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We examine the dynamics of a closed cosmology of which the matter source is that of a conformally
coupled scalar field with a broken SOð1; 1Þ symmetry, which corresponds to the α attractors proposed by
Linde and Kallosh. Following a field redefinition, such models give rise to “T-model” inflationary
potentials, the dynamics of which provide both an inflationary phase and a classical bounce. We show that
the Universe can undergo bounces far from the regime of quantum gravity (i.e., at energy densities lower
than the Planck density). We analyze perturbations on this background with particular attention given to the
effects of a double-bouncing scenario (with rapid recollapse between bounces) on the long wavelength
modes. We demonstrate that the predictions of such models agree well with observations and might explain
the suppression of power in the low multiples of the cosmic microwave background.
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I. INTRODUCTION

The inflationary paradigm has become a central feature
of modern cosmology since it both addresses conceptual
issues such as the flatness, horizon, and entropy problems
and also provides a natural mechanism by which primordial
fluctuations can seed structure formation [1–4] (for a
review, see Ref. [5]). This is achieved by the nearly de
Sitter geometry of the expanding early Universe, which
generates an almost scale-invariant spectrum of perturba-
tions. To achieve this, the dominant form of matter must
have an equation of state p ≈ −ρ, i.e., w ¼ −1, that of a
cosmological constant. For inflation to end,wmust increase
in order to allow other forms of matter to contribute
significantly to the evolution of the Universe. Typically,
models invoke scalar fields to realize such an evolution;
when the field is potential dominated, it behaves as a
cosmological constant. As it descends down the potential
and becomes kinetically dominated, however, it acts
more like a stiff fluid (w ¼ 1). In a closed cosmology, the
k > 0 Friedmann-Lemâitre-Robertson-Walker (FLRW)
model wherein the spatial manifold is a 3-sphere, the same
accelerated expansion can lead to a bounce froma collapsing
universe to an expanding one. It is therefore natural to
ask whether the same mechanism can give rise to both
phenomena. Qualitatively, the collapse and the expansion

impose requirements that are “mirror images” of one another
on the field. In a contracting branch, the field must gain
energy faster than other energy sources, yet become almost
constant under evolution at small length scales. In the
expanding branch, the opposite is true; the energy density
should dissipate slowly only at small scales and faster as the
Universe expands. Typically, a scalar field with a suitable
potential is invoked to play the role of the inflaton (the field
responsible for inflation), as the dynamics of such a system
allow for this dual role.
Observational data from the Planck satellite have shown

both excellent agreement with the FLRW cosmological
paradigm and place strict bounds on cosmological param-
eters [6,7]. Taken together with the baryon acoustic
oscillations, the size of the curvature constant, Ωk, is quite
tightly constrained around zero—the best-fit parameter
value gives Ωk ¼ −0.005þ0.016

−0.017 under the parametrizationP
Ωi ¼ 1. These bounds are likely to be improved by

future observations. However, there is a limit which will be
reached if the observations jΩkj < 10−5 become degenerate
with the effects of a curvature perturbation of which the
wavelength is greater than the Hubble horizon. Therefore,
in the absence of a positive measurement of Ωk, the closed
Universe is impossible to rule out as a physical system. On
the inflationary side, recent progress has stringently con-
strained models. The ratio of amplitudes of tensor pertur-
bations to those of scalar perturbations, denoted r, together
with the scalar spectral tilt ns, strongly disfavor most
monomial potentials, particularly the minimal quadratic
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and quartic models. Concave models which exhibit pla-
teaus, however, appear to be in good correspondence with
the observational measurements, with a large class giving
rise to ns ≈ 0.968 and small r (dependent on specific field
configurations) [8–10].
Since inflation is invoked to solve issues of fine-tuning

of the initial parameters, it behoves us to use inflationary
models which are in some sense “natural” or “generic”—a
solution to the horizon and flatness problems that requires
a very specific choice of potential simply passes on the
burden of explaining away fine-tuning [11,12]. As the
simplest of models are observationally excluded, we will
consider inflationary models that arise naturally in the
context of extended theories of gravity, and in particular
from the conformal coupling of a scalar field to the
gravitational action. In the case of the scalar field with a
broken SOð1; 1Þ symmetry, such theories give rise to “T-
models” of inflation [13], which (predominantly) asymp-
totically become plateaus for large field values. Although
the quantitative results we present will be closely tied to this
choice, the qualitative behavior is not; the vast majority of
inflationary systems (i.e., those which allow for accelerated
expansion) also allow for a bounce in a closed universe. In
passing, we mention that the α-attractors proposal may also
unify inflation with dark energy [14–16], but we will not
pursue this direction further in this paper.
The model we discuss differs from other bouncing

models which introduce exotic matter, higher derivatives,
or quantum effects to overcome the gravitational collapse.
Rather than considering a universe which must begin at
infinite extent, within this model, the universe could begin
from an initial singularity in the prebounce phase. Such a
universe would expand to finite extent before recollapsing
into a bounce at an energy density smaller than the Planck
density. The bounce would be then followed by a long
period of inflation which gives rise to the Universe we
observe. This would avoid the problems of having runaway
growth of inhomogeneities which can spoil the bounce.
This provides an entirely different scenario from the
conventional collapsing universe of infinite size and is
also explored in Ref. [17].
This paper is laid out as follows. In Sec. II, we describe

the particular realization of the gravitational action that
gives rise to this scenario and establish how the symmetry
gives rise to the plateaus of our inflationary potential. This
is followed by Secs. III and IV, in which we establish the
necessary conditions for the Universe to undergo a bounce
and describe the space of bouncing solutions. In Sec. V, we
exhibit a simple model that features an analytic bouncing
solution. Numerical simulations of the full dynamics are
given in Sec. VI. In Sec. VII, we discuss the role of growing
perturbations in a homogeneous and isotropic background
as the Universe collapses. We discuss observational impli-
cations in Sec. VIII. Finally, we give some concluding
remarks in Sec. IX.

Unless otherwise noted, we will be working in reduced
Planck units throughout this paper, in whichM−2

P ¼ 8πG ¼
1 and c ¼ 1.

II. CONFORMAL ACTION

We begin by considering theories of conformally invari-
ant gravity induced by the evolution of a dynamical
gravitational constant, as first proposed by Brans and
Dicke [18]. To give rise to a more interesting inflationary
scenario, we will consider a class of matter couplings
featuring two fields which initially exhibit a SOð1; 1Þ
symmetry. Such models are of pressing interest, as it has
recently been found that the apparent fifth force they would
exhibit is suppressed due to Weyl invariance, and therefore
such models are cosmologically viable [19]. Closely
following the seminal analysis of Ref. [8], let us consider
a conformally invariant Lagrangian for gravity (nonmini-
mally) coupled to two scalar fields, χ and ψ , given by

L ¼ ffiffiffiffiffiffi
−g

p �
1

2
∂μχ∂μχ −

1

2
∂μψ∂μψ þ 1

12
ðχ2 − ψ2ÞR

−
1

36
F

�
ψ

χ

�
ðψ2 − χ2Þ2

�
: ð2:1Þ

In the above, F is an arbitrary function which breaks the
SOð1; 1Þ symmetry globally (if F were constant instead,
the action would exhibit a global de Sitter symmetry).
Although the sign of the ψ2 terms may appear to make our
Lagrangian pathological under the production of unphys-
ical states (such as negative-energy ghosts), we note that
this is in fact just a choice of gauge [20]. To make contact
with the usual formulation of minimally coupled gravity,
we impose the gauge-fixing condition χ2 − ψ2 ¼ 6α (the
“rapidity” gauge) and hence parametrize the remaining
degree of freedom by tanhð ϕffiffiffiffi

6α
p Þ ¼ ψ

χ in terms of a single

scalar field.1 Noting that dψ ¼ χdϕ and dχ ¼ ψdϕ, we find
that the Lagrangian can be recast in the following more
familiar form:

L ¼ ffiffiffiffiffiffi
−g

p �
1

2
R −

1

2
∂μϕ∂μϕ − F

�
tanh

ϕffiffiffiffiffiffi
6α

p
��

: ð2:2Þ

It is worthwhile to note at this point the role played by F in
this construction. The function tanh has a range of ð−1; 1Þ
for real values of ϕ and is a monotonic function on the
entire real line. Therefore, we consider functions F which
are differentiable on this domain. Such functions will
asymptote to constants for large values of ϕ when

1Note that this parametrization does not fully capture all
possible values of ϕ. We may also write ψ

χ ¼ cothð ϕffiffiffiffi
6α

p Þ. Depend-
ing on the form of F, the two parametrizations may not overlap,
giving rise to distinct models [21].
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convoluted with tanh, since dðF∘ tanhÞ ¼ ðdF∘ tanhÞsech2.
Thus, if F is differentiable on the domain, the convolution
asymptotes to a constant, and the SOð1; 1Þ symmetry will
be restored asymptotically. However, if we consider func-
tions F which are not differentiable everywhere, and in
particular functions which have a pole in ð−1; 1Þ, the
domain of the convolution will no longer be finite, and the
symmetry cannot be restored at large values of ϕ. Such a
system is investigated in Ref. [22], in which it is shown
that placing simple poles at the end points of the domain
allows for the reconstruction of familiar inflationary
potentials. It is easy to see that setting F ¼ G∘arc tanh
allows the reconstruction of any function G via such a
process. This is possible exactly because arctanh is mon-
otonic on the interval ½−1; 1� with poles at the end points.
We further note that our choice of gauge is qualitatively
unimportant except that it imposes the restriction χ2 > ψ2

(otherwise, our system exhibits the wrong sign for gravi-
tational couplings and will be unstable, leading to the
production of ghosts).
The inflationary models captured by Eq. (2.2) are known

as “attractor models,” in reference to their convergent
predictions [8]. If F is chosen to be an even monomial
function, the resulting models are often termed T-models
due to the shape of their potential, which features plateaus
away from the origin. Here, we must note that these
plateaus arise as a result of the noncompact topology of
the symmetry group we have employed. To show this,
consider our scalar field ϕ to live upon Rn. Upon gauge
fixing such that the action reproduces the standard mini-
mally coupled Einstein-Hilbert gravitational action, there
remains a noncompact direction in the symmetry group of
the matter field, since the gauge fixing must map the
invariant function of the matter variables onto a positive,
real constant FðϕÞ ¼ C. Surfaces of constant C are non-
compact (as they form the symmetry group), yet are
parametrized by members of Rn=Rþ ¼ SOðnÞ, which is
a compact group. Therefore, in order to cover the entire
symmetry group, we require an invertible map from a
noncompact space onto a compact space, which must be a
monotonic function with finite range yet infinite domain.
Such functions must approach constants as their arguments
tend to infinity and hence necessarily form plateaus when
taking on the role of a potential under any finite con-
volutions. As a contrasting case, if we had used SOð2Þ as
our symmetry group, the map would have been tan, and
hence our potentials would not be bounded from above.
Thus, T-models are qualitatively generic for noncompact
symmetry groups.
We now consider a homogeneous and isotropic

cosmology on the manifold M ¼ R × S3. Spatial slices
have constant positive curvature and correspond to k > 0
Robertson-Walker geometries. In such a system, there is
only one dynamical geometric degree of freedom, the scale
factor a ¼ aðtÞ. The line element in this case becomes

ds2 ¼ −dt2 þ a2
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2dθ2Þ

�
: ð2:3Þ

Thus, once we restrict ourselves to matter compatible with
the space-time symmetries (i.e., homogeneity and isot-
ropy), we are left with a familiar inflationary Lagrangian,

a−3L ¼ 3

�
_a2

a2
−

k
a2

�
−
�
1

2
_ϕ2 − VðϕÞ

�
; ð2:4Þ

where VðϕÞ ¼ F∘ tanh ϕffiffi
6

p . Throughout the rest of this

work, we will perform our analysis for even monomials,
i.e., FðxÞ ∝ x2n, e.g., VðϕÞ ¼ Λ tanh2ð ϕffiffiffiffi

6α
p Þ. A complete

analysis of these models in the context of dynamical
systems was recently completed [23], and in it, the
extended behavior of the entire system was found to have
unique end points under evolution, and the universality of
such evolutions was established.

III. BACKGROUND DYNAMICS

In this section, we will follow the analysis of Ref. [24], in
which a scalar field is used to give rise to bouncing
cosmologies as a counterpart to a decaying cosmological
constant. We will focus on the simplest potentials that can
arise as a consequence of the broken SOð1; 1Þ symmetry.
From our Lagrangian in Eq. (2.4), we obtain the familiar
Friedmann equation, in which H ¼ _a=a:

H2 ¼ 1

3
ρ −

k
a2

: ð3:1Þ

It is immediately apparent that one cannot have H ¼ 0 (or
equivalently _a ¼ 0) simultaneously with positive energy
density and nonpositive curvature k ≤ 0. There exist a
number of models which exhibit classical bounces through
the use of ghost matter (ρ < 0) or phantom (P < −ρ)
matter. Such matter may be introduced by fiat in order to
remove the singularity [25] or as a result of a more
fundamental physical process (such as the evolution of
the fine-structure constant [26]). However, in this work, our
goal is to examine bounces in a classical context with
matter which obeys the usual (weak) energy condition. To
achieve this, we require Ωk < 0. Thus, a bounce can only
occur when ρ ¼ 3k=a2b, where ab is the scale factor at the
bounce (with orientation chosen such that a > 0 at all
times). At this point, we can expect either a bounce or a
recollapse, depending on the sign of the second derivative
of the scale factor (positive or negative, respectively).
We now examine how the conditions for a bounce are

reflected in Raychaudhuri’s equation, which is

ä
a
¼ −

1

6
ðρþ 3pÞ: ð3:2Þ

Hence, a bounce occurs if p < − 1
3
ρ. In terms of a

barotropic perfect fluid, we require w < −1=3. The matter
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during a bounce will consist of a homogeneous, isotropic
scalar field with a suitable potential. Since the equation of
state depends upon the relationship between kinetic energy
and potential energy of the scalar field, the same field can
play multiple roles; indeed, this is one of the motivations
for invoking fields such as inflatons. For a homogeneous,
isotropic scalar field, the energy density is given by

ρ ¼ 1

2
_ϕ2 þ VðϕÞ; ð3:3Þ

and the pressure is

p ¼ 1

2
_ϕ2 − VðϕÞ: ð3:4Þ

As a result, w is given by

w ¼ p
ρ
¼

_ϕ2=2 − VðϕÞ
_ϕ2=2þ VðϕÞ : ð3:5Þ

We see that w ¼ 1 corresponds to kinetic domination and
w ¼ −1 corresponds to potential domination. Therefore,
we require VðϕÞ > _ϕ2 in order to have w < −1=3.
We now consider a general model of a potential featuring

a plateau, given by VðϕÞ ¼ ΛuðϕÞ where the maximum
value of the function uðϕÞ is 1 as ϕ → �∞ (without loss of
generality). This potential generalizes the usual T-models
and can arise from functions F which do not necessarily
have poles. As a result, potential domination means that
any bounce must occur when

ρ ≤
Λ
2
: ð3:6Þ

Note that if our field is to both provide the dynamics of the
bounce and play the role of inflaton this constraint indicates
that the bounce must occur far from the quantum gravity
scale. This is because the energy scale of inflation is of the
order of 1016 GeV, whereas the Planck scale (where we
expect quantum gravity effects to become important) is
around 1019 GeV. In such cases, our Universe will bounce
from contracting to expanding without ever approaching
the quantum gravity scale. In turn, we find that the minimal
radius of curvature at which a bounce can occur is

lm ¼
ffiffiffi
2
Λ

q
. From the Planck data, we find that this is far

from the Planck length for jΩkj below the measured upper
bound as well as above the lower bound of being indis-
tinguishable from a superhorizon fluctuation. Hence, the
Universe can indeed undergo a bounce wherein both the
matter and geometrical sectors are far from the quantum
gravity regime.
We can use the condition (3.6) together with the

Friedmann equation (3.1) to show that any value of w
between −1 and 1 can be realized by imposing the
following condition at the bounce point (a ¼ ab):

VðϕÞ ¼ 3k
a2b

ð1 − wÞ _ϕ2 ¼ 6k
a2b

ð1þ wÞ: ð3:7Þ

Recall that if w > −1=3 this is a point of recollapse rather
than a bounce. Thus, all we must strictly require is that
VðϕÞ has a range which contains this value. In terms of the
T-model potentials described by VðϕÞ ¼ Λ tanh2nð ϕffiffiffiffi

6α
p Þ,

this is achieved by

ϕ >
ffiffiffiffiffiffi
6α

p
arc tanh

��
2k
a2b

� 1
2n
�
: ð3:8Þ

Note that this a necessary but not sufficient condition for a
bounce. For the bounce to occur, we also require that the
potential energy is larger than twice the kinetic energy.
Furthermore, we must stress that we are considering the
dynamics of a universe which is contracting; as such, the
usual Hubble friction term 3H _ϕ gives rise to antifriction
whenH < 0, serving to increase the kinetic energy instead.
Therefore, when the inflaton reaches the plateau in a
contracting branch of the Friedmann equation, it is near
a minimum of kinetic energy density on the solution (and
hence a maximum of w). If this is not sufficient to cause a
bounce (i.e., if we have w > −1=3), then the inflaton will
accelerate, the kinetic component of energy density will
dominate the evolution, and the system will reach a
singularity. We were very recently made aware of a similar
discussion in Ref. [17], which parallels much of the
background dynamics.
An important issue arises when considering models

beyond the homogeneous and isotropic background
dynamics. The de Sitter expansion is an attractor in the
space of inhomogeneous and isotropic cosmologies
[27,28]. As such, we should be unsurprised to see after
inflation a universe that is homogeneous and isotropic; this
was one of the key motivations behind inflationary models
in the first instance. However during a collapsing phase, the
opposite is true. Inhomogeneities grow to a point at which
their effects may overwhelm the background dynamics and
thus avoid the bounce. Therefore, we must address the issue
of whether such a bounce can be physically realized from
initial conditions set far before the bounce, such as at the
onset of collapse.
In the model we present, we have restricted the matter

content to be that of the scalar field alone, as this is the
dominant contribution to the stress-energy tensor at high
energy scales. If we examine the prebounce phase of such a
solution, we find that as the universe expands the scalar
field finds the minimum of its potential and in oscillating
around it appears to have an effective equation of state
similar to that of dust, with w ¼ 0 or even faster falloff,
with averaged w > 0. See the Appendix for more details of
this. Hence, at a large scale factor, this model becomes
dominated by the curvature term and reaches a finite extent.
Further to the past, this model is again in an expanding
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phase and becoming homogeneous. Therefore, setting initial
conditions far in the past would not necessarily be an
impediment to the universe undergoing a bounce.Auniverse
which begins at a singularity with some inhomogeneity,
expands, and recollapses can have smaller inhomogeneity at
the bounce point. See Sec. VI and Fig. 5 therein for a
numerical simulation demonstrating this possibility.
In a more physically motivated model, we should also

consider the introduction of a (small) cosmological con-
stant to make contact with late time observations in our own
Universe and consider the case in which the inflaton decays
into other matter. The background dynamics of such a
model can begin from a universe of infinite size at t → −∞;
however, this is also not necessarily the case. Such universes
can also begin at singularities, or have repeated bounce and
recollapses. As an example, consider a universe at a bounce
point which has the scalar field low enough on its potential,
and rolling down the potential, such that there is not a lot of
inflation. Such a universe may never become dominated by
the cosmological constant, but it would recollapse to a
singularity. The time reverse of such a model is a universe
that begins at a singularity and recollapses to a bounce then
expands through inflation to a de Sitter universe.
Finally, we note that in order to match with observations

of our Universe it is not necessary that the entire Universe
bounces but that at least a single patch of size approx-
imately corresponding to the Hubble radius during inflation
bounces. As such, we can consider the scenario discussed
in Ref. [24] in which initial conditions are set far in the past
for an inhomogeneous universe. If the inhomogeneities are
randomly distributed in a large universe, the majority of any
section of a spatial neighborhood may be dominated by
their inhomogeneities during collapse. This will lead to
these regions becoming singular. However, some sections
will have sufficiently small inhomogeneities that do not
spoil the bounce, and thus expand again, and undergo
inflation. This inflationary period will push any singular
regions far beyond the Hubble horizon of the expanding
universe after the bounce, possibly beyond the asymptotic
de Sitter horizon also.2 Thus, as observers, we should not
be surprised to find ourselves in the region which under-
went a bounce any more than we should be surprised to find
ourselves in a Universe where the cosmological constant is
compatible with our existence.

IV. PHASE SPACE

The Hamiltonian treatment for our model follows
directly from the Lagrangian in Eq. (2.4), with canonical

structure inherited from the conformal theory in Eq. (2.1).
For clarity of exposition, we will work with the volume
ν ¼ a3 instead of the scale factor throughout this section.
The primary reason for this is to make our algebra
considerably more transparent, since the canonical con-
jugate to the ν is the Hubble parameter H, i.e., the Poisson
bracket is given by fν; Hg ¼ 1

2
. Our phase space is thus

parametrized by fν; H;ϕ; Pϕg, where Pϕ is the conjugate
momentum. Our solutions are further determined by the
value of the curvature Ωk ≡ −k=ρc, defined at the bounce
(as opposed to today, as usual).
A priori, we have a five-dimensional space to consider.

We then wish to find the space Γ consisting of physically
indistinguishable solutions. We find that the HamiltonianH
is (using the symbol ≡ to note the constraint):

H ¼ −3H2νþ P2
ϕ

2ν
þ νV þ Ωkν

1=3 ≡ 0: ð4:1Þ

Here, it is useful to note that the Hamiltonian constraint in
Eq. (4.1) and the Friedmann equation (3.1) are equivalent.
We therefore have a four-dimensional phase space with a
single constraint (the diffeomorphism constraint that usu-
ally arises in the 3þ 1 decomposition of general relativity
is automatically satisfied by the homogeneity of our
system). Thus, we should expect to see a two-dimensional
space of solutions to our systems generated by the
Hamiltonian flow. The symplectic structure is given by
the symplectic form

ω ¼ 2dν ∧ dH þ dϕ ∧ dPϕ: ð4:2Þ

From this, we find that our familiar Hamiltonian vector
field on phase space now includes a term induced by the
presence of curvature:

XH ¼ 6νH
∂
∂ν − 6

�
P2
ϕ

ν2
þ 2Ωk

3ν2=3

� ∂
∂H þ Pϕ

ν

∂
∂ϕ − νV 0 ∂

∂Pϕ
:

ð4:3Þ

Since we are in a closed Universe (Ωk < 0), the coefficient
of ∂

∂H is not necessarily positive. In other terms, the Hubble
parameter is not monotonically nonincreasing on all
solutions. This means that we cannot choose a fixed
Hubble slice to parametrize the space of solutions to our
model since there will be solutions which cross a given
value of the Hubble multiple times (e.g., in both expanding
and recollapsing phases). Moreover, we cannot necessarily
count solutions at the bounce/recollapse point. This is
because Λ-dominated late-time solutions will not recol-
lapse, and small-scale kinetically dominated solutions will
not bounce. However, if we restrict ourselves to subspaces
of the set of physical solutions, we can often choose our
subsets to have well-defined properties. As an example,

2If the universe undergoes eternal inflation during this period,
this one patch can seed a large, even potentially infinite, number
of patches which later may recollapse with their own inhomo-
geneities. Many of these patches will again become singular, but
with a large number, some of them will by chance be sufficiently
homogeneous that they can again bounce and the cycle continues.
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consider the space of solutions which undergo a bounce.
These necessarily satisfy H ¼ 0 and w < −1=3 simulta-
neously. Thus, we can count such solutions by constructing
a measure on a subset of the full phase space that intersects
these conditions. These subspaces may yet be noncompact;
in this particular instance, the intersection of the
Hamiltonian constraint with the H ¼ 0 surface is non-
compact, since any choice ν ∈ Rþ can always satisfy the
constraint for a fixed Ωk, simply by scaling Pϕ accordingly.
The solution to this issue is familiar in the flat case [29]

and involves the restriction of the analysis to physical
degrees of freedom rather than phase-space variables.
Solutions related by rescaling of both Pϕ and ν such that
their ratio remains fixed are dynamically related. Indeed, it
is this ratio which constitutes the physical parameter _ϕ
(both the equations of motion for H and ϕ are written only
in terms of _ϕ, not ν nor Pϕ alone, in the flat case). When
introducing curvature, it would appear that this is no longer
the case because ν contributes directly to _H through the
curvature. However, we note again that Ωk is only deter-
mined up to an overall scaling in an intrinsic description of
physics; a simultaneous rescaling of Ωk, ν, and Pϕ can be
performed such that there is no physical distinction to a
cosmologist working within such a universe.
It may seem strange to the reader that we are allowing a

change in the constants of our system under the action of
this rescaling symmetry. We note that any observer within
this system would only be able to infer Ωk through
observations of the physical degrees of freedom of their
universe (such as, for example, _H), which are unaffected by
this change. As such, a cosmologist living in this universe
could only determine physics up to a choice of fixing this
symmetry. In fact, we have taken this into account by fixingP

Ωi ¼ 1. Such a change is generated by the action on the
extended space of both phase space and the constants of
motion by

G ¼ Pϕ
∂

∂Pϕ
þ ν

∂
∂νþΩ2=3

k
∂

∂Ωk
: ð4:4Þ

In the above expression, G is the adaptation of the minimal
coupling symmetry explored in Ref. [30] to a curved
cosmology. It commutes with the Hamiltonian constraint
and preserves the Hamiltonian flow and thus does not affect
the dynamics of the intrinsic system. Note that G is not a
symplectomorphism, but rather a “scaled” symplectomor-
phism, LGω ∝ ω, where L denotes the Lie derivative.
We can employ the generator G in order to project our
space of solutions, essentially gauge fixing Ωk to any
given value. Equivalently, our space of bouncing solutions
Γb is determined at the point of bounce by the triple
fϕb; νb;Ωkg, modulo the action of G which acts as an
equivalence relation between solutions

fϕb; νb;Ωkg ∼ fϕb; βνb; β2=3Ωkg ∀ β ∈ Rþ: ð4:5Þ

Thus, we can choose a member of each equivalence class
by setting Ωk ¼ −1, for example. To evaluate our space of
solutions, however, it is more convenient to work with the
invariants of G; the first is the ratio Pϕ=ν ¼ _ϕ, and we

choose the second to be ξ ¼ Ω2=3
k =ν. In these terms, the

symplectic structure pulled back to the H ¼ 0 surface
(denoted by ω⃖) becomes

ω⃖ ¼ 2ξ − 3V
2

ffiffiffiffiffiffiffiffiffiffiffi
ξ − V

p Ω3=2
k

ξ5=2
dϕ ∧ dξ: ð4:6Þ

We note that the orientation of ω⃖ can flip depending on the
sign of 2ξ − 3V. When positive, this measures solutions
which are at the point of recollapse. Conversely, when
negative, it measures solutions that bounce. Although Ωk
appears in the expression of ω⃖, this is merely an overall
choice of scale (due to the fact that G is a scaled symplecto-
morphism). It will not contribute to any calculation of the
fraction of solutions that have a certain property.
We have thus identified the space of bouncing solutions,

Γb, to be the subspace defined by the intersection
H−1ð0Þ ∩ ðV < F < 3V=2Þ. Its symplectic structure is
nondegenerate (due to being a 2-form on a two-dimen-
sional space of bouncing solutions Γb) and hence can act as
a natural measure on the space, derived from the Liouville
measure. Any other measure can be obtained by taking ω⃖
and multiplying by some function of ξ and ϕ. This space is
still noncompact for potentials which feature a plateau; this
is unsurprising as it reflects the facts that the plateau of the
potential in the infinite limit restores the symmetry of the
system and the physical differences between solutions
become indistinguishable for large jϕbj. Ratios of the
measure on the space of bouncing solutions can be
calculated by introducing a cutoff in ϕ beyond which
we identify solutions due to the stochastic effects over-
whelming the classical dynamics. There is a pole of order
ξ2 about the second symmetric point where V ¼ 0, which
can also be regularized either by identifying solutions with
jϕj < ϵ for some ϵ > 0 or equivalently assuming V has a
small nonzero minimum. Evaluating this measure, we find
that our system is dominated by solutions that bounce with
the particle on the plateau, giving the right conditions for a
long period of slow-roll inflation to follow. This result
holds qualitatively for all plateau models, since the set of ϕ
that satisfy VðϕÞ < B for some B becomes the entire real
line when B exceeds the height of the plateau. In a manner
similar to the choice of F overcoming the existence of the
plateau, the choice of function used with the volume form
could overturn this result. However, such a function would
have to disfavor values of V which allow the particle to
reach the plateau, and thus would also require poles.
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V. APPROXIMATE ANALYTIC SOLUTIONS

To provide a clear explanation of why we observe
bounces in such models, let us consider the cosmological
system in two limiting cases of energy in a collapsing
universe. In the low energy limit ρ ≪ Λ, the inflaton is low
on the potential. The dynamics of the field are those of a
harmonic oscillator with a small antifriction term (a greatly
underdamped system). As such, w oscillates between the
extreme values of �1, and so on average (across a cycle),
we can model the system with an approximately constant
equation of state with barotropic parameter w̄ ¼ 0. As the
energy density increases, this approximation becomes
invalid, and w decreases; see the Appendix for details.
Thus, our dynamics is akin to that of a closed universe with
dust as the dominant matter component, and the Friedmann
equation becomes

H2 ¼ 1

3

�
Ωd

a3
þΩk

a2

�
; ð5:1Þ

where Ωd is a constant. We reiterate at this point that, since
we are dealing with a closed universe, Ωk is negative. Such
models have simple parametric solutions in conformal time
dt ¼ adη, given by

a ∝ 1 − cos η; ð5:2Þ

t ∝ η − sin η: ð5:3Þ

Since we are in the regime in which the scalar field
oscillations are small (and hence both the harmonic
oscillator approximation and the dustlike behavior are
valid), these are valid in our system around the points of
recollapse (η ≈ π). There is a well-known redundancy in
our description of these models: rescaling the constants Ωi
by an appropriate power law relation yields equivalent
dynamics, since each constant now carries a dimensionful
scale. The general form of this symmetry gives rise to the
attractor solutions in cosmology by imposing that the
Liouville measure is preserved (see Refs. [27–29]).
In this section, we will deviate from the convention of

fixing the sum of theΩi to unity. Our goal here is to discuss
an approximate analytic solution to the equations of
motion, and the exact equations of motion contain the
evolution of the inflaton, for which the equation of state is
dynamic. In essence, we shall show that the dual role
played by the inflaton (which sometimes acts as cosmo-
logical constant and other times acts as a stiff fluid) can be
mimicked by transfer between the different Ω. Because of
the distinct scaling of these (as required in order to preserve
the dynamics), a transfer between two components will
change their sum. Thus, to obey the convention, each Ω
would have to change. Instead, we opt to keep Ωk fixed
during evolution, since there is no transfer between it and
the matter components. This is because Ωk arises from

the geometry of the spatial slice, which we do not couple
to matter.
We are using the harmonic oscillator approximation,

which is valid because we are considering the simplest form
of the function, given by FðxÞ ¼ x2. For higher powers, and
appropriate rescaling of the width, the potential approaches
that of a square well, with potential given by

V ¼
� Λ jϕj > θ=2

0 jϕj < θ=2
; ð5:4Þ

where �θ=2 are the approximate end points of the plateau.
We first consider the behavior when the particle is in the
well (ρ < Λ). In this case, our dynamics is given by

H2 ¼ 1

3

�
Ωo

a6
þΩk

a2

�
: ð5:5Þ

Again, this equation can be solved exactly in parametric
form by considering conformal time wherein we find

a2 ¼
ffiffiffiffiffiffiffiffiffiffi
−
Ωo

Ωk

s
cos

� ffiffiffiffiffiffiffiffiffiffiffiffi
−
8Ωk

3

r
ðη − ηrÞ

�
; ð5:6Þ

where ηr is the conformal time at which the universe begins
to recollapse, i.e., the scale factor reaches its maximal
value. We can then recover t through an elliptic integral.
When we consider the case in which ρ > Λ, the particle

will not oscillate but will behave as if it is on a flat potential.
This can be further split into the constant term (the height
of the potential), which behaves like a cosmological
constant, and the kinetic term, which evolves like a
massless scalar field. Thus, the Friedmann equation is
well approximated by

H2 ¼ 1

3

�
Λþ Ωs

a6
þ Ωk

a2

�
: ð5:7Þ

If Ωs ¼ 0 in such models, we recover the closed de Sitter
solution given by

a ¼
ffiffiffiffiffiffiffiffiffiffi
−
Ωk

Λ

r
cosh

� ffiffiffiffi
Λ
3

r
ðt − toÞ

�
: ð5:8Þ

In the general case in which the kinetic component scalar
field is nonzero, we find that a bounce occurs if Ωs is less
than a critical value Ωc. To determine Ωc, consider that the
condition for a bounce in Eq. (5.7) becomes a cubic
equation in b ¼ a2,

b3 þ Ωk

Λ
b2 þ Ωs

Λ
¼ 0; ð5:9Þ

and the critical condition is that this occurs at a local
minimum of H over a. To see why this is true, consider the
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roots of our cubic equation for some value ofΩs. Since both
Λ and Ωs are positive, one root is negative and thus not
physical. Thus, we consider either of the two positive
roots. If this is not a local minimum of the cubic function,
we can increase Ωs, which increases H, and continue to do
this until the cubic no longer has a root. This happens when
the root is at the minimum of the cubic (and hence a
repeated root):

3b2 þ 2
Ωc

Λ
b ¼ 0: ð5:10Þ

We solve this for b and reinsert into the cubic equation to
find the critical value Ωc, which is

Ωc ¼ −
4Ω3

k

27Λ2
: ð5:11Þ

These solutions, well away from the bounce point, asymp-
tote to the de Sitter solutions above. However, as
the solution evolves from the bounce point, Hubble
friction will eventually slow the scalar field to a halt.3

Subsequently, it will turn around4 and, after a period of
slow-roll inflation, fall down the potential removing the
effective cosmological constant term, allowing the expand-
ing universe to recollapse. We note that if a period of
constant slow roll or ultraslow roll occurs due to the flatness
of the potential it is going to be necessarily transient
[31–33].
To establish when general solutions will bounce, we

consider the motion of the inflaton field itself. Consider the
point at which the inflaton hits the wall. If the kinetic
energy (

_ϕ2

2
¼ Ωo

a6
) is less than the height of the potential Λ,

the field will reflect and continue, and we can repeat our
analysis at the next interaction. If the kinetic energy is
greater than the height of the wall, it will be reduced byΛ as
it traverses the wall, and hence Ωs ¼ Ωo − Λa6. To obtain
an analytic solution for such a scenario, we will neglect the
contributions of the kinetic terms of the scalar field when
on the plateau and the potential terms when in the valley.
We also note that conservation of the scalar field energy
density during the transition ensures the continuity of the
Hubble parameter.
Between the reflections, we can find the behavior of the

inflaton. Using _ϕ2=2 ¼ Ωo=a6, we can write the equation
of motion as follows in terms of the scale factor:

dϕ
da

¼
_ϕ

_a
¼

_ϕ

Ha
¼ 1

Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Ωo

Ωo þ a4Ωk

s
: ð5:12Þ

This can be exactly integrated and inverted to give the scale
factor a in terms of ϕ:

a2 ¼
ffiffiffiffiffiffiffiffiffiffi
−
Ωo

Ωk

s
sech

� ffiffiffi
2

3

r
ðϕ − ϕoÞ

�
: ð5:13Þ

From this, we can express the kinetic energy in terms
of ϕ as

1

2
_ϕ2 ¼

ffiffiffiffiffiffiffiffiffiffi
−
Ω3

k

Ωo

s
cosh3

� ffiffiffi
2

3

r
ðϕ − ϕoÞ

�
: ð5:14Þ

We can therefore consider the following scenario: if the
well is sufficiently narrow, the kinetic energy between
reflections cannot increase by Ωc or more, and hence the
universe must bounce. The limiting case for a reflection
happens when the kinetic energy is equal to the height of
the potential. Therefore, we consider a reflection at ϕ ¼
−θ=2 with kinetic energy Λ. For this to occur, we require
that Λ > −Ω3=2

k =
ffiffiffiffiffiffi
Ωo

p
(otherwise, the kinetic energy is

always sufficient to escape the well, and our cosmology is
always described by Eq. (5.7) and asymptotes to the k > 0
de Sitter expansion). This fixes

ϕo ¼ −
θ

2
−

ffiffiffi
3

2

r
arccosh

�
Ω1=6

o Λ1=3ffiffiffiffiffiffiffiffiffi
−Ωk

p
�
: ð5:15Þ

Note that the term inside the inverse hyperbolic cosine
function is composed of a dimensionless combination of
our constants. The particle next encounters the wall of the
potential at ϕ ¼ θ=2. If by this stage the kinetic energy has
increased by less than Ωc, the remaining kinetic energy
after the particle leaves the potential well will be suffi-
ciently small enough that the universe will bounce.
The amount of kinetic energy gained is a function of the
width θ of the potential. Therefore, we can choose θ to
ensure that the amount of kinetic energy gained is always
less than this. This is achieved by

θ ¼
ffiffiffi
3

2

r 2
64arccosh

0
B@

ffiffiffiffiffiffiffiffiffiffi
−
Ωo

Ω3
k

s
Λþ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ω3

kΩo

q
27Λ2

1
CA

1=3

− arccosh

0
@ ffiffiffiffiffiffiffiffiffiffi

−
Ωo

Ω3
k

s
Λ

1
A1=3

3
75: ð5:16Þ

Thus, we can, in principle, ensure that a given branch of the
homogeneous, isotropic, and closed cosmology will always
bounce, provided we choose the correct potential. The
exact solution given here is derived in the case of the square
well, which is the most analytically tractable situation.
However, we see from Eq. (5.11) that once the potential is
well approximated by a plateau a bounce will occur as long

3For the moment, we ignore the effect of quantum fluctuations.
We discuss this later on.

4A slight tilt in the plateau is assumed.
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as the kinetic energy of the inflaton is sufficiently small.
Therefore, for any of the generic T-model potentials, there
will always exist in phase space a set of conditions leading
to a bouncing universe.5

Beyond the bounce, our analytic approximation will
break down. As the Hubble parameter is now positive,
the system will encounter friction, and the scalar field
will slow. Since the true potential is never actually flat,
the combination of this friction and the gradient of the
potential will be sufficient to halt the inflaton and reverse
its motion, beginning a long period of slow roll back
down the potential. To make this apparent, consider the
behavior of the scalar field on the plateau: for low kinetic
energies, the dominant contribution to the Hubble param-
eter will be the potential, and hence we find that the
velocity of the field follows

_ϕ ∝ expð−3ΛtÞ: ð5:17Þ

As a result, the field will come to a halt at a finite value
of ϕ after an infinite interval in time. However, since the
true potential has a gradient, this behavior cannot
happen. In fact, the true dynamics will diverge from
that of the square well when the Hubble friction term
becomes of the same order as the gradient of the
potential. There is always a point at which the field
turns around, and the square well cannot capture this
behavior.
One way in which we can alleviate this problem is to

compactify the scalar field on an S1 or set a reflection at
some ϕr to represent the point at which the scalar field
would turn around. We will focus our discussion on the
latter case; this can recreate a phenomenologically
interesting double-bouncing solution. This behavior is
quantitatively distinct from that which we would expect
from a scalar field on a T-model potential. However, it
encompasses the relevant qualitative features, namely
that the field encounters the valley again after the
bounce. To facilitate the analytic calculation of pertur-
bations on this background, we express the evolution of
the scale factor in terms of conformal time. We can
explicitly construct a double-bouncing cosmological
model using Eq. (5.7) during the bounces and
Eq. (5.5) for recollapse. Such solutions are continuous
in a and H, and this condition determines the values η1
and η2 of conformal time at which we connect the
descriptions; ab initio, these are free parameters of our
double-bouncing model but will be constrained by the
cosmological parameters. We find that the evolution of
the scalar factor is

a ¼

8>>>>>><
>>>>>>:

ffiffiffiffiffiffiffiffi
− Ωk

Λ

q
secðωηÞ η < η1;

ð
ffiffiffiffiffiffiffiffi
− Ωs

Ωk

q
cos½2ωðη − ηrÞ�Þ

1=2
η1 < η < η2;ffiffiffiffiffiffiffiffi

− Ωk
Λ

q
sec½ωðη − ηbÞ� η > η2;

ð5:18Þ

where ω ¼
ffiffiffiffiffiffiffiffi
− Ωk

3

q
.

Without loss of generality, we choose the first bounce to
occur at η ¼ 0, recollapse to occur at η ¼ ηr, and second
bounce to occur at η ¼ ηb. The transitions between the
distinct descriptions occur at η ¼ η1, η2. From this result,
we immediately identify the value of the scale factor at the

bounce as ab ¼
ffiffiffiffiffiffiffiffi
− Ωk

Λ

q
and at recollapse as ar ¼ ð− Ωs

Ωk
Þ1=4.

Conservation of energy at transitions between the plateau
and valley sets the scale factor here as Ωs ¼ Λa6t . Thus, we
find that these values of the scale factor at these times are
related to one another. Indeed, we can express the scale
factor at recollapse in terms of that at the bounce and that of
the transitions:

ar ¼
�
−
Ωs

Ωk

�
1=4

¼
�
−
Λa6t
Ωk

�
1=4

¼
ffiffiffiffiffi
a3t
ab

s
: ð5:19Þ

Thus, if we parametrize our space of double-bouncing
cosmologies by the ratio of scale factor at recollapse to that
at the bounce, γ ¼ ar=ab, then our system is completely
specified. Our approximations hold most closely in the
symmetric solution in which the universe recollapses with
the inflaton at the center of the square well (where all
the energy is kinetic, and thus w ¼ 1). As a result, all
energy lost to Hubble friction in the expanding phase is
regained during the collapsing phase, and the inflaton has
sufficient energy to reach the plateau when it encounters
the wall. Thus, we can fix the parameters of (5.18):
η1 ¼ 1ffiffi

k
p arccosðγ−2

3Þ, ηr ¼ 3η1=2, η2 ¼ 2η1, and ηb ¼ 3η1.

The behavior of this system is shown in Fig. 1.
We end this section by noting that the conditions which

relate the width of the potential to the parameters Ωk, Ωo,

FIG. 1. The double-bouncing cosmological model under dis-
cussion in this section. The evolution of the potential is shown
with respect to conformal time. The first bounce occurs at η ¼ 0,
and the recollapse occurs at η ¼ ηr.

5Unless quantum fluctuations come to dominate the variation
of the field. However, in the next section, we show that, for
realistic T-model inflation, turnaround typically occurs before
quantum fluctuations become important.
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and Λ guarantee that the cosmology will undergo a bounce.
However, Ωo is dynamically generated; unlike Ωk and Λ, it
changes when the particle encounters the well. It will not
necessarily take the same value each time the particle falls
into (or leaves) the well, since it depends on the amount of
Hubble friction (or antifriction in contracting cases) that the
scalar field encounters during its evolution. In the particular
example of the square well, we find thatΩo ¼ a6ð1

2
_ϕ2 þ ΛÞ

at the point at which the particle reaches the well if we allow
the inflaton to reach it after a bounce has occurred. Therefore,
a fixed potential will not guarantee that the resulting
cosmology is never singular, although it may guarantee a
bounce for a given combination of Ωk, Λ, and Ωs.

VI. NUMERICAL EVOLUTIONS

In Fig. 2, we show a typical bouncing solution chosen
with w ¼ −0.9 at the bounce point. Such solutions can

undergo a long period of inflation while the inflaton is on
the plateau of the potential and produce a spectral tilt and
scalar-to-tensor ratio which agree with observations. In
such solutions, the scalar field is high on the potential at the
bounce, with the inflationary/deflationary periods happen-
ing with the scalar field on the same plateau. There is an
asymmetry between the expanding and contracting phases
due to the velocity of the scalar field at the bounce; as the
inflaton approaches the plateau, its kinetic energy drops,
pushing w toward −1. However, if there is sufficient energy
to reach the plateau, the antifriction will again reaccelerate
the inflaton.
In Fig. 3, we see a more complex evolution in which the

universe expands, recollapses, and then undergoes multiple
bounce-recollapse cycles before entering into a de Sitter
expansion phase. We can also see the evolution of the scale
factor on long timescales in which the inflationary expan-
sion is evident. The de Sitter phase in this evolution
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FIG. 2. Hubble (a) and log of scale factor (b) against time for a solution with a bounce at t ¼ 0. We see a typical evolution with
singularities in both the future and past with a bounce between them. This displays the behavior of a simple bounce with a large number
of e-folds of inflation/deflation on either side. This is a toy model with α ¼ 1, μ ¼ 1, a ¼ 0.224, Ωk ¼ −0.05, and w ¼ −0.9 at the
bounce.

Time
-20 -10 0 10 20

H
ub

bl
e

-1

-0.5

0

0.5

1

1.5

Time
-20 -10 0 10 20

-1

-0.8

-0.6

-0.4

-0.2

0

(a) (b)

FIG. 3. On the left, the evolution of a large universe that undergoes a double-bounce. The parameters of the model were chosen such
that at the bounce point w ≈ −1, Ωk ¼ −1, a ¼ 1 with a much narrower potential (α ≈ 10−5). On the right, we show the cycle-averaged
behavior of the equation-of-state parameter, w̄, with averaging done across short cycles during fast oscillations, and over short time
periods outside of this. In particular, we note that between bounces there is a period of slow roll from the particle perspective, with
w ≈ −1; however, due to the effects of curvature, the Hubble parameter evolves rather quickly.
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continues for a large number of e-folds, beyond the range
of our numerical calculation. We also see a close-up of the
behavior of the Hubble parameter about the primary
bounce. Here, we see that the system actually undergoes
a very short recollapsing phase before bouncing for a
second time. Such behavior is typical for systems in which
the potential is shallow, since the inflaton can quickly exit
the inflationary regime, allowing the curvature to overcome
the scalar field and causing a recollapse. During this phase,
the negative Hubble parameter acts as antifriction, which
accelerates the scalar field, allowing it to climb higher up
the opposite side of the potential. As long as this effect does
not endow the scalar field with more kinetic energy than the
height of the potential, the field approaches the plateau in
the right phase for a second bounce to occur, followed by a
period of inflation. After the bounce, the Hubble parameter
is positive and thus acts as friction on the system, which
allows for a long period of slow-roll inflation.
A double-bounce typically occurs as follows: the universe

first bounces as the inflaton moving down the potential on
the shallow slope of the plateau. After the bounce, there is a
short period in which the Hubble parameter grows yet the
frictional effect is low. If the phase of the system is such that
the inflaton then enters the steeper region of the potential, it
can gain sufficientmomentum to cross theminimumclose to
the point of recollapse. The antifriction drives it up the
opposite side of the potential, and the universe bounces for a
second time. Usually, this second bouncewill occur with the
inflaton rolling up the potential, and hence it will be
followed by a long period of slow-roll expansion.
The double-bouncing scenario (and multiple bounces in

general) are of particular importance when considering the
amplification of perturbative modes during evolution. This
is a phenomenologically interesting feature which runs
parallel to that discussed in Ref. [34] in which it was shown
that a closed inflationary universe can suppress low multi-
poles. As we shall see in the following section, we expect to
see the longest wavelength modes amplified the most
through a bounce. However, the typical behavior of a
double-bouncing solution is that one bounce is particularly
short lived when compared to the frequency of oscillations
of the longest wavelengths. Therefore, the phase of
recollapse and the second bounce will be effectively
smoothed over the longest wavelength modes. However,
for a faster oscillating mode, the relative phase of the mode
will be important; the significant friction encountered
during recollapse while in a kinetic phase will lead to
suppression of the amplitude, whereas friction during a
potential dominated phase will not.
Before concluding this section, we examine the pos-

sibility that as the field rises onto the plateau but before
turnaround its variation becomes dominated by its quantum
fluctuations. If this were to happen, the field would become
oblivious to the scalar potential, and the inflaton conden-
sate would spread stochastically, leading to eternal

inflation. This is because there would be regions where
the quantum “kicks”would conspire to keep the field on the
plateau forever. If this were the case, a double-bounce
would not be possible.
Quantum fluctuations can dominate the motion when the

classical velocity of the inflaton in field space j _ϕj is smaller
that the typical quantum fluctuation δϕ ¼ H=2π per
Hubble time δt ¼ 1=H. Thus, the criterion in order for
the quantum fluctuations to be subdominant is

j _ϕj > δϕ

δt
¼ H2

2π
⇒ jV 0j > 3

2π
H3; ð6:1Þ

where we used the slow-roll equation 3H _ϕ ¼ −V 0, with the
prime denoting a derivative with respect to the field. Thus,
if the slope of the potential is too small, quantum fluctua-
tions take over, and eternal inflation occurs. One might
think that the above criterion is certainly violated in our
case, because at the turnaround point the inflaton stops
momentarily and _ϕ ¼ 0. However, it was shown in
Ref. [35] that, if the slope is substantial, the duration of
the period when j _ϕj < δϕ=δt is less than a Hubble time,
which means turnaround occurs before a single quantum
kick. In this case, eternal inflation is avoided. The condition
for this to happen is none other than Eq. (6.1), provided
slow roll is assumed before turnaround.
How far the inflaton can advance along the potential

plateau depends on its initial kinetic density and on the
particular scalar potential envisaged. Assuming slow roll
determines the kinetic density in terms of the potential,
because of the inflationary attractor. To investigate if the
danger of eternal inflation can be avoided in a double-
bounce scenario, we consider the T-model potential

VðϕÞ ¼ Λ tanh2ðϕ=
ffiffiffiffiffiffi
6α

p
Þ: ð6:2Þ

Using that H ¼ ffiffiffiffiffiffiffiffiffi
V=3

p
, it is straightforward to find that

Eq. (6.1) is equivalent to

sinh2ðϕ=
ffiffiffiffiffiffi
6α

p
Þ < 4πffiffiffiffiffiffiffiffiffi

2αΛ
p : ð6:3Þ

The above condition can reduce to

ϕ=
ffiffiffiffiffiffi
6α

p
<

8>><
>>:

1
2
lnð 16πffiffiffiffiffiffi

2αΛ
p Þ when ϕ >

ffiffiffiffiffiffi
6α

p
;

2
ffiffi
π

p
ð2αΛÞ1=4 when ϕ <

ffiffiffiffiffiffi
6α

p
:

ð6:4Þ

The inflationary energy scale is roughly Λ1=4 ∼ 10−2. This
means that the above criterion for ϕ <

ffiffiffiffiffiffi
6α

p
is always

satisfied, when α < 100 or so. This is expected, for such
inflaton values are not on the plateau. In the opposite
case, when ϕ >

ffiffiffiffiffiffi
6α

p
(on the plateau now), the criterion in

Eq. (6.4) becomes ϕ <
ffiffiffiffiffiffi
6α

p ð6.4 − 1
4
ln αÞ. Choosing
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α ¼ 0.01, we find the bound ϕ < 1.8. Thus, turnaround has
to occur at a smaller value of ϕ if eternal inflation is to be
avoided.
Through numerical investigation, using the parameters

Λ ¼ 10−8, α ¼ 0.01, and Ωk ¼ −0.005, we find initial
conditions at one bounce that has a double bounce with a
large universe at either end. The maximum value of ϕ is 1.2
and so is below the eternal inflation value. The system
collapses, bounces, recollapses, and then has about 90 e-
folds of inflation. So, it is indeed possible to get the double
bounce without hitting the eternal inflation problem. The
scalar field begins on the plateau of the potential during the
collapsing phase and reaches a turning point at the first
bounce. This is followed by an oscillating phase during the
short-lived expansion and recollapse, and then returning to
the plateau for the inflationary phase following the second
bounce. This evolution is shown in Fig. 4.
Another interesting possibility to consider is that our

Universemay begin in the far past at a singularity. From this,
the Universe would expand, then recollapse to a bounce
before undergoing inflation. This was recently discussed in
Ref. [17], andwedirect the reader to the analysis therein for a
discussion of the motivation and interesting features of such
a model. Such an evolution is indeed possible within the
model which we consider, and an example numerical
evolution is shown in Fig. 5. In such an evolution, the
inflaton may be found on the plateau at early times, and its
kinetic energy tends to infinity as t → −∞. However, during
the initial expansion, the inflaton falls down the potential
and oscillates about the minimum. During this oscillatory
phase, the effective averaged equation of state has w̄ ¼ 0,
and thus the universe becomes curvature dominated and

recollapses. Following this recollapse from a finite maximal
scale factor, the inflaton can find itself in the right circum-
stances (low kinetic energy, high potential) for the universe
to bounce, which can be followed by a prolonged period of
inflation. Thus (as discussed in Ref. [17]), a universe can
“bounce from nothing.”

VII. PERTURBATIONS

The background model we have thus far described is
qualitatively symmetric; for each solution to the equations of
motion, there is a counterpart with corresponding dynamics
under reversal of time about the bounce point. However,
when we consider the evolution of the inhomogeneous
modes that evolve on this background, we should not expect
to find the same symmetry. This has been explored well in
the case of matter bounce scenarios, an alternative theory to
inflation which posits the exit of superhorizonmodes during
a contracting phase. In particular, nonsymmetric phenomena
include the generation of black holes, which will persist
across any bounces, and the entropic amplification of
superhorizon scales as the universe collapses.
Let us consider the space of scalar perturbations on this

background geometry. Recall that we are dealing with a
closed FLRW universe, and hence our spatial manifold is
S3. We must therefore consider perturbations that consist of
hyperspherical harmonics. Following Refs. [36,37], we
write the eigenfunctions of the Laplace operator on S3 as

∇2Qlmn ¼
n2 − 1

r20
Qlmn; ð7:1Þ

where r0 is the comoving radius of curvature.

(a) (b)

FIG. 4. Log of scale factor (a) and scalar field (b) against time for a solution for the double-bouncing scenario described above. A large
universe reduces to a minimal size before undergoing a pair of bounces separated by a short-lived expanding then recollapsing phase. We
see that the scalar field avoids the eternal inflation region during the expanding phase that follows the second bounce. This solution
continues to inflate for around 90 e-folds.
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These constitute the S3 equivalents of Fourier modes. As
we take the limit in which the volume of the 3-sphere
becomes large compared to the wavelength of mode, these
modes arewell approximated by the usual Euclidean Fourier
modes with wave number k2 ¼ ðn2 − 1Þ=r20. However, we
are particularly interested in the effects of a bounce in which
the physical volume of the 3-sphere is at its smallest.
Furthermore, at the bounce point, the Hubble parameter
vanishes exactly. Therefore, the usual frictional term will be
absent. This is true regardless of the mode under consid-
eration. An extensive study of the behavior of perturbations
in bouncing cosmologies was performed in Refs. [38,39].
Although the analysis was performed in the context of loop
quantum cosmology, the results are fairly generic. We will
deviate from this type of analysis in two ways: we consider
closed cosmologies, and, furthermore, we do not set the
initial conditions for the semiclassical perturbations at the
bounce point. In a quantum context, setting the initial
conditions at the bounce point may be a logical choice,
since that it is the point of highest energy density, and
therefore the point at which quantum effects should be
strongest both in terms ofmatter and geometry. However, we
will adopt a different approach here which is better suited to
addressing issues of the classical bounce. Since significant
portions of phase space do not bounce even in the unper-
turbed theory, we consider the effects of perturbations to a

bouncing background that begin on a collapsing branch
rather than setting conditions at the bounce itself. To do
otherwise would be to make an undue assumption, namely
that the system always bounces.
Let us first consider scalar curvature perturbations on our

background space-time. We take Eq. (2.17) from Ref. [36]
as the starting point for our analysis, in which scalar
perturbations are expressed in terms of the variable
q ¼ ð _ϕ=HÞζ, with ζ denoting the usual comoving curva-
ture perturbation. Although we will follow this analysis
closely, we must deviate in our choice of variables, as q is
ill defined at the bounce. We therefore use x ¼ _ϕζ ¼ Hq as
our basic variable, which remains well defined throughout
the evolution of the perturbation. Away from the bounce
point, q is easily recovered, and we can continue the
analysis in the standard inflationary case. Thus, we find our
equation of motion for x is given by

axẍþ bx _xþ cxx ¼ 0: ð7:2Þ

To simplify our analysis, we will write the coefficients ax,
bx, and cx in terms of the Hubble parameter to make it clear
which terms become important near the bounce and which
terms dominate during slow-roll expansion:

ax ¼ 2H2ðn2 − 4Þ þ 3 _ϕ2;

bx ¼ 10H3ðn2 − 4Þ þH½ð4n2 þ 11Þ _ϕ2 − 4ðn2 − 4ÞV þ 6V 0 _ϕ�;
cx ¼ −8H4ðn2 − 7Þðn2 − 4Þ − 2ð _ϕ2 þ 2VÞ½ðn2 − 1Þ _ϕ2 − 4ðn2 − 4ÞV� þ 24Hðn2 þ 2ÞV 0 _ϕ

þ 24V 02 þ 12V 00 _ϕ2 þ 4H2½ðn4 þ 8n2 þ 9Þ _ϕ2 þ 2ðn2 − 4Þðn2 − 9ÞV þ V 00�: ð7:3Þ

(a) (b)

FIG. 5. Log of scale factor (a) and scalar field (b) against time for an evolution in which the universe begins at a singularity in the past.
The universe in this case expands from an initial singularity to a local maximum size, then collapses back to a bounce. Following this
bounce, the universe then undergoes an extended period of slow-roll inflation (not shown in the figure due to the focus on singularity and
bounce).

T-MODEL INFLATION AND BOUNCING COSMOLOGY PHYS. REV. D 101, 043521 (2020)

043521-13



Although these coefficients are complicated, it is immedi-
ately apparent that our system has a well-defined limit
when H vanishes. We are therefore able to numerically
solve the equations of motion for x through a bounce.
The evolution of tensor perturbations is simpler [37].

The dynamical evolution of the amplitude of the transverse,
traceless tensor perturbation h of wave number n is
given by

ḧþ 3H _hþ
�
V þ 1

2
_ϕ2 −H2

�
ðn2 − 1Þh ¼ 0: ð7:4Þ

In both cases, we expect to see only negligible deviations
from the usual power spectra generated during the infla-
tionary phase postbounce, and as such, we expect that,
even in the presence of a bounce, T-models maintain their
attractor nature. We will quantify this statement more
carefully in the following section, allowing us to make
contact with observations for this class of models. For now,
we will primarily concern ourselves with the behavior of
perturbations before the bounce occurs and the backreac-
tion they can have upon our space-time.
To illustrate the effects of the bounce upon perturbation

modes, let us first consider the case in which the bounce
occurs when the inflaton can be found on the plateau of
the potential. In this case, we neglect the effect of the
kinetic energy upon the evolution of the field, and we arrive
at the closed de Sitter model of which the dynamics are
described by

a ¼ ab coshðλtÞ;
H ¼ λ tanhðλtÞ; ð7:5Þ

where λ2 ¼ V=3 as set by the value of the potential on the
plateau. To simplify the discussion and showcase the
qualitative evolution of the different modes, we have set
Λ ¼ 1 ¼ −Ωk. With these assumptions, the evolution of
both the tensor and scalar modes becomes identical. The
solution for the perturbation variable x can be found

analytically as follows, where P
3
2

n−1=2 is the Legendre

polynomial of the first kind and Q
3
2

n−1=2 is the associated
Legendre function of the second kind:

h ¼ ð−sech2λtÞ3=4½c1P
3
2

n−1
2

ðtanh λtÞ þ c2Q
3
2

n−1
2

ðtanh λtÞ�:
ð7:6Þ

This solution can be split into two parts, which can broadly
be thought of as the components of which the amplitude
stays fixed and that which changes as the scale factor
evolves. As the universe collapses, the amplitude of the
evolving mode increases, and conversely, when the uni-
verse expands, its amplitude reduces. In a perfectly
symmetric bounce such as the one described above, there

is no mixing between these modes, and thus the amplitudes
of oscillations asymptote toward symmetry. However,
when we introduce an asymmetric bounce, the modes
mix; a part of the increasing amplitude of the growing
mode is transferred into the constant mode (and vice versa).
Therefore, across an asymmetric bounce, we can expect to
see that the fluctuations are amplified (see Fig. 6). Usually,
modes outside of the Hubble radius jHj−1 freeze out.
However, in a contracting universe, Eq. (7.6) informs us
that the amplitude of such modes increases instead. Once
the mode is shorter than the Hubble radius, the oscillations
dominate over this expansion, and so the amplification
slows significantly. Thus, we expect that all modes are
amplified, and the modes with lowest wave number (i.e.,
the longest wavelength) are amplified the most [40,41].

VIII. CONTACT WITH OBSERVATIONS

We now turn to examine how the phenomenology of a
double-bounce scenario fares in the context of inflation.
Recall that if the background dynamics allow for a double
bounce we expect that, soon after the second bounce, the
Hubble parameter will reach an approximately constant
value, and the universe will be described well by a de Sitter
approximation. As noted in the previous section, perturba-
tions will be enhanced as the universe evolves through the
bounce. However, as we will show in this section, we
expect that the power spectrum for smaller modes (which
inflate for a larger number of e-folds) will not will not
deviate from the usual results postbounce. As a result, we
will demonstrate that it is possible to realize a double-
bounce model with predictions in good agreement with
current observations. For the rest of this section, we will
restore units of M−1

P ¼ ffiffiffiffiffiffiffiffiffi
8πG

p
.

We first note that postbounce, de Sitter space is achieved
very quickly as long as the field starts reasonably high on
the plateau, as we can see in Fig. 3. Since the number of
e-folds is defined as N ¼ −Hdt and H ¼ 0 at the bounce,
we expect the number of e-folds until (quasi-)de Sitter is
achieved to be almost negligible. The deviation from de
Sitter is encoded in ϵ, with ϵ ¼ 0 corresponding to exact de
Sitter. Using the solutions through the bounce (7.5), we find
that jϵj becomes smaller than jϵjdS at a number of e-folds
given by

NdS ¼ ln cosh csch−1jϵjdS: ð8:1Þ

We can set jϵjdS ¼ 1 as a hard limit for quasi-de Sitter. This
returnsNdS¼0.367, whereas jϵjdS¼0.1 returnsNdS¼ 2.31.
Therefore, generically after the second bounce, the universe
will rapidly approach the flat de Sitter evolution within
Oð1Þ e-folds; only scales that leave the horizon before that
are going to see anything other than a quasi-de Sitter
universe.
For large scales, we expect two distinct behaviors: first,

we expect finite-size effects to become important as the
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scales approach the radius of the universe, and, second, we
expect the effects of the bounce to cause a deviation from
the usual near scale invariance, since large scales leave the
horizon before de Sitter is achieved. Finite-size effects are
known to become important at large scales, affecting the
power spectrum. However, the presence of the bounce
further modifies the usual treatment, regardless of the
spatial curvature of the universe. As noted above, the
gauge-independent perturbation q ¼ δϕþ ð _ϕ=HÞζ is ill
defined in a bounce. However, we may instead work in the
uniform curvature gauge, where ζ ¼ 0. In this case, we
consider the variable v ¼ aδϕ, which remains well defined
through the bounce and follows the equation of motion [42]

v00n þ
�
n2 − 1

r20
−
a00

a

�
un ¼ 0; ð8:2Þ

where the prime indicates differentiation with respect to the
conformal time η ¼ R

dt=a. This is nothing more than
collection of a simple harmonic oscillators with time-
dependent masses, which means that the definition of a
vacuum is time dependent as well. In the de Sitter case,
a00=a ≈ 6=η2 close to the singularity, which means that a
Euclidean vacuum (the well-known Bunch-Davies initial
condition) can be imposed. However, close to the bounce
where a ∝ cosh λt and t ¼ 2λ−1 tanh−1 ½tanðλη=2Þ�, we find
that in the early limit

v00n þ
�
n2 − 1

r20
−

1

λ−2 þ η2

6

�
un ¼ 0: ð8:3Þ

Therefore, we can apply theBunch-Davies vacuum condition
at the bounce if all modes become nearly massless at the
bounce, which is the case for small λ (we show this below).
The physical meaning of this condition can be thought of as

follows: the bounce “smooths out” the perturbations as the
horizon becomes infinitely large, since there is no typical
length scale. This is akin to assuming a (nearly) maximally
symmetric space for observationally relevant scales.
In the domain where ηλ ≫ 1 (which occurs soon after

the bounce but before smaller modes leave the horizon), the
solution to this equation is the usual superposition of the
Bessel functions

vn ¼ c1
ffiffiffiffiffi
nη

p
J ffiffi

3
p
2

�ðn2−1Þη
r0

�
þc2

ffiffiffiffiffi
nη

p
Y ffiffi

3
p
2

�ðn2−1Þη
r0

�
: ð8:4Þ

We impose the usual normalization condition u0u� −
u�0u ¼ i and the requirement that at some early time just
after the bounce the oscillations were free v ∝ e�ikη. Then,
identifying δϕ as the comoving curvature perturbationR in
the zero-curvature gauge, and since hδϕjδϕi ∼H2 along
with R ¼ Hδϕ= _ϕ, we arrive at the well-known expression
for the dimensionless spectrum of scalar perturbations,

Pζ ¼
1

8π2M2
P

H4

_ϕ2
≈

1

8π2M2
P

H2

ϵ
; ð8:5Þ

where the normalization comes from the usual cosmic
microwave background (CMB) transfer functions.
As noted above, we expect a deviation from the nearly

flat spectrum for scales that exit the horizon roughly
early enough after the bounce, before quasi-de Sitter is
reached but after the initial conditions can be assumed to be
Euclidean. First, we note that the Cosmic Background
Explorer (COBE) normalization may be used to estimate
the value of λMP ¼ ffiffiffiffiffiffiffiffiffiffiffi

V0=3
p

of the potential. Using

H2

M2
Pϵ

¼ 1.59 × 10−6; ð8:6Þ
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FIG. 6. On the left, the logs of the ratios of amplitudes against time, normalized such that the lowest mode n ¼ 1 has unit amplitude
upon exiting the horizon. Plotted are the behaviors of the n ¼ 3, 18 and 33 (solid blue, dashed red, and dotted yellow, respectively). On
the right, the logs of ratios of the amplitude increases of the wave modes of tensor and scalar perturbations across a bounce to that of the
lowest mode (n ¼ 3). We see that the largest increases are found at the low end of the spectrum, with the distribution becoming smaller
and flatter as the wave number increases. We should expect to see a red tilt to the spectrum of perturbations, but the amplitude of this will
strongly depend on the total number of e-folds following the bounce; large expansions will suppress this effect significantly.
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and ϵ ∼ 10−2 at the pivot scale, we may estimate
λ ¼ 4.21 × 10−5MP. Note that for this value of λ the scales
in which there is departure from de Sitter but the initial
conditions are valid are set by the scale ab=λ ≈ 1030 Mpc
for ab ∼ e−N�, where the ΛCDM evolution of the scale
factor is dwarfed by the early exponential expansion
(compare with the radius of the observable Universe
14.3 Gpc). Therefore, we are certainly safe in assuming
time-independent vacua as initial conditions.
Using the closed de Sitter expression for the scale factor,

the dimensionless spectrum looks like

Pζ ¼ −
λ2

M2
P
sinh2ðλtÞ tanh2ðλtÞ: ð8:7Þ

Horizon crossing occurs at k ¼ aH as usual, which gives

k ¼ abλ sinhðλtÞ: ð8:8Þ

Therefore, we find

Pζ ¼
k2

M2
Pa

2
b

tanh2
�
arcsinh

�
k
abλ

��

¼ λ2

M2
P
−

k2

M2
Pa

2
b

þOðk4=a4bÞ; ð8:9Þ

where we expand for large wavelengths for which the above
assumption of time-independent vacua holds.
If we assume that outside of largest observable scales the

de Sitter approximation quickly broke down (i.e., assuming
the bare minimum e-folds of growth), then the scales in
which we expect to see deviation from near scale invariance
correspond to e−NdSrCMB, where rCMB ¼ 14.3 Gpc. This in
turn corresponds to an angular scale of θ ¼ e−NdS=ð2πÞ,
varying from 6° to 0.9° for NdS ∈ ½0.367; 2.31� as estimated
above. This corresponds to multipoles of l≲ 180 to
l≲ 30; in particular, a suppression to the latter, corre-
sponding to a slightly slower relaxation to de Sitter, agrees
with observations. Note that the relative correction to the
spectrum corresponding to the lowest multipoles is of
the order

ΔPζ

Pζ
¼ −

k2

a2bλ
2
¼ −

l2=r2CMB

e−2Ntotλ2
: ð8:10Þ

By varying the total number of e-foldingsNtot, it is possible
to arrive at a percentage-level modification of the order of
0.1% to 1% to the spectrum. Such an effect is largely model
independent, insofar as it only requires a bounce followed
by a relaxation to de Sitter, and may explain current
observations. In fact, matching the suppression with obser-
vations can lead to limits on the number of e-folds; for
instance, in the above example, Ntot ≳ 125 is specifically

ruled out, as it predicts a much stronger suppression than
observed at low multipoles.
Note that this effect is complementary to the finite-

curvature effects that can cause an enhancement of the
power spectra at low n, dominating over the enhancement
effect. Scales with n ≫ 3 quickly find themselves deep in
the Hubble horizon. The pivot scales k ¼ 0.05 Mpc−1 and
k ¼ 0.002 Mpc−1 correspond to n ¼ 3152 and n ¼ 126,
respectively, for the smallest Universe compatible with
observations [37]. Therefore, we expect that the depend-
ence of the vacuum on the wave number is negligible, and
the power spectra are only modified in an observationally
relevant way due to the bounce, not finite-curvature effects.
Moreover, the suppression is not contrary to the enhance-
ment of perturbations through the bounce found in the
previous section, since we have set the initial conditions
close the bounce and not at the horizon exit. It is true that
perturbations are amplified through a bounce, but as the
comoving horizon becomes infinite and all modes can talk
to each other, we may reasonably assume that gauge-
invariant perturbations approach a maximally symmetric
set of initial conditions.
Having discussed the implications of the bounce on the

low multipole modes, we now turn our attention to the
predictions of our α-attractor potential for scales which
experience de Sitter for their entire lifetime. We remind the
reader that our model is governed by the Lagrangian

ffiffiffiffiffiffi
−g

p
L¼ 1

2
M2

PR−
1

2
ð∂ϕÞ2−3αm2M2

P tanh
2

ϕffiffiffiffiffiffi
6α

p
MP

;

ð8:11Þ

where we have reinstated α in the potential for dimensional
consistency. We recall the usual expressions for the tilt of
the spectrum and the tensor-to-scalar ratio,

ns ¼ 1 − 2ϵþ η;

r ¼ 16ϵ; ð8:12Þ

where

ϵ ¼ 1

2
M2

P

�
V 0

V

�
2

;

η ¼ M2
P
ϵ0

ϵ

V 0

V
; ð8:13Þ

where the prime now denotes a derivative with respect to
the inflaton field. These definitions for the slow-roll
parameters agree with the Hubble slow-roll parameters
ϵH ¼ − _H=H2 and ηH ¼ _ϵH=ðHϵHÞ in the limit of slow roll.
As noted in the previous section, the plateau shape of the

potential, which is generic to attractor models, will give rise
to results that should match observations quite well.
Calculating the slow-roll parameters, we find
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ϵ ¼ 4

3α
csch2

� ffiffiffiffiffiffi
2

3α

r
ϕ=MP

�
; ð8:14Þ

η ¼ 2

3α

�
1þ coth2

�
ϕ=MPffiffiffiffiffiffi

6α
p

��
sech2

�
ϕ=MPffiffiffiffiffiffi

6α
p

�
: ð8:15Þ

The value of ϕ at the end of inflation is found as usual by
setting ϵ ¼ 1, returning

ϕend ¼
ffiffiffiffiffiffi
3α

2

r
MP sinh−1

�
2ffiffiffiffiffiffi
3α

p
�
: ð8:16Þ

With this result, the number of e-folds is related to the field
value ϕ as

ϕ ¼
ffiffiffiffiffiffi
3α

2

r
MP cosh−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

3α

r
þ 4N

3α

�
: ð8:17Þ

We may therefore easily calculate the value of the spectral
index and the tensor-to-scalar ratio:

ns ¼
1

6α

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

α
þ 9

r
− 3

�
αþ 4N − 8

�

× csch2
�
1

2
cosh−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3α
þ 1

r
þ 4N

3α

��
; ð8:18Þ

r ¼ 48α

4N2 þ 2αN
ffiffiffiffiffiffiffiffiffiffiffiffi
12
α þ 9

q
þ 3α

: ð8:19Þ

In particular, the current constraint on the tensor-to-scalar
ratio r < 0.06 sets the allowed range of α as

0.06 ≥
48α

4N2 þ 2αN
ffiffiffiffiffiffiffiffiffiffiffiffi
12
α þ 9

q
þ 3α

; ð8:20Þ

returning α < 33.5. Moreover, for the scalar spectrum,
we find

Pζ ¼
3α2m2

4π2M2
P
sinh4

�
1

2
cosh−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3α
þ 1

r
þ 4N

3α

��
: ð8:21Þ

The value of N depends on the details of reheating, but we
expect it to be very close to N ¼ 60 for the pivot scale.
Using the COBE normalization Pζ ¼ ð2.099� 0.029Þ×
10−9, we may find a relation between α and m. For small
values of α, we find that the value ofm is mostly insensitive
to the model, as we would expect from an attractor; we find
m ≈ 7.25 × 10−6MP. As a result, in order to avoid the
curvature effects from being dominated by the potential, we
setm2 ≲ 6αM2

P, which sets α > 8.78 × 10−12. This gives us
the window for α as

10−11 ≲ α ≲ 34: ð8:22Þ

As a result, the predicted values for nS and r are

0.9667≲ ns ≲ 0.9669;

10−14 < r≲ 0.06: ð8:23Þ

For large values of α, roughly 10≲ α ≲ 33, the predictions
are in slight tension with observations, as they depend on
the particulars of the model. However, for small α, the
attractor nature of the theory becomes manifest, and the
predictions of the model are well within the Planck contour.
While such a model is concordant with observations

following a bounce, we must finally ask whether a model
with these parameters is consistent with the observed
curvature in the Universe today. As noted in the previous
section, at the bounce, we have ab ¼ M2

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ωk=Λ

p
. This

can be used to find Ωk in the convention that a ¼ 1 at the
bounce, which roughly corresponds to a difference in
convention of roughly e−2Ntot (thanks to the small evolution
of the curvature after inflation subsides). However, if a ¼ 1
is taken to hold today and a ¼ ab at the bounce, we may
find that the value of the curvature today is

Ωk ¼
Λe−2Ntot

M4
P

; ð8:24Þ

where we used the relation Λ ¼ 3αm2M2
P. For the range

1.58 × 10−21 ≲ Λ=M4
P ≲ 1.57 × 10−9 (which is realized for

the allowed values of α), we find that the spatial curvature
today is indeed set to be very small but nonzero nonetheless
for these models. This tells us that a bouncing cosmology
followed by a period of inflation is particularly robust; it
can be realized without requiring extremely large (negative)
curvature close to the bouncing point, and once a double
bounce is realized, the curvature will be driven down to
small levels as usual, in agreement with observations.

IX. CONCLUSIONS

We have proposed a bouncing scenario in the presence of
a plateau potential stemming from a conformal action
featuring a SOð1; 1Þ symmetry, allowing a single confor-
mally coupled field to provide both the inflationary
dynamics and the dominant matter content at the bounce.
We demonstrated that in a contracting universe a bounce
can be realized quite generically in the α-attractor paradigm
when potential domination is satisfied and the field is
sufficiently high up on the plateau. Performing a phase
space analysis, we have shown that the measure on the
space of solutions is dominated by bouncing solutions
when equipped with an appropriate cutoff due to large field
values being physically indistinguishable. By performing
both analytic and numeric evolutions, we demonstrate that
across the bounce low wave number modes of perturbations
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are amplified. However, if the primordial perturbations at
observable are normalized with respect to a time-indepen-
dent maximally symmetric vacuum at early times, we find
that there will be a percent-level suppression at low
multipoles, which agrees with CMB observations. This
is a distinct feature from the suppression that occurs due to
finite-size effects. At large multipoles, the de Sitter evo-
lution is reached, and we find that the predictions of the
double bounce model agree with those of standard attractor
inflation for the Planck pivot scale.
We should briefly comment on an implicit assumption

which we made to simplify our treatment. We have
considered a roughly homogeneous Universe before the
bounce, despite the fact that a contracting universe would
amplify inhomogeneities, which could threaten the bounce.
However, this danger of excessive inhomogeneities can be
alleviated in a number of ways. One possibility is consid-
ering an early stage of inflation before the bounce, which
can take the system from the Planck scale down to the T-
model plateau. This can be introduced by another field,
such that the plateau lies actually at the bottom of the
potential valley, the walls of which rise up to the Planck
density. Examples of this kind of structure in the context of
α attractors can be seen in Refs. [13,22], in which the early
inflation is power law and lasts for only a short duration.
Similarly, but without the need for an additional field, a
slight modification of the inflaton potential can achieve a
limited early inflation stage, by lifting the valley toward the
Planck scale (see, for example, Fig. 5 of Ref. [43]).6 One
other way, which would not invoke early inflation, is to
consider that the universe topology is not trivial, such that
homogenization is achieved through “chaotic mixing” [44–
46] due to the fact that the entire compact universe comes in
causal contact soon after its quantum nucleation. Needless
to say, slow-roll inflation after the bounce may easily
enlarge the boundaries of the compact universe to super-
horizon scales today so that any trace of nontrivial topology
is lost. Finally, one could also perceive the bounce acting as
a filter on excessive inhomogeneity. If we start with a lot of
universes contracting, then those that are not homogeneous
enough would not experience a bounce. Therefore only
sufficiently homogeneous universes would make it through
to inflation and expand like our Universe. How likely or
unlikely the above scenarios are touches upon the infamous
measure problem of inflationary cosmology [27–29,47],
which goes beyond the scope of our paper.

A possible extension of our analysis could include
multiple fields, acting on separate scales for the bounce
and the subsequent de Sitter expansion of the universe. A
simple examplewould be the potentialV¼Λ1 tanh2nð θffiffiffiffi

6α
p Þþ

Λ2 tanh2mð ϕffiffiffiffi
6β

p Þ, where the two scales could allow separate

scales at which the bounce and inflation could occur. This
effect would be particularly pronounced if m ≫ n such the
potential is very steep and narrow in the direction of highest
energy.
Note that if the bounce is marginal (i.e., we bounce at

w ¼ −1=3 and nearby w > −1=3), we expect there to be
singularities just beyond the horizon. Specifically, if we
find ourselves in a patch which has w < −1=3 while w >
−1=3 outside it, everything beyond the horizon becomes
singular. If we find ourselves in the only patch that has this
feature, the universe will have closed up on a point.
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APPENDIX: THE HYPERBOLIC TANGENT
OSCILLATOR

Throughout this paper, we have considered a scalar field
of which the potential was tanh2ðxÞ=2 (here, we include the
factor of 1=2 to facilitate an easier comparison with the
usual x2=2 potential of a harmonic oscillator). Let us now
establish some of the relevant properties of such a field. The
Hamiltonian for the field in the absence of gravitational
coupling (and hence Hubble friction) is simply

H ¼ 1

2
P2
ϕ þ

1

2
tanh2ðϕÞ ¼ E: ðA1Þ

Here, we have fixed the size of the potential to unity
without loss of generality. The equation of motion for our
system is

ϕ̈ ¼ − tanhðϕÞsech2ðϕÞ: ðA2Þ

The first thing to notice is that the qualitative behavior of
the system is now dependent upon the total energy E. In the
case in which E ≫ 1, the system appears as that of a free
field as the potential has little effect on the motion. When
E ≪ 1, the system behaves like a harmonic oscillator. For a
harmonic oscillator, the kinetic energy and the potential
follow cos2ðtÞ and sin2ðtÞ, respectively. Hence,

6In terms of α attractors, we may consider a change in the
kinetic term from 1=½1 − ϕ2=ð6αÞ� to 1=½1 − ϕ2=ð6αÞ expð−λϕÞ�,
essentially “smearing” out” the poles. Solving the equations of
motion, it is possible to show that, due to the canonicalisation,
any kinetic term which is roughly this shape produces an
inflection point–type plateau irrespective of the potential. By
tuning α and λ, it is possible to arrive at a steep “drop,”
corresponding to a long but finite plateau, which then rises up
and makes contact with the Planck scale.
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wSHO ¼ KE − PE
KEþ PE

¼ cos2ðtÞ − sin2ðtÞ
cos2ðtÞ þ sin2ðtÞ ¼ cosð2tÞ: ðA3Þ

As a result, across a complete cycle, the average of w is
zero. However, when we consider the behavior of the tanh
potential, we come across a subtlety. When E > 1, the field
no longer oscillates since the system is unbound. Hence,
the equivalent behavior is captured by the long-term
average of w, which tends to wu ¼ E−2

E . When E < 1,
the average is difficult to find analytically. In the limit
where E ≪ 1, the harmonic oscillator becomes a good
approximation to the dynamics of the system, and hence the
average across a cycle is zero. For 0 < E < 1, we can find
the average behavior from numerical averaging shown
in Fig. 7.
We can observe from Fig. 7 that when E >

ffiffiffi
3

p
=2 we

find that the average of w < −1=3 However, we note that
this approximation would only hold in a limit in which we
could neglect the Hubble friction, which would not be valid
in this regime; in other words, ä < 0 whenever the field is
oscillating sufficiently quickly that we can use the average
field approximation. Hence, a bounce that occurs during
the oscillating phase of the field will not yield a large
universe; a recollapse will occur before an oscillation is
complete. We are therefore motivated to consider bounces
that occur when the field is strongly damped.
Let us now turn to the case in which we consider higher

powers of tanhðϕÞ to form our potential. In this situation,
we note that taking the limit as n → ∞ yields no potential at
all, since the tanhðϕÞ < 1 for all finite values of ϕ.

However, by changing the width of the potential, we can
produce a more reasonable function to use; Vn ¼
tanhnðkϕÞ for even integers n. In particular, consider fixing
the potential at a given point irrespective of the value of n—
as an example, let us fix the value of Vn at ϕ ¼ ϕo:

Vn ¼
1

2
tanhnðkϕÞ ¼ 1

2
tanh2ðϕoÞ: ðA4Þ

From this prescription, we find that k is given:

k ¼ tanh−1 ½tanh2=nðϕoÞ�
ϕo

: ðA5Þ

It is apparent that in the infinite limit ϕo will be the width of
our square well, as the potential can only pass through the
fixed value at the wall.
The equation of motion for our inflaton is now

ϕ̈ ¼ −
kn
2
sech2ðkϕÞtanhn−1ðkϕÞ: ðA6Þ

Figure 7 was generated by numerically solving this system
for a range of energies of the oscillator. We see that as the
power n increases the behavior of the system approaches
more and more closely that of a square well. In particular,
we note that the average behavior of the field across an
oscillation is not well approximated by dust but becomes
better and better approximated by that of a stiff
fluid (p ¼ ρ).
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FIG. 7. The average value of w across a cycle against the energy of the oscillator for increasing values of n in the potential. Shown on
the left (a) is the behavior of w in the case of a quadratic tanh potential. Shown on the right (b) is the same for a range of even monomials.
To show the overall behavior, the lines are each 2m for m between 1 and 7, with the colors chosen such that the blue line corresponds to
m ¼ 2 and m increases as we move toward the red end of the spectrum. Here, we see that as n increases the average value of w − w̄
increases, asymptoting to w̄ ¼ 1 (corresponding to the square well). When n ¼ 2, the results coincide with the above behavior, and the
maximum value of w̄ is 0. For higher n, this value increases, as does the range of energies over which w̄ is close to 1.
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