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We explore higher-dimensional generalizations of the Runge-Kutta-Wentzel-Kramers-Brillouin method
for integrating coupled systems of first-order ordinary differential equations with highly oscillatory
solutions. Such methods could improve the performance and adaptability of the codes which are used to
compute numerical solutions to the Einstein-Boltzmann equations. We test Magnus expansion-based
methods on the Einstein-Boltzmann equations for a simple universe model dominated by photons with a
small amount of cold dark matter. The Magnus expansion methods achieve an increase in run speed
of about 50% compared to a standard Runge-Kutta integration method. A comparison of approximate
solutions derived from the Magnus expansion and the Wentzel-Kramers-Brillouin (WKB) method implies
the two are distinct mathematical approaches. Simple Magnus expansion solutions show inferior long range
accuracy compared to WKB. However, we also demonstrate how one can improve on the standard Magnus
approach to obtain a new “Jordan-Magnus” method. This has a WKB-like performance on simple
two-dimensional systems, although its higher-dimensional generalization remains elusive.
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I. INTRODUCTION

In the new era of high precision cosmology, one of the
most important tools in the cosmologist’s toolbox is the suite
of Boltzmann codes. These methods, including CLASS [1],
CAMB [2], and PYCOSMO [3] provide numerical solutions to
the Einstein-Boltzmann equations, which describe the evo-
lution of linear perturbations in the Universe. The dominant
computational cost for these codes is integrating coupled
systems of linear first order ordinary differential equations
(ODEs) with highly oscillatory solutions [1,2]. Currently
the codes use several numerical and semianalytic approx-
imations to get around these bottlenecks. However, these
approximations are designed for specific cosmological
theories. A more generalized theory-independent method
would make it easier to switch between different models and
test new extensions to the current theory. New numerical
integration methods could also reduce the run-time of the
code. While the time needed to run a single simulation is
currently only a few seconds, the many thousands of
simulation runs needed for a typical Monte Carlo analysis
add up to a substantial computational cost.
Handley, Lasenby, and Hobson proposed in [4], and

developed with Agocs in [5], a new numerical method

based on a combination of the standard Runge-Kutta
(RK) approach and the Wentzel-Kramers-Brillouin (WKB)
approximation, dubbed the “Runge-Kutta-Wentzel-
Kramers-Brillouin” (RKWKB) method. In highly oscilla-
tory regions of the solution using the WKB approximation
allows integration steps which span many oscillations,
giving faster performance than standard RK methods.
However, RKWKB is limited to essentially one-dimen-
sional systems [4,5].
We can write a multidimensional coupled system of

linear ODEs in the form of (1.1),

_xðtÞ ¼ AðtÞx; ð1:1Þ

where x is a vector of dynamical variables, A is a time-
dependent matrix, and an overdot denotes differentiation
with respect to time.
In the mathematics field of numerical analysis there has

been substantial work examining the formal solution of
(1.1), the Magnus expansion [6]. A number of authors have
also used the Magnus expansion and related techniques to
develop numerical methods to integrate highly oscillatory
differential equations [6], for example Iserles [7,8].
These Magnus-based numerical integrators have been

extensively applied to problems in quantum and atomic
physics [9,10], as the time dependent Schrodinger equation
can be written in the form of (1.1) if we use a basis of wave
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functions [11]. Some alternative methods for solving
coupled differential equations have also been explored in
the context of primordial cosmology [12]. However,
Magnus-based methods remain unexplored with respect
to the Einstein-Boltzmann equations and cosmological
systems in general. Furthermore, to our knowledge, no
previous authors have tested these methods with adaptive
step size control.
In this paper we examine the application of Magnus-

based techniques to the Einstein-Boltzmann equations.
However, we also achieve results which apply to coupled
systems of first order ODEs more generally, and hence have
relevance to quantum systems, along with problems in
many other areas of physics and applied mathematics [4].

II. BACKGROUND

A. The WKB approximation

The WKB method is an example of multiple scale
analysis [13] applied to oscillatory systems. It is most
commonly applied to equations of the form of (2.1) [14],

ẍ ¼ −ω2ðtÞx: ð2:1Þ

The derivation begins by considering a general solution of
the form

x ¼ exp

�X∞
n¼0

SnðtÞ
�
: ð2:2Þ

Using the method of separation of scales we can obtain
expressions for Sn [14],

S0 ¼ �i
Z

t

0

ωðt1Þdt1; ð2:3Þ

S1 ¼ const −
1

2
lnðωðtÞÞ; ð2:4Þ

2_S0 _Sn þ S̈n−1 þ
Xn−1
j¼1

_Sj _Sn−j ¼ 0 for n ≥ 2: ð2:5Þ

Truncating with only the S0, S1 terms gives the classic
WKB approximation:

xðtÞ ¼ Affiffiffiffi
ω

p ei
R

t

0
ωðt1Þdt1 þ Bffiffiffiffi

ω
p e−i

R
t

0
ωðt1Þdt1 : ð2:6Þ

If we include only the S0 term, we obtain

ẍþ ω2x ¼ �i _ωðtÞx; ð2:7Þ

implying we require j _ωðtÞj ≪ jω2ðtÞj for the approximation
to be reasonable.

B. The Magnus expansion

The Magnus expansion [6] provides a general solution to
equations of the type (1.1). As WKB, it starts by consid-
ering a solution in the form of the exponential of an infinite
series (2.8) [6],

xðtÞ ¼ exp

�X∞
n¼1

ΩnðtÞ
�
xð0Þ; ð2:8Þ

the first terms of which are

Ω1ðtÞ ¼
Z

t

0

Aðt1Þdt1; ð2:9Þ

Ω2ðtÞ ¼
1

2

Z
t

0

dt1

Z
t1

0

½Aðt1Þ;Aðt2Þ�dt2; ð2:10Þ

Ω3ðtÞ ¼
1

6

Z
t

0

dt1

Z
t1

0

dt2

Z
t2

0

ð½Aðt1Þ; ½Aðt2Þ;Aðt3��

þ ½Aðt3Þ; ½Aðt2Þ;Aðt1��Þdt3: ð2:11Þ

Further terms can be generated by a recursive procedure [6]
and involve an increasing number of nested integrals,
commutators, and powers of A.
For the Ω series to converge, A must be sufficiently

small in some sense. It can be shown [6] that the Magnus
series is absolutely convergent for a general complex
matrix A, for t0 ≤ t ≤ T, if

Z
T

t0

kAðsÞk2ds < π; ð2:12Þ

where k · k2 denotes the two-norm of a matrix, which is [15]

kAðsÞk2 ¼ maxi¼1;…;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λiðATAÞ

q
; ð2:13Þ

where λiðQÞ denotes the ith eigenvalue of matrix Q.
However, the actual convergence domain can be larger than
that given by (2.12) [6].

C. Stepping numerical integration methods

A general stepping numerical integration method pro-
ceeds by using an approximate solution to the equation to
advance from one integration point xn at time tn to the
next xnþ1 at time tnþ1. For a system of first order linear
ODEs such as (1.1) we can write the approximate solution
for initial conditions xðt0Þ in terms of a solution matrix
Mðt0; tÞ [16],

xðtÞ ¼ Mðt0; tÞxðt0Þ: ð2:14Þ
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Then the general stepping procedure is

xnþ1 ¼ Mðtn; tnþ1Þxn: ð2:15Þ

Runge-Kutta methods work by using truncated Taylor
series solutions for Mðt0; tÞ. For example, Euler’s method,
the simplest Runge-Kutta method [4], has

Mðt0; tÞ ¼ 1þ ðt − t0ÞAðt0Þ: ð2:16Þ

The RKWKB method (to second order in the WKB
series) is obtained by replacing the Taylor series solution
with the two independent WKB solutions in (2.6). As the
WKB solutions typically remain good approximations to
the true solution over many oscillations, unlike truncated
Taylor series solutions, the RKWKB method is able to take
much larger steps than Runge-Kutta methods, which in
general reduces the required run-time [5]. Handley et al. [4]
and Agocs et al. [5] also enable the program to switch to a
standard Runge-Kutta-Fehlberg method in slowly oscillat-
ing regions; however, in this paper we use RKWKB to refer
to the simpler nonswitching approach.
We can also obtain stepping numerical integration

methods of the form of (2.15) from the Magnus expansion.
If we can compute the analytic forms of Ωi, then we can
use those directly. In that case the Ω series truncated at
Ω ¼ Ω1 þ � � � þΩi where i ¼ 2s − 1 or 2s − 2 for integer
s gives a method order h2sþ1 in the step size h [6]. However,
if Ωi cannot be computed analytically, we can use an
approach from Blanes et al. [6], Sec. 5.4. The A is Taylor
expanded about the midpoint t1=2 ¼ tn þ h=2 of each step,
where h ¼ tnþ1 − tn is the step size,

AðtÞ ¼
X∞
j¼0

ajðt − t1=2Þj; where aj ¼
1

j!
dnA
dtn

����
t¼t1=2

:

ð2:17Þ

One can then use the defining recursion relation for the
Magnus expansion to express Ω to the desired order in h.
For example to order four we have

Ω½4� ¼ α1 −
1

12
½α1;α2� þOðh5Þ; ð2:18Þ

where αj ¼ hjaj−1. The αj’s can then be approximated
using various quadrature rules (including Gauss-Legendre,
Simpson, Newton-Cotes) and linear combinations of A
evaluated at different points in the interval ½tn; tnþ1�.

D. The Einstein-Boltzmann equations

In this section we describe the background theory and
the Einstein-Boltzmann equations that will be used
in Sec. V.

1. Overview

We seek to express the Einstein-Boltzmann equations in
the form of (1.1) [17]. Working in the conformal Newtonian
gauge in flat spacetime, the metric is given by

ds2 ¼ a2ðηÞ½ð1þ 2ΨÞdη2 − ð1 − 2ΦÞδijdxidxj�; ð2:19Þ

where the scalar perturbations are Ψ, Φ, and η is conformal
time [18]. As we work at early times we neglect dark
energy and treat the neutrinos as relativistic. We denote the
photon and neutrino temperature perturbations asΘ andN ,
respectively. The analogous perturbation ΘP describes the
strength of the photon polarization. We treat the cold dark
matter (CDM) and baryonic matter as nonrelativistic
and describe them with overdensities δ, δb and peculiar
velocities v, vb.
To achieve a linear set of equations we expand the

perturbations in spatial Fourier modes, introducing wave
number k, and we expand the relativistic perturbations in
multipole moments Θlðk; ηÞ for l ¼ 0; 1; 2;…;∞. The
resulting 14 × 14 Aðk; ηÞ matrix for l ≤ 2 is shown
in Fig. 1.
The conformal Hubble rate is H ¼ _a=a, where an

overdot is used to denote the derivative with respect to
conformal time. We denote the nonconformal cosmic
Hubble rate as H ¼ H=a. The _τ ¼ −neσTa is the con-
formal time derivative of the optical depth, τ, with ne the
mean electron density and σT the Thompson cross section.
Mean densities are described using parameters of the form
Ω ¼ ρ=ρcrit where ρ is the mean density of a component
and ρcrit is the critical density ¼ 3H2

8πG. These parameters are
denoted Ωγ , Ων, Ωdm, and Ωb for the photons, neutrinos,
CDM, and baryonic matter, respectively.

2. Photon and CDM universe

As a test case we consider a simplified universe with only
photons and cold dark matter. By neglecting the baryonic
matter we can avoid the complexities of the Coulomb
interaction between the baryons and the photons. We also
neglect the photon polarization and all harmonics l > 1,
approximating the photons as a fluid [17]. In this limit the
gravitational potential Φ ¼ Ψ. By making these approx-
imations we obtain a five-dimensional system with
x ¼ ½Θ0;Θ1; δ; v;Φ�T . The reduced dimensions makes this
much more amenable than the 14-dimensional system,
while still preserving some of the key features of the early
universe. By testing on this simplified system we provide a
proof-of-principle study for application to the full Einstein-
Boltzman equations.
For adiabatic perturbations and radiation domination

we obtain a second order evolution equation for the
potential [17,19]
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Φ̈þ 4

η
_Φþ 1

3
k2Φ ¼ 0: ð2:20Þ

This has a general solution (2.21) [17,19]

Φ ¼ Ak
j1ðxÞ
x

þ Bk
y1ðxÞ
x

; ð2:21Þ

where x ¼ kη=
ffiffiffi
3

p
and j1, y1 are first order spherical Bessel

functions of the first and second kinds, respectively. These
take the form

j1ðxÞ ¼
sinðxÞ
x2

−
cosðxÞ

x
;

y1ðxÞ ¼ −
cosðxÞ
x2

−
sinðxÞ
x

: ð2:22Þ

As radiation dominates the energy density we also find

δr ¼ 4Θ0 ¼ −
2

3
ðkηÞ2Φ − 2η _Φ − 2Φ; ð2:23Þ

where δr is the overdensity for radiation. Hence for kη ≫ 1

we have Θ0∝−ðkηÞ2Φ∼Ak cosðkη=
ffiffiffi
3

p ÞþBk sinðkη=
ffiffiffi
3

p Þ.
This gives the acoustic oscillations of the photon fluid at
the sound speed cs ¼ 1=

ffiffiffi
3

p
that one would expect. The

solution in (2.21) suggests the potential also oscillates for
kη≳ 1, but with the amplitude decaying as 1=ðkηÞ2.

To use the numerical methods we must first obtain the
relevant A. Working from the 14 × 14 matrix in Fig. 1 we
can derive the reduced A matrix shown in (2.24),

2
6666664

_Θ0

_Θ1

_δ

_v
_Φ

3
7777775
¼

2
6666664

−2HΩγ −k −1
2
HΩdm 0 − k2

3H−H
k
3

0 0 0 k
3

−6HΩγ 0 −3
2
HΩdm −ik −k2

H−3H

0 0 0 −H −ik
−2HΩγ 0 −1

2
HΩdm 0 − k2

3H−H

3
7777775

2
6666664

Θ0

Θ1

δ

v

Φ

3
7777775
:

ð2:24Þ

We set the conformal time at matter-radiation equality
to be ηeq ¼ 1, set aðηeqÞ ¼ 1, and assume ΩγðηeqÞ ¼
ΩdmðηeqÞ ¼ 1=2. This gives

Aðk; ηÞ ¼

2
6666666664

− 1
η −k − 1

4
0 − ηk2

3
− 1

η

k
3

0 0 0 k
3

− 3
η 0 − 3

4
−ik −ηk2 − 3

η

0 0 0 − 1
η2

−ik

− 1
η 0 − 1

4
0 − ηk2

3
− 1

η

3
7777777775
: ð2:25Þ

FIG. 1. The 14 × 14 A matrix for l ≤ 2. Here x ¼ ½Θ0;Θ1;Θ2;ΘP0;ΘP1;ΘP2;N 0;N 1;N 2; δ; v; δb; vb;Φ�T .
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III. COMPARING WKB AND THE
MAGNUS EXPANSION

A. Comparing analytic solutions

To investigate the relationship between the WKB
approximation and the Magnus expansion we compared
the lowest order approximate analytic solutions to (2.1).
Equation (2.1) can be written in the form of (1.1) by

setting

x ¼
�
x

_x

�
; A ¼

�
0 1

−ω2 0

�
: ð3:1Þ

For the Magnus expansion, the first two Ω terms are
given by

Ω1 ¼
�

0 t

−
R
t
0 ω

2dt1 0

�
; ð3:2Þ

Ω2 ¼
�
a 0

0 −a

�
; ð3:3Þ

where

a ¼ 1

2
t
Z

t

0

ω2dt1 −
Z

t

0

dt1

Z
t1

0

ω2dt2 ¼
1

2

Z
t

0

t21
d
dt
hω2idt1:

ð3:4Þ

Including only Ω1 we obtain xðtÞ ¼ MðtÞxð0Þ, where
M ¼ expðΩ1ðtÞÞ given by (3.5),

M ¼

2
64 cos

� ffiffiffiffiffiffiffiffiffi
hω2i

p
t
	

1ffiffiffiffiffiffiffi
hω2i

p sin
� ffiffiffiffiffiffiffiffiffi

hω2i
p

t
	

ffiffiffiffiffiffiffiffiffi
hω2i

p
sin

� ffiffiffiffiffiffiffiffiffi
hω2i

p
t
	

cos
� ffiffiffiffiffiffiffiffiffi

hω2i
p

t
	

3
75:
ð3:5Þ

We can then write xðtÞ as

xðtÞ ¼ A cos
� ffiffiffiffiffiffiffiffiffi

hω2i
q

t
	
þ B

1ffiffiffiffiffiffiffiffiffi
hω2i

p sin
� ffiffiffiffiffiffiffiffiffi

hω2i
q

t
	
: ð3:6Þ

The frequency is approximated as ω ∼
ffiffiffiffiffiffiffiffiffi
hω2i

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
t

R
t
0 ω

2dt1
q

. We also get some amplitude correction from

the B or M12 term. We denote this solution “first Magnus.”
Including both Ω1 and Ω2 we obtain

M ¼ 1 cosðω̂tÞ þ ðΩ1 þΩ2Þ
1

ω̂t
sinðω̂tÞ

¼
�
1 0

0 1

�
cosðω̂tÞ þ 1

ω̂t

�
a t

−
R
t
0 ω

2dt1 −a

�
sinðω̂tÞ:

ð3:7Þ

In (3.7) the frequency is approximated as ω̂,

ω̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hω2i − ða=tÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hω2i − 1

4
ht2 _hω2ii2

r
; ð3:8Þ

where _hω2i denotes the time derivative of hω2i. Then we
obtain (3.9) and (3.10),

xðtÞ ¼ A

�
cosðω̂tÞ þ a

tω̂
sinðω̂tÞ

�
þ B

1

ω̂
sinðω̂tÞ; ð3:9Þ

xðtÞ ¼ A

ffiffiffiffiffiffiffiffiffi
hω2i

p
ω̂

cosðω̂tþ ϕ̂ðtÞÞ þ B
1

ω̂
sinðω̂tÞ; ð3:10Þ

with corrections to both the phase and the amplitude,
where ϕ̂ is a time dependent phase term. We denote this
solution “second Magnus.” For our matrix in (3.1)
kAðsÞk2 ¼ maxðω2; 1Þ. So (2.12) implies a convergence
domain of T − t0 < π,

R
T
t0
ω2dt < π. One can also see from

(3.8) that at sufficiently large times ω̂ becomes imaginary,
giving exponentially growing or shrinking solutions.
For the WKB approximation in Eq. (2.6) the n ¼ 0 term

approximates the frequency as

hωi ¼ 1

t

Z
t

0

ωðt1Þdt1; ð3:11Þ

while the n ¼ 1 term provides a correction to the ampli-
tude. We can write (2.6) in the form xðtÞ ¼ Mðt0; tÞxðt0Þ.
Setting t0 ¼ 0 for simplicity we obtain

M¼

2
64 Cþ _ωð0Þ

2ωð0Þ2S
1

ωð0ÞS�
ω _ωð0Þ
2ωð0Þ2−

_ω
2ω

	
C−

�
ωþ _ω _ωð0Þ

4ωωð0Þ2
	
S ω

ωð0ÞC− _ω
2ωωð0ÞS

3
75;

ð3:12Þ

where C¼ðωð0Þω Þ12 cosðhωitÞ and S¼ðωð0Þω Þ12 sinðhωitÞ are the
two independent solutions. Applying the stepping pro-
cedure in (2.15) to this M gives you the RKWKB method
(to second order) [4].
We can thus observe that the Magnus expansion and the

WKB method take fundamentally different approaches
for solving the same problem. The classic WKB approxi-
mation approximates the oscillation frequency as hωi,
while the first Magnus solution uses the root mean square,ffiffiffiffiffiffiffiffiffi
hω2i

p
. The terms of the WKB series involve successively

higher order derivatives of ω, while the successive Magnus
expansion terms involve successively higher order
integrals.
The WKB approximation is specialized to highly oscil-

latory solutions, and fails when ω goes to zero. The
Magnus expansion can cope with nonoscillatory solutions
and is less specialized, which comes at the cost of inferior
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long range accuracy compared to WKB, as we shall see
in Sec. III B.

B. Testing on trial equations

These solutions were plotted for two trial equations taken
from Handley et al. [4], namely the Airy equation and the
“burst” equation, which both have analytic exact solutions.
The Airy equation takes the form

ẍðtÞ ¼ −tx; ð3:13Þ

and the burst equation is given by

ẍ ¼ −ω2ðtÞx; ω2ðtÞ ¼ n2 − 1

ð1þ t2Þ2 ; ð3:14Þ

where n is an integer.
The analyticWKB approximate solution (2.6) and the first

and second Magnus solutions (3.6) and (3.9) for the Airy
equation (3.13) are plotted in Fig. 2. For the upper plot, with
t0 ¼ 1, the WKB solution remains a very good approxima-
tion to the true solution; however, the first and second
Magnus solutions perform poorly. The first Magnus repro-
duces the increase in oscillation frequency, but does not
reproduce the changes in amplitude. The second Magnus
solution breaks down completely around t− t0∼π showing
the exponential growth predicted in Sec. III A.
If we shift the starting point to t ¼ 11, as in the bottom

plot in Fig. 2, the first Magnus solution follows the true
solution more closely. However, unlike the WKB solution
it fails to follow the frequency of the true oscillation at

large times. The second Magnus solution still breaks down
as predicted.
Next we consider the burst equation (3.14). Figure 3

shows the analytic WKB, first Magnus, and second Magnus
approximate solutions from t0¼−10 up to t¼þ10 with
n ¼ 40. While WKB provides an excellent match to the true
solution throughout the whole range, both Magnus solutions
give very poor approximations. The first Magnus solution
fails to follow the changes in amplitude or frequency, and
the second Magnus solution once again diverges after a
relatively short period.
Figure 4 shows the result if we try to apply the WKB

and Magnus solutions to only the small, central, highly

FIG. 2. WKB, and the Ω1 and Ω1 þΩ2 Magnus analytic
solutions to the Airy equation. Top: from t0 ¼ 1 to t ¼ 35.
Bottom: from t0 ¼ 11 to t ¼ 45.

FIG. 4. WKB, and theΩ1 andΩ1 þΩ2 Magnus solutions to the
burst equation, n ¼ 40. Solutions plotted for the central region,
t ¼ −2 to t ¼ þ2 (note the change in scale). The solutions were
again computed analytically.

FIG. 3. WKB, and the Ω1 and Ω1 þΩ2 Magnus solutions
to the burst equation, n ¼ 40, analytic solutions plotted for
t ¼ −10 to t ¼ þ10.
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oscillatory region. This region has a smaller _ω=ω ratio, so it
should be easier to model. Even then the WKB solution
dramatically outperforms both Magnus solutions.

1. A closer look at the Magnus error

To show why the first Magnus solution compares so
poorly in terms of accuracy we can differentiate the
Magnus solutions. Let CM and SM be the two independent
first Magnus solutions,

CM ¼ cos
� ffiffiffiffiffiffiffiffiffi

hω2i
q

t
	
;

SM ¼ 1ffiffiffiffiffiffiffiffiffi
hω2i

p sin
� ffiffiffiffiffiffiffiffiffi

hω2i
q

t
	
: ð3:15Þ

Let 1þ ϵ ¼ ω2=hω2i and ξ ¼ _ω=ω, and then

C̈M ¼ − ω2

�
1þ ϵ2

4ð1þ ϵÞ
�
CM…

− ω2ξSM −
ω2

t

�
ϵ −

3ϵ2

4ð1þ ϵÞ
�
SM; ð3:16Þ

S̈M ¼ − ω2

�
1þ ϵ2

4ð1þ ϵÞ
�
SM…

−
�
ξϵ −

1

4t
ð2ϵþ ϵ2Þ

��
1

t
SM − CM

�
: ð3:17Þ

One can see that for ϵ ¼ 0, ξ ¼ 0 we get back (2.1). As the
errors can increase with ϵ as well as ξ, they are potentially
much larger than for WKB.

IV. THE JORDAN-MAGNUS METHOD

The WKB approximation provides good long range
accuracy but is limited to one-dimensional systems. In
contrast the truncated Magnus expansion provides a
matrix-based approach suitable for multidimensional sys-
tems, but with inferior long range accuracy as we saw in
Sec. III. Ideally we want a way to combine the positive
aspects of both WKB and Magnus, that is achieve
WKB-like long range accuracy with a solution that works
on multidimensional systems. In this section we introduce
a new approach based on the Magnus expansion, dubbed
the “Jordan-Magnus” method, which goes some way
toward this goal.
If the A matrix were time-independent, we could solve

the system by diagonalizing A to obtain the independent
oscillating modes. Consider introducing a linear trans-
formation to (1.1). Let xP ¼ P−1x, and let J ¼ P−1AP
for some transformation matrix PðtÞ. Then

_xP ¼ APxP ¼ ½Jþ _ðP−1ÞP�xP; ð4:1Þ

where _ðP−1Þ denotes the time derivative of P−1. We want
to choose a P such that AP is as diagonal as possible.
Let AP ¼ ΛþK where Λ is diagonal and K has zeros on
the diagonal.
Once again we seek a solution in the form xðtÞ ¼

MðtÞxð0Þ. We can obtain an approximate solution by
neglecting K,

MðtÞ ≈ PðtÞ exp
�Z

t

0

Λdt1
�
P−1ð0Þ: ð4:2Þ

This avoids the potentially costly matrix exponential.
Alternatively we can include K and obtain

MðtÞ ≈ PðtÞ exp
�Z

t

0

ðΛþKÞdt1
�
P−1ð0Þ; ð4:3Þ

which is the first Magnus solution to (4.1).
An obvious choice of linear transformation is one that

diagonalizes A. Now in general A may not have a diagonal
form; however, all N × N matrices can be placed in Jordan
normal form [20] (which reduces to diagonal form for
diagonalizable matrices).
For A ¼ ½ 0

−ω2
1
0
�, A is indeed diagonalizable, and we

obtain

J ¼
�−iω 0

0 iω

�
; P ¼

�
i=ω −i=ω
1 1

�
; ð4:4Þ

Λ ¼
� _ω
2ω − iω 0

0 _ω
2ω þ iω

�
; K ¼

�
0 − _ω

2ω

− _ω
2ω 0

�
: ð4:5Þ

We then find the Λ only solution (4.2) returns

MðtÞ ¼

2
64

�
ωð0Þ
ωðtÞ

	1
2 cosðhωiÞ 1

ωð0Þ
�
ωð0Þ
ωðtÞ

	1
2 sinðhωiÞ

−ωð0Þ
�
ωð0Þ
ωðtÞ

	1
2 sinðhωiÞ

�
ωðtÞ
ωð0Þ

	1
2 cosðhωiÞ

3
75

¼
"

C 1
ωð0Þ S

−ωð0ÞS ω
ωð0ÞC

#
; ð4:6Þ

where C and S are the independent WKB solutions from
Sec. II A. Thus we have obtained a WKB-like framework
from a Magnus-like approach.
The result is not identical to the WKB solution matrix

(3.12). We have no _ω terms, and indeed because the
Magnus expansion proceeds by integration as opposed
to differentiation, extending the series does not introduce
any further derivatives. This means that, while similar, the
Jordan-Magnus approach remains distinct from WKB. In
certain senses this lack of _ω terms may be an advantage as
derivatives can be difficult to evaluate numerically [5].
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If we try plotting the results of the Jordan-Magnus
method for the Airy and burst equations (Figs. 5 and 6)
we can see it dramatically outperforms the first and second
Magnus solutions in accuracy, achieving results similar to
the WKB solution.
However, this method also has some disadvantages over

standard Magnus methods. It is ultimately reliant on being
able to obtain P, Λ, and K as functions of t. In addition,
numerical Jordan decomposition is inherently unstable
[20]. This implies we need to compute the analytic,
symbolic, Jordan Normal form of A to apply the method.
While this is possible for the two-dimensional (1.1) system,

it quickly becomes prohibitive for more complicated
systems with more dimensions.
While there is no stable numerical algorithm for

obtaining Jordan-Normal form, algorithms do exist for
diagonalization [21]. Furthermore, although a complex
square matrix is not guaranteed to be diagonalizable, a
very large proportion of such matrices are diagonalizable
[22]. Hence diagonalization algorithms could form the
basis for a more fully numerical Jordan-Magnus method,
although at present efficient methods remain elusive.

V. RESULTS

A PYTHON code was developed [23] to implement linear
numerical integration methods of the form of (2.15) using
the WKB, truncated Magnus, and Jordan-Magnus approxi-
mate solutions. The NUMPY package [24] was used to
perform the numerical calculations, and the SYMPY package
[25] was used to perform the symbolic manipulation. For
comparison a RKF4(5) method and a second order (in the
WKB series) RKWKB method were also implemented.
The method of adaptive step size control used is described
in Appendix.
Figure 7 shows the result of the numerical code for

the different methods on the Airy and burst equations
described in Sec. III B. For both equations we can see that
the RKF4(5) method requires the smallest step size, and the
Magnus methods use roughly similar intermediate step
sizes. As expected the RKWKB method gives the largest
step sizes, quickly reaching the maximum allowed step
size hmax, although it also gives the largest relative error.
The Jordan-Magnus method gives smaller step sizes than
RKWKB, but larger step sizes compared to the other
methods.
Each plot includes a note of T, the time taken for the

integration for each method. This of course varies sub-
stantially depending on the machine and the code imple-
mentation. However, the ratio between the run-times for the
different methods should give a reasonable indication of the
relative computational cost. Table I shows the averaged
results for Fig. 7. We can see that the methods with the
largest step size give the smallest time ratio and thus the
smallest computational cost. The RKWKB method per-
forms best and Jordan-Magnus second best. This result also
supports the approach taken in the previous sections of

FIG. 6. WKB, and the Λ only and ΛþK Jordan-Magnus
solutions to the burst equation with n ¼ 40, analytic solutions
plotted for t ¼ −10 to t ¼ þ10. Note the Jordan-Magnus lines lie
on top of one another for most of the graph.

FIG. 5. WKB, and the Λ only and ΛþK Jordan-Magnus
analytic solutions to the Airy equation with t0 ¼ 1. Note all three
lines lie very close on top of one another and the true solution.

TABLE I. Ratio of integration times vs RKF4(5) time for the
different plots. Averaged over 20 runs.

Method Airy equation Burst equation (n ¼ 40)

First Magnus 0.115� 0.004 0.78� 0.02
Magnus 4° GL 0.244� 0.004 0.81� 0.01
Second Magnus 0.253� 0.003 0.503� 0.008
RKWKB 0.0029� 0.0003 0.0065� 0.0004
Jordan-Magnus 0.050� 0.007 0.246� 0.028
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seeking an approximate solution with good long range
accuracy, as this allows large integration step sizes.
We note that the relative errors shown in Fig. 7 are not

representative of what could be achieved by an optimized

code (for example see Agocs et al. [5] for a practical
implementation of RKWKB to fourth order in the WKB
series). Nonetheless, the results concerning the relative step
sizes and relative run-times achieved should still apply.

FIG. 7. Applying numerical integration with adaptive step size control to the Airy equation and burst equation with n ¼ 40. For the
Magnus and RKWKB solutions ϵ ¼ 0.005, atol ¼ 0.005, rtol ¼ 1. For the RKF solution, ϵRKF ¼ 0.005, atol ¼ 1, rtol ¼ 2. Initial step size
h0 ¼ 0.5, hmax ¼ 10, hmin ¼ 0.01 for Magnus methods. For RKF4(5) hmax ¼ 2.5, hmin ¼ 0.005. In each plot the layout is as follows: Top:
the integration results. Middle: log10 jhj where h ¼ step size. Bottom: log10 jrelative errorj. The ϵ line shows the target error of ϵ ¼ 0.005.

BEYOND THE RUNGE-KUTTA-WENTZEL-KRAMERS-BRILLOUIN … PHYS. REV. D 101, 043517 (2020)

043517-9



FIG. 8. Applying numerical integration methods to the photon and CDM system. The black dashed line is the analytic solution for
large kη which is C0 cos ðkðηþ C1Þ=

ffiffiffi
3

p Þ where C0, C1 are coefficients fitted to the RKF45 data. The initial conditions are η0 ¼ 0.01,
x0 ¼ ½1; 2; 1; 2; 1�. The parameters are k ¼ 200, h0 ¼ 0.025, hmin ¼ 0.00025, hmax ¼ 2.5, ϵ ¼ 0.005. For the Magnus methods
atol ¼ 0.005, rtol ¼ 1, and for the RKF method atol ¼ 4, rtol ¼ 2. The layout is as in Fig. 7.

FIG. 9. Applying numerical integration methods to the photon and CDM system, showing potential Φ. The black dotted line is the
adiabatic solution (2.21) fitted to the initial conditions, and the black dashed line is the adiabatic solution fitted to the RKF data for
η ≥ 0.05. The initial conditions and all other parameters are as in Fig. 8.
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A. Application to the Einstein-Boltzmann equations:
Photon and CDM universe

Finally we applied the methods and numerical integra-
tion code to the Einstein-Boltzmann equations for a simple
radiation dominated universe with only photons and CDM,
as described in Sec. II D 2.
Unfortunately it was not possible to use the new Jordan-

Magnus method on this system due to the difficulty of
obtaining a symbolic, analytic Jordan normal form.
However, we can test the analytic first order Magnus
solution, fourth and sixth order numerical Magnus sol-
utions, and the RKF4(5) method. The results for Θ0 and Φ
are shown in Figs. 8 and 9.
Fitting a solution of the form A0 cosðkη=

ffiffiffi
3

p Þþ
B0 sinðkη=

ffiffiffi
3

p Þ, where A0 and B0 are constants, to the
results gives good agreement for Fig. 8 for all but the
earliest times as expected.
For Fig. 9, fitting the adiabatic solution for Φ (2.21) to

the initial conditions gives good agreement only for very
early times up to about η ≈ 0.015. However, a separate
adiabatic solution (2.21) fitted to the RKF4(5) data for
η > 0.015 gives good agreement for η≳ 0.03 onwards.
Hence while the results do not fit a single adiabatic
solution, they can be well described by two adiabatic
regimes with a transition region between 0.015≲ η≲ 0.03.
The plots of log10ðhÞ show RKF4(5) gives the smallest

step size, the sixth order GL Magnus method has inter-
mediate step sizes, and the first Magnus and fourth order
GL Magnus methods give the largest step sizes.
As in Sec. V we can compare the average ratio of

run-times (Table II). This shows that the sixth order GL
Magnus method actually underperforms RKF4(5), with the
smaller number of steps not compensating for the larger
time per step. However, the analytic first Magnus and
fourth order GL Magnus methods both give improved
performance compared to RKF4(5).
This shows that despite their inferior performance

compared to WKB in Sec. III, Magnus expansion based
methods can still outperform RKF4(5) on a real cosmo-
logical higher-dimensional system.

VI. CONCLUSION

In this work we sought to explore methods for efficiently
integrating coupled systems of first order ODEs with highly

oscillatory solutions, which would be a higher-dimensional
extension of the RKWKB method, with particular appli-
cations to cosmological systems of interest.
The work of previous authors [4,5,7,8] suggests methods

based on the Magnus expansion could be candidates for a
multidimensional equivalent of RKWKB. However, com-
parison of the analytic Magnus expansion and WKB
approximate solutions implies the two methods are funda-
mentally distinct mathematical approaches. For equations
of the form of (2.1) WKB approximates the frequency as
hωi, whereas the first Magnus solution approximates it asffiffiffiffiffiffiffiffiffi
hω2i

p
. The WKB solution series involves successively

higher derivatives of ω while the Magnus expansion
involves successively higher order integrals. Testing on
trial equations of the form of (2.1), the WKB solution give
much higher accuracy. This indicates that the Magnus
expansion and WKB based methods are orthogonal lines of
research; however, the relationship between the two may
benefit from more formal mathematical inquiry.
The simplest Magnus expansion based approximate

solutions were found to gave inferior long range accuracy
compared to WKB. By introducing a linear transformation
we can convert the A matrix to a more diagonal form,
obtaining a new “Jordan-Magnus” method. This gave
excellent long range accuracy on simple two-dimensional
problems which closely resembled the WKB solutions.
However, currently the method relies on finding the
symbolic Jordan normal form of A which is very difficult
for high-dimensional cases. It could form the basis for a
more fully numerical method which could be applied to
arbitrarily high dimensions.
A PYTHON code was created to implement the correspond-

ing numerical integration methods, incorporating an adaptive
step size procedure and the RKWKB and RKF4(5) methods
for comparison. The code leaves plenty of room for opti-
mization, and one could certainly improve the performance
by switching to a compiled language like C. On simple
two-dimensional systems, simple Magnus expansion based
numerical methods ran significantly faster than RKF4(5),
with the Jordan-Magnusmethod running faster still, although
not achieving the speed of RKWKB.
Finally we applied this code and these methods to a

simplified set of Einstein-Boltzmann equations correspond-
ing to photon and CDM oscillations in the radiation era.
The results again demonstrate that Magnus expansion
based methods performed better than RKF4(5) by giving
a speed improvement of about 50%. However, the improve-
ment was not as impressive as for the simpler systems, and
we could not implement the Jordan-Magnus method. For
large times the numerical results fit the expected solutions
for adiabatic perturbations. However, we could not fit a
single adiabatic solution to the numerical results for the
potentialΦ. Instead the results suggest a transition between
two different adiabatic regimes. This could indicate a
breakdown of the adiabatic approximation for that system.

TABLE II. Ratio of integration times for different methods vs
RKF4(5) for the photon and CDM system. Parameter settings and
initial conditions are as in Figs. 8 and 9. Averaged over 20 runs.

Method Ratio

Magnus 6° GL 1.58� 0.06
First Magnus 0.71� 0.03
Magnus 4° GL 0.62� 0.03
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Future work would involve testing these Magnus expan-
sion based methods on other multidimensional systems,
including the 14 × 14 Einstein-Boltzmann matrix for l ≤ 2.
If successful, one could extend up to high l values and see
how one might include these methods in future Boltzmann
solver codes.
These results demonstrate that multidimensional numeri-

cal integration methods based on the Magnus expansion
show promise for improving the performance of not only
cosmological Boltzmann solvers but also many similar
problems in other areas of physics.
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APPENDIX: PROCEDURE FOR ADAPTIVE
STEP SIZE CONTROL

We implemented the adaptive step size procedure
laid out in Press and Flannery (1988) [26]. To estimate
the error, and thus the correct step size for each step, we
compute the estimate of xnþ1 from one step of size h, and a
separate estimate using two steps size h=2, denoting this
x�nþ1. The error is then Δi ¼ jx�i nþ1 − xi nþ1j for each
component i. We define a maximum tolerable error as

Δmax
i ¼ ϵðatol þ rtoljx�i nþ1jÞ, where atol and rtol parametrize

the absolute and relative error tolerance, and ϵ is a small
scale factor.
The procedure is then as follows:
(1) Calculate x�nþ1 and xnþ1 for step size h.
(2) Calculate Δi and Δmax

i and the error ratio R ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
N
i ðΔi=Δmax

i Þ2
q

.

(3) If R ≤ 1, compute a new h as hnew ¼ hSR−1=ðνþ1Þ
where S ¼ safety factor ∼0.99, ν ¼ order of
method.
Go to 5.

(4) Else if R > 1, compute a new h as hnew ¼ hSR−1=ν.
If hnew < hmin, set hnew ¼ hmin and go to 5.
Otherwise go to 1.

(5) If hnew < 0.2h, set hnew ¼ 0.2h.
If hnew > hmax, set hnew ¼ hmax.
If hnew > 10h, set hnew ¼ 10h.

(6) Use current x�nþ1 as the estimate. Advance time. Set
h ¼ hnew. Go to next step.

The RKWKB method used the adaptive step size
procedure outlined above, setting ν ¼ 1. The RKF4(5)
was implemented following [26]. The approach to step size
control is the same, except the error is calculated using the
difference between the fourth and fifth order RK methods.
The atol and rtol values for the RKF4(5) and Magnus

methods were chosen using trial and error to achieve the
largest step sizes for the target error ϵ when applied to the
burst equation as in Fig. 7. For the RKWKB method
the values for the Magnus methods were used.
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