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We conduct a thorough investigation into the possibility that residing in an overdense region of the
Universe may induce bias in measurements of the large-scale structure. We compute the conditional
correlation function and angular power spectrum of density and lensing fluctuations while holding the local
spherically averaged density fixed and show that for Gaussian fields this has no effect on the angular power
at l > 0. We identify a range of scales where a perturbative approach allows analytic progress to be made,
and we compute leading-order conditional power spectra using an Edgeworth expansion and second-order
perturbation theory. We find no evidence for any significant bias to cosmological power spectra from our
local density contrast. We show that when smoothed over a large region around the observer, conditioning
on the local density typically affects density power spectra by less than a percent at cosmological distances,
below cosmic variance. We find that while typical corrections to the lensing angular power spectrum can be
at the 10% level on the largest angular scales and for source redshifts zs ≲ 0.1, for the typical redshifts
targeted by upcoming wide imaging surveys the corrections are subpercent and negligible, in contrast to
previous claims in the literature. Using an estimate of the local spherically averaged density from a
composite galaxy redshift catalogue we find that the corrections from conditioning on our own local density
are below cosmic variance and subdominant to other nonlinear effects. We discuss the potential
implications of our results for cosmology and point out that a measurement of the local density contrast
may be used as a consistency test of cosmological models.
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I. INTRODUCTION

Current and upcoming surveys of large-scale structure
such as Euclid,1 LSST,2 and DESI3 aim to place percent-
level constraints on the dark energy paradigm and make
measurements of the summed mass of neutrino species
[1,2]. With the huge leap in statistical constraining power
that these surveys represent, many previously negligible
systematic effects must be mitigated to ensure unbiased and
precise constraints on cosmological models.
Recently it was pointed out in Ref. [3] (hereafter R19) that

a potential source of bias arises from neglecting to account
for the impact of our local environment on summary
statistics measured in cosmological surveys. All astronomi-
cal observations are made from our privileged position
within a region of the Universe (the Local Group) with an
above-average density. Since the density field has long-
range spatial correlations, the distribution of large-scale
structure conditioned on our local density should differ from
the unconditional distribution. In particular wemight expect
two-point statistics—the most common summary statistics

used to infer cosmological parameters—to acquire a cor-
rection when conditioned on the local density. R19 com-
puted this correction assuming Gaussian fields, claiming
percent-level effects on the lensing angular power spectrum
over a wide range of angular multipoles, i.e., at a level
potentially important for a Euclid-like survey.
In this work we will critically examine the suggestion

that power spectra measured in cosmological surveys can
be biased by our local density at a significant level, building
upon the work of R19. If there is an effect then clearly it
must be limited to the clustering of only the most nearby
cosmic structure—the correlation length of the density
field, defined say as the radius at which the correlation
function first crosses zero, is of order 100 h−1Mpc at z ¼ 0,
whereas cosmological surveys typically measure large-
scale structure at hundreds or thousands of comoving
megaparsecs. In the case of density fluctuations there will
be a small residual correction, quantified by the conditional
angular power spectrum or conditional correlation function,
which we compute in this work. In the case of gravitational
lensing we might expect a more significant correction,
since lensing inevitably picks up contributions from nearby
structure, albeit suppressed by geometric factors. In any
case, a full calculation is necessary to check that any
residual biases can be safely ignored by future surveys.
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We will focus on corrections to the power spectra from
spatial correlations in the density field in the case of
Gaussian and weakly non-Gaussian fields. We will com-
pute the correlation function and angular power spectrum
conditional on a fixed spherically averaged density field
around the observer. We are interested in cosmological
scales where fluctuations in the matter density are small. It
will transpire that in the case of purely Gaussian fields only
the power at l ¼ 0 is affected, so for observable effects we
need to go to at least second-order in the density field. Our
approach is close to that suggested by R19 where it was
noted that the non-Gaussian calculation involves highly
oscillatory multidimensional integrals. We will show how
many of these integrals can be done analytically in the
perturbative regime.
In the case of lensing, the local density field contributes

to the unconditional lensing power at a statistical level
through the matter power spectrum projected onto our past-
light cone. Rather than including local fluctuations in the
variance of the signal in this way, we study the impact of
fixing the density in a local region to some measured value.
Since the local density cannot be averaged when consid-
ering many lines of sight we might expect a conditional
power spectrum to provide a better fit to observations. We
will discuss the implications (if any) of conditioning on the
local density on the information, bias, and consistency of
cosmological models.
The effects considered in this work are distinct from

other local effects which impact cosmological observables.
For example, the local gravitational potential in which we
reside adds a small blueshift to the spectrum of all
extragalactic objects [4]. In addition, temporal variations
of our local gravitational potential can add a Rees-Sciama/
integrated Sachs-Wolfe contribution to the cosmic micro-
wave background (CMB) [5–7]. In this work we focus on
the impact of fixing the local density contrast when
computing ensemble averages of density and lensing
anisotropies. The impact of the local density field on
velocity statistics has been considered in Refs. [8–10].
This paper is structured as follows. In Sec. II we present

the calculation of the conditional correlation function and
angular power spectrum of density fluctuations and esti-
mate the local spherically averaged density from a galaxy
redshift catalogue. The main results of this section are
Eq. (24) and Eq. (39). In Sec. III we compute the condi-
tional lensing angular power spectrum, the main result
being Eq. (56). In Sec. IV we discuss the implications of
our results for cosmology and discuss the use of the local
density as a consistency check on cosmological models. We
conclude in Sec. V.
For numerical work we assume a flat ΛCDM cosmo-

logical model with parameters fixed to the best-fit values
from Planck 2015 (TT, TE, EEþ lowPþlensingþ ext) [11],
i.e., ðΩbh2;Ωch2;h;As;nsÞ¼ð0.0223;0.1188;0.6774;2.142×
10−9;0.9667Þ. We will set c ¼ 1 unless otherwise specified.

II. CONDITIONAL COSMOLOGICAL STATISTICS

The goal of this section is to compute the angular power
spectrum and correlation function of the matter density
contrast conditioned on the local density fluctuation in
which we reside. We define the local density contrast
δ0ðRÞ to be the density field δðrÞ smoothed with a spherical
top-hat filter of comoving radius R and located at the
origin, i.e.,

δ0ðRÞ≡ 3

4πR3

Z
d3rΘðR − jrjÞδðrÞ; ð1Þ

where Θ is the Heaviside step function. The constrained
random field whose angular power spectrum we seek to
compute consists of realizations of δðrÞ which give rise to a
fixed δ0ðRÞ. We keep the time dependence of the density
field implicit in this section and focus solely on the real-
space dark matter density field.

A. Order-of-magnitude estimate

Before presenting a detailed calculation we first provide
a rough order-of-magnitude estimate of the size of the
correction to the angular power spectrum that results from
conditioning on our local density.
First, suppose δðrÞ obeyed Gaussian statistics with mean

zero and covariance ξðdÞ≡hδðr1Þδðr2Þi where d≡ jr2−r1j
and we assume that the field is statistically homo-
geneous and isotropic. Angle brackets here denote the
ensemble mean over the unconditional distribution of
δðrÞ. Since smoothing is a linear operation the field given
by ½δ0ðRÞ; δðrÞ� is also Gaussian, with mean zero.4

Manipulating the Gaussian probability distribution for this
field and using that pðAjBÞ ¼ pðA; BÞ=pðBÞ it is easy to
show that the conditional distribution of δðrÞ given δ0ðRÞ is
also Gaussian, with mean hδðrÞjδ0ðRÞi¼hδðrÞδ0ðRÞiδ0ðRÞ=
σ2ðRÞ, where σ2ðRÞ is the variance of δ0ðRÞ. The covari-
ance of the conditional field is independent of the value of
δ0ðRÞ and is given by cov½δðr1Þ; δðr2Þjδ0ðRÞ� ¼ ξðdÞ −
ξRðr1ÞξRðr2Þ=σ2ðRÞ where ξRðr1Þ≡ hδðr1Þδ0ðRÞi. When
r1 ¼ r2 the correction to the variance at a point is negative,
representing a loss of variance due to part of the field being
held fixed. As expected, when r1 and r2 are large the
correction becomes negligible since the field decorrelates
from the local density. Crucially for what follows, in the
Gaussian case the correction is independent of the angle
between the two points r1 and r2 and depends only on
their radial distances from the observer. In spherical
harmonic space this corresponds to a correction to the
(unobservable) l ¼ 0 mode. Therefore, interesting effects
on the angular power spectrum can only arise at second-
order where the density field is non-Gaussian. In simple

4We will assume that r ≠ 0 to ensure the covariance matrix is
invertible.
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terms, angle-dependent effects can only arise when δðr1Þ
and δðr2Þ couple with δðr0Þ, and this can only happen in the
presence of a connected three-point function, which
Gaussian fields do not possess. Although the independence
of the correction from the angular separation in the
Gaussian case was noted in R19, they claim an effect at
all l, contrary to the above argument.
Thus, corrections to the l > 0 angular power spectrum

only arise at nonlinear order in the density field. An
estimate of the size of this correction can be made using
techniques similar to those employed in the study of
nonlinear effects on the baryon acoustic oscillation peak.
Since corrections from conditioning on the local density
will be greatest when the two points considered are at
least within a correlation length rc of the observer, we
consider the case r1; r2 ≪ rc. Demanding that the points
are well-within a smoothing volume centered on the
observer simplifies the following discussion, so we will
additionally impose that r1; r2 ≪ R. As shown in Ref. [12]
and as follows from Birkhoff’s theorem, short-wavelength
density fluctuations within a spherically symmetric long-
wavelength adiabatic overdensity such as δ0ðRÞ behave
as if they reside in an FRW (Friedmann-Lemaître-
Robertson-Walker) universe with slight positive curvature
to first order in δ0ðRÞ. As described in Refs. [13,14], this
enhances the growth of short-wavelength fluctuations,
rescales the background density, and dilates all distances
within the long-wavelength fluctuation, resulting in a
correction to the correlation function in Einstein-
de Sitter of ½68ξðdÞ=21þ dξ0ðdÞ=3�δ0ðRÞ to first order in
δ0ðRÞ, where a prime denotes differentiation. For a power-
law correlation function ξðdÞ ∼ dn this implies a fractional
correction of ð68=21þ n=3Þδ0ðRÞ. Thus, except in cases of
extremely negative n, conditioning on a positive local
density fluctuation enhances the correlation of fluctuations
well within a smoothing volume. In the case of gravita-
tional lensing, we expect a similar enhancement for the
nearest source redshifts and on the largest angular scales.
Since the above expressions hold only at first order in

δ0ðRÞ, we must choose R to be much greater than the scale
of nonlinearity. Then δ0ðRÞ ≪ 1 and hence the fractional
correction from conditioning is expected to be very small.
We can quantify this further by estimating our own local
δ0ðRÞ from galaxy redshift surveys. For this purpose we use
the 2Mþþ galaxy redshift catalogue [15], a composite of
the 2MASS Redshift Survey (2MRS), SDSS-DR7, and 6dF
with depth K2Mþþ ≤ 11.5 over the full sky (excluding the
galactic plane), increasing to K2Mþþ ≤ 12.5 in regions
covered by SDSS and 6dF. The survey has full-sky
coverage out to comoving distance 125 h−1Mpc, corre-
sponding to the magnitude limit of 2MRS. This sample
has been used extensively to test for local voids which
might bias the interpretation of the locally measured
Hubble rate [16–18]. We use the publicly available

luminosity-weighted galaxy density field from Ref. [19]5

(hereafter C15), which is weighted to account for incom-
pleteness and normalized to a constant effective luminosity-
weighted galaxy bias b�. Using the measurement of f=b�

from C15 and our cosmology we find that b� ¼ 1.23�
0.06 for the 2Mþþ sample. We convert the galaxy density
into a dark matter density with this bias and then average in
spheres around the observer.
In Fig. 1 we plot the spherically averaged dark matter

density contrast as a function of the smoothing radius R, as
well as the linear standard deviation of the matter density
field at z ¼ 0 in our cosmology, computed with CAMB [20].
We estimate the shot noise on the smoothed density field
using the Schechter function fit to the luminosity function
from Ref. [15] to estimate the number of galaxies in each
pixel and add this in quadrature with the galaxy bias
uncertainty. We then include the additional uncertainty
incurred when estimating the global mean density from the
average density in the 2Mþþ volume. Assuming the
difference between the survey and global mean densities
is small (justified since the linear r.m.s. density contrast on
the survey scale is about 0.024), it is straightforward to show
that this mismatch biases the density contrast on average
by a multiplicative factor of αðRÞ ¼ 1 − ξðR;RBÞ=σ2ðRÞ,
where ξðR;RBÞ is the correlation between density
contrasts averaged in spheres of radius R and RB, with
RB ≈ 200 h−1Mpc the survey scale. We account for this

FIG. 1. The local dark matter density contrast averaged in
spheres of radius R around the observer (solid black), as
measured from the 2Mþþ galaxy density field of C15, and
assuming a constant luminosity-weighted galaxy bias of b� ¼
1.23� 0.06 in ΛCDM. The grey bands represent the 1σ error on
this average from the combination of shot noise, uncertainty in
the galaxy bias, and uncertainty in the global mean density. Note
that these errors are highly correlated for neighboring R values.
The solid blue curve is the spherically averaged standard
deviation of the linear dark matter density field at z ¼ 0.

5https://cosmicflows.iap.fr/
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bias by dividing the dark matter density from C15 by αðRÞ.
The extra variance from super-survey fluctuations is then
roughly ½σ2ðRBÞ − ξðR; RBÞ2=σ2ðRÞ�=αðRÞ2, which we add
in quadrature to the shot noise and bias uncertainty. The
total error on δ0ðRÞ estimated this way is shown as the
bands in Fig. 1. Note that this procedure does not correctly
account for the galaxy weights or the pixel smoothing
kernel, so should be taken as a rough estimate of the noise.
From Fig. 1 we see that the local matter density contrast
smoothed on scales R ∼ 102 h−1Mpc (within the 2MRS
redshift coverage) is of order 10−2. We can thus anticipate
that corrections to cosmological two-point functions from
conditioning on this local density will be at the percent
level at most.
In Appendix we consider an alternative measurement of

the local dark matter density field using the Bayesian
reconstruction method of Ref. [21]. The spherically aver-
aged density contrasts of the two methods are in agreement
at the 2σ level, but the Bayesian mean density is typically
smaller and consistent with zero, i.e., consistent with zero
correction to the power spectrum from conditioning. The
results presented in this work are in units of the fluctuation
δ0ðRÞ=σðRÞ, such that any estimate of δ0ðRÞ may be
substituted to compute conditional statistics. For example
if one believed that we reside within a large-scale void on
some scale R then one could compute conditional power
spectra by substituting the appropriate δ0ðRÞ.
Wewill soon see that the full calculation of the correction

to the l > 0 angular power spectrum is simplified consid-
erably when the smoothing radius is chosen to ensure
that δ0ðRÞ is linear. We will largely focus on the scale
R ¼ 120 h−1 Mpc, which is sufficiently large to ensure
linearity but sufficiently small that a reliable full-sky
spherical average can be obtained from 2Mþþ. Using
the 2Mþþ density field from C15 described above, we
find δ0ðR¼ 120h−1MpcÞ≈0.045�0.028, corresponding
to a fluctuation νðRÞ≡δ0ðRÞ=σðRÞ of νðR¼120h−1MpcÞ≈
0.85�0.53. We emphasize that the errors here are only
rough estimates but are sufficiently accurate for our pur-
poses.Whenmeasuredwith the BORGmethod inAppendix
we find a smaller local density δ0ðRÞ ¼ −0.024� 0.042,
and hence a local fluctuation of νðRÞ ¼ −0.45� 0.79.
In summary, we expect corrections to the angular power

spectrum of density or lensing fluctuations for l > 0 to be at
most at the percent level, with the largest corrections for
lensing coming from nearby source redshifts and large
angular scales. We now turn to a detailed calculation of
conditional angular power spectra. The radial dependence
of the correction is expected to be primarily determined by
the correlation function ξRðrÞ, which is plotted in Fig. 2.
This figure shows that corrections should be approximately
constant with distance for r≲ R and rapidly dying away on
scales greater than the local smoothing radius. As expected,
for low r the amplitude of the correction also rapidly
decreases with increasing R, i.e., as the smoothing

procedure becomes more aggressive. In the case of lensing
fluctuations this radial dependence will be modified by a
kernel dictated by the lensing geometry.

B. Conditional Edgeworth expansion

To derive the conditional angular power spectrum of
density and lensing fluctuations, we will first consider
the more general problem of deriving conditional proba-
bility distributions. In the Gaussian case considered in
Section II A this was straightforward and amounted to
manipulating Gaussian probability distributions and using
the fundamental relation pðAjBÞ ¼ pðA;BÞ=pðBÞ. We
have seen however that observable effects can only arise
at nonlinear order where the field is non-Gaussian. In the
non-Gaussian setting the calculation becomes more diffi-
cult since no fully general non-Gaussian distribution for the
density field is known, and even if it were then extracting an
analytic prediction for the conditional power spectrum
seems intractable.
However, since the correction to the power spectrum

from conditioning on the local density field is expected to
be small for all practical purposes on cosmological scales,
we may assume that the non-Gaussianity in δðxÞ is itself
small and use perturbative approaches to compute the
leading order effects. The Edgeworth expansion of the
probability density [22] then provides a useful approxima-
tion in the limit of weak non-Gaussianity which can be used
to construct conditional statistics. The general approach we
will take is, schematically, to use the leading order non-
Gaussian forms of pðA; BÞ and pðBÞ from their Edgeworth

FIG. 2. Absolute value of the correlation between the
local density contrast averaged in spheres of radius R with the
unsmoothed density contrast at radius r. Curves are ordered top to
bottom at r ¼ 0 for increasing R and all go negative at large r.
This function roughly dictates the radial dependence of correc-
tions to the power spectrum from conditioning on the local
density.
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expansions to construct an Edgeworth expansion for
pðAjBÞ, from which we can read off the first few condi-
tional cumulants. Note that this procedure does not suffer
from the Edgeworth expansion’s well-known problems in
producing a positive-definite normalizable probability dis-
tribution—we only need the first few cumulants rather than
the full distribution.
The calculation of the conditional Edgeworth expansion

is presented in Ref. [23,24] for a few simplifying cases.
Here we present it in full generality, before specializing to
the cosmological context. We follow the method and
notation of Ref. [24]. Implicit summation over repeated
indices should be assumed throughout unless specified
otherwise.
The cumulants of a set of p variables Xα (with α and all

other Greek letters running from 1 to p) are denoted κα,
κα;β, κα;β;γ etc. The probability density of Xα is denoted
fXðx; κÞ, where the dependence on the set of cumulants is
made explicit. Since we will ultimately divide a joint
density by a marginalized density, it will prove more
straightforward to work with log-densities where this
division becomes a subtraction. Xα has an Edgeworth
expansion around a Gaussian density given by

log fXðx; κÞ ¼ logϕðx; κÞ þ κα;β;γhαβγðxÞ=3!þ � � � ; ð2Þ

where the Gaussian density ϕðx; κÞ is given by

ϕðx;κÞ≡ j2πκα;βj−1=2exp
�
−
1

2
ðxα−καÞðxβ−κβÞκα;β

�
; ð3Þ

where κα;β are elements of the matrix inverse of the
covariance matrix κα;β, and jκα;βj is the determinant of
the covariance matrix. Also appearing in Eq. (2) is the
Hermite tensor hαβγðxÞ given by

hαβγðxÞ ¼ hαðxÞhβðxÞhγðxÞ − hαðxÞκβ;γ½3�; ð4Þ

where the notation [3] denotes permutations of the given
partitioning of indices in the preceding expression (in the
case above 3 terms result from this). The Hermite tensor
hαðxÞ is given by

hαðxÞ ¼ κα;βðxβ − κβÞ; ð5Þ

i.e., the deviation from the mean normalized by the inverse
covariance.
We assume that the non-Gaussianity of Xα is weak, such

that the third cumulant κα;β;γ is one order higher in pertur-
bation theory than the second cumulant, and higher-order
cumulants are successively smaller. Then we can truncate
the Edgeworth series by neglecting the higher-order terms
denoted by the ellipsis in Eq. (2).
Now, let us partition X into two sets Xð1Þ and Xð2Þ of

length q and p − q respectively. Elements of Xð1Þ will be

indexed by i; j; k;… and elements of Xð2Þ by r; s; t;…. We
can decompose all the summations in Eq. (2) into these two
blocks. For example, the Gaussian term becomes

logϕðx;κÞ¼−
1

2
ðxi−κiÞðxj−κjÞκi;j

−
1

2
ðxi−κiÞðxr−κrÞκi;r½2�−

1

2
ðxr−κrÞðxs−κsÞκr;s

−
1

2
logjκi;j−κi;rκ̄r;sκ

s;jj−1

2
jκr;sj

−
q
2
log2π−

ðp−qÞ
2

log2π; ð6Þ

where we used the determinant theorem for block matrices.
Note that we have to be careful to distinguish κr;s—the
(r; s) block of the full inverse joint covariance matrix—
from κ̄r;s, hereafter defined as the matrix inverse of the (r; s)
block of the full covariance matrix κα;β. These are related
via the formulas for block matrix inversion by

κr;s ¼ κ̄r;s þ κ̄r;tκ
t;iκ̄Sci;jκ

j;uκ̄u;s ð7Þ

where κ̄Sci;j are elements of the inverse of the Schur
complement matrix whose elements are given by

κi;jSc ≡ κi;j − κi;rκ̄r;sκ
s;j: ð8Þ

We seek the density of Xð1Þ conditional on some
realization of Xð2Þ—denote this realization by xr. This
density has an Edgeworth expansion that can be obtained
by dividing the full joint density by the marginal density of
Xð2Þ. This marginal density has an Edgeworth expansion
given by

log fXð2Þ ðx; κÞ ¼ logϕ2ðx; κÞ þ κr;s;th̄rstðxÞ=3!þ � � � ; ð9Þ

where the Gaussian part is given by

ϕ2ðx; κÞ ¼ j2πκr;sj−1=2 exp
�
−
1

2
ðxr − κrÞðxs − κsÞκ̄r;s

�
;

ð10Þ

and the Hermite tensor h̄rst is given by

h̄rstðxÞ ¼ h̄rðxÞh̄sðxÞh̄tðxÞ − h̄rðxÞκ̄s;t½3�;
h̄rðxÞ ¼ κ̄r;sðxs − κsÞ: ð11Þ

Note that a key property here is that the marginal cumulants
of Xð2Þ are just given by the appropriate subblock of the full
joint cumulants Xα. That this is true may be formally
proved with the cumulant generating function.
To get the (log) conditional density, we simply subtract

Eq. (10) from Eq. (2), being careful to remember that
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subblocks of matrix inverses aren’t the same as inverses of
matrix subblocks, and that the two are related by the block-
matrix inversion/Woodbury formulas Eq. (7).
The derivation is laborious in the general case, so we

only quote the results here. We find the conditional density
as an Edgeworth expansion whose first three cumulants
(i.e., conditional mean, covariance matrix, and three-point
function) are given (a tilde on a quantity will denote a
conditional quantity throughout) by

κ̃i ¼ κi þ κi;rh̄r þ κi;r;sc h̄rs=2;

κ̃i;j ¼ κi;j − κi;rκ̄r;sκ
s;j þ κi;j;rc h̄r;

κ̃i;j;k ¼ κi;j;kc ; ð12Þ

where we have defined the quantity βir ≡ κi;sκ̄s;r and the
Hermite tensor h̄rs is given by h̄rs ¼ h̄rh̄s − κ̄r;s. The
conditional third cumulants in Eq. (12) are given by

κi;j;kc ¼ κi;j;k − βirκ
r;j;k½3� þ βirβ

j
sκr;s;k½3� − βirβ

j
sβkt κ

r;s;t;

κi;j;rc ¼ κi;j;r − βjsκi;r;s½2� þ βitβ
j
sκr;s;t;

κi;r;sc ¼ κi;r;s − βitκ
t;r;s: ð13Þ

These expressions agree with those in Ref. [24] when
κi;r ¼ 0, and with those in Ref. [23] when κα ¼ 0. Note that
the conditional third cumulants are just the unconditional
third cumulants of the decorrelated variables ðYð1Þ; Yð2ÞÞ
where Yi ¼ Xi − βirXr and Yr ¼ Xr.
In the Gaussian case the third cumulant is zero, in which

case the conditional mean is κ̃i ¼ κi þ κi;rκ̄r;sðxs − κsÞ.
This takes the form of a correction to the unconditional
mean due to correlations between the two sets of variables.
Non-Gaussianity imparts a quadratic correction to this
proportional to the third cumulant. Likewise, the condi-
tional covariance in the Gaussian case is κ̃i;j ¼ κi;j−
κi;rκ̄r;sκ

s;j, which does not depend on the value of the
variable on which we condition. This subtracts from the
unconditional covariance a term accounting for correlations
with the (fixed) variable Xð2Þ, i.e., the scatter in Xð1Þ is not
as great as it could be since the part correlated with Xð2Þ
must be held fixed. Non-Gaussianity provides a linear
correction to the covariance, again proportional to the third
cumulant.

C. The conditional correlation function
of unsmoothed fields

We can now apply Eq. (12) to the real-space dark-matter
density field. We will neglect for now the effects of
evolution and assume all the fields lie at the same red-
shift—this is actually a reasonable approximation more
generally since corrections from conditioning will only be
significant for nearby structure. We wish to compute the
first few cumulants of the density field δðriÞ≡ δi

conditioned on the observer’s local density field δ0,
assumed to be at the origin of the coordinate system. To
ensure that our truncated Edgeworth expansion is a good
description of the true distribution will mean smoothing
these density fields on some sufficiently large scale.
In the notation of Sec. II B we have Xi ¼ δi and Xr ¼ δ0,

with p − q ¼ 1. Since we deal with density contrasts we
have κi ¼ κr ¼ 0, and by homogeneity (and neglect of
evolution)we have hδ2i i ¼ hδ20i≡ σ2, where the dependence
on the smoothing scale is left implicit for now. Plugging this
into Equation (12) we get the conditional mean

hδijδ0i¼ hδiδ0i
δ0
σ2

þ1

2

�
hδiδ20i−

hδiδ0i
σ2

hδ30i
��

δ20
σ4

−
1

σ2

�
:

ð14Þ

The first term in Eq. (14) is the Gaussian term expected from
the discussion in Sec. II A. The second term, proportional to
ðδ20 − σ2Þ, is the leading-order correction from non-
Gaussianity. Note that subsequent averaging of Eq. (14)
over δ0 yields zero, as required. The quantity hδiδ0i is just the
correlation function ξðriÞ.
Similarly, the conditional covariance is given by

covðδi; δjjδ0Þ ¼ hδiδji −
hδiδ0ihδjδ0i

σ2

þ
�
hδiδjδ0i −

hδiδ0i
σ2

hδjδ20i −
hδjδ0i
σ2

hδiδ20i

þ hδiδ0ihδjδ0i
σ4

hδ30i
�
δ0
σ2

: ð15Þ

The first line of Eq. (15) is the Gaussian expression,
expected from the discussion in Sec. II A. The other lines
of Eq. (15) are the leading-order corrections from non-
Gaussianity and yield zero after subsequent averaging over
δ0. They are proportional to various three-point functions of
the local and remote density fields. In particular, it should
be noted that the only term depending on the angular
separation of ri and rj is hδiδjδ0iδ0=σ2. We thus expect
corrections at l > 0 to come solely from this term. Note
also the similarities and differences between the conditional
correlation function of the density contrast and that of
discrete tracers given in Ref. [25], where the conditional
probability of finding two objects given the presence of a
third follows almost immediately from the definition of the
three-point function.
At leading order (tree-level) in standard perturbation

theory we may write the three-point function of the
unsmoothed density field (the expression for smoothed
fields is cumbersome to write down—we will address
smoothed fields in the next section) in Einstein-de Sitter
as [26]
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hδðr1Þδðr2Þδðr3Þi ¼
10

7
ξðr13Þξðr23Þ þ∇ξðr13Þ ·∇−1ξðr23Þ

þ∇ξðr23Þ ·∇−1ξðr13Þ

þ 4

7
½∇a∇−1

b ξðr13ÞÞð∇a∇−1
b ξðr23Þ�

þ cyc:; ð16Þ

where r13 ≡ r1 − r3 etc. and the terms involving the
correlation function may be written in terms of the linear
power spectrum PðkÞ as6

∇ξðrÞ ¼ i
Z

d3k
ð2πÞ3 kPðkÞe

ik·r; ð17Þ

∇−1ξðrÞ ¼ −i
Z

d3k
ð2πÞ3

k
k2

PðkÞeik·r; ð18Þ

∇a∇−1
b ξðrÞ ¼

Z
d3k
ð2πÞ3

kakb
k2

PðkÞeik·r: ð19Þ

To obtain hδiδjδ0i we simply set r3 ¼ 0 in Eq. (16). The
integrals in Eqs. (17), (18), and (19) may be simplified by
noting that by isotropy we must have

∇a∇−1
b ξðrÞ ¼ ξðrÞ δab

3
þ ψðrÞ

�
r̂ar̂b −

δab
3

�
; ð20Þ

where ψðrÞ≡ 3
2
ðr̂ar̂b − δab=3Þ∇a∇−1

b ξðrÞ. This yields

ψðrÞ ¼ −
Z

k2dk
2π2

PðkÞj2ðkrÞ: ð21Þ

Likewise, ∇ξ and ∇−1ξ must both be proportional
to r̂, so

∇ξðrÞ ¼ −r̂
Z

k2dk
2π2

kPðkÞj1ðkrÞ

¼ r̂
Z

k2dk
2π2

kPðkÞj00ðkrÞ

¼ r̂ξ0ðrÞ; ð22Þ

and

∇−1ξðrÞ ¼ r̂
Z

k2dk
2π2

PðkÞ
k

j1ðkrÞ

≡ r̂ΩðrÞ: ð23Þ

Plugging the above expressions into Eq. (15) gives
the conditional correlation function at tree-level in
Einstein de-Sitter as

covðδi; δjjδ0Þ ¼ ξðdÞ − ξðriÞξðrjÞ
σ2

þ
�
34

21
ξðdÞ½ξðriÞ þ ξðrjÞ� þ ½ξ0ðriÞΩðrjÞ þ ξ0ðrjÞΩðriÞ� cos β

− ½ξ0ðdÞΩðriÞ þ ξ0ðriÞΩðdÞ� cosϕþ ½ξ0ðdÞΩðrjÞ þ ξ0ðrjÞΩðdÞ� cos α

þ 4

7

�
ψðriÞψðrjÞ

�
cos2β −

1

3

�
þ ψðdÞψðriÞ

�
cos2ϕ −

1

3

�
þ ψðdÞψðrjÞ

�
cos2α −

1

3

��

−
ξðrjÞ
σ2

�
34

21
ξðriÞ2 þ ξ0ðriÞΩðriÞ þ

8

21
ψðriÞ2

�
−
ξðriÞ
σ2

�
34

21
ξðrjÞ2 þ ξ0ðrjÞΩðrjÞ þ

8

21
ψðrjÞ2

��
δ0
σ2

: ð24Þ

where we defined the angles cosβ¼ r̂i ·r̂j, cosϕ¼ r̂i · drj−ri,
cos α ¼ r̂j · drj − ri. Evolution could be accounted for by
replacing the correlation functions with their appropriate
unequal-time counterparts, i.e., with the appropriate linear
growth factors. The term in braces is the non-Gaussian
correction, linear in the local density fluctuation.
The correction terms in Eq. (24) have been grouped

according to their angular dependence. Recall that in
standard Eulerian perturbation theory, the second-order
density field can be written as the sum of a monopolar
density-squared term, a dipolar shift term, and a quad-
rupolar tidal term. The first term in braces in Eq. (24) is the

product of the monopole second-order density at ri with the
linear densities at rj and the origin, with a corresponding
term for ri by symmetry [the corresponding term with the
second-order density at the origin has been cancelled by
the remaining terms in square brackets in Eq. (15)]. The
second, third, and fourth terms are the products of the
dipole second-order densities at the origin, ri, and rj
respectively with the linear densities at the other points,
and the terms on third line are the equivalent terms for the
tidal part of the second-order density. Finally, the terms on
the fourth line are the remaining terms in square brackets in
Eq. (15) which have not cancelled.
Equation (24) is not particularly useful since none of the

fields involved has been smoothed. In particular, no
smoothing scale has been specified for δ0. The real-space6Our Fourier convention is such that δðrÞ ¼ R

d3k
ð2πÞ3 δðkÞeik·r.
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three-point function for smoothed fields is rather compli-
cated and better described in Fourier space, so we defer
discussion of smoothing to the next section where we
compute the conditional angular power spectrum.
Nevertheless,we can gain some insight from this expression.
Consider the case where only long-wavelength modes
contribute to the local density field, such that it can be
taken as linear (we will tighten up this statement in the next
section where we consider smoothed fields). Then we can
neglect the second term in braces, the first term on the third
line, and the entire fourth line of Eq. (24). If only wave
numbers having k < kmax contribute to δ0 then when r ≪
k−1max we have ξðrÞ ≈ σ2 and ΩðrÞ ≈ rσ2=3. We also have
ξ0ðrÞΩðdÞ ≪ ξ0ðdÞΩðrÞ because the integrand of ξ0ðrÞ is
suppressed by the restriction k < kmax while the integrand of
ΩðrÞ is enhanced—see Eqs. (22) and (23). The tidal terms
proportional toψðrÞ are quadratic in rwhen r ≪ k−1max, so the
remaining terms on the third line of Eq. (24) are suppressed
by factors∼ðrkmaxÞ2 and can hence be neglected. This leaves
us with

covðδi; δjjδ0Þ

≈ ξðdÞ − σ2 þ
�
68

21
ξðdÞ þ ½rj cos α − ri cosϕ�

ξ0ðdÞ
3

�
δ0

¼ ξðdÞ − σ2 þ
�
68

21
ξðdÞ þ d

ξ0ðdÞ
3

�
δ0

ðkmax ≪ kNL; r−1i ; r−1j Þ; ð25Þ

where the third line follows from the second by the
definitions of the angles α and ϕ. Equation (25) is the
Gaussian conditional correlation plus a term precisely
matching the approximate conditional correlation function
derived in Sec. II A using effective curvature arguments.
This should come as no surprise of course but provides a
useful check on Eq. (24).

D. The conditional angular power spectrum of
smoothed fields

In the previous section we applied the general condi-
tional covariance expression Eq. (15) to the real-space dark
matter field, which allowed us to quickly derive the
conditional correlation of unsmoothed fields Eq. (24).
This expression is not particularly useful however, since
no smoothing scale has been specified for δ0, the local
density contrast. Ultimately we expect the corrections from
conditioning will be most significant for gravitational
lensing observables, which inevitably pick up contributions
from nearby structure in projection. This suggests we need
not worry too much about smoothing the two remote
density fields, since for lensing we will ultimately be
effectively replacing them with the gravitational potential.
Smoothing is most easily implemented in Fourier space,

and since the non-Gaussian terms which are the focus of

this work are the only contribution for l > 0 we will now
compute the conditional angular power spectrum of density
fluctuations. Theoretical modelling of cosmological sta-
tistics usually starts with a Fourier-space expression, which
provides further motivation for working in spherical-
harmonic space. The derivation is slightly involved, and
the reader only interested in the final expression may skip
to Eq. (39).
Since conditioning on δ0 introduces no preferred direc-

tion, the conditional density field must be statistically
isotropic.7 With δlmðrÞ the spherical multipoles of the
density field at r, we define the conditional angular power
spectrum C̃lðri; rjÞ as

covðδlmðriÞ;δl0m0 ðrjÞjδ0Þ¼ ð−1Þm0
δKll0δ

K
m−m0C̃lðri;rjÞ; ð26Þ

where δKab is the Kronecker delta and where C̃lðri; rjÞ is
symmetric in its arguments and can be written in terms of
the real-space conditional correlation function as

C̃lðri;rjÞ¼
Z

d2r̂iY�
lmðr̂iÞ

Z
d2r̂jYlmðr̂jÞcovðδðriÞ;δðrjÞjδ0Þ:

ð27Þ

Substituting in Eq. (15) and noting that δ00ð0Þ ¼
ffiffiffiffiffiffi
4π

p
δ0 we

find that

C̃lðri;rjÞ¼Clðri;rjÞ−
4πξðriÞξðrjÞ

σ2
δKl0

þ½Bm−m0
ll0 ðri;rj;0Þð−1Þm−ξðriÞB000

000ðrj;0;0ÞδKl0
−ξðrjÞB000

000ðri;0;0ÞδKl0þξðriÞξðrjÞB000
000ð0;0;0ÞδKl0�

×
δ0

σ2
ffiffiffiffiffiffi
4π

p ; ð28Þ

where we have introduced the bispectrum of the
multipoles defined by hδl1m1

ðr1Þδl2m2
ðr1Þδl3m3

ðr3Þi≡
Bm1m2m3

l1l2l3
ðr1; r2; r3Þ. Note that C0ðri; 0Þ ¼ 4πξðriÞ.

The m-dependence of the bispectrum follows from
isotropy, and leads to the definition of the reduced
bispectrum bl1l2l3ðr1; r2; r3Þ as

Bm1m2m3

l1l2l3
ðr1r2r3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3
0 0 0

��
l1 l2 l3
m1 m2 m3

�
× bl1l2l3ðr1; r2; r3Þ; ð29Þ

where the terms in parentheses are the Wigner 3j symbols.
From this it follows that the conditional angular power
spectrum is

7This can be seen at tree-level from Eq. (24), where the
conditional correlation function depends only on ri, rj, and cos β.
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C̃lðri; rjÞ ¼ Clðri; rjÞ −
4πξðriÞξðrjÞ

σ2
δKl0

þ ½bll0ðri; rj; 0Þ − ξðriÞb000ðrj; 0; 0ÞδKl0
− ξðrjÞb000ðri; 0; 0ÞδKl0
þ ξðriÞξðrjÞb000ð0; 0; 0ÞδKl0�

δ0
4πσ2

; ð30Þ

Therefore, for l > 0 the leading-order correction to the
angular power spectrum is bll0ðri; rj; 0Þδ0=ð4πσ2Þ.
It is worth noting at this point that we have assumed that

the density field is accessible over the full sky in order to
obtain the full set of spherical multipoles. In reality we
observe the density field in a finite survey window, which
complicates the calculation of the conditional power spec-
trum since the window induces mixing between Fourier
modes. One particular feature of the finite-sky case relevant
to the discussion is the use of a local average density instead
of a global average in defining the density contrast. As
discussed in Ref. [27], the measured density contrast in the
survey window is δMðn̂Þ ¼ ½δðn̂Þ − δL�=ð1þ δLÞ, where δL
is the density contrast averaged over the survey patchmostly

having contributions from supersurvey modes. Since the
local density field correlates with δðn̂Þ in exactly the same
way as δL, to leading order this measured field is uncorre-
lated with δ0 and hence in the Gaussian case there is no
correction from conditioning, even for l ¼ 0. The same
argument in fact holds on the full sky, but there the ambiguity
between using the ensemble-averaged mean density or the
realization-dependent measured mean density to define
density contrasts only impacts the l ¼ 0 mode. On the cut
sky one needs to be careful about which mean one is using,
but since in practice we are interested in lensing we will
consistently define density contrasts with respect to the
FRW ensemble-averaged density.
To keep things as symmetric for as long as possible

we will first compute the general reduced bispectrum
bl1l2l3ðr1; r2; r3Þ. This was first done in Ref. [28], although
there are some missing factors of i which are corrected in
Ref. [29]. We repeat the derivation here in a slightly clearer
fashion and incorporate smoothing.
Writing δðrÞ ¼ δð1ÞðrÞ þ δð2ÞðrÞ þ…, the bispectrum of

smoothed fields follows from writing the density field
multipoles in terms of the Fourier modes δðkÞ and reads

Bm1m2m3

lll2l3
ðr1; r2; r3Þ ¼

Z
k21dk1
2π2

Wðk1RÞ
Z

k22dk2
2π2

Wðk2RÞ
Z

k23dk3
2π2

Wðk3RÞ
Z

d2k̂1

Z
d2k̂2

Z
d2k̂3il1þl2þl3

× jl1ðk1r1Þjl2ðk2r2Þjl3ðk3r3ÞY�
l1m1

ðk̂1ÞY�
l2m2

ðk̂2ÞY�
l3m3

ðk̂3Þhδð2Þðk1Þδð1Þðk2Þδð1Þðk3Þi þ cyc:; ð31Þ

where WðkRÞ is the smoothing kernel, which we assume is isotropic.
Now, let us focus on the term in Eq. (31) for which the nonlinear field is δðr1Þ. The tree-level Fourier space bispectrum in

Einstein de-Sitter (although the cosmology-dependence is very weak) is [26]

hδð2Þðk1Þδð1Þðk2Þδð1Þðk3Þi ¼ 2ð2πÞ3F2ðk2;k3ÞPðk2ÞPðk3ÞδDðk1 þ k2 þ k3Þ: ð32Þ

We now write the F2 kernel as

F2ðk2;k3Þ ¼
X
L

fLðk2; k3ÞLLðk̂2 · k̂3Þ ¼ 4π
X
L

fLðk2; k3Þ
2Lþ 1

X
M

YLMðk̂2ÞY�
LMðk̂3Þ ð33Þ

where LL is a Legendre polynomial. This implies
that f0ðk2; k3Þ ¼ 17=21, f1ðk2; k3Þ ¼ ðk2=k3 þ k3=k2Þ=2,
f2ðk2;k3Þ¼4=21, and fLðk2; k3Þ ¼ 0 for L > 2.
Now we write the Dirac delta function as the Fourier

transform of unity and expand its Fourier exponential in
spherical harmonics. The integral over k̂1 in Eq. (31) for
our term is trivial and enforces l ¼ l1 and m ¼ −m1. The
integrals over k̂2 and k̂3 involve three spherical harmonics
and so can be written as products of 3j symbols. The same
is true of the integral over r̂. This leaves a sum over the
product of six 3j symbols, and the remaining integrals over
k1, k2, k3, and r. The three 3j symbols with nonzero m-
arguments can be summed over m using Eq. (8.7.3.12) of
Ref. [30] and written as the product of a 6j symbol and a 3j
symbol—this 3j symbol contains all the m-dependence of

the bispectrum and is consistent with isotropy. Following
the notation of Ref. [28] and Ref. [29] we define the
geometric quantities

gl1l2l3 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1þ1Þð2l2þ1Þð2l3þ1Þ

4π

r �
l1 l2 l3
0 0 0

�
ð34Þ

and

Il1l2l3ll0l00 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4πÞ3ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

q
×

�
l l00 l1
0 0 0

��
l0 l l2
0 0 0

��
l00 l0 l3
0 0 0

�
ð35Þ

and finally
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Ql1l2l3
ll0l00 ≡ Il1l2l3ll0l00

�
l1 l2 l3
l0 l00 l

�
ð−1Þlþl0þl00 ; ð36Þ

where the term in braces is a Wigner 6j symbol.

Making all these replacements, using the explicit expres-
sions for the fL coefficients and then using the definition of
the reduced bispectrum gives, finally

bl1l2l3ðr1; r2; r3Þ ¼ 4π
fl1l2l3g
gl1l2l3

Z
k21dk1
2π2

Wðk1RÞ
Z

k22dk2
2π2

Wðk2RÞ
Z

k23dk3
2π2

Wðk3RÞð−iÞl2þl3jl1ðk1r1Þjl2ðk2r2Þjl3ðk3r3Þ

×
Z

r2drjl1ðk1rÞ
X
l0;l00

il
0þl00 ð2l0 þ 1Þð2l00 þ 1Þjl0 ðk2rÞjl00 ðk3rÞ2Pðk2ÞPðk3Þ

×

�
17

21
Ql1l2l3

l00l00 þ 1

2

�
k2
k3

þ k3
k2

�
Ql1l2l3

l01l00 þ 4

21
Ql1l2l3

l02l00

�
þ sym:; ð37Þ

where fl1l2l3g ¼ 1 if the symmetries of gl1l2l3 are enforced
(i.e., the triangle conditions and l1 þ l2 þ l3 equaling an
even integer), and zero otherwise. Note that Eq. (37) agrees
with the expression in Ref. [29], which can be shown by
using the symmetries of the 3j and 6j symbols and some
relabeling. Note that the power spectra are really unequal-
time power spectra, and we should replace Pðk2Þ →
Pðk2; z2; z1Þ and Pðk3Þ → Pðk3; z3; z1Þ in Eq. (37).
Now, two of the integrals in Eq. (37) can be done

analytically using the orthogonality of spherical Bessel
functions if we assume Wðk1RÞ ¼ 1, i.e., if we leave the
nonlinear field unsmoothed in each term. Sincewewill want
to at least smooth the local density field, this suggests that we
will have to neglect any nonlinearity in δ0. With R the
smoothing scale of the local density, this implies thatwemust

chooseR sufficiently large to suppress nonlinearity in δ0. The
resulting smoothed field is δ0ðRÞ. Since wewish to maintain
nonlinearity in the nonlocal fields, we can only make further
analytic progress if we leave these fields unsmoothed. This is
acceptable if we wish to compute lensing spectra, since the
relevant density fields are unsmoothed in this case.
We now take the limit of Eq. (37) when δðr3Þ ¼ δ0, the

local density field smoothed on scale R. We set r1 ¼ ri,
r2 ¼ rj, r3 ¼ 0, l1 ¼ l, l2 ¼ l, and l3 ¼ 0. We’ll continue to
workwith the term having δðr1Þ as a nonlinear field,with the
other two fields linear. The triangle condition is clearly met,
and fll0g ¼ 1. We also have gll0 ¼ ð−1Þl ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þ=4πp

.
The coefficients Qll0

l0Ll00 can be computed straightforwardly
for L ¼ 0, 1, 2 and are

Qll0
l00l00 ¼ δKl000ð4πÞ3=2

ð−1Þlffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p δKl0l;

Qll0
l01l00 ¼ δKl001

ð4πÞ3=2ð−1Þl
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
�
lþ 1

2lþ 3
δKl0;lþ1

þ l
2l − 1

δKl0;l−1

�
;

Qll0
l02l00 ¼ δKl002

ð4πÞ3=2ð−1Þl
5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
�

3ðlþ 1Þðlþ 2Þ
2ð2lþ 3Þð2lþ 5Þ δ

K
l0;lþ2

þ lðlþ 1Þ
ð2l − 1Þð2lþ 3Þ δ

K
l0;l þ

3ðl − 1Þl
2ð2l − 3Þð2l − 1Þ δ

K
l0;l−2

�
: ð38Þ

Substituting these coefficients into Eq. (37), using the recursion relations for the spherical Bessel functions and their
derivatives, and neglecting nonlinearity in δ0ðRÞ, we finally obtain the conditional angular power spectrum for l > 0 as
C̃lðri; rjÞ ≈ Clðri; rjÞ þ ΔClðri; rjÞ with

ΔClðri;rjÞ¼4π

Z
k2dk
2π2

Pðk;zi;zjÞjlðkrjÞ

×

�
34

21
ξRðriÞjlðkriÞþ

�
kΩRðriÞ−

ξ0RðriÞ
k

�
j0lðkriÞ−

8

21
ψRðriÞ

�
3

2
j00l ðkriÞþ

1

2
jlðkriÞ

��
δ0ðRÞ
σ2ðRÞþðri↔ rjÞ: ð39Þ

The correlation functions of Sec. II C reappear in Eq. (39) in smoothed form as

ξRðrÞ ¼
Z

k2dk
2π2

Pðk; z; 0Þj0ðkrÞWðkRÞ; ð40Þ

ALEX HALL PHYS. REV. D 101, 043519 (2020)

043519-10



ξ0RðrÞ ¼ −
Z

k2dk
2π2

Pðk; z; 0Þkj1ðkrÞWðkRÞ; ð41Þ

ΩRðrÞ ¼
Z

k2dk
2π2

Pðk; z; 0Þ
k

j1ðkrÞWðkRÞ; ð42Þ

ψRðrÞ ¼ −
Z

k2dk
2π2

Pðk; z; 0Þj2ðkrÞWðkRÞ: ð43Þ

Note that σ2ðRÞ ≠ ξRð0Þ, since σ2ðRÞ has WðkRÞ2 in its
integrand rather than WðkRÞ.
Equation (39) is the first main result of this work,

representing the leading-order correction to the angular
power spectrum of density fluctuations in spherical shells
for l > 0 due to conditioning on the local smoothed density
contrast. One may verify that this expression is consistent
with the real-space three-point function in Eq. (24). To
show this, note that ∂d=∂ri ¼ − cosϕ and ∂d=∂rj ¼ cos α,
and that j1 and j2 can be written as derivatives of j0. The
agreement then follows from taking second derivatives of d
with respect to ri and rj.
So far, the only source of stochasticity in deriving

Eq. (39) has been that of the density field itself, i.e.,
cosmic variance. In practice the fields also contain obser-
vational (including Poisson) noise. This can be easily
incorporated by replacing all power spectra and variances
in the above equations with their noisy versions. In
particular, we can in practice only make a noisy estimate
of the local density field. In this case, the variance σðRÞ
should be replaced by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ðRÞ þ σ2NðRÞ

p
, where σ2NðRÞ is

the smoothed noise variance. δ0ðRÞ is then a noisy estimate
of the local density, for example that arising from a point
estimate such as a maximum-likelihood estimator. To keep
our results as general as possible, we will neglect noise and
instead account for it by quoting uncertainties in δ0ðRÞ or

νðRÞ ¼ δ0ðRÞ=σðRÞ which should bracket the typical
corrections ΔCl.
In Fig. 3 we plot the four correlation functions

defined in Eqs. (40)–(43) for our preferred smoothing
scale R ¼ 120 h−1Mpc. All the correlation functions
except ξRðrÞ go to zero as r → 0, and all go to zero for
r ≫ R. The result is that ξ0RðrÞ, ΩRðrÞ and ψRðrÞ have
support mostly around r ≈ R, whereas ξRðrÞ is large for
r≲ R and strongly suppressed for r≳ R.
In Fig. 4 we plot the fractional correction to the angular

auto power spectrum of density fluctuations in units of the
normalized local fluctuation νðRÞ ¼ δ0ðRÞ=σðRÞ, i.e., the
r.m.s. fractional correction.We set the smoothing scale equal
to R ¼ 120 h−1Mpc, as discussed in Sec. II A. The correc-
tion due to our own local density can be obtained by
multiplying the curves in Fig. 4 by νðRÞ, where our estimate
from theC15 density field is νð120h−1MpcÞ≈0.85�0.53—
we choose to display results in units of νðRÞ so that any
estimate of the local density contrast can be inserted. In the
left panel we plot results for three spherical shells located at
z ¼ 0.15, z ¼ 0.32, and z ¼ 0.43, corresponding to the
lower, effective, and upper redshifts of the BOSS LOWZ
galaxy sample [31], as a function of angular multipole. In
the right panel we plot the radial dependence for a few
choices of l.
The typical size of the correction to the Cl are ∼10−3 for

the BOSS LOWZ redshift shells, i.e., at the subpercent
level. At the effective redshift of LOWZ the corrections are
smaller, at the ∼10−4 level and hence negligible for νðRÞ ∼
1 as suggested by the 2Mþþ catalogue. As shown in the
left panel of Fig. 4, the largest effects are at the largest
angular scales, although the dependence on l is quite weak.
Note also that the sign of the correction is negative, i.e., for
positive δ0ðRÞ conditioning on the local density suppresses
the angular power spectrum for these redshifts.
The correction from conditioning is larger for closer

redshift shells, as expected. The right panel of Fig. 4 shows

FIG. 3. Left panel: The functions ξRðrÞ (upper blue) and ψRðrÞ (lower orange) defined in the text for a smoothing scale of
R ¼ 120 h−1 Mpc. Right panel: The functions ΩRðrÞ and ξ0RðrÞ defined in the text, normalized to the equality scale keq and for
R ¼ 120 h−1 Mpc. The dashed horizontal line denotes zero correlation. Both panels assume a linear matter power spectrum.
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that for r≲ 100 h−1Mpc (i.e., z≲ 0.03) the corrections can
be ≳10%, roughly independent of l (in agreement with the
left panel). The radial dependence shown here roughly
follows that of ξRðrÞ, i.e., the green curve in Fig. 2. For
r≳ R the correction quickly becomes subpercent.
Since our expression for the conditional power spectrum

is only valid at second order in perturbation theory, we need
to be careful to avoid too much sensitivity to very nonlinear
scales. To check this we compute Eq. (39) using both the
linear power spectrum (formally correct at this order in
perturbation theory) and a nonlinear power spectrum
computed using the HALOFIT correction of Ref. [32], shown
as the dashed curves in Figure 4. The impact of nonlinear
scales is non-negligible for all terms but is generally at the
10% level. At l≳ 10 the sensitivity to nonlinear scales is
more severe—the small oscillations seen in the left panel of
Fig. 4 are numerical artefacts arising from truncation of the
k-integral in Eq. (39) at kmax ¼ 2.5 h−1Mpc. The sensi-
tivity of the non-Gaussian correction ΔCl to small scales is
greater than for the unconditional angular power spectrum,
so we must take care to check that our results are not too
sensitive to nonlinear wave numbers.
Note that all the corrections shown here are less than the

cosmic variance uncertainty on Cl, even when this cosmic
variance is itself conditioned on the local density. It is easy
to show that at leading order the conditional cosmic
variance is just the familiar

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð2lþ 1Þp

in units of the

fractional difference, which suggests that for a typical
δ0ðRÞ=σðRÞ the correction to the angular power spectrum is
negligible, even for close redshift bins. It may be the case
that there is a choice of R for which δ0ðRÞ is sufficiently
large to produce observable corrections. Although Fig. 1
casts doubt on this, a large observable correction is
certainly not ruled out.
In Fig. 5 we plot the various contributions to Eq. (39),

grouped by their angular dependence in the F2 kernel. In
detail, the monopole is the term in Eq. (39) proportional to
ξR, the dipole is the term involving ΩR and ξ0R, and the
quadrupole is the term proportional to ψR. In this figure we
consider a single spherical shell at z ¼ 0.32, the effective
redshift of the BOSS LOWZ sample. The monopole term is
dominant on these angular scales, implying the radial
dependence of the correction is given roughly by ξRðrÞ,
as suggested by Fig. 4 and Fig. 2. Again, changing the
matter power spectrum on nonlinear scales can change the
results at the 10% level.
To summarize this section, we have computed the angular

power spectrum of density fluctuations conditioned on our
smoothed local density contrast. For large smoothing scales
a perturbative treatment is possible, with corrections at the
ten-percent level for very nearby redshift shells and large
angular scales, rapidly dropping with redshift. The maximal
size of the correction is in rough agreement with the order-
of-magnitude estimate made in Sec. II A. All corrections
appear to be within cosmic variance for the typical local

FIG. 4. Left panel: R.m.s. fractional correction to the l > 0 angular power spectrum of matter density fluctuations on spherical shells at
z ¼ 0.15 (blue lower curve), z ¼ 0.32 (orange middle curve) and z ¼ 0.43 (green upper curve), for R ¼ 120 h−1 Mpc. Dashed curves
use a matter power spectrum corrected with HALOFIT. The correction due to our own local density can be obtained by multiplying these
curves by νðRÞ ¼ δ0ðRÞ=σðRÞ, with our C15 estimate being νð120 h−1 MpcÞ ≈ 0.85� 0.53. Corrections at these distances are at the
subpercent level and well within the (conditional) cosmic variance on all angular scales. Right panel: Same as left panel but as a function
of the radial distances of the spherical shells and for the largest few angular scales. All the curves lie roughly on top of each other. The
radial behavior seen here roughly matches that of the ξRðrÞ function plotted in Fig. 2. Corrections can reach ∼10% for nearby shells but
are still within the conditional cosmic variance, which is roughly

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð2lþ 1Þp

in units of the fractional difference.

ALEX HALL PHYS. REV. D 101, 043519 (2020)

043519-12



density contrast estimated from the C15 density field.
However, since we have not considered smoothing the
remote density contrast, biased tracers, or redshift-space
effects, our results are of limited practical use. For this
reason, we now turn to computing the impacts on gravita-
tional lensing statistics, also considered in R19. Since
lensing inevitably includes contributions from nearby struc-
ture in projection, corrections from conditioning are poten-
tially relatively more important.

III. APPLICATION TO GRAVITATIONAL
LENSING

In this section we will apply Eq. (39) to the lensing
convergence field in direction n̂ for sources at a distance r,
κðn̂; rÞ. The key quantity to compute is now the mixed
bispectrum bκκδll0 ðr1; r2; 0Þ for sources at distance r1 and r2.
Before we proceed we should note that all second-order

contributions to the convergence should be included, not
just those due to large-scale structure calculated in the
previous section. In particular, to be consistent we must
include post-Born effects at second-order in κðn̂Þ—the
relevant cross-bispectrum term at leading post-Born order
in the flat-sky approximation has recently been presented in
Ref. [33]. Post-Born effects are likely to be most relevant
for distant sources such as the CMB, where photon
trajectories are sufficiently long that the post-Born signal
can accumulate and become comparable with large-scale
structure terms [33–35]. For the nearby source redshifts we
consider, we expect post-Born terms to be subdominant to

second-order density terms, so to keep the analysis simple
we will neglect post-Born terms in κðn̂Þ, noting that a
consistent second-order analysis could use a full-sky version
of the cross-bispectrum from Ref. [33] as a starting point.
Neglecting post-Born effects and the subdominant radial

derivative terms, the lensing convergence from a source at
distance r1 is

κðn̂; r1Þ ¼
Z

r1

0

driWðri; r1Þδðrin̂; riÞ; ð44Þ

where the lensing kernel is Wðri; r1Þ ¼ 3ΩmH2
0

2c2 ½1þ
zðriÞ�riðr1 − riÞ=r1 in our spatially flat cosmology, and
the second argument of the density contrast is its time
dependence on the zeroth-order lightcone.
The conditional lensing power spectrum for l > 0 is then

given by

C̃κκ
l ðr1; r2Þ ¼

Z
r1

0

driWðri; r1Þ
Z

r2

0

drjWðrj; r2ÞC̃lðri; rjÞ

ð45Þ

where C̃lðri; rjÞ is given in Eq. (39). Note that we still work
to second order in the fields, which means that contribu-
tions from small jri − rjj need to be sufficiently suppressed
in the lensing integrals. This means we need to make sure
r1 and r2 are sufficiently large and ensure we do not
consider small angular scales where our weak non-
Gaussianity and tree-level approximations break down.
We will check these criteria are met by recomputing all
numerical results with HALOFIT power spectra.
The double integral in Eq. (45) adds significant computa-

tional complexity to the evaluation of ΔCκκ
l . Fortunately,

we can write down a Limber approximation [36] which will
prove to be accurate over a wide range of angular scales.
Readers uninterested in the derivation can skip to the main
results given in Eqs. (56) and (58).

A. Limber approximations

The correction to the angular power spectrum for l > 0
can be written as the sum of three terms given by

Δ0
l ðr1; r2Þ ¼

Z
r1

0

driWðri; r1Þ
Z

r2

0

drjWðrj; r2Þ

×
Z

∞

0

k2dk
2π2

f0ðk; ri; rjÞjlðkriÞjlðkrjÞ

þ ðr1 ↔ r2Þ; ð46Þ

Δ1
l ðr1; r2Þ ¼

Z
r1

0

driWðri; r1Þ
Z

r2

0

drjWðrj; r2Þ

×
Z

∞

0

k2dk
2π2

f1ðk; ri; rjÞj0lðkriÞjlðkrjÞ

þ ðr1 ↔ r2Þ; ð47Þ

FIG. 5. The contributions to the conditional l > 0 angular
power spectrum of matter density fluctuations for a smoothing
scale R ¼ 120 h−1 Mpc at z ¼ 0.32. The curves are labeled
according to their angular dependence in the F2 kernel and
are ordered from top to bottom as monopole (blue), dipole
(orange), and quadrupole (green). Dashed curves use a matter
power spectrum corrected with HALOFIT. The monopole is the
dominant term on all angular scales.
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Δ2
l ðr1; r2Þ ¼

Z
r1

0

driWðri; r1Þ
Z

r2

0

drjWðrj; r2Þ

×
Z

∞

0

k2dk
2π2

f2ðk; ri; rjÞj00l ðkriÞjlðkrjÞ

þ ðr1 ↔ r2Þ; ð48Þ

where the functions f0, f1, and f2 are smooth functions of
their arguments. The Limber approximation can be applied
to the first term in the standard way, by assuming that the
spherical Bessel functions oscillate many times over the
characteristic length scales of f0, which allows f0 to be
pulled out of the integral. We can then use the orthogonality
of the spherical Bessels to do the k integral, which then
allows one of the radial integrals to be done, leaving us with
one remaining radial integral over a smooth slowly varying
integrand, a good approximation even at fairly low l. This
gives

Δ0
l ðr1; r2Þ ≈ 2

Z
rmax

0

dri
Wðri; r1ÞWðri; r2Þ

4πr2i
f0ðl=ri; ri; riÞ;

ð49Þ
where rmax ¼ minðr1; r2Þ. However, this procedure fails
with the other two terms, since these involve derivatives of
spherical Bessel functions. Instead we follow Ref. [37] and
extend the techniques of Ref. [38] to derivative terms.

We start with the identityZ
∞

0

drfðrÞJνðkrÞ ≈ k−1fðν=kÞ þO½k−3f00ðν=kÞ�; ð50Þ

and retain only the leading-order term. In the case ofΔ0
l , we

apply this approximation first to the rj integral and assume
that r2 ≫ ν=k so we can set the upper limit to infinity. This
will break down when rj is close to r2, but this should be
benign since the integrand is there suppressed by the
lensing kernel. Applying the identity again to the k-integral
then gives Eq. (49) with lþ 1=2 instead of l in the right-
hand side, and with an upper limit of r1 instead of
minðr1; r2Þ. Clearly the latter choice makes more sense,
so we put this limit in by hand.
We can follow the same steps for Δ1

l and Δ2
l after first

converting the spherical Bessel derivatives into undiffer-
entiated jl with mixed l values, i.e., using

j0lðxÞ ¼
l

2lþ 1
jl−1ðxÞ −

lþ 1

2lþ 1
jlþ1ðxÞ ð51Þ

j00l ðxÞ ¼
ðl − 1Þl

ð2l − 1Þð2lþ 1Þ jl−2 −
2lðlþ 1Þ − 1

ð2l − 1Þð2lþ 3Þ jlðxÞ

þ ðlþ 1Þðlþ 2Þ
ð2lþ 1Þð2lþ 3Þ jlþ2ðxÞ ð52Þ

This gives, for Δ1
l ,

Δ1
l ðr1; r2Þ ≈

Z
minðr1;r2Þ

0

dr
Wðr; r1Þ
4πr2

�
2ν − 1

4ν

ffiffiffiffiffiffiffiffiffiffiffi
ν − 1

ν

r
W

�
ν

ν − 1
r; r2

�
f1

�
ν − 1

r
; r;

ν

ν − 1
r

�

−
2νþ 1

4ν

ffiffiffiffiffiffiffiffiffiffiffi
νþ 1

ν

r
W

�
ν

νþ 1
r; r2

�
f1

�
νþ 1

r
; r;

ν

νþ 1
r

��
þ ðr1 ↔ r2Þ; ð53Þ

where ν ¼ lþ 1=2.
For Δ2

l we have

Δ2
l ðr1; r2Þ ≈

Z
minðr1;r2Þ

0

dr
Wðr; r1Þ
4πr2

�
ανW

�
ν

ν − 2
r; r2

�
f2

�
ν − 2

r
; r;

ν

ν − 2
r

�
− βνWðr; r2Þf2

�
ν

r
; r; r

�

þ γνW
�

ν

νþ 2
r; r2

�
f2

�
νþ 2

r
; r;

ν

νþ 2
r
��

þ ðr1 ↔ r2Þ; ð54Þ

where

αν ¼
ð2ν − 3Þð2ν − 1Þðν − 2Þ12

16ðν − 1Þν3
2

;

βν ¼
½ð2ν − 1Þð2νþ 1Þ − 2�

8ðν2 − 1Þ ;

γν ¼
ð2νþ 1Þð2νþ 3Þðνþ 2Þ12

16ν
3
2ðνþ 1Þ : ð55Þ

Note that these expressions are only formally valid when ν > 2.
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The correction to the convergence angular power spec-
trum is, for l > 0

ΔCκκ
l ðr1;r2Þ¼ ½Δ0

l ðr1;r2ÞþΔ1
l ðr1;r2ÞþΔ2

l ðr1;r2Þ�
δ0ðRÞ
σ2ðRÞ ;

ð56Þ

with

f0ðk; ri; rjÞ ¼ 4πPðk; zi; zjÞ
�
34

21
ξRðriÞ −

4

21
ψRðriÞ

�

f1ðk; ri; rjÞ ¼ 4πPðk; zi; zjÞ
�
kΩRðriÞ −

ξ0RðriÞ
k

�

f2ðk; ri; rjÞ ¼ 4πPðk; zi; zjÞ
�
−
4

7
ψRðriÞ

�
: ð57Þ

In the limit that l ≫ 1 we have αν → 1=4, βν → 1=2, and
γν → 1=4. Assuming that PðkÞ varies much more rapidly
than the radial dependence of either W, f1 or f2, we can
Taylor expand the k-dependence of f1 and f2 to give, in the
l ≫ 1 limit

ΔCκκ
l ðr1; r2Þ ≈ 2

δ0ðRÞ
σ2ðRÞ

Z
minðr1;r2Þ

0

dr
Wðr; r1ÞWðr; r2Þ

r2

×

��
34

21
ξRðrÞ −

4

21
ψRðrÞ

�
Pðl=r; z; zÞ

þ
�
r
l
ξ0RðrÞ −

l
r
ΩRðrÞ

�
P0ðl=r; z; zÞ

r

−
4

7
ψRðrÞ

P00ðl=r; z; zÞ
r2

�
ð58Þ

where P0ðkÞ≡ ∂PðkÞ=∂k and P00ðkÞ≡ ∂2PðkÞ=∂k2 are
derivatives of the matter power spectrum. Equations (56)
and (58) are the second main results of this work and
represent the corrections to the lensing convergence angular
power spectrum from conditioning on δ0ðRÞ in the Limber
approximation. In practice the corrections are only relevant
for low l, so we use the more accurate Eq. (56) for
numerical work. For all results shown we find the
Limber approximation disagrees with the full integration
Eq. (45) to at worst a few percent for l ≥ 10. For l ≤ 10 we
use the full result of Eq. (45).
The correction to the lensing angular power spectrum

can be essentially thought of as arising from a multiplica-
tive correction to the linear growth factor DðrÞ of 1þ
αδ0ðRÞξRðrÞ=σ2ðRÞ where α is a numerical factor of order
unity. This is only significant for r much less than a
correlation length, and since the lensing kernel suppresses
the contribution of nearby structure we can expect only a
very small correction to Cκκ

l .
In Fig. 6 we plot the fractional correction to the lensing

angular power spectrum in units of the local fluctuation

νðRÞ, for a smoothing radius R ¼ 120 h−1Mpc and four
source redshifts between zs ¼ 0.1 and zs ¼ 0.8. Note that
the l ¼ 1 mode is unobservable in cosmic shear experi-
ments. For reference, the peak of the source distribution for
the Euclid lensing survey is expected to be roughly zs ¼
0.8 [39] and the lower limit of the KiDSþ VIKING-450
lensing survey is zs ¼ 0.1 [40]. The figure shows that
∼10% corrections to the angular power spectrum can arise
at l ¼ 2 and zs ¼ 0.1 and are at the percent level for higher
source redshifts and smaller angular scales. For l≳ 10 the
corrections are subpercent for zs ≳ 0.4. Note that the sign of
the correction is positive on all scales, i.e., conditioning on
a positive local density contrast enhances the lensing
power. As in the case of the density angular power
spectrum, corrections are smaller than the (conditional)
cosmic variance on all scales. At the expected peak redshift
of the Euclid source distribution the corrections are
completely negligible for our estimated value of δ0ðRÞ.
The dashed curves in Fig. 6 have a matter power

spectrum which includes a HALOFIT prescription for non-
linear scales. For low source redshifts we see sizeable
corrections to the predicted Cκκ

l at l > 20. This implies that
our perturbative treatment of non-Gaussianity may be
breaking down in this regime, so the results should be
treated with caution. A more accurate treatment would
involve running constrained N-body simulations [3]. Note
that the correction must become large at sufficiently low R

FIG. 6. R.m.s. fractional correction to the angular power
spectrum of gravitational lensing from a local density fluctuation
in a sphere of radius R ¼ 120 h−1 Mpc, for sources at zs ¼ 0.1
(blue top curve), zs ¼ 0.2 (orange second-from-top curve), zs ¼
0.4 (green second-from-bottom curve) and zs ¼ 0.8 (red bottom
curve). Dashed curves use a matter power spectrum corrected
with HALOFIT. The correction due to our own local density can be
obtained by multiplying these curves by the local density
fluctuation νðRÞ ¼ δ0ðRÞ=σðRÞ, where our estimate from the
C15 density field is νð120 h−1 MpcÞ ≈ 0.85� 0.53.
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and zs, since in this regime nearby structure is highly
correlated with our local density. For cosmological surveys
however the correction appears to negligible.
Our results are in contrast to those of R19, who claim

percent-level effects at all l when δ0 ¼ 0.5 for a Euclid-like
lensing survey. Our results are difficult to compare
since R19 does not quote a smoothing scale for their local
density—however, it is clear from Figure 6 that at the source
redshifts expected to be relevant for Euclid the corrections
are subpercent for all l > 10. The discrepancy is likely due to
R19 taking the Gaussian prediction for l ¼ 0 and applying it
to all l rather than computing the bispectrum, whichwe have
shown is the only contribution at l > 0.
The largest effects of conditioning on the local density

arise at low redshift, where there are large corrections to the
unconditional linear lensing power spectrum from non-
linear structures. Figure 7 shows the fractional correction to
Cκκ
l for zs ¼ 0.1 in units of the local fluctuation, i.e., the

same as the top curve in Fig. 6, along with the fractional
correction to Cκκ

l from nonlinearity in the matter power
spectrum, estimated by using applying a HALOFIT correc-
tion. For the value of νðRÞ estimated in Sec. II A,
νð120 h−1 MpcÞ ≈ 0.85� 0.53, corrections from condition-
ing are greater than those due to unconditional nonlinear
structure only at l < 10. At the scales most accurately
measured by upcoming lensing surveys, corrections due to
conditioning are very subdominant to those from nonlinear
structure for this choice of R, and below cosmic variance.

In Fig. 8 we plot the dependence of the correction on
source redshift for l ¼ 2, the angular scale where the
correction is largest. As hinted at in Fig. 6 the correction
drops rapidly with redshift, although the corrections are at
the percent level for all values of zs considered. The
dominant contribution is from the monopole term in
Eq. (58), i.e., the term proportional to Pðl=rÞ. As suggested
by Fig. 3 the dominant term is that proportional to ξRðrÞ,
confirming our earlier claim that conditioning on the local
density is roughly equivalent to multiplying the linear
growth factor by 1þ αδ0ðRÞξRðrÞ=σ2ðRÞ where α is a
numerical factor of order unity, with α ¼ 34=21 in
Einstein-de Sitter.
Finally, in Fig. 9 we plot the dependence of the r.m.s.

correction to lensing angular power on the smoothing scale
R for zs ¼ 0.2. The dependence is sublinear at low R, with
an l-dependent turnover at high R. This nonmonotonic
behavior is due to the trade-off between the R-dependence
of the correlation function ξRðrÞ (Fig. 2) and that of the
variance σ2ðRÞ (Fig. 1), since the r.m.s correction from
conditioning effectively multiplies the lensing kernel by
ξRðrÞ=σðRÞ. While σðRÞ is a monotonically decreasing
function of R, ξRðrÞ increases with R at high r and
decreases at low r, with the relevant values of r depending
on l and zs.
If some large fluctuation ν� in the local density were

found at, say, R ¼ 200 h−1Mpc, Fig. 9 tells us that the

FIG. 7. Same as Fig. 6 for a source redshift of zs ¼ 0.1 with
(blue solid curve) and without (blue dashed curve) a HALOFIT

matter power spectrum. We also plot the fractional correction to
the lensing angular power spectrum due to nonlinearity in the
matter power spectrum itself (computed with HALOFIT, black
curve). Local corrections to the lensing angular power spectrum
can be more important than those due to nonlinear clustering of
lenses on scales l≲ 10 and very low source redshifts but are well
within cosmic variance for the local density field inferred
from 2Mþþ.

FIG. 8. R.m.s. fractional correction to the l ¼ 2 angular power
spectrum of gravitational lensing for sources at redshift zs and a
smoothing scale R ¼ 120 h−1 Mpc. We plot the total correction
(black dashed curve) and the individual corrections labeled by
their angular dependence in the F2 kernel; monopole (blue upper
curve), dipole (orange lower curve) and quadrupole (green
middle curve). The dot-dashed horizontal line depicts zero
correlation. Corrections can reach ∼10% for nearby sources
but are still within the conditional cosmic variance. Corrections
from nonlinear wave numbers in the matter power spectrum are
negligible on these scales.
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correction from conditioning would be roughly 0.03ν� with
a modest dependence on l on large angular scales and low
source redshifts. A 3σ fluctuation on this large scale could
hence give detectable 10%-level corrections for the lowest
source redshift bins of a Euclid-like survey.

IV. DISCUSSION—INFORMATION,
BIAS, AND CONSISTENCY

We have seen that the conditional angular power
spectrum of density of lensing fluctuations differs from
its unconditional form by a few percent in extreme cases,
and at the subpercent level for the scales and redshifts
typically probed by cosmological surveys. In all cases, it
appears these differences are smaller than cosmic variance.
Nevertheless, it is interesting to ask in what sense neglect-
ing the correction biases measurements of the Cl.
The value of our local density contrast δ0ðRÞ is extra

information which in principle we are free to include or
exclude from a cosmological analysis, in the same way as
any external data correlated with what we measure in a
survey. One might hope therefore that a full joint likelihood
analysis with the measured Cl and δ0ðRÞ would yield
tighter constraints on cosmological parameters than Cl
alone. This work has shown that for l > 0 it is necessary to
account for non-Gaussianity in the Cl when computing the
correlation, so the exact form of this joint likelihood is
complicated. Nonetheless, the correlation between Cl and
δ0 presented in this work is a necessary part of this joint

likelihood. Given its small amplitude we do not expect the
information gain to be significant.
One could alternatively take the view that since we

always observe the Universe from within our local density,
neglecting the correction from conditioning amounts to
using a biased model for the measured power spectra. For a
typical local fluctuation one might naively think that this
bias should be smaller than the cosmic variance on the
measurement (as we have indeed shown), since the sam-
pling distribution of the measured fields has implicitly
marginalized over field values at all spatial locations
outside the survey volume, including at the location of
the observer. In other words, the variance we assign to our
measurement should have implicitly accounted for local
density fluctuations, so differences between the uncondi-
tional and conditional power spectrum should be less than
the cosmic variance (which also includes variance from
density fluctuations at all other spatial locations as well
as at the observer). This picture is complicated by
non-Gaussianity in the sampling distribution of the mea-
surements, but nevertheless one would expect a model
conditioned on the local density to provide a better fit to
the data, since one cannot average out the local fluctuation in
the way that typically happens when averaging a summary
statistic over the survey volume—the ergodic theorem will
not guarantee convergence of the sample mean statistic to its
ensemble mean.
Continuing along these lines, one possible application of

the conditional power spectrum is as a consistency check
on cosmological statistics. Given a measurement of δ0ðRÞ,
the expressions in this paper may be used to predict
conditional angular power spectra. If the cosmological
model is consistent, this conditional model should be a
good fit to measurements of these power spectra. A similar
procedure was used in Ref. [41] to test for consistency
between CMB temperature and polarization measurements
in Planck. We have seen that for δ0ðRÞ estimated from the
2Mþþ catalogue and for the scales and redshifts of
relevance to cosmological surveys the predicted conditional
power spectra are so close to the unconditional power
spectra that this consistency test is passed if the uncondi-
tional models are good fits to the data. For very low redshift
large-scale structure probes the consistency check may be
more effective, since the corrections to the unconditional
power spectra are expected to be larger.
In principle the expressions derived in this paper could

be used to measure the local density field itself on different
smoothing scales. In practice we expect only weak upper
limits on jδ0ðRÞj will be provided by large cosmology
surveys like Euclid. Nevertheless, the possibility of con-
straining local structure from large-scale structure is an
intriguing one.
Finally, pursuing the theme of our local environment and

its influence on cosmology one might wonder if the very
fact that we exist and are able to make astronomical

FIG. 9. R.m.s. fractional correction to the angular power
spectrum of gravitational lensing for sources at redshift zs ¼
0.2 for different smoothing scales R and multipoles l. We plot the
correction at l ¼ 10 (blue upper solid), l ¼ 18 (orange middle
solid) and l ¼ 26 (green lower solid). Dashed curves have been
computed using the HALOFIT correction to the matter power
spectrum. The dependence on the smoothing scale is modest,
although nonlinear corrections are likely significant at high l and
low R.
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observations should be information that needs to be
conditioned on in a cosmological analysis. When comput-
ing ensemble averages of measured summary statistics
(such as the lensing power spectrum), we typical allow the
underlying density field (or more accurately the primordial
curvature fluctuations) to fluctuate at all point in space. If
this set of fluctuations includes universes for which the
conditions at our spatial location are such that the prob-
ability of life forming is very low, should we exclude them
from the ensemble? In principle one could test the impact of
this with constrained hydrodynamic simulations in the
manner of Refs. [8–10]. One might expect this probability
to be related in some way to the local matter density, so the
expressions we have derived could be useful in this respect.
The uncertainties involved likely preclude a quantitative
study, but the concept of “anthropic large-scale structure” is
again intriguing.

V. CONCLUSIONS

The conclusions of this work may be summarized as
follows:

(i) We have shown that for Gaussian fields, condition-
ing the angular power spectrum of density fluctua-
tions Cl on the spherically averaged local density
δ0ðRÞ changes only the l ¼ 0 power, which is
typically unobservable. Changes at l > 0 arises from
non-Gaussianity in the density field, e.g., from
nonlinear structure formation. The leading order
correction is linear in the local density.

(ii) We have identified a broad range of scales and
redshifts where the correction to Cl from condition-
ing on δ0ðRÞ may be computed with a perturbative
treatment. As suggested in R19 we have used a
conditional Edgeworth expansion to show that the
leading-order correction is proportional to the bis-
pectrum of the two remote density fields with the
local density field. Use of the tree-level bispectrum
from second-order perturbation theory and ensuring
the local smoothing scale is sufficiently large makes
the problem tractable, leading to analytic expres-
sions for the conditional correlation function
Eq. (24) and the conditional angular power spectrum
Eq. (39). These expressions agree with rough ana-
lytic expectations in the squeezed limit.

(iii) For a large smoothing radius R ¼ 120 h−1Mpc
chosen to ensure the validity of our perturbative
approach, the correction to Cl from a typical value of
δ0ðRÞ is subpercent at the redshifts of the BOSS
LOWZ galaxy sample. Corrections can reach the
percent-level and even ten-percent level for redshifts
much smaller than R on large angular scales but are
always less than cosmic variance.

(iv) We have made a rough estimate of δ0ðRÞ from
the 2Mþþ density field of C15 (Ref. [19]), finding
that the fluctuation νðRÞ ¼ δ0ðRÞ=σðRÞ is roughly

0.85� 0.53 for R ¼ 120 h−1Mpc. We also made an
alternative estimate from 2Mþþ using the BORG
method of Ref. [21], which gives νð120 h−1MpcÞ ¼
−0.45� 0.79. Corrections to the l > 0 density
power spectrum therefore seem to be negligible
for current surveys.

(v) We have derived the leading-order correction to the
lensing angular power spectrum Cκκ

l in the Born
approximation from conditioning on δ0ðRÞ and
derived its Limber approximant Eq. (56) which is
accurate for l ≥ 10. The correction may be approx-
imately captured by modifying the linear growth
factor as DðaÞ → DðaÞ½1þ αξRðrÞδ0ðRÞ=σ2ðRÞ�,
where a is the scale factor at comoving distance r
on the past lightcone, ξRðrÞ is the linear correlation
between δ0ðRÞ and δðrÞ, and α is a numerical factor
of order unity with α ¼ 34=21 in Einstein-de Sitter.

(vi) For a typical value of δ0ðRÞ the correction to Cκκ
l can

be at the percent level for source redshifts at
zs ¼ 0.1, but quickly becomes small when zs is
increased. For a Euclid-like survey the corrections
are subpercent for l > 10, in contrast to the claims of
R19. The correction is always smaller than cosmic
variance and smaller than other nonlinear correc-
tions to Cκκ

l on all but the largest angular scales.
(vii) In principle failing to apply a correction from

conditioning on our local density may bias mea-
surements of Cl from large-scale structure but the
bias should be smaller than cosmic variance, as we
have indeed found. We would however expect a
better fit to the data from using the conditional
model, and we have highlighted its use as a con-
sistency check on cosmological models.

An additional outcome of this work are the expressions
for the conditional cumulants for weakly non-Gaussian
fields given in Eq. (12) and Eq. (13). These may be of
broader use in astronomical data analysis and generalize
previous expressions in the statistics literature.
Note that in this work we have chosen only to condition

on δ0ðRÞ, the local density contrast averaged in spheres
around the observer. How valid are the results of this work
if a different smoothing kernel were chosen, or nonlocal but
nearby structure were conditioned upon? First note that our
conclusion that only non-Gaussianity in the fields can
change the l > 0 power spectrum remains valid for any
smoothing kernel, since only a connected three-point
function (zero for Gaussian fields) can couple two remote
fields with a local field in the required way—the same is
true if we were to condition on the local gravitational
potential or the local tidal field. In contrast, if we were to
condition on the density at some nonlocal but nearby
overdensity (e.g., the Virgo cluster or the Shapley concen-
tration), we would see a scale-dependent effect at the
Gaussian level. We defer the study of this possibility to
a future work.
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In conclusion, we have found no evidence that residing
within an overdense region of the Universe induces biases
in cosmological statistics in any significant way. As a
caveat however we note that we have pursued a perturbative
approach to the problem, necessarily limiting the range of
scales which can be accurately modeled. A more complete
answer to this question will require the running of con-
strained N-body and possibly hydrodynamic simulations.
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APPENDIX: RECONSTRUCTION OF THE
LOCAL DENSITY FIELD WITH BORG

In this appendix we present an alternative measurement
of the local density field δ0ðRÞ using the Bayesian origin
reconstruction from galaxies (BORG) method of Ref. [21]
for reconstructing the dark matter density field. This
technique provides samples from the full posterior of the
dark matter density field given the 2Mþþ galaxy cata-
logue. We take the mean field and average it in spheres
of radius R around the observer—the result is plotted in
Fig. 10.
We estimate the noise in the spherical average by

averaging the variance of each voxel within each sphere
and dividing by the number of voxels in that sphere, i.e., we
assume that each voxel is independent—this is an approxi-
mation and hence the uncertainties here are lower limits.
The noise is about a factor of two larger than our estimate of
that of the C15 field in Sec. II A but the mean is more robust
since more accurate bias models and mean densities have
been used. The spherical averages of Fig. 1 are typically no

more than 2σ away from those in Fig. 10, in units of the
BORG uncertainty, i.e., the two are consistent.
There is a clear preference for lower spherically

averaged densities in Fig. 10 compared with Fig. 1. At
our favored smoothing radius R ¼ 120 h−1 Mpc we find
that δ0ðRÞ ¼ −0.024� 0.042, which is consistent with
zero density contrast on this scale. This corresponds to a
fluctuation νðRÞ ¼ −0.45� 0.79. Setting δ0 ¼ 0 sets the
leading-order correction to the power spectrum to zero as
well. We have chosen to present the results of this work in
units of the fluctuation δ0ðRÞ=σðRÞ so that any estimate of
δ0ðRÞ can be inserted. The preference of BORG for density
contrasts closer to zero suggests that the corrections to the
power spectrum from conditioning may actually be smaller
than the r.m.s. values we have found in this work, i.e.,
safely negligible in future surveys.
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