¼ 1 − 3n (νs ¼ νt ¼ −2=3) to the latter. This result
implies the contracting background we are considering
requires some mechanism to evade the unwanted growth
of anisotropies. In the present paper, we simply assume that
the contracting universe enjoys a bounce before the
anisotropies spoil its background evolution.
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APPENDIX C: CUBIC ACTION FOR SCALAR PERTURBATIONS IN THE HORNDESKI THEORY

Substituting the perturbed metric (9) into the Horndeski action, expanding it to cubic order in perturbations and using the
background equations, we obtain the cubic action for scalar perturbations [28–30]:

Sð3ÞS ¼
Z

dtd3xa3
�
GT

�
−9ζ _ζ2 þ 2_ζ

a2
ðζ∂2χ þ ∂iζ∂iχÞ þ

1

a4
ð∂iχÞ2∂2ζ þ 1

2a4
ζðð∂2χÞ2 − ð∂i∂jχÞ2Þ

�

− GT
δn
a2

ðð∂iζÞ2 þ 2ζ∂2ζÞ þ F T

a2
ζð∂iζÞ2 þ 3Σζδn2 þ 2Θδnð9ζ _ζ − ζ∂2χ − ∂iζ∂iχÞ

þ μ

�
2_ζ3 −

2

a2
∂2χ _ζ2 þ

_ζ

a4
ðð∂2χÞ2 − ð∂i∂jχÞ2Þ þ 4δn_ζ

∂2ζ

a2
−
2δn
a4

ð∂2ζ∂2χ − ∂i∂jζ∂i∂jχÞ
�

þ Γ
�
3δn_ζ2 −

2

a2
δn_ζ∂2χ þ 1

2a4
δnðð∂2χÞ2 − ð∂i∂jχÞ2Þ

�
þ Ξδn2

�
_ζ −

∂2χ

3a2

�

þ ðΓ − GTÞ
δn2

a2
∂2ζ −

1

3
ðΣþ 2XΣX þHΞÞδn3

�
: ðC1Þ

From the first-order constraint equations we have

δn ¼ GT

Θ
_ζ; ðC2Þ

χ ¼ 1

aGT

�
a3GSψ −

aG2
T

Θ
ζ

�
; ðC3Þ

where ∂2ψ ¼ _ζ. Substituting these solutions into the cubic action, we obtain

Sð3Þζ ¼
Z

dtd3xa3GS

�
Λ1

H
_ζ3 þ Λ2ζ _ζ

2 þ Λ3ζ
ð∂iζÞ2
a2

þ Λ4

H2
_ζ2
∂2ζ

a2
þ Λ5

_ζ∂iζ∂iψ þ Λ6∂2ζð∂iψÞ2

þ Λ7

H2

1

a4
½∂2ζð∂iζÞ2 − ζ∂i∂jð∂iζ∂jζÞ� þ

Λ8

H
1

a2
½∂2ζ∂iζ∂iψ − ζ∂i∂jð∂iζ∂jψÞ�

	

þ
Z

dtd3xFðζÞES; ðC4Þ

where

Λ1 ¼ H

�
GT

Θ

�
GS

F S
þ 3

GT

GS
− 1

�
þ ΞGT

3Θ2

�
3
GT

GS
− 1

�
þ 2μ

�
1

GS
−

1

GT

�
þ Γ
Θ

�
3
GT

GS
− 2

�

þ 2

3

G3
T

Θ3GS
ðΣ − XΣXÞ −

H
3

G3
TΞ

Θ3GS

�
; ðC5Þ

Λ2 ¼ 3 −
HGTGS

F SΘ
ð3 − gT þ fS þ fΘÞ; ðC6Þ

Λ3 ¼
F T

GS
þHGT

Θ
ð1þ gT þ gS − fΘÞ −

HG2
T

GSΘ
ð1þ 2gT − fΘÞ; ðC7Þ

Λ4 ¼ H2

�
Ξ
3

G3
T

GSΘ3
þ 6μ

GT

GSΘ
þ ð3Γ − GTÞ

G2
T

GSΘ2

�
; ðC8Þ

Λ5 ¼ −
1

2

GS

GT
−
H
2

ΓGS

GTΘ
ð3þ gT − fΓ þ fΘÞ − μH

GS

G2
T
ð3þ 2gT − fμÞ; ðC9Þ
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Λ6 ¼
3

4

GS

GT
−

GS

4GT

ΓH
Θ

ð3þ gT − fΓ þ fΘÞ − μH
GS

G2
T

�
3

2
þ gT −

1

2
fμ

�
; ðC10Þ

Λ7 ¼
H2

6

�
G3
T

GSΘ2
−
HΓG3

T

GSΘ3

�
1 − 3gT þ 3fΘ − fΓ þ 3

ΘF S

HG2
T

�
− 6μH

G2
T

GSΘ2

�
1 − 2gT − fμ þ 2fΘ þ 2

ΘF S

HG2
T

��
; ðC11Þ

Λ8 ¼ H

�
−
GT

Θ
þ μH

Θ

�
4þ 2fΘ − 2fμ þ 2

ΘF S

HG2
T

�
þH

ΓGT

Θ2

�
1 −

1

2
gT −

1

2
fΓ þ fΘ þ ΘF S

HG2
T

��
; ðC12Þ

FðζÞ ¼ −
GTGS

ΘF S
ζ _ζ −

1

2

�
ΓGS

ΘGT
þ 2μ

GS

G2
T

�
ð∂iζ∂iψ − ∂−2∂i∂jð∂iζ∂jψÞÞ

þ 1

4a2

�
ΓGT

Θ2
þ 4μ

Θ

�
ðð∂iζÞ2 − ∂−2∂i∂jð∂iζ∂jζÞÞ; ðC13Þ

ES ¼ −2½∂tða3GS
_ζÞ − aF S∂2ζ�: ðC14Þ

Here we defined

Θ ≔ − _ϕXG3X þ 2HG4 − 8HXG4X − 8HX2G4XX þ _ϕG4ϕ þ 2X _ϕG4ϕX

−H2 _ϕð5XG5X þ 2X2G5XXÞ þ 2HXð3G5ϕ þ 2XG5ϕXÞ; ðC15Þ

Σ ≔ XG2X þ 2X2G2XX þ 12H _ϕXG3X þ 6H _ϕX2G3XX − 2XG3ϕ − 2X2G3ϕX − 6H2G4

þ 6½H2ð7XG4X þ 16X2G4XX þ 4X3G4XXXÞ −H _ϕðG4ϕ þ 5XG4ϕX þ 2X2G4ϕXXÞ�
þ 2H3 _ϕð15XG5X þ 13X2G5XX þ 2X3G5XXXÞ − 6H2Xð6G5ϕ þ 9XG5ϕX þ 2X2G5ϕXXÞ; ðC16Þ

Γ ≔ 2G4 − 8XG4X − 8X2G4XX − 2H _ϕð5XG5X þ 2X2G5XXÞ þ 2Xð3G5ϕ þ 2XG5ϕXÞ; ðC17Þ

Ξ ≔ 12 _ϕXG3X þ 6 _ϕX2G3XX − 12HG4 þ 6½2Hð7XG4X þ 16X2G4XX þ 4X3G4XXXÞ − _ϕðG4ϕ

þ 5XG4ϕX þ 2X2G4ϕXXÞ� þ 90H2 _ϕXG5X þ 78H2 _ϕX2G5XX þ 12H2 _ϕX3G5XXX

− 12HXð6G5ϕ þ 9XG5ϕX þ 2X2G5ϕXXÞ; ðC18Þ

and

gT ¼
_GT

HGT
; gS ¼

_GS

HGS
; fS ¼

_F S

HF S
; fΘ ¼

_Θ
HΘ

; fΓ ¼
_Γ

HΓ
; fμ ¼

_μ

Hμ
: ðC19Þ

Note that we can write the Eqs. (C17), (C18) as

Γ ¼ ∂Θ
∂H ; Ξ ¼ ∂Σ

∂H : ðC20Þ

It is therefore natural to assume that these quantities scale as

Γ ∼ ð−tÞ2þ2α; Ξ ∼ ð−tÞ1þ2α: ðC21Þ
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In Eq. (C4), we neglected some boundary terms having the form of a total time derivative. They are given by

SB ¼
Z

dtd3x
d
dt

�
−a3

GTG2
S

ΘF S
ζ _ζ2 þ a3

G2
S

2G2
T

�
2μþ ΓGT

Θ

�
ðζ _ζ2 − ζð∂i∂jψÞ2Þ

−
aGS

2Θ

�
4μþ ΓGT

Θ

�
ðζ _ζ∂2ζ − ζ∂i∂jψ∂i∂jζÞ þ

9a3

2
ðA3 − 2HGT − 2μH2Þζ3

þ a

�
G2
T

Θ
− B5

�
ζð∂iζÞ2 −

G2
T

6aΘ2

�
6μþ ΓGT

Θ

�
ðζð∂i∂jζÞ2 − ζð∂2ζÞ2Þ

�
; ðC22Þ

where

A3 ¼ −
Z

X
G3X0

ffiffiffiffiffiffiffi
2X0p

dX0 − 2
ffiffiffiffiffiffi
2X

p
G4ϕ; ðC23Þ

B5 ¼ −
Z

X
G5X0

ffiffiffiffiffiffiffi
2X0p

dX0: ðC24Þ
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