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The expansion history of the Universe reconstructed from a combination of recent data indicates a
preference for a changing dark energy (DE) density. Moreover, the DE density appears to be increasing
with cosmic time, with its equation of state being below −1 on average, and possibly crossing the so-called
phantom divide. Scalar-tensor theories, in which the scalar field mediates a force between matter particles,
offer a natural framework in which the effective DE equation of state can be less than −1 and cross the
phantom barrier. We consider the generalized Brans-Dicke (GBD) class of scalar-tensor theories and
reconstruct their Lagrangian given the effective DE density extracted from recent data. Then, given the
reconstructed Lagrangian, we solve for the linear perturbations and investigate the characteristic signatures
of these reconstructed GBD in the cosmological observables, such as the cosmic microwave background
(CMB) anisotropy, the galaxy number counts, and their cross-correlations. In particular, we demonstrate
that the integrated Sachs-Wolfe effect probed by the cross-correlation of CMB with the matter distribution
can rule out scalar-tensor theories as the explanation of the observed DE dynamics independently from the
laboratory and Solar System fifth force constraints.
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I. INTRODUCTION

The observed accelerated expansion of the Universe has
been puzzling cosmologists since its discovery two decades
ago [1,2]. Within the context of general relativity (GR), it
implies the existence of an energy-momentum component
with a negative equation of state (EOS), referred to as dark
energy (DE). The standard cosmological model, ΛCDM, in
which DE is the constant energy of the vacuum, provides a
good fit to a plethora of cosmological observations such as
the cosmic microwave background (CMB) anisotropies
[3,4], baryon acoustic oscillations (BAO) [5–7], type Ia
supernovae [8,9], galaxy clustering [10] and galaxy lensing
[11,12]. However, ΛCDM is not fully satisfactory from the
theoretical perspective, as the observed value of the vacuum
energy requires an extreme fine-tuning of the cosmological
constant Λ in the context of the present understanding of
particle interactions [13]. Also, with the data becoming
more accurate, several “tensions” between different data-
sets have begun to arise when interpreting observations
within the ΛCDM model [4,14–17]. Although these ten-
sions might just be due to unaccounted systematic effects or
rare statistical fluctuations [18], they generated significant
interest in possible extensions of ΛCDM capable of

relieving the tensions [19–26], including the possibility
of the DE density evolving with time [27–30].
Using a combination of available observations, nonpara-

metric reconstructions of the DE dynamics were performed
in [27,28]. Interestingly, they show a preference for an
increasing effective DE density, i.e., one with an EOS,
weff
DE < −1. The reconstruction indicates a crossing of the so-

called phantom divide [31–33] of weff
DE ¼ −1, also reported

earlier studies, such as [34,35]. Such dynamics cannot be
explained by aminimally coupled quintessence field DE but
could be realized in scalar-tensor extensions of GR where
the additional scalar field ϕ mediates a force between
particles [32,36–38]. In fact, scalar-tensor theories possess
enough freedom to reproduce any expansion history.
The aim of this paper is to investigate scalar-tensor

theories of the generalized Brans-Dicke (GBD) type
capable of realizing the expansion histories reconstructed
in [27,28]. Using the observed HðaÞ as input and making
certain assumptions about the scalar field coupling func-
tion, we systematically scan the parameter space to recon-
struct the GBD Lagrangians consistent with that HðaÞ. We
then solve for the cosmological perturbations and calculate
predictions for the CMB and galaxy power spectra and
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other observables to isolate the theories that are in agree-
ment with current data.
Late time deviations from ΛCDM are mainly encoded in

the CMB temperature through the integrated Sachs-Wolfe
(ISW) effect. Although too small to be detected from the
CMB temperature autocorrelation, the ISW contribution
can be probed by cross-correlating the CMB temperature
maps with the foreground galaxies number counts [39–42],
which can be a useful probe for DE [43,44]. In ΛCDM, the
accelerating expansion results in decaying gravitational
potentials, yielding a strictly positive ISW effect. In scalar-
tensor theories, however, the ISWeffect can have a positive
or negative sign depending on whether the enhanced
clustering due to the fifth force, which yields a negative
ISW, dominates over the effect of the accelerating expan-
sion [45,46]. We find that most of the GBD theories
reconstructed in this work predict CMB-matter cross-
correlations that are significantly different from those in
ΛCDM and, therefore, can be ruled out or confirmed with
the next-generation galaxy surveys, such as DESI [47],
LSST [48,49] and Euclid [50–52].
Our main points and results can be summarized as

follows. In Sec. II we discuss the DE reconstruction results
from [28] showing that observations appear to favor a time-
dependent DE density. There is some evidence for a
nonmonotonic evolution and an overall increase of the
DE density with time. As we show in Sec. III, such DE
dynamics could, in principle, be realized in GBD-type
scalar-tensor theories, where it would be a manifestation of
the nonminimal coupling of the scalar field to matter. We
note that, when constraining such theories, one should
directly constrain the DE density, instead of the DE
equation of state, as the latter can be singular. We then
develop a formalism to systematically search for scalar-
tensor theories capable of reproducing the observed expan-
sion history. The GBD theories contain two free functions
of the scalar field, the coupling function FðϕÞ and the
potential VðϕÞ. We consider two cases: model 1, in which
FðϕÞ is a monotonic function of ϕ, and model 2, in which it
is a general function of the scale factor a. In both cases, we
search the parameter space for GBD theories that are free of
instabilities. We find that GBD theories with a monotonic
coupling function cannot accommodate expansion histories
in which the effective DE increased by a large fraction or is
nonmonotonic. Allowing for a general coupling function
FðaÞ makes it possible to find viable GBD theories with a
nonmonotonically evolving and increasing effective DE
density. In Sec. IV, we evaluate the key cosmological
observables predicted by the viable GBD theories that
includes the CMB-galaxy cross-correlation spectra at three
representative redshifts. We find that GBD theories capable
of accommodating an increasing or a nonmonotonic DE
density generically predict a sizable ISW signal at z ∼ 1,
which would be a robust way to rule out such GBD theories
using cosmological datasets alone. We conclude with a
summary in Sec. V.

II. THE RECONSTRUCTED DARK ENERGY
DENSITY

A Bayesian, nonparametric reconstruction of the time
evolution of the DE density was performed in [28] using the
correlated prior method introduced in [53,54]. The effective
DE energy density is modeled through the dimensionless
function XðaÞ that enters the Friedmann equation via

H2 ¼ H2
0½EmðaÞ þ ΩΛXðaÞ�; ð1Þ

where Em≡P
iρiðaÞ=ρ0crit includes contributions of all

matter and radiation fields, i.e., baryons, cold dark matter
(CDM), photons and neutrinos, and XðaÞ≡ρeffDEðaÞ=
ρeffDEða¼1Þ is due to any contribution to the standard
Friedmann equation from terms other than the matter and
radiation. Solving for the cosmological perturbations would
require making additional assumptions regarding the under-
lying DE or modified gravity theory [55,56]; hence, only
observables probing the background expansionwere used in
[28] to keep the reconstruction model independent. The
datasets included the CMB distance priors, the “joint light-
curve analysis” sample of supernovae type Ia (SNe Ia) [57],
the Hubble parameter H0 from [14], the observational
Hubble parameters data [58], and the BAO distance mea-
surements from (i) the 6dF Galaxy survey [6], (ii) SDSS
DR7 main Galaxy sample [59], (iii) the tomographic BOSS
DR12 [60,61], (iv) eBOSS DR14 quasar sample [62] and
(v) the Lyman-α forest of BOSS DR11 quasars [63,64].
In the reconstruction, XðaÞ was parametrized in terms

of its values at N ¼ 40 points in a, i.e., Xi ¼ XðaiÞ,
i ¼ 1;…; N, with ai distributed uniformly in the interval
a ∈ ½1; 0.001�. If Xi were assumed to be independent,
fitting them to data would yield large uncertainties, render-
ing the reconstruction useless.Moreover, treating the bins as
completely independent is an unreasonably strong assump-
tion as, in any specific theory, the effective DE density would
be correlated at nearby points in a. Motivated by these
considerations, the method of [53,54] introduces a prior that
correlates the neighboring bins. Specifically, each Xi is a
treated as aGaussian random variablewith values at different
a correlated according to a specified correlation function,
ξðjΔajÞ ¼ ξðja−a0jÞ≡ h½XðaÞ−XfidðaÞ�½Xða0Þ−Xfidða0Þ�i.
Here, XfidðaÞ is a reference fiducial model, and the corre-
lation function ξ is chosen so that it is nonzero for ja − a0j
below a given “correlation length” ac and approaches zero at
larger separations. The form of ξ was taken to be [53,54]

ξðjΔajÞ ¼ ξð0Þ
1þ ðjΔaj=acÞ2

; ð2Þ

although, as demonstrated in [53], the details of the
particular functional form are not essential as long as it
has the rough shape that interpolates from 1 at Δa ¼ 0
to 0 at Δa ≫ ac. The parameter ξð0Þ sets the strength

ZUCCA, POGOSIAN, SILVESTRI, WANG, and ZHAO PHYS. REV. D 101, 043518 (2020)

043518-2



of the prior and is related to the expected variance of
the mean σ2X̄ through σ2X̄ ≃ πξð0Þac=ðamax − aminÞ. The
Gaussian prior effectively acts as an extra term in the
total χ2, that is used to constrain the values of XðaÞ in
40 bins in the interval a ∈ ½0.001; 1�.
The advantage of the correlated prior approach is that

it allows one to control the strength of the prior and find
the Bayesian evidence for each choice of the prior
parameters. If the evidence for DE dynamics is larger
than that for ΛCDM for a broad range of values of ac
and σX̄, i.e., does not require one to optimize them to
improve the evidence, then one could say that dynami-
cal DE is favored by observations. One can also define
the evidence-weighted reconstruction, in which depar-
tures from XðaÞ ¼ 1 with low evidence get suppressed
(see [28] for details).
Figure 1 shows the DE density reconstruction performed

with the “standard” choice of the prior, σX̄ ≡ 0.04, ac ¼
0.06 (in green) along with the evidence-weighted
reconstruction (in blue). They show two apparent trends:
an overall increase in the effective DE density and an
oscillatory behavior at a≳ 0.6. The increase is driven by
the local measurements of the Hubble constant H0, whose
larger value could be interpreted as an increase in DE
density. The measurement of the BAO scale from the
Lyman-α forest, which prefers a lower HðzÞ at z ∼ 2.3,

further contributes to the same trend.1 Oscillations, on the
other hand, are caused by the combination of the tomo-
graphic BAO and the JLA SNe Ia data which happen to
have matching oscillatory patterns.
One can see that the apparently large deviation from

XðaÞ ¼ 1 at high redshifts, seen in the standard
reconstruction in Fig. 1, is not present in the evidence-
weighted curve. The ability of data to constrain DE at z > 3
is very weak and the reconstruction there is almost
completely determined by the prior. This implies no
Bayesian evidence for large deviations at high z, although
the data still prefers a modest increase in DE density.
The lower panels in Fig. 1 show the corresponding

effective DE EOS weff
DEðaÞ. They are obtained by generating

an ensemble of XðaÞ from its mean and the covariance

FIG. 1. The upper panels show the reconstructed normalized effective DE density XðaÞ, obtained using the standard prior (H1, left)
and the evidence-weighted method (H2, right). Also shown are the corresponding hyperbolic tangent fits H1F (solid line) and H2F
(dashed line). The lower panels show the corresponding effective DE equation of state.

1The reconstruction in [28] was based on the LyαBAO
analysis of BOSS DR11 quasars [64] that showed a 2.5σ
deviation from the best-fit ΛCDM. The tension has since been
reduced to 1.7σ with the eBOSS DR14 LyαBAO analysis
performed in [65,66]. Note that, although the tension is lower
for the eBOSS sample, which has roughly 20% more Lyman-α
sources than BOSS, it does not necessarily mean that the tension
will further decrease with a larger sample. The source of the
tension, which could be new physics or a yet unknown systematic
error, remains unknown, and forthcoming experiments, such as
DESI, will help to clarify the issue.
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matrix and, for each realization, evaluate weff
DEðaÞ from

the conservation of the effective DE fluid. Averaging
over the ensemble gives the mean and the uncertainty in
weff
DEðaÞ shown in the plots. If a sampled XðaÞ happens to

have a jXðaÞj < 10−5, we replace it with XðaÞ ¼ 10−5 to
prevent a singularity in weff

DE. As expected, the uncer-
tainty in weff

DE is very large at high redshifts in the case of
the standard prior (left panel). This is because weff

DEðaÞ
is determined by the derivative of XðaÞ and each
sampled XðaÞ can fluctuate within the range allowed
by the variance. In the case of the evidence-weighted
reconstruction (right panel), XðaÞ is a linear super-
position of many reconstructions obtained with different
priors. The different priors all prefer XðaÞ to be constant,
without enforcing any particular value of the constant.
Thus, while there is ∼15% uncertainty around the value
of XðaÞ at high z, its derivative is zero with a much
higher certainty, which explains why the uncertainty in
weff
DEðaÞ is so small near a ¼ 0.
Interestingly, as shown in [28], the Bayesian evidence

(Δ lnE) for the oscillatory features is positive at 2.8σ,
and they appear equally prominently in both reconstruc-
tions in Fig. 1. We also note that, although the Bayesian
evidence for dynamical DE is weak, it has increased
over the years, with the dynamical pattern being largely
consistent with the reconstruction performed in
2012 [67].
As we will see later, the oscillatory features in the

reconstructions can, in certain circumstances, trigger fast-
growing instabilities in cosmological perturbations. Also,
the oscillatory pattern and the overall increase in DE
density are driven by entirely different datasets. For this
reason, we have also considered XðaÞ obtained by fitting a
monotonic function to the reconstructions, which capture
the overall increase but do not allow for oscillations. We
take the form to be

XfitðaÞ ¼ A tanh½Bða − CÞ� þD; ð3Þ

where the parameterD is chosen such that Xfitða ¼ 1Þ ¼ 1.
The fitted functions and the corresponding DE EOS are
shown with black solid and dashed lines, respectively, in
Fig. 1. Thus, in what follows, we will consider four XðaÞ
histories:

H1.—using the standard prior (green line, Fig. 1);
H1F.—the monotonic fit to H1 (black solid line);
H2.—evidence-weighted reconstruction (blue line);
H2F.—the monotonic fit to H2 (black dashed line).
As an increasing effective DE density cannot be realized

in simple quintessence models, one is prompted to consider
more complex gravity theories. In the next section we
explore the GBD theories as a possible framework for
explaining the observed DE dynamics.

III. GENERALIZED BRANS-DICKE THEORIES
AND WAYS TO RECONSTRUCT THEM

The nonminimal coupling of the scalar field in the GBD
theories could explain the observed “ghostly” behavior of
the effective DE density. We stress that, in this context, the
phantom dynamics is only an apparent phenomenon
perceived by a cosmologist fitting the conventional
Friedmann equation to data while being unaware of the
nonminimal coupling.
The GBD action can be written as [68–70]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

0

2
FðϕÞR −

1

2
KðϕÞð∂ϕÞ2 −UðϕÞ

�

þ Sm½gμν; χi�; ð4Þ

where m0 ≡ ð8πGÞ−1=2 is the Planck mass in terms of the
Newton’s constant G measured on Earth, ϕ is the extra
scalar degree of freedom (d.o.f.), ð∂ϕÞ2 ≡ gμν∂μ∂νϕ, UðϕÞ
is the GBD potential and Sm denotes the action for the
matter fields χi minimally coupled to the (Jordan frame)
metric gμν. We set KðϕÞ ¼ 1, as one can always do so
by a redefinition of ϕ. The modified Einstein equations
are obtained by varying the action with respect to the
metric gμν:

FGμν ¼
1

m2
0

ðTm
μν þ Tϕ

μνÞ þ∇μ∇νF − gμν□F; ð5Þ

where ∇μ denotes the covariant derivative with respect to
the coordinate xμ, □≡ gμν∇μ∇ν, Tm

μν is the matter energy-
momentum tensor and

Tϕ
μν ≡ ∂μϕ∂νϕ − gμν

�
1

2
∂αϕ∂αϕþUðϕÞ

�
: ð6Þ

The equation of motion for the scalar field ϕ is then
obtained by extremizing the action (4) with respect to
variations of the field ϕ:

□ϕ ¼ Uϕ −
m2

0

2
FϕR; ð7Þ

where the subscript ϕ denotes a derivative with respect to ϕ.
For convenience we redefine the field, ϕ → ϕ=m0, to make
it dimensionless, and the potential, U → U=m2

0, with the
latter measured in Mpc−2 in agreement with the units
convention in CAMB [71].
The freedom in choosing the two functions FðϕÞ and

UðϕÞ translates into the ability of GBD theories to
reproduce any expansion history. In particular, the effective
DE density XðaÞ defined in Eq. (1) can increase, and the
effective DE EOS can cross −1. To see this, we rewrite the
modified Einstein equation (5) as
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Gμν ¼
1

m2
0F

fTm
μν þ Tϕ

μν þ∇μ∇νF − gμν□Fg

¼ 1

m2
0

fTM
μν þ ðTeff

DEÞμνg; ð8Þ

where, in the second line, we have defined the effective DE
stress-energy by absorbing into it all the terms on the right-
hand side other than the usual matter term, i.e.,

ðTeff
DEÞμν≡F−1fTϕ

μνþ∇μ∇νF−gμν□Fþð1−FÞTm
μνg:

In a flat Friedmann-Robertson-Walker universe, the effec-
tive DE density is

ρeffDE¼F−1f _ϕ2=ð2a2ÞþUðϕÞ−3H _F=a2þð1−FÞρmg; ð9Þ

with the dot standing for a derivative with respect to the
conformal time, while the effective DE pressure is

peff
DE ¼ F−1f _ϕ2=ð2a2Þ −UðϕÞ þH _F=a2 þ F̈=a2g: ð10Þ

The μ ¼ ν ¼ 0 component of Eq. (8) gives the Friedmann
equation

H2 ¼
�
_a
a

�
2

¼ a2

3m2
0

½ρmðaÞ þ ρeffDEðaÞ�; ð11Þ

which can be recast in the form of Eq. (1).
Note that, by construction, the effective DE “fluid” is

conserved, but its EOS,

weff
DE≡peff

DE

ρeffDE
¼

_ϕ2=ð2a2Þ−UðϕÞþH _F=a2þ F̈=a2

_ϕ2=ð2a2ÞþUðϕÞ−3H _F=a2þð1−FÞρM
;

ð12Þ
is not always well defined because ρeffDE in the denominator
is allowed to change sign due to the new terms generated by
the nonminimal coupling FðϕÞ. Thus, as previously noted
in [36,72], observing weff

DE < −1, or finding that ρeffDE
changes its sign, could be a smoking gun of interactions
in the dark sector, modified gravity or extra dimensions
(e.g., phantom brane models of dark energy [73,74]).
The idea of reconstructing the GBD Lagrangian from

a given expansion history was previously explored in
[75–77], motivated by the fact that the Hubble function
HðaÞ inferred from the supernovae data available at that
time showed a preference for an effective phantom DE
equation of state, weff

DE < −1. As they have shown, one can,
in principle, reconstruct both functions FðϕÞ and UðϕÞ if,
in addition to HðaÞ, one knows the evolution of the growth
of the matter density contrast δðaÞ. Another interesting
example is the fðRÞ gravity where the only unknown
function is the function f itself and the full reconstruction
can be done with the sole knowledge of the expansion
history HðaÞ [45,78].

In the present work we adopt a slightly different
approach. Since the growth of perturbations is rather
complicated to extract in a model-independent way because
of the redshift-space distortions, nonlinearities, bias, etc.,
we attempt to reconstruct only one of the functions, namely
UðϕÞ, while the other is chosen to either have a given
functional form FðϕÞ (model 1) or a given parameterized
time dependence FðaÞ (model 2). We will analyze these
two cases separately.
While exploring the parameter space, which includes the

initial conditions for the scalar field, we restrict to solutions
in which the net change in FðϕÞ is under 10%, to satisfy the
big bang nucleosynthesis (BBN) constraints on the varia-
tion of the Newton’s constant. There are also stringent
constraints on the value of FðϕÞ today coming from
laboratory and Solar System tests [79], although interpre-
tation of these constraints can be modified in theories in
which the force mediated by the scalar field is screened, as
in “chameleon” [80] or “symmetron” [81] models. Since
our aim is to explore the ability of cosmological probes to
rule out scalar-tensor theories independently from the latter,
we do not take these constraints into account. Finally, we
also check for various types of instabilities using the
procedure implemented in EFTCAMB [82,83]. Specifically,
we check for ghost, gradient andmass instabilities discussed
in detail in [84] and briefly reviewed below.
After expanding the action up to the second order in

perturbations of the metric and matter fields, and removing
spurious d.o.f., one can isolate the action for the propa-
gating scalar and tensor d.o.f. [85]. The conditions for
avoiding instabilities can then be formulated in Fourier
space in terms of the corresponding kinetic, gradient and
mass matrices as follows:
(1) No-ghost.—A ghost instability develops when the

kinetic term of a field is negative. In the presence of
multiple propagating d.o.f., a positive definite ki-
netic matrix guarantees that no ghosts will develop.
In practice, this requirement needs to be imposed
only at high energies, i.e., in the high-k limit, since
an infrared ghost does not lead to catastrophic
instabilities [86].

(2) No-gradient.—Gradient instabilities arise in the
high-k regime when the speed of propagation is
imaginary. The sound speeds of the propagating
d.o.f. can be identified from the dispersion relations
that result from the quadratic action after diagonal-
izing the kinetic matrix. In order to avoid gradient
instabilities we impose c2s > 0 for all the d.o.f.

(3) No-tachyon.—Whenever the mass matrix of the
Hamiltonian contains a negative eigenvalue, the
mass instability plagues the low-k regime with
the development of a tachyon [85]. The rate of
the instability needs to be taken into account. We
will assume that the GBD Hamiltonian exhibits a
tachyonic instability when at low momenta a mass
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eigenvalue μi becomes negative and evolves rapidly,
i.e., jμij ≫ H2. Thus, for a theory to be viable, we
require μi > 0 or, alternatively, jμij ≲H2.

This set of conditions was shown to guarantee stability over
the full range of linear scales [84] and was implemented in
a private version of EFTCAMB.
Public versions of EFTCAMB, as well as other Einstein-

Boltzmann solvers like HiClass [87], do not contain the mass
condition. Instead, in addition to checking for the no-ghost
and no-gradient instabilities, they impose a set of math-
ematical conditions that prevent the development of expo-
nentially diverging solutions. The latter are worked out
from the linear order equation for the scalar field pertur-
bation and are meant to protect against the mass instabilities
as well as the ghost and gradient instabilities that could
have possibly evaded the checks based on some approx-
imations necessary in setting the conditions. When a
mathematical condition is violated, one cannot easily tell
which of the three types of instabilities was responsible. In
our analysis we used both methods. Namely, we checked
for the ghost, gradient and mass stability conditions, as well
as using the publicly available stability check that combines
the ghost, the gradient and the mathematical conditions.

A. Model 1: Reconstructing GBD for a given F(ϕ)

Given the functional form of FðϕÞ, we can reconstruct
UðϕÞ from a given expansion history. We take

FðϕÞ ¼ expðξϕÞ; ð13Þ

which is a form motivated by high-energy theories, e.g., a
nonminimally coupled dilaton field representing compac-
tified extra dimensions with the dimensionless parameter ξ
controlling the coupling strength.
We begin by writing the two Friedmann equations as

H2 ¼ 1

D
ρa2

3m2
0

þ 1

D
Ua2

3
; ð14Þ

G
ä
a
¼ 2DH2 −

a2H2

2

�
1

3
þ Fϕϕ

�
ðϕ0Þ2

−
1

2

ðρþ PÞa2
m2

0

−
1

2
FϕH2ðϕ00 − ϕ0Þ; ð15Þ

where

D ¼ F −
1

6
ðϕ0Þ2 þ Fϕϕ

0; ð16Þ

G ¼ F þ 1

2
Fϕϕ

0; ð17Þ

and the prime denotes derivatives with respect to N ≡ ln a.
Equation (15) can be rewritten as an equation for the
background evolution of ϕ:

ϕ00 ¼−
1þFϕϕ

Fϕ
ðϕ0Þ2þ

�
1þ1

2

3Emþ4Er−E0
ν−ΩΛX0

EmþErþEνþΩΛX

�
ϕ0

þ 1

Fϕ

ðF−1Þð3Emþ4Er−E0
νÞ−FΩΛX0

EmþErþEνþΩΛX
; ð18Þ

where Em ≡ ρm=ρ0crit includes CDM and baryons,
Er ≡ ρr=ρ0crit includes photons and massless neutrinos
and Eν ≡ ρν=ρ0crit includes massive neutrinos species only.
Equation (18) can be solved given the functional form (13)
of FðϕÞ and the DE density evolution XðaÞ. Given the
solution ϕðaÞ, one can find the potential UðaÞ from
Eq. (14), namely,

Ua2 ¼ 3DH2
0a

2ðEm þ Er þ Eν þ ΩΛXÞ
− 3H2

0a
2ðEm þ Er þ EνÞ: ð19Þ

If ϕðaÞ is monotonic, it can be inverted to obtain aðϕÞ and,
thus, UðϕÞ for the range of ϕ covered by the evolution.
Solving Eq. (18) requires setting the value of the field

ϕini and its derivative ϕ0
ini at some initial time aini. To

preserve the success of ΛCDM in explaining the BBN and
the peak structure of the CMB spectrum, we assume that
gravity was close to GR at early times, so that FðϕÞ ¼ 1 for
a ≤ aini, but could start deviating from unity at later times.
For FðϕÞ ¼ expðξϕÞ this means ϕini ¼ 0 and, to explain
the features in the reconstructed DE density discussed in
the previous section, we will need aini ≲ 0.1. Thus, in
addition to providing XðaÞ, we have to specify three
parameters: ξ, aini and ϕ0

ini.
For the H1, H1F and H2 background histories, recon-

structed model 1 theories contain fast-growing mode
instabilities for all choices of initial conditions. For the
perturbations around these backgrounds we find that both
the mass and the mathematical conditions are not satisfied.
It appears that the large rapid increases in XðaÞ present in
H1, H1F and H2 drive the solution towards instability,
which could, in principle, be prevented by an appropriate
choice of FðϕÞ. However, the model 1 coupling function
FðϕÞ ¼ expðξϕÞ is monotonic and is unable to prevent the
onset of instability.
In the case of H2F, which is monotonic and with a

relatively small change in XðaÞ, we are able to find viable
solutions despite finding negative mass eigenvalues. There,
the tachyonic instability corresponding to the negative mass
eigenvalues develops on timescales comparable to the
Hubble rate allowing for growth of cosmic structure that
is in reasonable agreement with observations.
To summarize, we find that model 1 reconstructions from

all four expansion histories are plagued by a mass insta-
bilities. For H1, H1F and H2, this instability develops on
timescales small enough for the mathematical condition to
detect diverging solutions. In the case of H2F the character-
istic timescale is longer and, while our approximate bound
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of jμij < H2 is not satisfied, the instability does not develop
to the point of giving diverging solutions.
Figure 2 shows the allowed range of the nonminimal

coupling function ΩðaÞ≡ FðϕðaÞÞ − 1 for GBD theories
reconstructed from H2F. It is obtained by uniformly
sampling parameters ðϕ0

ini; log10aini; ξÞ from the intervals

ϕ0
ini

m0

∈ ½−10−6;10−6�; log10aini∈ ½−3;−1�; ξ∈ ½0.1;10�;

ð20Þ

solving for the evolution of ϕ and selecting solutions that
have Ω within the allowed range and satisfy the stability
condition. The shaded regions in Fig. 2 indicate the
confidence level (CL) for having a particular value of Ω
at a given a, while the dark line in the middle shows the
mean. Examining the numerical solutions, we find that, as
expected, the increasing effective DE density drives the
field to negative values, resulting in FðϕÞ < 1 and a
larger Geff ∝ G=FðϕÞ.
For illustration, in Fig. 3 we show the potential UðϕÞ for

four GBD theories reconstructed from the H2F DE density
with ϕ0

ini=m0 ¼ 0 and aini ¼ 10−2 and ξ ¼ 0.5, 1.5, 3 and
10, respectively. We can see how in all four cases the
potential has a cusp at the origin. Stronger couplings lead to
steeper potentials. Their shapes resemble the potential in
chameleonlike models [88,89], VðϕÞ ∝ jϕj−n, although the
dynamics here is completely different. In the chameleon
model, the field tracks the minimum of the effective
potential, with the coupling function FðϕÞ slowly increas-
ing with the evolution. In our reconstructed theories, the
field ϕ starts at the top of the cusp and rolls down the
potential, with FðϕÞ decreasing as it rolls.

B. Model 2: Reconstructing GBD with
a parameterized FðaÞ

We now change the approach and, instead of working
with a given FðϕÞ, we directly specify the time depend-
ence of F, i.e., FðaÞ. A similar approach was used in
[76,77] to reconstruct the GBD Lagrangian from the
expansion history inferred from an early SNe Ia dataset.
In this case, we start by writing the modified Friedmann
equations as

H2 ¼ 1

3m2
0

1

F þ aF0

�
ρa2 þ 1

2
_ϕ2 þUa2

�
; ð21Þ

_H ¼ 1

F þ 1
2
aF0

�
½F þ 2aF0 þ a2F00�H2

−
1

2m2
0

�
Pa2 þ 1

2
_ϕ2 −Ua2

��
; ð22Þ

where primes denote derivatives with respect to the scale
factor and overdots denote derivatives with respect to the
conformal time τ. We can then use (21) to eliminate the
potential U in (22) to write

_H ¼
��

5

2
F þ 7

2
aF0 þ a2F00

�
H2 −

ðρþ PÞa2
2m2

0

−
1

2m2
0

_ϕ2

�

×

�
F þ 1

2
aF0

�
−1
: ð23Þ

One can then solve the above equation for _ϕ and use it in
(21) to obtain a solution for UðaÞ:

FIG. 3. The potential UðϕÞ in four representative model 1 GBD
theories reconstructed from the H2F expansion history with the
same ϕ0

ini and log10 aini and our different values of the coupling
parameter ξ.

FIG. 2. The viable range of values of the nonminimal coupling
ΩðaÞ≡ FðaÞ − 1 for the model 1 GBD theories reconstructed
from the H2F expansion history. The confidence level (CL)
regions are obtained by sampling parameters ϕ0

ini, ξ and log10 aini
as described in the text.
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Ua2

m2
0

¼ H2

�
1

2
F −

1

2
aF0 − a2F00

�

þ ðP − ρÞa2
2m2

0

þ _H
�
F þ 1

2
aF0

�
: ð24Þ

With the known UðaÞ, one can solve for the kinetic
energy _ϕ2 from (21) and complete the solution by solving
the differential equation to find ϕðaÞ. With the field ϕðaÞ
known, one can convert UðaÞ and FðaÞ into UðϕÞ and
FðϕÞ, thus reconstructing the functional form of the
theory for the range of ϕðaÞ covered by the solution.
To explore a broad range of possible FðaÞ histories we

adopt a polynomial parametric form

FðaÞ ¼ 1þ
X5
i¼1

αiai; ð25Þ

with coefficients αi sampled uniformly from

αi ∈ ½−1; 1�: ð26Þ

This range is chosen to favor positive values of FðaÞ close
to unity as required by existing bounds.
With HðaÞ and FðaÞ specified, one can use EFTCAMB

[90], as described in the next section, to compute the
cosmological observables.
We have generated samples of FðaÞ using the para-

meterized form (25) and performed reconstructions of the
GBD theories for each of the four XðaÞ histories shown in
Fig. 1. The viable ranges of FðaÞ functions in each case are
shown in Fig. 4. One can see that for H1, H1F and H2F, in
which XðaÞ has a large increase or is nonmonotonic, FðaÞ
must be nonmonotonic to avoid instabilities. In the case of
H2F, which has a gently increasing monotonic XðaÞ, a
monotonic FðaÞ has a small probability but is not excluded.
To reconstruct UðϕÞ and FðϕÞ one needs to solve a first-

order ordinary differential equation for ϕ, which requires
specifying a boundary condition, such as the value of the

FIG. 4. The distribution of nonminimal coupling functions ΩðaÞ ¼ FðaÞ − 1 obtained using the model 2 polynomial parametric form
for stable GBD theories with the four effective DE histories H1, H1F, H2 and H2F.
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field at an initial time aini. This means we can only
reconstruct UðϕÞ and FðϕÞ up to an arbitrary shift in
the value of ϕ. The shift has no physical significance, as all
the observables are already fully determined. Hence, with-
out loss of generality, we take aini ¼ 0.001 and ϕðainiÞ ¼ 0.
Figure 5 shows the nonminimal coupling function

ΩðϕÞ ¼ FðϕÞ − 1 and the potential UðϕÞ for four repre-
sentative theories reconstructed from H1, H1F, H2 and
HF2. We see that ΩðϕÞ is nonmonotonic in these repre-
sentative cases. The potentials have a runaway shape, being
seemingly unbounded from below for large values of the
field, although one should keep in mind that the shape is
only known over the range covered by the evolution of the
field. One can also see small bumps in the potentials
derived from H1 and H2, needed to accommodate oscil-
lations in XðaÞ.

IV. COSMOLOGICAL OBSERVABLES IN
RECONSTRUCTED GBD THEORIES

Next we investigate the cosmological implications of the
reconstructed GBD theories by computing the CMB
anisotropy and the matter power spectra, along with the
cross-correlation of the CMB temperature and Galaxy
number counts (GNC), which probes the ISW effect. It
is relatively straightforward to calculate these observables
using EFTCAMB [82,83,91], which is an implementation of
the effective field theory of dark energy (EFTofDE) [92,93]
in the popular Boltzmann solver CAMB [71]. In the
EFTofDE approach, the most general action for the
cosmological background and perturbations in scalar-
tensor theories can be written in the unitary gauge, in
which the scalar field is uniform on hypersurfaces of
constant time, as an expansion in increasing rank-ordered
operators invariant under spatial diffeomorphisms. The
time-dependent expansion coefficients are referred to as
the EFT functions. The part of the EFT action of relevance
to the GBD theories is

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

0

2
½1þΩðτÞ�RþΛðτÞþcðτÞa2δg00

�
;

ð27Þ

where τ is the conformal time, δg00 ¼ g00 þ 1 is the metric
tensor perturbation, and Ω, Λ and c are the EFT functions.
The GBD theories reconstructed in the previous section can
be mapped onto the EFT formalism via

ΩðaÞ ¼ FðϕðaÞÞ − 1; ð28Þ

ca2

m2
0

¼ 1

2
H2ðϕ0Þ2; ð29Þ

Λa2

m2
0

¼ 1

2
H2ðϕ0Þ2 −Ua2: ð30Þ

With this mapping we can use EFTCAMB to compute the
CMB spectra and other cosmological observables.
As the initial time of the reconstruction aini is after the

epoch of recombination, the only differences in the CMB
anisotropy spectrum compared to the ΛCDM model can be
due to the change in the expansion history, that modifies
the distance to last scattering and shifts the positions of the
peaks and troughs, and due to the different evolution of the
gravitational potentials which affects the late-time ISW
contribution to anisotropy. In the latter case, the phenom-
enology of GBD theories has three competing effects.
First, just like in the case of ΛCDM, the accelerating
expansion causes a decay of the metric potentials. In our
reconstructed expansion histories the matter-dominated era
lasts longer, thus delaying the decay of the potentials.
Second, the background value of the effective Newton’s
constant that determines the rate of gravitational clustering
is G=FðϕÞ and can be larger or smaller than G, depending
on the dynamics of the coupling function, correspondingly
increasing or decreasing the rate at which the metric

FIG. 5. The coupling function ΩðϕÞ ¼ FðϕÞ − 1 and the potential UðϕÞ for four representative model 2 theories reconstructed from
the H1, H1F, H2 and H2F expansion histories.
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potentials evolve. Third, the scalar field mediates a fifth
force on scales smaller that the Compton wavelength of the
field, which enhances the growth of the potentials. It is
practically impossible to isolate these effects in the CMB
anisotropy spectrum, since it only probes the square of the
overall integral of the ISW signal. However, one can learn
more by studying the correlation of CMB temperature with
galaxy distribution at different redshifts [39,40]. In particu-
lar, a characteristic signature of the fifth force would be a
negative galaxy-CMB correlation at high redshifts, where
one normally expects no ISW signal. A change in the
background value of the gravitational coupling could show
as either a positive or negative signal, depending on its
evolution.
The CMB temperature and GNC cross-correlation angu-

lar power spectrum can be written as

CTg
l ¼ 2

π

Z
dkk2ΔISW

l ðk; τ0ÞΔGNC
l ðk; τ0ÞPRðkÞ; ð31Þ

where the ISW transfer function is given by

ΔISW
l ðk; τ0Þ ¼ −

Z
τ0

τ�
dτð _Φþ _ΨÞjl½kðτ0 − τÞ�; ð32Þ

and the GNC transfer function is given by

ΔGNC
l ðk; τ0Þ ¼

Z
τ0

0

dηWðzÞ dz
dτ

bgðτ; kÞδðτ; kÞjl½kðτ0 − τÞ�

þ corrections: ð33Þ

In the above, Φ and Ψ are the Newtonian gauge metric
potentials in Fourier space, δðk; τÞ is the matter density
contrast,WðzÞ is thewindow function that selects galaxies in
the given redshift range, and bg is the galaxy bias. The term
“corrections” in Eq. (33) denotes collectively the redshift-
space-distortion corrections, lensing terms, and other con-
tributions suppressed by H=k [94]. The cross-correlation
spectra are then computed using the EFTCAMB patch for
CAMB sources

2 [94,96].
Since we are not interested in fitting the parameters of the

GBD theories to data, but rather in investigating the
qualitative features of the ISW effect, we choose to show
the cross-correlation in threeGaussianwindowsW1,W2 and
W3 centered at redshifts z1 ¼ 0.5, z2 ¼ 1 and z3 ¼ 3. The
widths of thewindow functions are σ1 ¼ 0.05, σ2 ¼ 0.1 and
σ3 ¼ 0.5. The galaxy bias bg is, in general, time and scale
dependent. On large scales, relevant for the cross-correlation
with CMB, one expects the scale dependence of the bias to
be weak and the time dependence to have a simple poly-
nomial dependence (see [97]). The bias is degenerate with

FIG. 6. Left panel: The distribution of CMB anisotropy spectra corresponding to stable model 1 theories reconstructed from the H2F
DE density and the relative differences with respect to the ΛCDM best-fit model. The uncertainty due to cosmic variance around the
ΛCDM best fit is shown for reference. As expected the GBD theories affect mainly the ISW effect at low l. Right panels: The linear
matter power spectrum (at redshift z ¼ 0) for model 1 theories reconstructed from H2F and the relative difference from the ΛCDM
best fit.

2The latest EFTCAMB patch is not yet compatible with the latest
CAMB. In its last update, CAMB and CAMB sources have been
merged, so we used the last available iteration of CAMB sources at
Ref. [95].
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the ISW amplitude, but one can calibrate it by jointly
studying the GNC autocorrelations and the cross-correla-
tions between GNC and galaxy lensing. As we are only
interested in demonstrating the general features of the ISW
signal, we fix the galaxy bias to bg ¼ 1.

A. Observables for model 1

In the left panel of Fig. 6we show the distribution of CMB
temperature anisotropy spectrum Dl≡lðlþ1Þð2πÞ−1Cl

for model 1 theories reconstructed from the H2F DE density
obtained by sampling the parameter space as described in
Sec. III A. The shaded regions represent the CL regions to
find Dl in the corresponding range, while the white lines
show the mean values. In this sampling procedure we used
the cosmological parameters obtained in the reconstruction
of XðaÞ in [28], except for the parameters setting the
primordial power spectrum which were not constrained
in [28], and for which we used the best-fit ΛCDM values.

FIG. 7. The distribution of the CMB and Galaxy number counts cross-correlation spectra in three redshift bins at z ¼ 0.5, 1 and 3,
corresponding to the viable model 1 theories reconstructed from H2F DE density. The best-fit ΛCDM spectra are shown for reference.
The green error bars show the uncertainty due to cosmic variance in the ΛCDM prediction in several wide bins of l. As one can see, the
CMB temperature-GNC cross-correlations for the GBD theories can be either positive or negative.

FIG. 8. Cosmological observables for four representative model 1 theories reconstructed from the H2F DE density. The cosmic
variance uncertainty around the ΛCDM best fit is shown for reference.
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The light green band shows the irreducible statistical
uncertainty in Dl due to cosmic variance based on the
ΛCDM model. As the D measured by Planck are cosmic
variance limited over most of the cosmologically relevant l
[98], the shown uncertainty is representative of current data.
As expected, we observe a modified ISW effect at small

l. The small differences in the high-l part of the spectra are
mainly due to the different distance to the last scattering
surface (because of the different expansion history) which
causes a shift in the peaks and also because of the different
baryon and CDM densities Ωbh2 and Ωch2 in the XðaÞ vs
ΛCDM cases. These high-l differences are well within the

cosmic variance band and would likely be accommodated
by adjusting other parameters in a comprehensive Monte-
Carlo Markov Chains parameter estimation.
The right panel of Fig. 6 shows the linear matter power

spectrum. First of all, one can note an overall shift upwards
for the GBD theories. At early times, before DE begins to
dominate the background dynamics, the Planck best-fit
ΛCDM model has more DE density than the GBD models
with the reconstructed DE. This means that in the GBD
models the matter-dominated era lasts slightly longer than
in the ΛCDM model, allowing matter to cluster more,
hence the overall shift upwards of the matter power

FIG. 9. The distribution of CMB temperature anisotropy spectra for model 2 theories reconstructed using the H1, H1F, H2 and H2F
expansion history. The best-fit ΛCDM spectra, along with the statistical error bars, are shown for reference.

ZUCCA, POGOSIAN, SILVESTRI, WANG, and ZHAO PHYS. REV. D 101, 043518 (2020)

043518-12



spectrum. As in the case of the CMB spectrum, we expect
that this difference can accommodated by adjusting other
parameters in a comprehensive fit which, however, is
beyond the scope of this work. In addition to the change
in the matter-DE equality, PðkÞ is also effected by the larger
Geff and the fifth force mediated by the scalar field. This is
encoded in the way the deviations from ΛCDM increase on
smaller scales. Finally the oscillations that we note at k ≈
0.1 h=Mpc are due to the different position of the BAO
scale due to a slightly different expansion history of the
GBD models.
In Fig. 7 we show the theoretical prediction of the cross-

correlations for the two classes of reconstructed GBD
theories from H2F. Also shown is the cosmic variance
statistical uncertainty in the cross-correlation predicted by
the ΛCDM model. As one can see, in some model 1
theories, the ISW effect can become negative signaling a

growing gravitational potential due to the fifth force
mediated by the extra scalar field. At lower redshifts, when
the effective DE becomes larger and the growth of the
gravitational potential is overcome by the decay induced by
the accelerated expansion, the ISW term is mainly positive.
Some of the model 1 theories reconstructed from the

H2F expansion history are cosmologically viable, at least
from the perspective of fitting the CMB spectra. Figure 8
shows the cosmological observables for the four represen-
tative models whose reconstructed potentials UðϕÞ were
shown in Fig. 3. While the CMB anisotropies are almost
the same for each model, they differ considerably in the
clustering of matter and this is also noticeable in the cross-
correlations CTg

l at the bottom panels. In the higher redshift
windows, the larger values of the couplings constant ξ drive
a growth of the gravitational potentials Ψ and Φ due to the
fifth force mediated by the scalar field, causing a negative
ISW effect. When DE eventually starts dominating the
potentials stop growing and instead decay, turning the sign
of the ISW effect.

B. Observables for model 2

Figure 9 shows the distribution of the CMB anisotropy
spectra corresponding to the sampled model 2 theories
reconstructed from the H1, H1F, H2 and H2F expansion
histories. We see in all cases there is a preference for a large
ISW contribution to Dl. This is especially the case for H1,
in which XðaÞ is nonmonotonic and has a large increase.
However, since cosmic variance results in large statistical
error bars at small l, there are models on the fringe of the
allowed range for H1F, H2 and H2F that can be compatible
with the current data.
The model 2 distribution of PðkÞ is in good agreement

with the data, with the best-fit ΛCDM prediction being well
inside the 68% CL, as shown in Fig. 10 in the case of H2F.
The matter power spectra in the cases of H1, H1F and H2F
are very similar.
A very distinctive observational feature of model 2

models is a large positive ISW signal at high redshifts,
as seen in Fig. 11. This is caused by F > 1 at z≳ 1, which
decreases the effective Newton’s constant appearing in the
Poisson equation (Geff ∝ G=F) resulting in a suppression

FIG. 10. The matter power spectrum distribution for model 2
theories reconstructed using the H2F expansion history. The best-
fit ΛCDM spectrum is shown for reference. Distribution of
spectra for H1, H1F and H2 are very similar.

FIG. 11. The distribution of CMB temperature and GNC cross-correlation spectra for model 2 theories reconstructed using the H2F
expansion history. The best-fit ΛCDM spectra, along with the statistical error bars, are shown for reference. The distribution of spectra
for H1, H1F and H2 are qualitatively similar.
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of gravitational potentials during the matter-dominated
epoch. The enhancement in the high redshift cross-
correlation is well in excess of the cosmic variance
uncertainty around the ΛCDM model and would be
detectable with the next-generation large-scale structure
surveys such as DESI, LSST and Euclid. We note that
recent redshift space distortion measurements slightly favor
a lower value of Geff [99].
In Fig. 12 we show observables corresponding to the

four models in Fig. 5 representing reconstructions using
H1, H1F, H2 and H2F. We can see the similarity in general
trends, with features being the most pronounces in the case
of H1 and less so for H2F. However, in all cases, there is a
large positive ISW signal at high redshifts which would be
a smoking gun of GBDmodels with a nonmonotonic FðϕÞ.

V. CONCLUSIONS

Current observations favor an increasing effective DE
density, corresponding to an effective DE EOS that is less
than −1 [27,28]. Such apparently phantom behavior of DE
can also occur in GBD theories, as a manifestation of the
additional interaction mediated by the scalar field.

We have set up a reconstruction method to design the
Lagrangians of GBD-type scalar-tensor theories corre-
sponding to expansion histories extracted using the latest
data probing the background [28]. We then examined the
viability of such designer GBD theories, both in terms of
their stability and their ability to predict acceptable cos-
mological observables.
We found that a large increase in the effective DE

density, or the apparent oscillatory dynamics also favored
by the data, are difficult to accommodate within a GBD
theory with a monotonically evolving coupling function,
such as FðϕÞ ∝ expðξϕÞ. However, allowing for an arbi-
trary FðaÞ, parametrized in terms of a polynomial expan-
sion, results in GBD theories capable of fitting current
CMB and matter power spectra.
We find that, in viable models, FðaÞ increases at high

redshifts before decreasing at more recent epochs, leading
to a smaller effective gravitational couplingGeff at redshifts
z≳ 1 and a larger Geff at z < 1. This leads to a robust
prediction of a large positive ISW signal at z > 1, which
would be readily detectable through CMB-galaxy cross-
correlation using high redshift sources from DESI, LSST
and Euclid.

FIG. 12. Cosmological observables in four representative model 2 theories reconstructed from H1, H1F, H2 and H2F expansion
histories. The best-fit ΛCDM CMB spectrum, along with the statistical error bars, is shown for reference.
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In our analysis, we opted to provide functions FðϕÞ or
FðaÞ and reconstruct the potential UðϕÞ. One could,
alternatively, opt to find FðϕÞ for a given UðϕÞ. We expect
that, regardless of the choice, the main conclusion about the
key role of the ISW effect in falsifying GBD theories will
remain the same.
The method developed here is complementary to the

reconstruction of the EFT functions (including the GBD
subset of the EFTofDE) from cosmological observations
performed in [100]. In that work, the expansion history was
reconstructed in conjunction with the scalar-tensor
Lagrangian, thus only producing expansion histories that
are consistent with the GBD. Our approach is different—we
start with an expansion history obtained from the data in a
largely model-independent way and checked if there can be
GBD theories producing it. The difference is that a joint
reconstruction within the GBD framework could miss
expansion histories that are difficult to accommodate with
smooth EFT functions, potentially missing a hint for dynam-
ics that would correspond to a rare realization of GBD.
Our results show that one could rule out scalar-tensor

theories as the explanation of departures from the ΛCDM

background expansion history using purely cosmological
datasets. This is particularly important for testing theories
in which the scalar field couples only to dark matter, to
which the tight laboratory and Solar System tests of gravity
do not apply.
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