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Macroscopic dark matter (macros) refers to a broad class of alternative candidates to particle dark matter
with still unprobed regions of parameter space. Prior work on macros has considered elastic scattering to be
the dominant energy transfer mechanism in deriving constraints on the abundance of macros for some
range of masses Mx and (geometric) cross sections σx However, macros with a significant amount of
electric charge would, through Coulomb interactions, interact strongly enough to have produced observable
signals on terrestrial, galactic and cosmological scales. We determine the expected phenomenological
signals and constrain the corresponding regions of parameter space, based on the lack of these signals in
observations.
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I. INTRODUCTION

There is strong evidence that dark matter is the dominant
form of matter in the Universe (see e.g., Ref. [1]). Dark
matter explains several phenomena on both galactic and
cosmological scales [1], from the shape of galaxy rotation
curves to the history of structure formation. However, the
precise nature of dark matter remains one of the big
unsolved problems in cosmology.
New fundamental particles, not included in the Standard

Model of particle physics, are popular candidates because
they often arise in models of beyond the Standard Model
physics that were invented for independent reasons (e.g.,
the axion [2–4]). However, it remains an open possibility
that dark matter is comprised instead entirely of macro-
scopic bound states.
Such bound states would avoid strong constraints on the

self-interactions of dark matter by virtue of their low
number density instead of any intrinsic weakness in their
nongravitational couplings. One such open possibility is
that dark matter is comprised of macroscopic bound states
of quarks or hadrons, as first proposed by Witten [5] as
products of a first-order QCD phase transition, and later
Lynn, Nelson, and Tetradis [6] and Lynn [7] again, who
argued in the context of SU(3) chiral perturbation theory
that “a bound state of baryons with a well-defined surface
may conceivably form in the presence of kaon condensa-
tion.” This would place the dark matter squarely within the
Standard Model. Others have suggested non-Standard-
Model versions of such objects and their formation, for
example incorporating the axion [8]. Additionally, it has
been noted in Ref. [9] that in a simple Higgs-portal
complex scalar dark matter model, a nontopological soliton
state exists for dark matter. This work also considered one
possible mechanism to produce macroscopic dark matter

soliton states from early-universe dynamics, i.e., a first-
order phase transition of electroweak symmetry [9].
Due to their large mass and low number density, macro

detectors must be extremely large, experience extremely
long integration times or be proficient at accumulating dark
matter due to e.g., gravitationally enhanced Sommerfield
enhancement as in white dwarfs and neutron stars, to
overcome the macros’ low flux compared to typical particle
dark matter.
In recent years the author and collaborators have

determined the regions of macro parameter space that
cannot constitute all of the dark matter based on several
null observations in various experiments [10–13]. We
have also discussed further ways to probe more of the
remaining parameter space [14,15]. These works assumed
the dominant interaction to be elastic scattering and the
interaction cross section, was taken to be the geometric
cross section of the macro, i.e., σelastic ¼ σx. For more
details on recent work involving macros as viable dark
matter candidates, we refer the reader to the works cited
above and references therein. However, we begin by first
briefly reviewing the existing constraints derived from
previous work.
For macro masses Mx ≤ 55 g a careful examination of

specimens of old mica for tracks made by passing dark
matter [16,17] has ruled out such objects as the primary
dark matter candidate (see Fig. 1). For even smaller masses
Mx ≤ 55 × 10−4 g, a similar constraint was obtained [18]
using the MACRO detector [19]. For Mx ⪆ 1021 g, a
variety of microlensing searches have constrained the
abundance of macros [20–24] from a lack of magnification
of sources by a passing macro along the line of sight of the
observer. The most recent lensing constraints from M31
have recently been corrected by taking into account a more
realistic model for the source stars in M31 [25].
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A large region of parameter space was constrained by
considering thermonuclear runaways triggered by macros
incident on white dwarfs [18]. Dark matter–photon elastic
interactions were used together with Planck cosmic micro-
wave background data to constrain macros with sufficiently
high reduced cross section σx=Mx [26]. Prior work had
already constrained a similar range of parameter space by
showing that the consequence of dark matter interactions
with Standard Model particles is to dampen the primordial
matter fluctuations and essentially erase all structures
below a given scale (see e.g., Ref. [27]). The region of
parameter space where macros should have produced an
observable consequence, i.e. death or serious injury on
impact, on members of the population in the Western World
has also recently been constrained [12].
Recently, together with collaborators, we suggested how

ultra-high-energy cosmic-ray detectors that exploit atmos-
pheric fluorescence could potentially be modified to probe
parts of macro parameter space [14], including macros of
nuclear density. This analysis has led to constraints already
being placed using networks of cameras that were origi-
nally built to study bolides, i.e., extremely bright meteorites
[13]. We have also suggested how the approach applied to
mica [16,17] could be applied to a larger, widely available
sample of appropriate rock [15], and used to search for

larger-mass macros. We have also identified additional
regions of parameter space constrained by the duration
between back-to-back superbursts (thermonuclear runaway
on the outer surface of a neutron star) [28].
It is unlikely that macro masses beyond ∼109 g could be

probed by any purpose-built terrestrial detector assuming
even an observation time of a century and a target area
the size of the Earth. Terrestrial probes (e.g., ancient rocks
[15–17]) could have been continuously exposed for up to
∼3 × 109 years, but we are unlikely to carefully examine
the more than 1 km2 that would be needed to push beyond
Mx ∼ 109 g. It will therefore require innovative thinking
about astrophysical probes (e.g., Ref. [18]) to probe the
remaining unprobed parameter space at the very highest
masses.
There remains a wide range of masses Mx and cross

sections σx that are currently unconstrained by all previous
work.
Macros over a wide range of densities remain possible

candidates to explain the problem of the nature of dark
matter. The constraints on macro parameter space from
elastic scattering are presented in Fig. 1. Some of these
constraints will be relevant to the results of this paper, as we
discuss below.
In this work, we introduce an additional mechanism for

energy deposition through electromagnetic interactions of
charged macros with chargeQxewhere e is the unit charge,
and Qx is a number.
The velocity distribution of macros has in prior works

been assumed to follow a Maxwellian distribution of the
form

fMBðvxÞ ¼
�

1

2πσ2

�3
2

e−ð
v2x
2σ2

Þ; ð1Þ

where
ffiffiffi
2

p
σ ≈ 250 km s−1 [29]. We will use this assumption

in this work.
Numerous papers have been written considering a

variety of charged dark matter candidates. The vast major-
ity of the constraints have been derived for particle dark
matter candidates. For a review of some of the constraints
on light mass particles, see e.g., Refs. [31,32] and refer-
ences therein. We summarize some of the results in the
literature here regarding previous work on charged dark
matter candidates.
A unit electric charge for a dark matter candidate, to

contribute the majority of the observed dark matter, is
excluded if its mass is not very large (these excluded
masses are predominantly in the range of particles masses,
but extend to masses Mx ≤ 10−13 g). However, as we shall
show dark matter candidates with a unit charge and much
larger masses, or even charges much higher than ∼e at
much larger masses are allowed to still contribute all of the
observed dark matter.
Charged massive particles with integer charge values

have been considered (see e.g., Ref. [32]) and a variety of

FIG. 1. Constraints for macros considering elastic scattering to
be the dominant interaction. Objects within the region in the
bottom-right corner should not exist as they would simply be
denser than black holes of the same mass. The various colored
regions represent regions where macros cannot make up the entire
amount of dark matter as their interactions through elastic scatter-
ing with their geometric cross section σx would have produced
observable consequences that have not been seen. The purple
constraints are derived from a lack of human impacts [12] resulting
in death or serious injury on the well monitored population of the
WesternWorld. The green from a lack of fast-moving bolide events
[13], the yellow from mica observation [16,17], the red from
superbursts [28], the dark blue from white dwarf supernovae [18],
the grey from structure formation [26], the pink frommicrolensing
of M31 [24,25] and the maroon from microlensing [20–23]. See
Sec. I for more details regarding these constraints.
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terrestrial and astrophysical constraints have been derived.
Such bounds apply only to particles with M ≲ 10−13 g.
Millicharged candidates, i.e., particles with ϵ ≪ e where

ϵ is a fractional charge value, are constrained by many
observations. Accelerator searches (e.g., one carried out at
SLAC [33] designed specifically to detect millicharged
objects) assumed the millicharged particles to be produced
entirely via electromagnetic interactions and produced no
results over the range of sensitivity. Constraints have also
been derived from supernova 1987A [34], considering the
millicharged particle to be a dark-sector particle with a
small electric charge.
Others have considered charged Planck-scale relics

(CPRs) [35], which are expected to be of approximately
the Planck mass and possess a charge-to-mass ratio of
e=Mpl. Reference [35] derived projections for the maxi-
mum abundances of CPRs based on null observations of a
variety of terrestrial experiments.
Concrete charged macro formation models include

macros formed from the mechanisms described for neutral
macros, e.g., those described in Refs. [6,7,36], that then
acquire a charge by absorbing nuclei during their lifetime.
Such a possible mechanism for absorbing additional nuclei
was described in Ref. [36]. Indeed, if a macro consists of a
bound state of nuclei, it is plausible that a collision with a
nucleus could result in the absorption of that nucleus, thus
increasing the net charge of the macro.
However, in this manuscript we will undertake a phe-

nomenological approach and consider a broad range of
parameters Mx, Qx and σx. We determine the regions of
parameter space where charged macros withMx ≥ 10−13 g
are currently allowed to be the sole component of dark
matter. Thus, the results presented here in Figs. 2(a)–2(f),
where we rule out some region of the Qx-Mx plane, are the
regions of the parameter space where the existence of such
charged objects can contribute only a subcomponent of the
dark matter. We are concerned only with Mx ≲ 1023 g,
above which a variety of microlensing results [20–24] have
ruled out macros as being the dominant form of dark matter.
Galactic dynamics have been used to constrain dark

matter self-interactions. Investigations into the allowed
strength of dark matter self-interactions have been con-
ducted (see e.g., Ref. [39]). The observation of an offset
between the gas and dark matter in a merging cluster, such
as 1E 0657-56 (a.k.a. the Bullet Cluster), arising because of
the ram pressure acting on the gas but not the dark matter
has been used to constrain dark matter self-interactions.
Thus, macros with too high a charge content would be
prohibited. We discuss the effect of electrically charged
macros on galactic dynamics, resulting in an effect similar
to the dynamical friction first discussed by Chandrasekhar
[40], and then by Binney and Tremaine [41]. We derive the
analogous expressions for the drag force experienced by a
charged macro traveling through a sea of other similarly
charged macros, and relate this to an effective cross section

that we use to constrain the charged macros using the self-
interaction constraints.
We show that charge bounds derived from the cosmic

microwave background (CMB) anisotropies that were
determined for objects of much lower mass [38] also apply
to objects with much larger mass. Charged particles with
sufficiently strong coupling to baryons would participate in
the acoustic oscillations of baryon-photon plasma. This
would affect the CMB radiation anisotropies in several
ways. Using this idea together with recent Planck data,
Ref. [38] severely constrained the charge content of dark
matter.
Considerations on galaxy cluster scale magnetic fields

affecting the charged dark matter distributions within a
cluster has led to tight bounds being placed on millicharged
dark matter [37]. Bounds were obtained by requiring that
the motion caused by the randomly oriented magnetic fields
should not smear out the dark matter distribution governed
by the gravitational interactions and also by demanding that
the Lorentz force should not exceed the gravitational force
in a cluster. We show that these bounds extend to much
more massive dark matter candidates.
We then set bounds on the allowed regions of the charge-

mass parameter space considering some of the null results
quoted above in Fig. 1. For both the mica and MACRO
results, macros with a sufficiently large charge content
would have left a detectable track in either detector. A
phenomenological law for ions moving at speeds of β ∼
10−3 has been determined in Ref. [42] and will be used in
deriving constraints on the allowed charges of light mass
macros for these two detectors.
Macros incident on a neutron star would be moving at

moderately relativistic speeds, β ∼ 0.7, and could poten-
tially trigger thermonuclear runaway, resulting in a phe-
nomena known as a superburst. For ions moving quicker
than β ∼ 0.01, the Bethe equation is an accurate description
of the linear energy deposition. We constrain the charge
content of macros that would have otherwise initiated a
superburst in a shorter time than observed [28].
For all the other constraints quoted above in Fig. 1, the

macro would be moving at speeds appropriate to the usage
of the phenomenological fit in Ref. [42]. However, the
threshold linear energy deposition for a signal is much
higher, requiring a large value of Qx. At such large values
the phenomenological fit in Ref. [42] is not valid (as
will be explained in more detail in Sec. III where the theory
behind the framework for calculating the linear energy
deposition is reviewed). For a general review of the effects
of ions passing through matter or for more details on the
two frameworks discussed here, we refer the reader to
Ref. [42].
The constraints placed in this paper are from purely

phenomenological observations, independent of consider-
ations of the binding energy of a macro of a certain density.
One should consider only macros that satisfy

CHARGE CONSTRAINTS OF MACROSCOPIC DARK MATTER PHYS. REV. D 101, 043526 (2020)

043526-3



(a) (b)

(c) (d)

(e) (f)

FIG. 2. Constraints on the charge content of macros for several different values of the geometric (and elastic) cross section σx.
Constraints in yellow are derived from requiring charged dark matter not alter the dynamics of galaxy clusters [37], in purple from
requiring charged dark matter not interact too strongly with itself, in grey from CMB anisotropy considerations [38], in green from a null
result of the MACRO detector, in blue from a null result of tracks in ancient muscovite mica and in red from the time between back-to-
back superbursts on 4U 1820-30. The black line represents objects with binding energy Eb ¼ 8 MeV, i.e., nuclear binding energy
satisfying Eq. (2). Objects with masses greater than the critical threshold (44) should not exist as they would be denser than black holes
of the same Schwarzchild radius. The hatching of the mica, MACRO and superburst constraints refers to constraints derived in this work
from electromagnetic interactions and not elastic scattering as in prior work on macros. Those are presented, where relevant, in the same
respective color as the three aforementioned constraints but with no hatching.
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Q2
xe2

rx
< Eb

Mx

mb
; ð2Þ

where rx ¼
ffiffiffiffiσx
π

p
,Eb is the macro binding energy per baryon

and mb ∼ 938 MeV is the mass of a baryon. However,
theoretical considerations have failed to yield a model-
independent formation mechanism for macros. Hence, the
binding energy of a macro cannot be predicted in a model-
independent way and so we ignore this consideration.
Since it is unclear what binding energy macros would

have, we use the nuclear binding energy as a binding
energy of potential interest when plotting Eq. (2) in our
figures (as an equality) with Eb ¼ 8 MeV, i.e., the binding
energy of iron peak elements. However this line is purely
for illustrative purposes; for such large masses, the macro is
much denser than the nuclear density and so it is likely that
the continued existence of such objects over cosmological
time scales requires binding energies much higher than that
corresponding to nuclear density objects.
We use Gaussian-cgs units throughout this analysis. For

simplicity, we consider all macros to have the same mass
Mx and charge Qx (as well as geometric cross section σx).
The rest of this paper is organized as follows. In Sec. II,

we discuss constraints from large-scale structure. In
Sec. III, constraints are obtained from terrestrial observa-
tions and the time duration between back-to-back super-
bursts on 4U 1820-30. In Sec. IV, the results are presented,
along with a discussion of their range of applicability. In
Sec. V, we conclude.

II. LARGE-CALE STRUCTURE

A. Constraints from self-interacting dark matter

Self-interacting dark matter (SIDM) was initially pro-
posed to solve inconsistencies between the cold dark matter
paradigm predictions and observations of structures on
scales below a few Mpc, including the missing-satellite
problem [43]. The centers of SIDM halos are expected to
have constant-density isothermal cores that arise as kinetic
energy is transmitted from the hot outer halo inward.
This results in a diminished central density of the dark
matter halo, an idea first raised in Ref. [43]. Such a scenario
can happen if the reduced cross section of the dark
matter candidate, σ=M (valid for any dark matter candi-
date), is large enough for there to be a relatively high
probability of scattering over a time comparable to the age
of the halo.
The result of strong self-interactions is an offset between

the bullet subcluster mass peak and galactic centroid; the
absence of this observation in the actual cluster provides a
limit on σ=M. Comparisons were also made between
simulations with SIDM and the observed density profiles
and substructure counts of other observed clusters, low-
surface-brightness spiral galaxies and dwarf-spheroidal
galaxies in Ref. [44]. In both cases, bounds on the strength

of the self-interaction generally prohibit dark matter self-
interactions with reduced cross sections

σtotal
Mx

≥ 1
cm2

gr
; ð3Þ

where σtotal is the total cross section for all interaction
mechanisms, e.g., elastic scattering σx and the Coulomb
force. We will consider both contributions in this manu-
script where relevant although in vast regions of parameter
space either one dominates. We use the reduced cross
section value to place constraints on the allowed charge
values of macros that would have altered galactic dynamics
through strong self-interaction.
Dynamical friction historically refers to the deceleration

of a massive object moving through a population of other
objects due to gravitational interactions. This effect has
been discussed in Refs. [40,41]. Here, we consider a similar
effect that arises from a charged macro moving through a
population of other charged macros. We show that for
sufficiently high values of Qx, the self-interaction between
charged macros would be sufficiently strong and is thus
constrained. Such strong self-interactions would result in a
situation where the high-velocity macros located in the
outer halo lose energy to the more slowly moving macros
located near the center of the galaxy, resulting in the central
density being diminished as the macros in the inner regions
migrate outward.
The analogous expression for the deceleration experi-

enced by a macro passing through a population of macros,
all with the same charge content, is obtained by redoing
the analysis in Chapter 7 of Ref. [41]. The expression is
equivalent to the original equation except for the replacement

G2ðM þmÞm →
2Q4

xe4

M2
x

; ð4Þ

yielding

dvM
dt

¼−32π2 logðΛ2þ1ÞQ
4
xe4

M2
x

R vM
0 FðvmÞv2mdvm

v3M
vM; ð5Þ

where

Λ ¼ v2xMxbmax

2Q2
xe2

; ð6Þ

where vM is the velocity of the macro under consideration
and FðvmÞ is the phase-space number density defined in
Ref. [41] and which differs from the velocity distribution (1)
by a factor of the number density nx ¼ ρDM=Mx (for macros
of a single mass)
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FðvmÞ ¼ nxfðvmÞ: ð7Þ

For a Maxwellian velocity distribution (1), the integra-
tion in Eq. (5) can be carried out analytically, yielding

dvM
dt

¼ −
8π logðΛÞQ4

xe4nx
M2

xv3M

�
ErfðXÞ − 2Xffiffiffi

π
p e−X

2

�
vM; ð8Þ

where X ¼ vx
vvir

and ErfðXÞ is the error function. Generally,
the quantity in square brackets will be of order Oð0.1–1Þ
provided vx is not too small, i.e., for the majority of
macros in the distribution (1). We make this simplifying
assumption in the following calculations, i.e., that the
quantity in the brackets ∼0.1.
A crucial concept in this calculation is that the effect

described above results in the macros in the outer halo
experiencing a negative force, which is essentially a drag
force. Thus, we relate the drag force derived in Eq. (8) to
the expression for drag first derived by Epstein [45] for
objects where the physical size, r, is significantly smaller
than the average separation

L ¼ n
−1
3

x ; ð9Þ

i.e., L ≫ r. The Epstein drag force is

Fdrag ¼
4

3
ρDMσeffvxvx;M ¼ Mx

dvM
dt

; ð10Þ

where σeff is the effective cross section due to the Coulomb
interactions between a macro and all other macros in the
population, vx is the mean speed of the population of
macros and vM is the speed of the macro under consid-
eration. The effective cross section may be thought of as the
equivalent geometric cross section for macros to interact,
through scattering, similarly to the charged macro inter-
actions and it produces similar galactic-scale consequences.
We take vx ¼ 250 km s−1. For the fast-moving macros in
the galactic population, assuming vM ¼ 250 km s−1 will
result in an underestimate of at most a factor of Oð2–3Þ.
Thus, for simplicity, we take vM ¼ 250 km s−1.
The effective reduced cross section can be obtained by

equating this drag force to the expression for Epstein drag
[Eq. (10)] yielding

4π
e4

v4M

Q4
x

M3
x
¼ σeff

Mx
: ð11Þ

By requiring the effective reduced cross section to be
greater than the threshold (3), we obtain

Qx ≥ 3 × 1016
�
Mx

gr

�3
4 ð12Þ

to not be ruled out by self-interaction constraints. This
constraint is represented in purple in the figures.
We have considered how sufficiently charged macros

would cause deviations from the observed dark matter
density profile. Thus, this constraint depends on how well
the dark matter density profile can be measured. Currently,
this quantity is known at best to an accuracy of 10–50%
[46]. Thus, we can say with certainty that for the range of
parameter space for which the constraints apply, charged
macros make up at most a subcomponent of 10–50% of
dark matter.

B. CMB constraints

Reference [38] derived bounds on the charge of milli-
charged particles based on CMB anisotropy measurements
and using data from Planck. However, charged dark matter
objects, regardless of their mass, scatter off electrons and
photons at the epoch of recombination. It was shown [38]
that if the velocity transfer rate of this process exceeds the
expansion rate of the Universe, the millicharged particles
behave similarly to baryons until recombination.
This was used to constrain the charge content of milli-

charged particles. This bound may be restated as

Qx ≥ 5 × 106
�
Mx

gr

�1
2

: ð13Þ

To justify the application of this bound to charged
macros, which can be much larger than even Planck-mass
objects, the diffusion time, tdiff , for a photon to cross this
average separation must be short compared to the relevant
Hubble time. We assume that the Hubble time is that
which corresponds to a radiation-dominated Universe for
simplicity

H2 ¼ H2
0ð1þ zÞ4; ð14Þ

where H0 ∼ 70 km s−1Mpc−1 [47] is the value of the
Hubble constant today.
The average macro separation is determined from the

number density of a distribution of macros of a single mass
[Eq. (9)]. The diffusion time for a photon, interacting with a
mean free path

λMFP ¼ ðneσTÞ−1; ð15Þ

where ne is the electron number density and σT is the
Thomson scattering cross section, is

τdiff ¼
L2
DM

λMFPc
; ð16Þ

where the quantity in the denominator is the thermal
diffusivity.
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Requiring Eq. (16) to be small compared to the Hubble
time, H−1 yields

neσTn
−2
3

x c−1H ≪ 1: ð17Þ
In terms of the macro mass this inequality may be written as
approximately

�
Mx

gr

�2
3ð1þ zÞ3 ≪ 1039: ð18Þ

For the large macro candidates withMx ∼ 1025 g, i.e., much
greater than the masses we are interested in probing,
tdiff;DM ≤ H−1 remains true for z ≥ 107. Thus, the large
dark matter masses considered here do not ruin the dark
matter fluid approximation and the constraints originally
derived for particle dark matter candidates apply equally to
macros at redshift z ∼ 1100when recombination took place.
However, the constraints from the CMB differ from all

other constraints in this manuscript in one way: the CMB
constraints are from the early Universe while all other
constraints are from the late Universe. We would require
some formation mechanism capable of producing charged
macros in the required abundance by the era of recombi-
nation to consider the CMB constraints on the same footing
as the other constraints. Thus, we use light shading for the
CMB constraints in the figures to show that the CMB
constraints are subject to additional scrutiny.
The original constraints limited the abundance of milli-

charged dark matter to 0.2% over the range of applicability
of the constraint. This result thus also applies to charged
macros.

C. Large-scale magnetic fields

A stringent bound was placed on the charge content of
dark matter in Ref. [37] using magnetic fields in galaxy
clusters. Since magnetic fields of B ∼ 1 μG typically exist
in clusters, upper bounds on the charge of dark matter were
derived by looking into the effects of the magnetic fields on
the charged dark matter.
In particular, the constraints were derived by requiring

that the motion induced by the magnetic fields should not
change the charged dark matter distribution governed by
the gravitational interactions. Similar constraints were
derived by requiring the Lorentz force not exceed the
gravitational force in a cluster, since dark matter interacts
predominantly through gravity on such scales. Charged
dark matter with

Qx ≥ 1016
�
Mx

g

�
ð19Þ

was ruled out based on this analysis.
To justify the application of this bound to macros over

the mass range of interest, which is much larger than the

masses considered in Ref. [37], we must justify the dark
matter fluid approximation. We must demonstrate that the
physical volumes considered are larger than n−1x since we
are using the distribution of the dark matter to place
constraints. Given an average cosmological dark matter
density of 2 × 10−30 g cm3 and a maximum macro mass of
interest 1021 g, we must consider comoving volumes
greater than of order 1 pc which is true of the probe
considered here.
This bound is stronger than the bound from self-

interactions for Mx ≲ 1 gr.
Similar to the constraint derived from self-interactions,

this constraint also depends on how well the dark matter
density profile is known and so the same maximum
abundance of charged macros as dark matter can be inferred
for this constraint.

III. ENERGY DEPOSITION ALONG TRACKS
OF CHARGED OBJECTS

In this section, we are concerned with localized terres-
trial and astrophysical detectors where the linear energy
deposition of a passing macro would exceed some critical
threshold and leave an observable signal. The linear energy
deposition is now the sum of the two separate contributions

dE
dx

¼ dE
dx

����
elastic

þ dE
dx

����
Coulomb

: ð20Þ

We are most interested in cases where the second term
alone exceeds the threshold energy deposition for a track to
be produced in our detector. However, we will also consider
cases where the first term dominates, i.e., cases where a
large but neutral macro would have triggered the detector
through elastic scattering.
As discussed in Refs. [1,42], the speed of a passing ion

determines the amount of energy transferred on passing
through a material. This is primarily because different
energy transfer mechanisms dominate at different speeds
(see additionally e.g., Refs. [48,49] for a discussion of the
differences between electronic and nuclear stopping).
We first discuss macros moving slowly (β ∼ 10−3) before
proceeding to the moderately relativistic version (β ∼ 0.7).
The form of the second linear energy deposition term in
Eq. (20) will be different for each of these cases.

A. Nonrelativistic macros

Reference [42] has produced a reasonably accurate model
of the energy transfer of low-energy ions by taking into
account the complex electronic screening potential. The goal
of Ref. [42] was to produce a single analytic function for the
interatomic potential, thus allowing a single formula for the
nuclear stopping to be determined, as opposed to using a
separate function for each ion-atom pair.
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The potential of the two particles can also be reduced to
that of a single potential called the interatomic potential
[42]. Each of these potentials may be considered as a
Coulombic term multiplied by a screening function, due to
electronic screening that reduces the effects of the nuclear
Coulombic term at all radii. The screening function is
related to the interatomic potential through

Φ ¼ VðrÞ
Z1Z2e2=r

; ð21Þ

where Z1 and Z2 are the bare charges of the two interacting
nuclei (in our case we take Z1 ¼ Qx) and r is the distance
between the nuclei. The interatomic function is generally
found by using simple atomic potentials and adjusting
the definition of the screening length to approximate the
two-atom potential.
To obtain one analytic function to describe nuclear

stopping in all ion-atom pairs, a large sample of ion-atom
pairs were chosen and the detailed potential calculated using
computer simulations [42].Various screened potentials of the
form

ΦðxÞ ¼ fðxÞ; ð22Þ
where x ¼ r

ascreen
and ascreen is a screening length, which is a

parameter that characterizes the radial spread of the elec-
tronic charge about the radius [42], were then trialed to
determine the screening potential that most closely matched
all the pairs. The screening function that was determined to
best fit the pairs

ΦðxÞ ¼ 0.1818e−3.2x þ 0.5099e−0.9423x þ 0.2802e−0.4028x

þ 0.02817e−0.2016x ð23Þ
had a screening length that was determined to be

au ¼ 0.8853a0
1

Q0.23
x þ Z0.23

2

; ð24Þ

where a0 is the Bohr radius. This quantity was determined to
be the one with the appropriate Z dependence to best
reproduce the results of the numerically calculated potentials
from the 522 atomic pairs. The screened potential was
determined to deviate from experimental measurements by
at most 18% [42], which is sufficient for the purpose of this
manuscript.
With the universal screening potential, the energy trans-

ferred due to the scattering of the two particles can be
calculated as

SnðEÞ ¼
Z

∞

0

Tdσ; ð25Þ

where T is the energy transferred by the passing macro and
dσ ¼ 2πb db. The stopping power in Eq. (25) is related to
the linear energy deposition through

dE
dx

����
Coulomb

¼ NSnðEÞ; ð26Þ

where N is the number density of atoms.
Results are generally presented in terms of a reduced

energy, ϵ, and a corresponding stopping power SðϵÞ. These
are related to the physical versions of these quantities
through

ϵ ¼ auE0M2

QxZ2e2ðMx þM2Þ
; ð27Þ

and

SðϵÞ ¼ ϵ

πa2uγE0

SðE0Þ; ð28Þ

where au is the universal screening length in Eq. (24). The
purpose of converting to a reduced coordinate system was
to better show the results of using classical charge dis-
tributions and solid state distributions, which was also done
for the first time in the calculations of Ref. [42]. In such a
coordinate system, a single curve describes all combina-
tions of atom-atom collisions.
For ease of calculation, an analytic fit to the solution of

the reduced stopping power was given as

SnðϵÞ ¼ log
ð1þ aϵÞ

ϵþ bϵc þ dϵe
; ð29Þ

where the best-fit coefficients were determined to be
a ¼ 1.1383, b ¼ 0.01321, c ¼ 0.21226, d ¼ 0.19593 and
e ¼ 0.5.
This function is related back to the physical stopping

power through

SnðE0Þ ¼
8.462 × 10−15Z1Z2M2SnðϵÞ
M1 þM2ðZ0.23

1 þ Z0.23
2 Þ

eV
atom
cm2

: ð30Þ

It is this function that we have used in determining the
minimum value of Qx for a macro to have left a detectable
track in the MACRO experiment and slab of mica, together
with an approximate value of N ∼ 1023 atoms cm−3 in both
cases.
This fitting procedure is valid only for ϵ ⪆ 10−5, below

which larger charges produce smaller energy depositions.
This can be seen by taking the low-ϵ limit of Eq. (29), in
which the middle term in the denominator dominates for
ϵ ⪆ 10−5. Thus, Eq. (29) becomes

SnðϵÞ ∝ ϵ0.78774; ð31Þ

which results in

SnðEÞ ∝ Q−0.01774
x : ð32Þ

JAGJIT SINGH SIDHU PHYS. REV. D 101, 043526 (2020)

043526-8



Thus, larger values of Qx reduce the energy transferred to
the surrounding medium and we truncate our analysis once
the value of ϵ ∼ 10−5 because one would expect that larger
values ofQx would deposit more energy in the surrounding
medium. The phenomenological law breaks down in this
regime of ϵ ≤ 10−5.
The procedure described in Ref. [42] was performed

using 522 pairs of atoms. Experimental verification has
been conducted using various ion-atom pairs. However, the
results derived here will be at charge values far above those
tested and verified. It is thus quite possible that we are
extending the results of Ref. [42] into a region of parameter
space where it is not an accurate description of interactions
between ions and atoms. Nonetheless, it is reasonable to
suggest that at such large charge values, energy deposition
would indeed be high. Thus, although the tools used may
not be accurate, these tools are currently the best tools
available and we utilize them to the full extent permitted.
The preceding discussion is relevant to both the

MACRO detector, and ancient muscovite mica, which
we discuss next.

1. MACRO and mica

Macros of a sufficiently low mass would have left an
observable signature on Earth. If they have a low enough
σx=Mx and charge value Qx so that they would have
penetrated deep (a few km) into the Earth’s crust, a record
would have been left in the MACRO experiment and
ancient muscovite mica. We will use the lack of a track
in both these detectors to constrain the charge content of
macros of low masses.
MACRO was a large multipurpose underground

detector located in the Hall B of the Laboratori
Nazionali del Gran Sasso (Italy); it was optimized for
the search for grand unified theory magnetic monopoles
with velocity β ≥ 4 × 105 [19]. A track that would have
been detectable by etching measurements would have been
left by macros that deposited a minimum nuclear compo-
nent of stopping power

dE
dx

∼ 5
MeV
cm

: ð33Þ

However, the MACRO experiment obtained a null result
and due to the extreme sensitivity of the detector, con-
straints were placed on extremely small macros from elastic
scattering in Ref. [18].
Similarly, ancient muscovite mica was used to constrain

macro parameter space [10] based on the null result of
tracks when an etching technique was applied to look
originally for lattice defects produced by passing magnetic
monopoles predicted by grand unified theories [16,17].
A track would have been left by macros with a linear
energy deposition [10]

dE
dx

∼ 10
GeV
cm

: ð34Þ

These thresholds of linear energy deposition will be used in
this manuscript to constrain the charge values of macros
that would have left a track independent of the geometric
cross section σx.

2. Lack of constraints for other nonrelativistic
macro scenarios

In Fig. 1, there exist constraints on the abundance of
macros from numerous other observations including the
continued existence of white dwarfs, the lack of fast-
moving bolides in meteorite surveys and a lack of unex-
plained human deaths.
However, in all cases other than that of MACRO and

mica, we are unable to derive a minimum possible value of
Qx. Hence, we are also unable to determine the maximum
Qx for a charged macro to not lose most of its momentum
and stop before reaching the appropriate depth.
We are unable to determine a lower bound onQx because

the amount of charge for a macro to be capable of
producing any of the aforementioned events is too large
as a much higher threshold linear energy deposition is
required than either Eq. (33) or Eq. (34). For such large Qx
values, the phenomenological law breaks down as it enters
a region where its validity is questioned. Such large values
of Qx result in ϵ≲ 10−5, where the theory results in
predictions that are counterintuitive [see discussion around
Eqs. (31) and (32)]. Thus although it seems likely that some
range of charges might be constrained by these observa-
tions, there is currently no theory capable of rigorously
predicting this range. Thus, we do not use any of the other
constraints from σx to place any constraints on the macro
charge Qx.

B. Moderately relativistic macros

For moderately relativistic charged heavy particles, the
energy loss is well described by the Bethe equation [1].
Classically, the derivation by Bohr assumed the electrons
were stationary. The quantum-mechanical version was later
derived by Bethe and does not deviate significantly from
the classical version relevant to this paper. For the purpose
of this section, we are concerned with the injection of a
large amount of energy into ions near the surface of a
neutron star with the purpose of triggering thermonuclear
runaway resulting in a superburst. Thus, electronic correc-
tions as in the shell corrections applied to make the Bethe
equation more accurate, are not required. The density effect
correction is also unimportant at such low (but still
moderately relativistic) speeds [1].
Although one expects for moderately relativistic macros

that the electronic energy transfer is stronger than the
nuclear component, as mentioned above, we are interested
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in the carbon ions near the surface of a neutron star that can
undergo thermonuclear runaway.
Considering a macro through the outer layer of a neutron

star, the net momentum transfer experienced by the ions
perpendicular to the direction of motion of the passing
macro due to the Coulomb force,

Eper ¼
Qxeb

ðb2 þ ðvtÞ2Þ32 ; ð35Þ

is given as

p ¼
Z

∞

−∞
dtFper ¼ 2

Z1Qxe2

bv
: ð36Þ

In the nonrelativistic limit where the energy transferred can
be well approximated as just the classical component, the
energy transferred is

ΔE ¼ p2

2m
¼ 2

Z2
1Z

2
2e

4

b2v2xmc
: ð37Þ

To obtain the stopping power, SnðEÞ, this energy trans-
ferred must be integrated over all impact parameters

SnðEÞ ¼ 2π

Z
ΔEðbÞbdb ð38Þ

resulting in a linear energy deposition

dE
dx

¼ 4πNZ2
1Q

2
xe4

mCv2x
log

�
bmax

bmin

�
; ð39Þ

where N is the number density of atoms in the medium of
the detector,Qx is the charge of the macro,mC ¼ 10−23 g is
the mass of a carbon nucleus and bmax and bmin are the
upper and lower limits of integration.
This is the classical form of the Bethe equation first

derived by Bohr [42] and is sufficient for our purposes due
to the simplifications mentioned previously.
To determine the limits of integration, we first summa-

rize the theory behind thermonuclear runaway. As dis-
cussed in Refs. [18,50], for thermonuclear runaway to be
ignited, there is a minimally sized region (λtrig) that must be
raised above a threshold temperature Tcrit ∼ 5 × 109 K for
thermonuclear runaway to be initiated. (λtrig) is strongly
dependent on density. Thus, the upper limit is the trigger
size. The lower limit in the logarithm is taken to be the
physical size of the macro nuclei, i.e., the nuclei that are
impacted head on by the macro (since by definition we are
considering macros whose elastic scattering cross section is
below the minimum size necessary to trigger thermonuclear
runaway) are not important for the purposes of this
manuscript. All nuclei around these central ones are of
interest.

However, since the limits are only present in Eq. (39)
inside the logarithm, the results derived here will be
relatively insensitive to those limits. For the range of
trigger sizes determined in Refs. [50,51], the logarithm
gives a factor ∼10, and we will use this approximation to
simplify the analysis.

1. 4U 1820-30

We use the time between back-to-back superbursts on a
neutron star 4U 1820-30 to determine constraints on the
charge content of dark matter of higher masses than
previously constrained with terrestrial detectors.
A macro passing through 4U 1820-30 would have set off

a superburst provided a linear energy

dE
dx

⪆ 6 × 1022
MeV
cm

; ð40Þ

had been deposited. This would have resulted in ∼108 J of
energy being deposited over a range of 10−4 cm, which was
the trigger size for a density of ρ ∼ 108 g cm−3 [51]. For
less dense regions in a neutron star crust, the energy
requirement is higher but the general process for determin-
ing the threshold linear energy deposition is the same.
Accreting neutron stars undergo superbursts naturally

once enough material has been accreted [28]. However, a
macro incident on such a neutron star could trigger a
superburst, which would not be as powerful as one caused
by no external trigger. This idea was used to constrain
intermediate-mass macros based on the decade-long dura-
tion between back-to-back superbursts on 4U 1820-30.
However, there is one caveat to this [28] constraint as it is
still unclear how superbursts are initiated. This is similar to
the case of white dwarfs undergoing a type 1A supernova.
It is unclear if the initiation of a deflagration wave front is
sufficient to trigger thermonuclear runaway in the entire
carbon ocean. This will require further numerical work to
determine if the region constrained is truly ruled out.
The constraints derived in this section all depend

primarily on the flux of charged macros, i.e., they are
proportional to M−1

x . Thus the abundance of charged
macros can be constrained as M−1

x . This implies that the
lower the charged macro mass constrained by these
methods, the stronger the limit on the maximum abundance
of these objects as dark matter. Thus, smaller mass charged
macros can contribute only as tiny subcomponents of dark
matter.

IV. RESULTS

We first summarize the main parameter(s) that determine
the constraints derived in this manuscript before discussing
other aspects of these constraints.
The strongest constraints for millicharged dark matter

(and hence charged macros) are the CMB constraints,
which are early-Universe constraints and require the dark

JAGJIT SINGH SIDHU PHYS. REV. D 101, 043526 (2020)

043526-10



matter to have been formed by this point (if not much
earlier). The other two large-scale structure constraints are
both late-Universe constraints. In general, millicharged
dark matter constraints depend on both the charge Qx
andMx. This is a reflection of the fact that these constraints
depend on the charged macros in the distribution creating
large-scale effects. This means that what matters is the
amount of “charge per unit mass.” This is not an exact
statement because the constraints depend on the charge per
unit mass raised to various powers. However, this statement
is schematically true.
The constraints from ancient mica, MACRO monopole

searches and superbursts are dependent primarily on the flux
of incident charged macros, i.e., the mass. Additionally,
using the phenomenological law derived in Ref. [42] that
was used to constrain charged macros utilizing null results
from ancient mica and the MACRO monopole detector, the
speed of the charged macros in the distribution determines
the upper and lower bounds of the charge values that are
constrained.

A. Applicability

Before we discuss the results, we first discuss the range
of applicability of the results.
We first consider macros incident on either MACRO

or mica as well as the outer layers of a neutron star.
Considering elastic scattering alone, macros of a sufficiently
large cross section will be slowed before reaching the
detector. This canbeunderstood by considering the evolution
of the velocity of a macro as it passes through a medium

vðxÞ ¼ v0e
−hρΔi σxMx ; ð41Þ

where hρΔi is the integrated column density traversed
defined as

hρΔi ¼
Z
l
ρðlÞdx; ð42Þ

where l represents the trajectory of the macro, v0 is the initial
velocity of the macro and σx

Mx
is the reduced cross section.

Indeed, this is how the upper bounds aregenerally derived for
the various exclusion regions in Fig. 1.
A similar scenario is expected to manifest for macros

with a significant amount of charge. If macros were to
possess a large charge, they would have transferred a
significant fraction of their initial energy to the overlying
layers of rock or the outer layer of a neutron star and thus be
slowed down before reaching the detector.
Thus, we will require,

δE ≪
1

2
Mxv2x; ð43Þ

where the energy loss is from both mechanisms in Eq. (20).
This criteria will be used in determining the upper bound on
the charge constraints of a macro. These considerations for

ancient mica and the MACRO experiment reveal that any
upper bounds are similar to those derived by requiring
that ϵ≲ 10−5.
For objects of a fixed physical size (and hence geometric

cross section), there is a maximum mass before the object
becomes a black hole. This is illustrated in the figures as the
white hatched region on the right. The high-mass boundary
was determined by solving for the mass corresponding to
the Schwarzchild radius [52]

Mupper ¼
ffiffiffiffiffi
σx
π

r
c2

2G
: ð44Þ

Objects heavier than this mass should not exist, as they
would be denser than black holes of the same Schwarzchild
radius. These regions are hatched with þ symbols in the
figures.

B. Presentation of results

In this work, we have introduced a third parameter to
describe a physical attribute of a macro, Qx. Thus, the
results should be presented in a three-dimensional param-
eter space. However, this will not be as informative as in the
two-dimensional analog when we considered only σx and
Mx. Instead we present, as our results, the two-dimensional
parameter space of Qx andMx for slices of constant σx. We
hope that by presenting results for several values of σx, that
the overall picture of the constraints and their evolution as
we change σx becomes clear to the reader.
For a given σx, there exist constraints for some range of

Mx independent of the chargeQx of the macro. Thus, some
values of Qx are constrained in abundance already by the
elastic scattering considerations. This results in regions
constrained for some range of masses up to some value of
Qx in Figs. 2(a)–2(f), corresponding to the minimum Qx
values required for a track to have been left purely by
Coulomb interactions. These constraints from elastic scat-
tering are presented in the same color as the constraints
from the charge of the macro but without the diagonal
hatching. We note that Fig. 2(a) is at a sufficiently low
elastic cross section σx that it is a characteristic result for all
smaller elastic cross sections, i.e., these constraints apply to
objects that are phenomenologically similar to the charged
Planck-scale relics considered in Ref. [25]. If such objects
existed and were not electrically charged, they would be
particles with effectively no nongravitational interaction
with the constituents of the Standard Model.
The lower bounds onMx come from the requirement that

the macro not lose a significant fraction of its energy before
reaching the appropriate depth in either the Earth (as in the
case of the ancient mica or the MACRO detector) or a
neutron star. Thus, for the constraints from large-scale
structure, there is no lower bound on Mx for bounds from
σelastic independent of Coulomb interactions.
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For the constraints derived using MACRO, mica and 4U
1820-30, a sufficiently large σx results in aminimummass on
the constraints due to the upper bound from Eq. (43) with the
energy loss in this case dominated by elastic scattering.
We find that charges up to Qx ∼ 106 are constrained

using the MACRO and mica null results. This is signifi-
cantly above any values of Z that exist in the periodic table.
However, it is reasonable to expect that larger values of Qx
would deposit more energy. Thus, one might expect that
larger values of Qx than those constrained here would also
be ruled out based on the null observation of tracks in
MACRO and mica. However, as our phenomenological
model breaks down around Qx ∼ 106, we stop placing
constraints at these Qx values, even though it is likely that
constraints exist at larger values of Qx. More conserva-
tively, we expect the results to hold up to an atomic number
of order Oð100–1000Þ; however, we present the entire
range of constraints.
The neutron star constraints are at higher values of Qx,

mainly due to the higher linear energy deposition threshold
value required to trigger thermonuclear runaway.
The results from large-scale structure prohibit largevalues

ofQx=Mx. We plot both the results from self-interaction and
interstellar medium analysis because the CMB bound is
subject to additional scrutiny. A theory describing the
formation of macros in the early Universe is required for
this bound to be taken at the same level of rigor as the other
late-Universe constraints.
We note that we are constraining objects with physical

sizes below those that are normally associated with macro-
scopic dark matter [10], i.e., objects smaller than about the
size of a nuclei.
Finally, we also note that our results constrain all charge

values between the maximum and minimum limits and not
only charge values Qx ¼ ne or Qx ¼ n

3
e, where n is an

integer.

V. CONCLUSION

We have produced constraints on the maximum charge of
macros from phenomenological considerations on a variety

of scales. We have used the lack of any tracks observed in a
slab of mica exposed over geologic time scales to the
bombardment of macros, and the MACRO experiment to
place constraints on charged macros at low masses. On
terrestrial scales, the lack of any tracks observed in a slab
of mica exposed to the bombardment exposed over geologic
time scales, and in theMACROexperimentwere also used to
constrain small-mass macros. Finally, the duration between
back-to-back superbursts on 4U 1820-30 was used to
constrain intermediate-mass macros.
In Figs. 2(a)–2(f), we have shown the regions of

parameter space where charged macro candidates cannot
contribute all the dark matter that is observed on a variety of
cosmological scales.
It is of particular interest to note that the results from

MACRO seem to exclude macros over the appropriate mass
range and geometric cross sections frombeing charged at all,
as these results exclude charges down to approximately e

3
,

which is the smallest known quantized charge value,
assuming that macros are made of StandardModel particles.
It is interesting to return to the question of the binding

energies of macros first raised in Sec. I. Considering the
results derived, and the line representing objects with
binding energy similar to that of iron-peak elements bind-
ing energy in the figures, we find that one would not expect
objects with large Qx values and small masses to be bound.
However, the primary concern in this work has been to
constrain the allowed charge values for macros to contrib-
ute all of the dark matter, based on purely observational
grounds as there currently exists no concrete theory
describing the formation of a macro and its subsequent
binding energy.
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