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We propose a new paradigm for the thermal production of dark matter in the early Universe, in which
dark-matter particles acquire their mass and freeze out spontaneously from the thermal bath after a dark
phase transition takes place. The decoupling arises because the dark-matter particles become suddenly
nonrelativistic and not because of any decay channel becoming kinematically close. We propose a minimal
scenario in which a scalar and a fermionic dark matter are in thermal equilibrium with the standard-model
bath. We compute the finite temperature corrections to the scalar potential and identify a region of the
parameter space where the fermionic dark-matter mass spontaneously jumps over the temperature when the
dark phase transition happens. We explore the phenomenological implications of such a model in simple
cases and show that the annihilation cross section of dark-matter particles has to be larger by more than
1 order of magnitude as compared to the usual constant-mass weakly interacting massive particle scenario
in order to accommodate the correct relic abundance. We show that in the spontaneous freeze out regime a
TeV-scale fermionic dark matter that annihilates into leptons through s-wave processes can be accessible to
detection in the near future.
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I. INTRODUCTION

The nature of dark matter (DM) and the way it is
produced in the early Universe stand among the biggest
puzzles of modern cosmology. The weakly interacting
massive particle (WIMP) paradigm has triggered a lot of
attention in the past decades due to its simplicity and to
the surprising connection which exists in this framework
between the energy scale necessary to produce the correct
DM relic abundance and the electroweak scale [1–4]. By
construction, WIMP scenarios rely on two major ingre-
dients, which are that (i) the dark-matter particles thermal-
ize with the standard-model (SM) bath at high temperature,
and that (ii) the cross section of annihilation of dark-matter
particles into visible states is small enough in order to
guarantee that the freeze out (FO) mechanism generates a
sufficient DM relic abundance in the present Universe. As
far as theoretical aspects of the model are concerned, the

mass of a WIMP candidate cannot be arbitrarily large.
Indeed, too heavy WIMPs, which are required to have a
small number density in order to not overclose the Universe,
need to annihilate efficiently during the freeze out, demand-
ing their cross section of annihilation to violate unitarity
constraints [5]. Moreover, for DM masses larger than
Oð10Þ GeV, vanilla versions of the WIMP in which DM
particles annihilate exclusively into nucleons have already
been mostly ruled out by dark-matter detection experiments
and LHC searches [6–54]. In order to avoid direct-detection
constraints, one usually has to either seclude dark matter
from the colored sector, weakening drastically constraints
from direct-detection experiments [55–57], or build models
in which the scattering cross section of DM particles on
nucleons is naturally suppressed. Indirect-detection con-
straints can also be avoided by demanding that the cross
section of annihilation of dark-matter particles in the Galaxy
is velocity suppressed. In this case the flux of cosmic rays
produced by the dark sector is reduced and dark matter is
effectively invisible in the present Universe [58–64].
Alternatives to the WIMP paradigm usually assume that

dark-matter particles are produced out of equilibrium,
either from the decay of a heavy particle (moduli and
inflaton) [65,66] or from the feeble annihilation of particles
that are thermalized with the standard-model bath [67–72].
In all these different scenarios, the dark-matter mass and the
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masses of its decay or annihilation products are assumed to
be constant throughout the Universe evolution. In the
WIMP scenario in particular, the calculation of the dark-
matter relic density relies on the evaluation of the annihi-
lation cross section of dark matter as a function of masses
and couplings, which are assumed to be identical at the time
of freeze out and at present time.
In the case of the standard model, however, it is known

that the whole mass spectrum is temperature dependent.
Indeed, the mass of the SM fermions is given by the
vacuum expectation value (vev) of the Brout-Englert-Higgs
field. At high temperature, before the electroweak phase
transition, thermal corrections to the Higgs scalar potential
stabilize the latter at the origin hHi ¼ 0 and the standard
model is essentially composed of pure radiation. At low
temperature, when the electroweak phase transition takes
place, the Uð1Þ × SUð2Þ gauge group is spontaneously
broken and SM particles acquire masses proportionally to
the Higgs vev hHi ≠ 0. Therefore, similarly to the SM
particles, the mass spectrum of any thermalized dark sector
in which masses originate from the spontaneous breaking
of some UV symmetry group is expected to evolve with the
temperature.
The possibility that the dark-matter mass might be a

time-dependent quantity was studied in the past in the
context of variable-mass particles in which dark-matter
particles interact with a quintessence field [73–75].
Moreover, the effect of thermal corrections to the potential
of a dark scalar was also used in the context of the so-called
flip-flop vev mechanism [76,77], super-cool dark matter
[78], or forbidden freeze in scenario [79], where a second
order phase transition is used to kinematically open or close
certain annihilation or decay channels in the early Universe.
In this paper we aim to focus on the very simple case

of a thermal fermionic dark matter whose mass is sourced
by the vev of a dark scalar. We study how the thermal
corrections arising from the contact of this scalar with
thermalized particles drive a thermal, second order phase
transition in the dark sector. In particular, we identify an
interesting region of the parameter space where the phase
transition enforces the freeze out to take place before the
dark-matter mass reaches its zero-temperature value. We
refer to this possibility as a spontaneous freeze out (SFO).
We explore in particular to which extent in the SFO case the
mass of dark-matter particles at freeze out can differ from
its value at present time. We also show that the annihilation
cross section of DM particles into SM states required to
obtain the correct DM relic abundance can differ by more
than 1 order of magnitude from the case of a constant-mass
WIMP. Therefore, the SFO scenario is more sensitive to
DM searches. It is interesting to note that this paradigm was
first encountered in the context of string theory [80] where
it is natural to expect moduli fields to couple to matter states
and undergo nontrivial phase transitions. In Ref. [81] such a
scenario was also briefly considered while discussing the

entanglement entropy that might as well affect the decou-
pling of DM particles in such a context.
The paper is organized as follows: In Sec. II we introduce

the model on which we focus throughout this work. In
Sec. III we derive the master equations necessary to study
the evolution of the mass spectrum with the temperature. In
Sec. IV we study the dark-matter freeze out in our model
and properly define the paradigm of spontaneous freeze
out. In Sec. V we study analytically how the decoupling of
dark-matter backreacts on the dynamics of the dark scalar.
In Sec. VI we finally specify the way dark-matter particles
interact with SM states, compute numerically the DM relic
density, and confront our model to existing direct- and
indirect-detection constraints. Our conclusions, comments,
and perspectives can be found in Sec. VII.

II. THE MODEL

Our benchmark model is based on the tree-level
Lagrangian density

Ltree ¼ LSM þ Ldark þ Lint; ð1Þ

whereLSM is the SM contribution. The dark sector contains
a fermion ψ and a real scalar field ϕ charged under a Z2

symmetry1 (ϕ → −ϕ). The associated Lagrangian is

Ldark ¼ iψ̄=∂ψ þ 1

2
∂μϕ∂μϕ − yϕψ̄ψ − V treeðϕÞ þ Lc:t:

dark;

ð2Þ
where Lc:t:

dark stands for counterterms to be tuned suitably
later on. The Lagrangian Lint, which is specified in Sec. VI,
contains only interactions between ψ , ϕ and SM fields. The
potential V treeðϕÞ is chosen such that the scalar ϕ acquires a
nonzero vev and sources a mass term for the dark fermion
via the Yukawa interaction,

mψ ðhϕiÞ ¼ yhϕi: ð3Þ
Defining the potential as

V treeðϕÞ ¼ −
μ2

2
ϕ2 þ λ

4!
ϕ4; ð4Þ

where μ and λ are positive, the tree-level scalar vev and the
masses of ϕ and ψ are given by

hϕitree ¼ μ

ffiffiffi
6

λ

r
; mtree

ϕ ¼
ffiffiffi
2

p
μ; mtree

ψ ¼ y

ffiffiffi
3

λ

r
mtree

ϕ :

ð5Þ

1This Z2 symmetry forbids the introduction of a bare mass
term for the DM fermion ψ , and odd powers of the scalar field,
which could, in principle, lead to a first order phase transition.
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In the following sections, we show the existence of a
region in the parameter space where the dark matter present
in the Universe today is composed of fermions ψ only,
while the dark scalar particles ϕ have decayed into SM
states. Indeed, the stability of the fermion ψ is guaranteed
by the Z2 symmetry (ψ → −ψ) inherent to our Lagrangian.
Even if we consider a Dirac fermion ψ in Eq. (2), our
results are derived for an arbitrary number nF of fermionic
degrees of freedom, e.g., nF ¼ 4 for a Dirac and nF ¼ 2 for
a Majorana fermion.

III. THERMAL EFFECTIVE POTENTIAL

From now on, we assume that the interactions contained
in the Lagrangian Lint are sufficient to maintain the dark
sector particles ψ and ϕ in thermal equilibrium with the
visible sector. At finite temperature, virtual loops of the
fields ψ and ϕ induce corrections to the scalar potential,
which are known to induce a restoration of the vacuum Z2

symmetry at high temperature (see, e.g., Ref. [82] for a
review and references therein). Therefore, when thermal
loop corrections dominate over the zero-temperature tree-
level contribution, perturbation theory breaks down.
To see this explicitly, let us consider the thermal effective

potential at one loop,

V th
1�loopðT;ϕÞ ¼ V treeðϕÞ þ VCWðϕÞ þ Vc:t:

darkðϕÞ þ F ðT;ϕÞ;
ð6Þ

where VCW is the zero-temperature Coleman-Weinberg
contribution and F ðT;ϕÞ is the free energy. In dimensional
regularization, the UV divergence of VCW can be removed
by adjusting counterterms Vc:t:

dark ¼ −δμϕ2 þ δλϕ
4, which

yield in MS scheme the usual result

VCWðϕÞ þ Vc:t:
darkðϕÞ ¼

m0ðϕÞ4
64π2

�
log

�
m0ðϕÞ2
Q2

�
−
3

2

�

− nF
mψ ðϕÞ4
64π2

�
log

�
mψðϕÞ2
Q2

�
−
3

2

�
;

ð7Þ

where Q is the renormalization energy scale. Hence, μ and
λ are running parameters that depend implicitly on Q.
Moreover, the tree-level mass squared of ϕ is defined as

m0ðϕÞ2 ¼ −μ2 þ λ

2
ϕ2; ð8Þ

which is negative when ϕ2 < 2μ2=λ.
The thermal contribution is the Helmholtz free energy

density of a gas comprising one bosonic and nF fermionic
degrees of freedom. At one loop, its expression is

F ðT;ϕÞ ¼ T4

2π2

�
JB

�
m0ðϕÞ2
T2

�
− nFJF

�
mψðϕÞ2

T2

��
; ð9Þ

where the functions JB and JF are defined as

J
F
B

�
m2

T2

�
¼

Z þ∞

0

duu2 log ð1 ∓ e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þm2=T2

p
Þ: ð10Þ

At high temperature, these quantities can be expanded as

JB

�
m2

T2

�
¼ −

π4

45
þ π2

12

m2

T2
−
π

6

�
m2

T2

�3
2

−
1

32

m4

T4
log

m2

16αT2
þO

�
m6

T6

�
;

JF

�
m2

T2

�
¼ 7π4

360
−
π2

24

m2

T2
−

1

32

m4

T4
log

m2

αT2
þO

�
m6

T6

�
;

ð11Þ

where α ¼ π2 expð3=2 − 2γEÞ and γE is the Euler-
Mascheroni constant. Note that the m4

0 logm
2
0 and

m4
ψ logm2

ψ terms of the zero-temperature potential and free
energy in Eqs. (7), (9), and (11) cancel exactly. However,
comparing the expansions of JB and JF, one sees that the
free energy of the bosonic particles ϕ contains an extra
source of nonanalyticity, namely, the term in ðm2

0Þ
3
2.

Therefore, the one-loop thermal effective potential is
complex when m0ðϕÞ2 < 0. In some cases, imaginary parts
in effective potentials are associated with physical phase
transitions [83]. However, in the present case, the nonana-
lytic term arises because thermal higher loop corrections
that are of the same order of magnitude have been omitted.
It turns out that the high-temperature quantum corrections
are dominated by the so-called ring (or daisy) diagrams,
with an arbitrary number of loops [84,85]. In practice, the
resummation of the high-temperature limit of the ring
diagrams amounts to adding a contribution to the one-loop
potential [86],

V th
effðT;ϕÞ≡ V th

1�loopðT;ϕÞ þ V th
ringðT;ϕÞ; ð12Þ

where

V th
ringðT;ϕÞ¼

T
12π

½ðm0ðϕÞ2Þ32−ðm0ðϕÞ2þΠϕðTÞÞ32�: ð13Þ

In the above expression, the shift of m2
0 is the so-called

Debye mass squared

ΠϕðTÞ ¼
T2

24
ðλþ nFy2Þ; ð14Þ

which is the dominant temperature contribution of
∂2F=ð∂ϕÞ2. As a result, the pathological contributions
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ðm2
0Þ

3
2 of the one-loop and ring diagrams cancel exactly,

while the remaining term ðm2
0 þ ΠϕÞ32 in V th

ring is real.
Even if this is not necessary, we neglect from now on for

the sake of simplicity all terms T4 ×Oðm6=T6Þ arising in
the high-temperature expansions of the one-loop free
energy density F and ring contribution V th

ring. In order to
write the thermal effective potential in a suggestive way,
we find it convenient to set the renormalization scale Q in
terms of a critical temperature,

Q ¼ πe−γETc;

Tc ¼
2

ffiffiffi
6

p
μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λþ nFy2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffi
6

p
8π ξþ log 2

8π2
λ

1 −
ffiffi
6

p
4π ξ

vuut ; ð15Þ

where we have defined

ξ≡ λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ nFy2

p ∈ ðλ;
ffiffiffi
λ

p
Þ: ð16Þ

Expressing all dependences in T with a new variable x,

x ¼ Tc

T
; ð17Þ

the effective potential at finite temperature reduces to

V th
effðx;ϕÞ ¼ V0ðxÞ −

μeffðxÞ2
2

ϕ2 þ λeffðxÞ
4!

ϕ4: ð18Þ

In this expression, V0 depends only on the temperature,
while μ2eff is an effective mass term,

μeffðxÞ2 ¼ μ2
��

1 −
ffiffiffi
6

p

8π
ξþ log 2

8π2
λ

��
1 −

1

x2

�

−
λ

16π2
log x

�
; ð19Þ

and λeff is an effective self-coupling,

λeffðxÞ ¼ λ

�
1 −

3
ffiffiffi
6

p

8π
ξþ 3 log 2

8π2
λ

�

þ 3

16π2
ð4nFy4 − λ2Þ log x: ð20Þ

The mass term μeffðxÞ2 increases from negative values at
x ≪ 1, up to a positive maximum at x ≃ 4π

ffiffiffiffiffiffiffi
2=λ

p
, and it

vanishes at x ¼ 1.2 Therefore, the field ϕ acquires thermal
corrections to its mass, and a phase transition takes place at

x ¼ 1, which justifies Tc to be referred to as a critical
temperature. The scalar ϕ is stabilized at 0 at higher
temperature, while it condenses and follows adiabatically
a temperature-dependent vev at lower temperature. We
discuss in Sec. VI the validity of such a behavior.

IV. SPONTANEOUS FREEZE
OUT OF DARK MATTER

In this section, we explain how the fermionic dark-
matter particles ψ can freeze out, while the dark-scalar ones
remain in thermal equilibrium with the SM bath. However,
this is fully justified in Sec. VI, where we present specific
examples of interactions Lint between dark sector and
SM fields.
After the dark-matter particles ψ freeze out at T ¼ TFO,

only ϕ remains eventually thermalized with the SM. The
expression of the effective potential we considered so far is
therefore valid up to xFO ¼ Tc=TFO. The vev of ϕ reads3

x ≤ 1∶ hϕi ¼ 0;

1 ≤ x ≤ xFO∶ hϕi ¼ μeffðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

6

λeffðxÞ

s
; ð21Þ

and the dark-scalar mass evolves accordingly like

x ≤ 1∶ mϕðxÞ ¼ jμeffðxÞj;
1 ≤ x ≤ xFO∶ mϕðxÞ ¼

ffiffiffi
2

p
μeffðxÞ: ð22Þ

As a result, the fermionic dark-matter mass becomes
effectively a function of the temperature,

x ≤ 1∶ mψ ðxÞ ¼ 0;

1 ≤ x ≤ xFO∶ mψ ðxÞ ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

λeffðxÞ

s
mϕðxÞ: ð23Þ

The mechanism which maintains dark-sector particles in
thermal equilibrium before they freeze out can be of
different natures. First ψ remains thermalized with the
SM as long as

ðiÞ H < nψ hσSM↔ψψ̄vi; ð24Þ

where hσSM↔ψψ̄vi denotes the thermally averaged cross
section of annihilation of ψ into SM fields, nψ denotes its
number density, and H is the Hubble parameter. Second,
dark-matter particles can remain in thermal equilibrium
with the dark scalar ϕ, given that

2It is also positive between x ¼ 1 and the extremely high
formal value x ≃ e16π

2=λ, which is far above the domain of validity
of the thermal expression of the potential.

3If at reheating temperature, x ¼ xRH, the effective coupling is
negative, λeffðxRHÞ < 0, the vev hϕi ¼ 0 corresponds to a local
minimum of the potential, which becomes global as x approaches
1 from below.
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ðiiÞ H < Γϕ→ψψ̄ or H < nψhσϕϕ↔ψψ̄vi; ð25Þ

where Γϕ→ψψ̄ stands for the width of the (inverse) decay
process ϕ ↔ ψ þ ψ̄ and hσϕϕ↔ψψ̄vi denotes the annihila-
tion cross section of ψ through a t-channel process (see
Fig. 1). Finally, ϕ can thermalize with the SM as long as
either the conditions (i) and (ii) are guaranteed simulta-
neously, or because interactions between ϕ and SM fields
are present and such that

ðiiiÞ H < nϕhσSM↔ϕϕvi or H < Γϕ→SM; ð26Þ

where nϕ is the number density of ϕ, while hσSM↔ϕϕvi
and Γϕ→SM are the annihilation cross section and decay
width. In this last case (iii), ψ does not necessarily have
to interact with SM particles in order to thermalize with
them, provided the condition (ii) is fulfilled. We depict
the different Feynman diagrams which can lead to such
interactions in Figs 1 and 2.
In Sec. VI we explicitly introduce interactions between

the dark sector and the SM. We in particular focus on the
simple case where

hσSM↔ψψ̄vi ≫ hσϕϕ↔ψψ̄vi; ð27Þ

such that the freeze out of dark matter is only driven by the
contact interaction between ψ and the SM fields, and not by
the interactions taking place within the dark sector. We also
work in a regime in which the dark scalar ϕ remains in
thermal equilibrium with the SM while the dark-matter
freeze out takes place. Therefore the condition (i) remains
true until x ¼ xFO. On the scalar side, the condition (ii) is
satisfied when x < 1 because dark-matter particles are
massless and the inverse-decay process is kinematically
allowed, whereas the condition (iii) is satisfied at later time,
as we discuss in Sec. VI.

In principle, alternative scenarios, violating the condition
of Eq. (27), in which ψ remains in equilibrium with ϕ
before freezing out, could be perfectly viable. This dark
equilibrium could take place either together with the SM
(if the ϕ ↔ SM interaction is strong enough) or in a dark
equilibrium secluded from the SM bath (see, e.g.,
Refs. [87–89]). This possibility would however suppress
the interaction between DM and SM fields and therefore be
more challenging to detect experimentally.

A. The spontaneous freeze out regime

To proceed, let us define the ratio κ ¼ mψðxFOÞ=TFO. For
xFO > 1, we obtain from this definition the following
expression,

x2FO ¼ 1þ
�
4κ2½λþ 3

16π2
ð4nFy4 − λ2Þ log xFO�

y2ðλþ nFy2Þ

þ λ

16π2
log xFO

�
ð1þOðξÞÞ; ð28Þ

which is valid in perturbative regime. In practice, the value
of κ depends on the explicit temperature dependency of the
DM annihilation cross section into SM particles and is well
known to be of orderOð20–30Þ for masses in the GeV–TeV
range. It is in Sec. VI that we numerically evaluate the
freeze out temperature, using explicit examples of inter-
actions between ψ and SM particles. From Eq. (28), we
observe that different regions of the parameter space can be
distinguished. For a large scalar self-interaction, as com-
pared to the Yukawa interaction, we have

λ ≫ nFy2 ⇒ xFO ≃O
�
2κ

y

�
≫ κ: ð29Þ

However, in the reversed case, we obtain

λ ≪ nFy2 ⇒ xFO ≃
�
1þ κ2

�
4λ

nFy4
þ 3

π2
log xFO

��
1=2

;

ð30Þ

which allows xFO to be relatively smaller than κ as long as
λ < y4. We can therefore identify two different regimes:

(i) When xFO ≫ κ, the temperature at which dark-
matter freezes out is much lower than the critical
one, TFO ≪ Tc. At such a low temperature, the
masses mϕðxFOÞ and mψ ðxFOÞ [see Eqs (22), (23)
and (19), (20)] are close to their tree-level values,

1 ≪ x ≤ xFO∶ mϕðxÞ ≃mtree
ϕ ;

mψðxÞ ≃mtree
ψ : ð31Þ

Figure 3(a) shows the fermion mass mψ (brown),
scalar mass mϕ (red), and temperature (teal) as

FIG. 1. Annihilation and decay processes contributing to
thermal equilibrium in the dark sector.

FIG. 2. Examples of annihilation and decay processes arising
from the interaction Lagrangian Lint (see Sec. VI) which may
contribute to the thermal equilibrium between ψ , ϕ and SM
particles.
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functions of x, in the illustrative case where μ ¼
10 GeV, y ¼ 10−2, nF ¼ 2, and λ ¼ 103y2 ¼ 0.1.
Because xFO ≫ κ, the temperature reaches mψ when
the mass of ψ is already varying slowly, which
corresponds to the usual thermal freeze out paradigm.

(ii) When xFO ≲ κ, the freeze out takes place soon
after the fermionic dark-matter particles start
becoming massive. At this epoch, the evolutions
of the masses are

1 ≤ x ≤ xFO∶ mϕðxÞ ≃mtree
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

x2

r
;

mψðxÞ ≃ yμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

λþ 3nF
4π2

y4 log x

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

x2

r
: ð32Þ

Because shortly after the phase transition the deriva-
tive dmψ=dx is very large, it is expected that the
mass of the DM particles ψ when they free out
differs significantly from its final value today. In
Fig. 3(b), we show the evolutions of the temperature
and DM particle masses with respect to x in this
case. For μ ¼ 10 GeV, y ¼ 10−2, nF ¼ 2, and
λ ¼ 10−2y4 ¼ 10−10, one can see that mψ becomes
larger than the temperature soon after the phase
transition takes place, suggesting that the DM
particles ψ might indeed decouple while their mass
still varies significantly. This illustrates the case we
are mostly interested in this work, and that we refer
to as spontaneous freeze out.

To summarize, we may have two different freeze out
scenarios,

xFO ≫ κ∶ constant-mass freeze out;

xFO ≃ κ∶ spontaneous freeze out: ð33Þ

Notice that in the SFO case, we discard the possibility of
having 1≲ xFO < κ since, as we see in the next section,
demanding the existence of a stable minimum of the
potential at late time, when the temperature vanishes,
imposes a lower bound of order κ on xFO. In practice, this
condition leads to a lower bound of order 0.03nF on λ=y4

[see Eq. (45)].

V. DYNAMICS OF THE SCALAR FIELD ϕ
AFTER FREEZE OUT OF ψ

In the present section, we are interested in the late time
dynamics of the scalar ϕ, when the temperature is well
below its zero-temperature mass, and its effective potential
can be approximated by its zero-temperature expression.
Because the mass of the nonrelativistic DM particles ψ of
the relic density is ϕ dependent, the dust also sources
the scalar potential in a way to be figured out. In total, the
equation of motion of the scalar ϕ can be written as

ϕ̈þ ðΓϕ þ 3HÞ _ϕ ¼ −
dVeff

dϕ
−
dVdust

dϕ
; ð34Þ

where the source Vdust arises from the dust, while the
contribution Veff is the zero-temperature effective potential
of ϕ. Note that we also include the friction term arising
from the decay of ϕ into lighter fields. At one loop, the
potential Veff involves the Coleman-Weinberg and counter-
term contribution of Eq. (7),

VeffðϕÞ ¼ V treeðϕÞ þ VCWðϕÞ þ Vc:t:
darkðϕÞ: ð35Þ

In order to find Vdust, a possible approach is to consider
that beside the Einstein action coupled to the fundamental
DM fields ϕ, ψ , and to the SM degrees of freedom, we add
an action for describing the motion of Nψ noninteracting

FIG. 3. Examples reproducing (a) the usual freeze out and (b) spontaneous freeze out scenarios in the case where y ¼ 10−2, μ ¼
10 GeV and, respectively, λ ¼ 103y2 ¼ 0.1 and λ ¼ 10−2y4 ¼ 10−10.
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particles of dust ψ . Each of them has coordinates Xμ
i ðτiÞ,

where τi is an arbitrary parameter along the world-line
trajectory of particle i. Because the action of the fields
Xμ
i ðτiÞ must be independent of the parametrization, it can

be chosen to be proportional to the proper time along the
trajectory multiplied by the mass,

Sdust ¼ −
X
i

Z
dτiyjϕðXiÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνðXiÞ

dXμ
i

dτi

dXν
i

dτi

s
; ð36Þ

where gμν is the spacetime metric. Varying Sdust with
respect to gμν and ϕ, it is possible to derive the energy
density ρdust, the pressure Pdust, and the contribution Vdust to
the potential that arise from the distribution of DM particles
ψ [90,91], assuming that the latter is compatible with
spacetime homogeneity and isotropy of the Universe at
large enough scale.
However, for our purpose it is enough to multiply by _ϕ

the equation of motion of ϕ, Eq. (34), to obtain

_ρϕ þ ðΓϕ þ 3HÞðρϕ þ PϕÞ ¼ − _ϕ
dVdust

dϕ
; ð37Þ

where ρϕ, Pϕ are the gravitational sources associated with
the dark scalar,

ρϕ ¼ 1

2
_ϕ2 þ VeffðϕÞ; Pϕ ¼ 1

2
_ϕ2 − VeffðϕÞ: ð38Þ

Denoting ρrad, Prad the energy density and pressure of the
visible sector, we also have [92]

_ρrad þ 3Hðρrad þ PradÞ ¼ Γϕðρϕ þ PϕÞ: ð39Þ

Note that we considered here that the scalar ϕ decays
exclusively into SM particles since we consider in Sec. VI
the region of the parameter space where the mass of ψ
is always larger than the mass of ϕ. Combining Eqs (37),
(39), and the conservation of the stress-energy tensor
associated with the total system composed of the scalar
ϕ, the massless SM, and the dust, we obtain [73–75,93]

_ρdust þ 3Hðρdust þ PdustÞ ¼ _ϕ
dVdust

dϕ
: ð40Þ

We are interested in the case where the relic dark-matter
particles ψ are nonrelativistic. Assuming for simplicity the
limit case of vanishing particle velocities, the DM fluid is
pressureless, while its energy density originates only from
invariant mass,

ρdust ¼ nψyjϕj; Pdust ¼ 0: ð41Þ

Using Eq. (40) and the fact that nψ ¼ Nψ=a3, where a is the
scale factor of the Universe, we obtain

dVdust

dϕ
¼ signðϕÞynψ : ð42Þ

The effect of dust on the dynamics of the scalar ϕ after
the fermionic DM freezes out is however minor, due to the
suppression factor 1=a3 in nψ . To see this qualitatively, we
may neglect the Coleman-Weinberg and counterterm con-
tributions to the scalar effective potential, and study the
minima of V tree þ Vdust. This potential admits a local
minimum at some hϕi > μ

ffiffiffiffiffiffiffi
2=λ

p
when

nψ < nc ¼
2

ffiffiffi
2

p

3

μ3

y
ffiffiffi
λ

p : ð43Þ

Thanks to the expansion of the Universe, or if the DM
particle ψ is sufficiently heavy (and its number density small
enough), the above condition always ends up satisfied and
hϕi can converge to the tree-level value hϕitree, given in
Eq. (5). Note however that, in principle, the backreaction of
the dust might destabilize the vacuum hϕi > 0, right after the
freeze out takes place. This would lead ϕ to decrease and
possibly allow the dark-matter particles ψ to rethermalize.
However, such a behavior would be contradictory with the
hypothesis that dark matter is nonrelativistic while estimat-
ing the backreaction. Therefore, a more thorough treatment
of this possibility in the presence of a quasirelativistic
velocity distribution would be required. We leave such a
dedicated study for future work.
Neglecting this backreaction of the relic density, another

source of destabilization of the vacuum hϕi > 0 may arise
from the Coleman-Weinberg and counterterm contributions
to the effective potential. In the SFO regime, corresponding
to the limit of small self-coupling λ as compared to y4, one
can understand this point by neglecting the contribution to
the Coleman-Weinberg potential arising from the scalar
sector. The analytic expression of the vev of ϕ that
minimizes the potential is then found to be

hϕi ≃ 4πμ

y2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−nFW

�
− 16π2μ2 expð−1−8π2λ=3nFy4Þ

nFQ2y2

�r ; ð44Þ

where WðzÞ stands for the product logarithm (or Lambert
W function). Imposing the above value to be real amounts
to demanding the argument ofWðzÞ to be larger than −1=e,
which in turn leads to the condition

λ

y4
>

3nF
8π2

�
log

2

3
þ 2γE

�
≃ 0.03nF: ð45Þ

In non-SFO cases, larger values of the self-coupling λ
always imply the existence of a local or global minimum
at some hϕi0 > 0. Therefore, as long as the bound of
Eq. (45) is satisfied, the vev of ϕ converges towards the
minimum of the potential at zero temperature and zero
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backreaction of the dust, while the mass mψ approaches its
final constant value,

m0
ψ ¼ yhϕi0: ð46Þ

VI. INTERACTION WITH THE
STANDARD-MODEL BATH

In the previous sections, we have described the dynamics
of a scalar field living in a thermal potential. We have, in
particular, assumed that the dark-matter particles ψ and the
dark scalar ϕ were maintained in thermal equilibrium with
the standard model before the spontaneous freeze out
mechanism takes place. However, we have not specified
yet in which way the dark sector interacts with standard-
model particles. In this section we explicitly introduce such
interactions, perform a numerical scan, and derive impor-
tant constraints on the parameter space.
Although one could consider a complete set of dimension-

six operators for describing the annihilation of the dark-
matter particles ψ into SM fermions, we consider in this
paper only spin-independent interactions as an educational
toy example and leave a more systematic study for future
work. Therefore, we focus on the two simplest operators of
this kind leading to s-wave and p-wave processes for dark-
matter annihilation into SM4 fermions f, which are respec-
tively through vector (V) and scalar (S) operators

OV ¼ ψ̄γμψ f̄γμf and OS ¼ ψ̄ψ f̄f: ð47Þ

Introducing the couplings GV and GS, one can write the
associated cross sections of dark-matter annihilation
ψψ̄ → ff̄ as

σV ¼ G2
V

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

f

s − 4m2
ψ

s

×

�ðs − 4m2
ψÞðs − 4m2

fÞ
3s

þ 4ðm2
ψ þm2

fÞ þ s

�
;

σS ¼
G2

S

32πs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

f

s − 4m2
ψ

s
ðs − 4m2

ψÞðs − 4m2
fÞ: ð48Þ

Assuming that the mass of the fermion f is much lighter
than the dark-matter particle in the range 1 < x ≤ xFO, and
using the fact that the relative velocity of thermalized dark-
matter particles satisfies hv2i ¼ 6T=mψ , one can express the
thermally averaged cross section of annihilation as

hσviV ≃
G2

V

2π

�
1þ x−1Tc

mψ ðxÞ
�
m2

ψðxÞ;

hσviS ≃
3G2

S

8π
x−1Tcmψ ðxÞ: ð49Þ

A. Relic density

The evolution of the dark-matter number density nψ can
be described by the Boltzmann equation, which we express
in terms of the yield Yψ ¼ nψ=s,

dYψ

dx
¼ hσvis

xH
ðY2

ψ ;eq − Y2
ψÞ: ð50Þ

In this equation, s is the entropy density of the Universe and
Yψ ;eq ¼ nψ ;eq=s is the value of the yield when ψ follows a
Boltzmann equilibrium. After dark-matter particles and
antiparticles freeze out, the relic density of dark matter is
given by

Ωh2 ¼ nF
mψ ðx0Þs0
6H2

0M
2
P
Y0
ψ ; ð51Þ

where indices “0” express the fact that the different
quantities are evaluated at the present time, where
T ¼ T0 ≃ 2.4 × 10−4 eV. The entropy density of the
Universe is therefore given by s0 ¼ 2.1 × 10−38 GeV3,
the Hubble parameter is H0 ≃ 71 km:s−1:Mpc−1, h≡
H0=ð100 km:s−1:Mpc−1Þ, and the Planck mass is denoted
by MP ¼ 1.22 × 1019 GeV.

B. Numerical results

Before presenting our numerical results, let us make a
few comments on what is expected in our scenario of
spontaneous freeze out, as compared to the usual case of a
constant-mass dark matter particle.

(i) For a given dark-matter massm0
ψ and relic density at

present time, the dark-matter yield at freeze out YFO
ψ

is fixed.
(ii) The dark-matter relative velocity at freeze out

hv2i ∼ TFO=mψ ¼ κ−1 is essentially model indepen-
dent. Because in our scenario mψðxFOÞ < m0

ψ , we
expect the freeze out temperature in the SFO case to
be lower than in the constant-mass standard WIMP
scenario.

(iii) At freeze out, the condition nFOψ hσviFO ¼ HFO can
be expressed as

YFO
ψ hσviFO ∝ T−1

FO: ð52Þ

Therefore the dark-matter annihilation cross section
at freeze out σFO in the SFO case is larger than in the
constant-mass paradigm.

4Note that, in principle, the fermion f may not be part of the
standard-model spectrum, as long as the interactions with it are
sufficient to keep f in equilibrium with the SM bath until dark
matter freezes out.
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(iv) In our benchmark models, the cross sections of
Eq. (49) evolve after freeze out as

hσviV ≃
G2

V

2π

�
1þ v2

6

�
m2

ψðxÞ;

hσviS ≃
3G2

S

48π
v2mψðxÞ: ð53Þ

Because in the SFO case the dark-matter particle
mass increases with time, the ratio between the
annihilation cross section in our scenario as com-
pared to the usual WIMP case increases from the
time of freeze out to present time, where the DM
velocity v ≃ 200 km:s−1 is model independent.
Note that if we had considered different operators

than those chosen in Eq. (47), the dependency of the
annihilation cross section with the DM mass would
change. In particular, lower dimensional operators
might lead to situations where hσvi is either invari-
ant or decreasing with the DM mass. If that is the
case the effect described in the previous paragraph
might be balanced by the evolution of the cross
section between the time of freeze out and today.

In Figs. 4 and 5 we present our numerical results for the
two benchmark operators OV and OS. In both figures, we
scan over the whole parameter space fμ; λ; yg in the case of
a Majorana fermion (nF ¼ 2) and compute the annihilation
cross section (and therefore the value of the coupling GV;S)
necessary to obtain the correct relic abundance of dark
matter Ωh2 ≃ 0.12. In particular, we focus on the case of a
Yukawa coupling in the range y ∈ ½0.001; 0.1� and values
of λ containing the SFO regime λ ¼ ½0.03nFy4; 16y4�.

In order to scan over the DM mass, the parameter μ is
varied over the range [50 MeV, 5 TeV].
In both cases our findings are very similar and in very

good agreement with the qualitative predictions that we
have just developed about our SFO scenario. Indeed one
can clearly see that data points that lead to low values of the
ratio xFO=κ, and therefore correspond to the SFO case [as
defined in Eq. (33)] show an annihilation cross section that
can be significantly larger than in the usual freeze out
scenario by more than 1 order of magnitude. As a matter of
fact, because the ratio λ=y4 admits a lower bound given in
Eq. (45), it can be seen from Eq. (30) that the ratio xFO=κ
cannot be arbitrarily small. Therefore, the increase of the
annihilation cross section cannot be arbitrarily large.
Another interesting feature of our scenario is that a

fraction of the parameter space which is ruled out by the
unitarity constraint in the constant-mass WIMP scenario
remains allowed in the SFO case. Indeed, the unitarity
bound that we obtain is now independent on the cross
section of annihilation today and amounts to an upper
bound on the DMmass which is unchanged as compared to
the constant-mass case.
In Fig. 6 we also present the value of the ratio between

the dark-matter particle mass at the time of freeze out and
its value at present time.

C. Phenomenological constraints

As a direct consequence of such an increased cross
section between the dark sector and the visible sector,
models of thermal dark matter that were already exper-
imentally ruled out in the usual constant-mass freeze out
scenario turn out to be even more excluded in the SFO
regime.

FIG. 4. Numerical results for the cross section of annihilation of dark-matter particles interacting with SM fermions via the operator
OV . The plain red line indicates the standard WIMP unitarity bound, whereas the red dots stand for the points which violate unitarity in
our scenario. Indirect-detection constraints on the annihilation cross section of a dark-matter candidate interacting with one single
species of lepton are indicated.
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As a result, a model in which a dark-matter particle
interacting with colored fermions via the vectorial effective
operator OV is totally ruled out by direct-detection con-
straints in our setup. Therefore, the only fermions with
whom DM particles can interact in this case are charged
leptons or neutrinos. Although the interaction of DM
particles with electrons could induce some electron recoil,
future direct-detection experiments are still far from con-
straining the region of parameter space which is of interest
in our scenario.
In the case where DM interacts with colored particles

through the scalar operator OS, direct-detection experiments

have ruled out a significant fraction of the parameter space,
but heavy DM candidates could still, in principle, escape
detection for masses above Oð1Þ TeV. However, as we see
in the next subsection, the existence of such an operator leads
to an effective Yukawa coupling between the dark scalar ϕ
and SM fermions. While ϕ acquires a large vev, such
coupling can contribute dangerously to the mass of these
fermions. As a matter of fact, it turns out that demanding
such corrections to not overshoot the current experimental
uncertainties on the quark masses eliminates all the
data points which could escape the current direct detection
limits set by Xenon1T [94]. Therefore we are to consider

FIG. 6. Ratio between the values of the dark-matter particle mass at the time of freeze out and at present time for data points leading to
the correct relic abundance of dark matter. The left panel corresponds to an s-wave annihilation cross section (operatorOV), whereas the
right panel stands for the p-wave annihilation cross section (operator OS). Red circles are associated with data points for which the
annihilation cross sections violate unitarity at the time of freeze out.

FIG. 5. Numerical results for the cross section of annihilation of dark-matter particles interacting with SM fermions via the operator
OS. The plain red line indicates the standard WIMP unitarity bound, whereas the red dots stand for the points which violate unitarity in
our scenario.
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only in what follows that dark-matter particles interact with
SM leptons.

1. Indirect detection

In the case of a velocity-suppressed cross section
(p wave), the annihilation of dark-matter particles in the
Galaxy today cannot lead to any visible signal under the
form of cosmic rays, unless enhanced by long-range
interactions (Sommerfeld enhancement). However, in the
case of an s-wave annihilation process, there exists a
plethora of constraints that can be used to set stringent
limits on our parameter space. Indeed, for masses
≲10 GeV, the annihilation of dark-matter particles, even
after they have frozen out, injects a fraction of energy that
can distort significantly the cosmic microwave background
[95], leading to severe constraints on the annihilation cross
section of dark-matter particles. Moreover, above 10 GeV,
the FERMI collaboration measuring the spectrum of dwarf
spheroidal galaxies in the Milky Way [96,97], and the
Alpha Magnetic Spectrometer (AMS) detecting cosmic
rays set the most robust limits on dark-matter annihilation
in the Galaxy [98,99]. In Fig. 4, we indicate the different
constraints that have been derived in Ref. [100] for various
possible leptonic final states. The fact that the annihilation
cross section in the SFO case is significantly larger than
in the usual constant-mass scenario leads to much more
severe constraints. Therefore, heavy dark-matter candi-
dates, which are unlikely to be detected in the near future
in the usual constant-mass WIMP scenario, turn out to be
very soon accessible to collaborations such as FERMI or
AMS in the SFO case.

D. Constraints on the scalar sector

As we have anticipated in Sec. IV, throughout the
Universe’s history, the scalar field ϕ can have access to
different decay channels: For x < 1, we have seen that the
fermionic dark-matter particles are massless and ϕ can
decay at tree level, with the lifetime

x < 1∶ ðτϕÞ−1 ¼ Γϕ→ψ̄ψ ¼ y2

8π
mϕðxÞ: ð54Þ

After the phase transition, when λ ≪ nFy2, whether we are
in the spontaneous freeze out case (where this condition is
automatically satisfied) or not, the ratio of the masses in the
dark sector can be expressed as follows:

1 ≤ x ≤ xFO∶
mψðxÞ2
mϕðxÞ2

≃
3y2

λþ 3nF
4π2

y4 log x
≫ 1: ð55Þ

As a result, in this region of parameter space, the decay and
inverse decay ϕ ↔ ψ þ ψ̄ are now kinematically forbid-
den. However, at the loop level, certain operators can lead
to an effective decay of the dark scalar into SM particles, as

depicted in Fig. 7. In the case of the scalar operator OS, the
effective coupling induced by such a diagram is

Oeff
S ∼

�
y
GSm2

ψ

16π2

�
ϕf̄f; ð56Þ

and it provides the scalar lifetime (for x > 1)

ðτSϕÞ−1 ¼ ΓS
ϕ ∼

mϕ

8π

�
yGSm2

ψ

16π2

�
2
�
1 −

4m2
f

m2
ϕ

�3=2

: ð57Þ

It is important to notice that the presence of the effective
Yukawa coupling of Eq. (56) between the dark scalar ϕ and
SM fermions can source a correction to the mass term of the
latter after ϕ acquires a large vev. Since the dark-matter
mass is given by mψ ¼ yhϕi, it is clear from Eq. (56) that
the corresponding correction to the mass of the SM fermion
with whom the dark-matter particles ψ interact, is of order

Δmf ∼ GSm3
ψ : ð58Þ

In practice, given the relatively large value of the coupling
GS in the SFO case, we obtain a contribution to the mass of
the SM fermion f of order Δmf ¼ Oð10−3Þmψ. Given the
extremely good accuracy with which the SM fermion
masses are measured, the presence of such contribution
imposes an upper bound on the dark-matter particle mass
that depends on the details of the model considered.
However, in the case of the vectorial operatorOV such an

effective coupling is forbidden. Therefore, unless adding
contact interactions between ϕ and SM particles, the dark
scalar could, in principle, be relatively stable on cosmo-
logical scales. The possibility that the dark scalar would be
long lived after the phase transition takes place can have
four major consequences.

(i) If the lifetime of the scalar field ϕ is longer than the
age of the Universe, it could participate to the DM
relic abundance together with the ψ particles after
freezing out from the thermal bath.

(ii) The coherent oscillations of hϕi around the mini-
mum of the potential when the temperature of the
Universe has dropped below the mass of ϕ might
contribute significantly to the matter abundance and
overclose the Universe [101–103]. This problem,

FIG. 7. Decay of the scalar ϕ into SM fermions via a loop of
dark-matter particles.
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which is known as the Polonyi problem [104,105],
has in particular been raised in the context of
supergravity and string theory [106].

(iii) If the energy density of the scalar (either due to its
coherent oscillations or to its relic density) comes
to dominate the energy density of the Universe
before the scalar decays into SM particles, the
corresponding entropy injection into the visible bath
is known to reduce the dark-matter relic abundance
[87,88,92]. In that case, this effect has to be taken
into account in the numerics.

(iv) Finally, if ϕ decays after the big bang nucleosyn-
thesis takes place, it can destroy the predictions for
the different atom density fractions in the Uni-
verse today.

For these different reasons, it is essential that the dark
scalar possesses a significant decay width after the phase
transition takes place. Therefore we assumed in our
scenario that such a decay rate is present and does not
lead the dark scalar to contribute to the relic abundance at
all or to dominate the energy density of the Universe at
any time.
As a matter of fact, whether the effective operator of

Eq. (56) exists or not for a given interaction of dark-matter
particles ψ with the SM, it is expected that our dark scalar
can mix with the SM scalar. Therefore, depending on the
mixing of ϕ with the Higgs boson, the former can possess a
significant decay width after the phase transition happens.
This in turn can solve all the issues listed above. Note that
in the case of the scalar operator we introduced in Eq. (56),
a mixing of the scalar ϕ with the Higgs boson arises at the
two-loop level. In any case, particular attention should be
given to the scalar mass matrix and how the dark phase
transition might affect the Higgs sector.
Finally, note that the t-channel annihilation of DM

particles ψ into scalars ϕ could, in principle, play an
important role in the calculation of the DM relic density as
long as it would dominate over the annihilation into SM
fermions. However, in our scan, we have focused on a
regime of parameters for which we have checked that this is
not the case. Indeed the t-channel annihilation cross section
scales like y4=m2

ψ < 10−4=m2
ψ in our scan, whereas the

coupling GS;V turns out to be relatively large in our
simulations, of order ≳10−2=m2

ψ leading to an annihilation
cross section σv ≃ G2

V;Sm
2
ψ ≳ 10−4=m2

ψ .

E. Effect of the non-Adiabaticity

Up to now, we have been assuming that the scalar field ϕ
systematically tracks the minimum of its thermal potential
in an adiabatic fashion. We have seen that such a tracking
can force the freeze out temperature of dark matter to be
lower than what one would infer from the usual constant-
mass WIMP scenario. We showed that this lowering of
the freeze out temperature leads to a significantly larger

annihilation cross section of dark matter in order to
accommodate the correct relic abundance.
In practice, when the phase transition takes place, the

thermal mass of the scalar field is close to 0, and it takes
time before hϕi falls and oscillates around the minimum of
its potential. One can visualize this effect in Fig. 8 on a
particular example. This leads the dark-matter mass to
overshoot the Universe temperature at an even later time
(i.e., lower temperature) than what we have been using in
our numerical simulations. Therefore, the true value of
mψ ðxFOÞ is expected to be lower than that we have
described. In other words, the analysis that we performed
throughout this work is relatively conservative and is likely
to underestimate the effect that the SFO regime can have on
the annihilation cross section of dark-matter particles, as
well as on the increase of the DM mass between the freeze
out time and today. Although we restrict ourself to an
adiabatic description of the SFO mechanism in this work,
we leave the thorough study of this effect in the presence of
a nonadiabatic behavior of the scalar for future work.

VII. CONCLUSION

In this paper, we have focused on the simple case in
which a dark-matter fermionic particle acquires its mass
from the spontaneous breaking of a global Z2 symmetry,
and is in thermal equilibrium with the standard-model bath.
We have computed the thermal corrections to the scalar
potential that arise from the contribution of thermalized
dark-sector particles to the free energy. The spontaneous
breaking of the global Z2 symmetry is driven by a second
order phase transition, similarly to what happens to the
Higgs boson in the early Universe during the electroweak
phase transition. We have demonstrated that the dynamics

FIG. 8. Numerical simulation of the scalar field dynamics after
the phase transition takes place for y ¼ 10−2, λ ¼ 10y4 ¼ 10−7,
μ ¼ 1 GeV and including the scalar decay width Γϕ ¼ 10−2 μ.
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of such a phase transition, through which dark-matter
particles spontaneously acquire mass, might interfere with
the thermal freeze out mechanism. We have in particular
identified an interesting region of the parameter space
where the vacuum expectation value of the scalar field is
large enough for the second order phase transition to
enforce a spontaneous freeze out of dark-matter particles
from the thermal bath. We have studied the phenomenology
of our model in this regime in the simple case where dark-
matter particles interact with SM fermions through spin-
independent dimension-six operators. We have scanned
over the parameter space in order to accommodate the relic-
density constraint, and we have compared our results to the
most recent limits on dark-matter direct and indirect
detection from XENON 1T, FERMI, and AMS, respec-
tively, depending on whether DM particles interact with
colored particles or leptons.
To put it in a nutshell, we have shown that the SFO

regime enforces DM particles to decouple at a lower freeze
out temperature than in the usual constant-mass models
of WIMPs. Moreover, in the cases we have studied, the
SFO regime favors an annihilation cross section of DM
particles into SM states that is larger by more than 1 order
of magnitude than that required in the WIMP paradigm,
in order to obtain the correct relic abundance. This renders
our model of SFO more experimentally testable than the
constant-mass WIMP scenario. Last but not least, we have
discussed the fact that the presence of nonadiabaticity in the
way the dark scalar follows the minimum of its potential
typically leads to an enhancement of the effect we have
predicted.

As a conclusion, we emphasize that in every model of
thermal dark matter in which the dark-matter particle mass
is generated via spontaneous breaking of a high-energy
global symmetry, one should, in principle, pay attention to
the fact that thermal corrections to the scalar potential
might affect significantly the freeze out mechanism. For a
global Z2 symmetry breaking, we have shown that such
corrections become significant if the quartic coupling λ and
the Yukawa coupling y lie in the regime λ≲ y4.
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