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We show that equations of Newtonian hydrodynamics and gravity with Einstein’s cosmological constant
included admit gravitostatic wave solutions propagating in the background of Einstein’s static universe. In
the zero pressure limit these waves exist at an average matter density exceeding that of Einstein’s universe.
They have the form of a lattice of integrable density singularities localized at the maxima of the
gravitational potential. These singularities are steady-state counterparts of the so-called Zeldovich
pancakes (ZP), interim wall-like structures appearing at nonlinear stages of development of gravitational
instability. As the average matter density decreases, the period of the ZP lattice increases, diverging at the
density of Einstein’s universe. Solitary wave solutions are found at exactly the density of Einstein’s
universe, and at a slightly larger density, the wave may be viewed as a lattice of well-separated ZP solitons.
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I. INTRODUCTION

It is well known that in order to conform with astro-
nomical observations of the day and his own views that the
universe is static, in 1917 Einstein modified [1] his
equations of the general theory of relativity away from
their original form [2]. The modification, known as the
cosmological or Λ term, has the effect of counteracting
the long-range attractive gravitational interaction making
a static universe possible. In 1922–1924, however,
Friedmann [3] demonstrated that not only do Einstein’s
field equations have spatially homogeneous and isotropic
solutions with or without the Λ term, they are generally
nonstationary, and Einstein’s static universe is a special
degenerate case. Results similar to Friedmann’s have also
been found in 1927 by Lemaître [4] who, based on
astronomical observations, concluded that the universe is
expanding. This picture of the universe has been put on
solid observational footing by Hubble’s discovery of a
linear velocity-distance relationship for distant galaxies [5].
Moreover, Einstein’s static universe has been shown to be
unstable with respect to small density perturbations [6].
Eventually, a consensus was reached that the introduction
of the Λ term was an unnecessary complication of the
theory not supported by observational data of the day [2].
The attitude toward the cosmological term started to shift

about two decades ago when accelerated expansion of the
universe was discovered [7,8], and presently a case can be
made in favor of a positive cosmological Λ term as a
possible explanation of the observations [9]. Recent mea-
surements of the cosmic microwave background (CMB)
[10] have additionally supported the case in favor of
constant Λ > 0. The latest measurements on bright stars

in galaxies [11], however, seem to indicate thatΛ has varied
from the time the CMB was created to the present era.
Despite these differences that clearly will have to be
addressed in future observations, there is solid observa-
tional evidence for the existence of the cosmological term.
The current value of the cosmological constant is [10]

Λ ¼ ð1.106� 0.023Þ × 10−56 cm−2: ð1Þ
These developments renewed interest in cosmological

models with the cosmological constant. The goal of this
paper is to provide a solution to one of such models.
Namely, we demonstrate the existence of traveling wave
cosmological solutions that can propagate in the back-
ground of Einstein’s static universe. These solutions also
encompass solitary waves whose existence is only possible
due to the presence of the cosmological constant.
Hereafter our tool is the Newtonian cosmology of Milne

and McCrea [12]. Compared to the general theory of
relativity this approach offers simplicity and ease of
extension to models lacking the homogeneity and isotropy
of the classic Friedmann-Lemaître solutions. While not a
substitute for the general theory of relativity, in questions of
cosmology, the Newtonian approach is nearly as rigorous
as that of the general theory of relativity [13]. Indeed, the
Friedmann-Lemaître dynamics is recovered within the
Newtonian cosmology [12], and Newtonian analysis of
gravitational instability [14] agrees with that based on the
general theory of relativity [2].

II. STATEMENT OF THE PROBLEM

Our starting point is the system of equations of
Newtonian hydrodynamics and gravity for an ideal liquid
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described by the local position- and time-dependent mass
density ρðr; tÞ and velocity vðr; tÞ fields [12–14], which are
related by the continuity equation

∂ρ
∂t þ∇ · ðρvÞ ¼ 0: ð2Þ

The equation of motion of the liquid is given by the Euler
equation of hydrodynamics,

∂v
∂t þ ðv · ∇Þv ¼ −∇ϕ ð3Þ

where ϕ is the gravitational potential. In Eq. (3) the
effects of the pressure are neglected, which is a legitimate
approximation in a variety of cosmological applications,
provided the velocities of the particles of the liquid are
much smaller than the speed of light [13]. Additionally,
a zero-pressure limit is a good approximation to the
equation of state of dark matter. The gravitational
potential is determined by the density ρ via the Poisson
equation [12,14]

∇2ϕ ¼ 4πGðρ − ρ0Þ; ρ0 ¼
Λc2

4πG
ð4Þ

where G is the universal gravitational constant, and
the characteristic density ρ ¼ ρ0 corresponding to
Einstein’s universe is finite only in the presence of the
cosmological constantΛ. The density of Einstein’s universe
corresponding to the current estimate of the cosmological
constant (1) is

ρ0 ≈ 10−29 g=cm3: ð5Þ

We hasten to mention that the present-day value of the
average matter density is a small fraction of Einstein’s
density ρ0 in (5), again ruling out Einstein’s static universe.
According to the Euler equation (3), the liquid is

accelerated by the gradient of the gravitational potential
−∇ϕ. While the particles of the liquid attract each other,
they are repelled by the uniform background due to the
cosmological constant Λ. The latter creates a possibility for
a static solution ρ ¼ ρ0 which is, however, unstable [14].
We also observe that if the right-hand side of the Euler

equation (3) is multiplied by the negative of the electron
charge-to-mass ratio, and ϕ is identified with the electro-
static potential, the system of equations (2)–(4) would
describe (neglecting the effects of pressure) a nonrelativ-
istic electron plasma of the charge density Gρ in the
presence of a fixed compensating ion charge background
of the density Gρ0 [15,16]. Physics of this system is
qualitatively different from that represented by Eqs. (2)–
(4): Electrons repel each other and are attracted by the ion
background. This admits a stable static solution ρ ¼ ρ0
corresponding to the state of local neutrality.

III. GRAVITOSTATIC WAVES

Let us consider the one-dimensional motion along the x
axis, v ¼ ðv; 0; 0Þ, and seek solutions for the density ρ,
velocity v, and gravitational potential ϕ that depend only on
ξ ¼ x − ut where u is the velocity of the wave. Then
Eqs. (2)–(4) transform into

ð−uρþ ρvÞ0 ¼ 0; ð6Þ

−uv0 þ vv0 ¼ −ϕ0; ð7Þ

ϕ00 ¼ 4πGðρ − ρ0Þ ð8Þ

where the prime is shorthand for the derivative with respect
to ξ.
Solutions to this system of equations in purely

Newtonian, ρ0 ¼ 0, cosmology called gravitostatic waves
have been found recently [17]. They exhibit universality:
With an appropriate choice of units, the problem becomes
parameter-free, which means that all the solutions are
qualitatively the same. While the presence of the density
scale ρ0 in Eq. (8) breaks universality, below we show that
it admits solutions whose character changes with the
average density ρ̄, the central parameter of our investiga-
tion. Specifically, solitary wave solutions resembling those
found in plasma physics [16,18] are found at ρ̄ ¼ ρ0, a
possibility that cannot be realized if ρ0 ¼ 0. Integrating
Eq. (6) we find −uρþ ρv ¼ const ¼ −uρ̄, where the
integration constant is fixed by the requirement of the
absence of average mass flux in the wave, ρ̄v ¼ 0. As a
result one obtains a relationship

ρ ¼ ρ̄
u

u − v
ð9Þ

that already appeared previously [15–18]. It implies that
underlying particles cannot travel faster than the wave,
v ≤ u, and that their velocity changes sign at ρ ¼ ρ̄: The
particles are moving in the positive ξ direction in the region
where ρ > ρ̄ and in the negative direction if ρ < ρ̄.
Integrating Eq. (7) we arrive at the Bernoulli equation

ðu − vÞ2
2

þ ϕ ¼ 0 ð10Þ

where, without loss of generality, the integration constant is
set to zero. This constrains the gravitational potential to
nonpositive values, ϕ ≤ 0; the upper limit ϕ ¼ 0 is reached
at points where the velocity of the particles equals that of
the wave, v ¼ u, and the density (9) is singular.
Combining Eqs. (9) and (10) we find the dependence of

the density on the potential

ρðϕÞ ¼ ρ̄
uffiffiffiffiffiffiffiffiffi
−2ϕ

p : ð11Þ
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A. Mechanical analogy

Similar to observations already made in previous studies
[16–18], if ϕ is viewed as a position of a fictitious particle
of unit mass, ξ as a time, and 4πG½ρðϕÞ − ρ0� as a force,
Eq. (8) parallels Newton’s second law of motion for the
particle in the field of the potential energy

UðϕÞ ¼ 4πGðρ̄u
ffiffiffiffiffiffiffiffiffi
−2ϕ

p
þ ρ0ϕÞ: ð12Þ

Then the first integral of Eq. (8) has the form

ϕ02

2
þ UðϕÞ ¼ g2

2
; ð13Þ

where the integration constant g2=2 is the energy of the
fictitious particle. The parameter g is also the magnitude of
the gravitational field −ϕ0 at ϕ ¼ 0 (to be definite we set
g > 0). Choosing ϕ ¼ 0 to be located at ξ ¼ 0, Eq. (8) can
be integrated as ξ → 0 with the following asymptotic
results for the potential, density (11), and velocity (10),

ξ→ 0∶ϕ¼−gjξj; ρ¼ ρ̄uffiffiffiffiffiffiffiffiffiffi
2gjξjp ; v¼u−

ffiffiffiffiffiffiffiffiffiffi
2gjξj

p
: ð14Þ

The same behavior was found previously in the problem
without the cosmological constant [17]; the density singu-
larity at ξ ¼ 0 does not cause conceptual difficulties as it is
integrable.
The fact that the density diverges at the maximum of the

gravitational potential can be explained with the help of the
Bernoulli equation (10). Indeed, in the reference frame of
the wave, the original particles flow over the static potential
energy landscape ϕ in the negative ξ direction, and Eq. (10)
is a statement of conservation of energy, an interpretation
well known in plasma physics [16,18]. Then a particle
starting at ϕ ¼ −u2=2 with velocity −u arrives at the
maximum of the potential ϕ ¼ 0 with zero velocity.
Thus, particle accumulation at the maximum of the
potential is the reason why the density is singular. This
is essentially the mechanism responsible for the wave
breaking effect [16]. The density singularity centered at
the maximum of the gravitational potential is thus a caustic
of the density field. Previous analysis of the problem
without the cosmological constant [17] related this singu-
larity to the so-called Zeldovich pancakes (ZPs) [19–21],
interim wall-like density singularities that appear at non-
linear stages of development of the gravitational instability.
We contend that the same connection holds in the presence
of the cosmological constant: The singularity (14) is a
steady-state counterpart of the ZP possessing an infinite
lifetime.
Unlimited accumulation of particles at the maximum of

the gravitational potential, an artifact of the zero-pressure
approximation, is halted by finite pressure effects. The
reasoning originally given for the ρ0 ¼ 0 version of the

problem [17] carries over to the ρ0 ≠ 0 case and will not be
repeated here.
If ρ0 ¼ 0, the potential energy function (12) is a

monotonically decreasing function of ϕ constrained by
the “hard-wall” condition ϕ ≤ 0. As a result the fictitious
particle can only perform oscillatory motion, which trans-
lates into already-studied spatially periodic behavior of the
potential, density, and velocity [17].
If, however, ρ0 ≠ 0, the potential energy (12) sketched in

Fig. 1 has a maximum at

ϕ¼ ϕ0 ¼−
ρ̄2u2

2ρ20
; Uðϕ0Þ ¼U0 ¼

2πGρ̄2u2

ρ0
ð15Þ

and the character of the motion of the fictitious particle
depends on the dimensionless parameter

e2 ¼ g2

2U0

¼ ρ0g2

4πGρ̄2u2
: ð16Þ

Like the amplitude of the gravitational field g that first
appeared in Eq. (13), the quantity e (assumed to be positive)
is not an independent parameter of the problem; its depend-
ence on ρ̄=ρ0 will be established below.
If e2 > 1 the motion is infinite. In terms of the original

problem, this translates into unbounded variation of the
gravitational potential which cannot be justified within the
framework of the Newtonian gravity.
If e2 ≤ 1, then there are two turning points of motion,

ϕ1;2 ¼ −jϕ0jð1 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þ2 ð17Þ

-2 -1 0

1

-2 -1 0

1

FIG. 1. Potential energy U as a function of the gravitational
potential ϕ, Eq. (12) in units of U0 and jϕ0j, Eq. (15), respec-
tively, or, equivalently, Eq. (26), in dimensionless form. The
turning points of motion ϕ1;2 are given by Eq. (17). For the
energy and potential in the ranges 0 ≤ e2 ≤ 1 and ϕ1 ≤ ϕ ≤ 0,
the motion is bounded. Periodic solutions correspond to
0 ≤ e2 < 1, while the e2 ¼ 1 solution is a soliton. Grayscale
regions are not accessible for motion.
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corresponding to the zeros of the gravitational field which
are the solutions of the equation UðϕÞ ¼ g2=2. If ϕ ≤ ϕ2

[the lower sign in Eq. (17)], the motion is infinite and
beyond the realm of Newtonian cosmology.
If ϕ1 ≤ ϕ ≤ 0 the motion of the fictitious particle is

finite, which is relevant to the present study. The ranges of
variation of the potential and the density (11) in the wave
are thus given by

−
ρ̄2u2

2ρ20
ð1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

p
Þ2 ≤ϕ≤ 0; ρ≥

ρ0

1−
ffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

p : ð18Þ

We note that in the limit of the zero cosmological constant,
ρ0 → 0 (e2 → 0), these inequalities reproduce their ρ0 ¼ 0
counterparts [17]. We also observe that since ρ ≥ ρ0,
traveling wave solutions can only exist at an average density
ρ̄ larger than or equal to the density of Einstein’s uni-
verse, ρ̄ ≥ ρ0.
Integrating the first-order differential equation (13), we

find

ξ ¼
Z

ϕ

0

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − 2UðϕÞ

p ð19Þ

which implicitly gives a ϕðξÞ dependence for ξ ≤ 0; the
entire range of variation of ξ is then included via a
generalization ϕðξÞ → ϕð−jξjÞ.
If e2 < 1, the motion of the fictitious particle is oscil-

latory. The gravitational potential ϕ is then a periodic
function, ϕðξþ λÞ ¼ ϕðξÞ, with the period λ given by

λ ¼ 2

Z
0

ϕ1

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − 2UðϕÞ

p : ð20Þ

The matter density ρðξÞ is also periodic with the same
period. The average density ρ̄ that appeared in previous
expressions can now be computed with the result

ρ̄ ¼ 2

λ

Z
0

−λ=2
ρðξÞdξ ¼ ρ0 þ

g
2πGλ

ð21Þ

where we employed the Poisson equation (8) and the
boundary condition ϕ0ðξ→−0Þ¼g, Eq. (14). Equation (21)
relates the average density ρ̄ and the amplitude of the
gravitational field g, making it clear that only one of them
is independent. Since 1=λ has the meaning of a one-
dimensional density of the ZP singularities (14), the expres-
sion for the average density (21) admits a natural physical
interpretation: The average density ρ̄ is the sum of the
background density ρ0 of Einstein’s universe and contribu-
tions due to the ZP singularities, the second term of Eq. (21).
An individual ZP contributes g=2πG into the areal matter
density.

B. Soliton limit: Generalities

Equation (21) also implies that as ρ̄ → ρ0 from above or
equivalently e2 → 1 from below, the period λ diverges. This
is the marginal case when a periodic solution turns into a
solitary wave solution or soliton. The magnitude of the
gravitational field at the soliton center then follows by
setting e2 ¼ 1 and ρ̄ ¼ ρ0 in the expression for the
parameter e2 in Eq. (16):

g ¼ 2u
ffiffiffiffiffiffiffiffiffiffiffi
πGρ0

p
: ð22Þ

The potential and the density in the soliton, according to
Eq. (18), then vary within the ranges −u2=2 ≤ ϕ ≤ 0 and
ρ ≥ ρ0 ¼ ρ̄. The latter, along with Eq. (9), implies that all
the particles in the soliton are moving in the direction of
propagation of the wave, v ≥ 0. Their speed jvj increases
from zero at ξ → �∞ to u at the soliton center ξ ¼ 0. Since
one soliton only carries along mass per unit area, it does not
affect the bulk density. That is why it is legitimate to
characterize the soliton by the condition ρ̄ ¼ ρ0 even
though ρ ≥ ρ0. Likewise, the soliton solution satisfies
the constraint of zero average mass flux, ρ̄v ¼ 0, the
condition behind Eq. (9), even though the particle velocity
in the soliton does not change sign.
As the average density ρ̄ approaches the density of

Einstein’s universe ρ0, the period of the ZP lattice diverges
according to

λðρ̄ → ρ0Þ ¼
ffiffiffiffiffiffiffi
ρ0
πG

r
u

ρ̄ − ρ0
ð23Þ

and the wave may be viewed as a lattice of well-separated
solitons.

C. Formulation in reduced units

Further analysis is simplified if the velocity is measured
in units of the velocity of the wave u, the density in units of
the density of Einstein’s universe ρ0, the gravitational
potential ϕ in units of jϕ0j [Eq. (15)], and the length in
units of

l ¼ ρ̄uffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρ30

q : ð24Þ

Then the velocity entering the Bernoulli equation (10) and
the density (11) are given in terms of the potential as

v ¼ 1 − ρ̄
ffiffiffiffiffiffiffi
−ϕ

p
; ρ ¼ 1ffiffiffiffiffiffiffi

−ϕ
p ð25Þ

and Eqs. (12), (13), and (19) become

ϕ02

2
þUðϕÞ ¼ e2; UðϕÞ ¼ 2

ffiffiffiffiffiffiffi
−ϕ

p
þ ϕ; ð26Þ
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ffiffiffi
2

p
ξ ¼

Z
ϕ

0

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 −UðϕÞ

p : ð27Þ

We now see that the parameter e2 introduced in Eq. (16)
plays the role of dimensionless energy of the fictitious
particle.

1. Solitary wave solution

Integrating Eq. (27) for e2 ¼ 1 (the soliton limit), we
find

−
jξjffiffiffi
2

p ¼
ffiffiffiffiffiffiffi
−ϕ

p
þ lnð1 −

ffiffiffiffiffiffiffi
−ϕ

p
Þ ð28Þ

which, together with the expressions for the velocity
(evaluated at ρ̄ ¼ 1) and density, Eq. (25), fully describes
the soliton solution plotted in Fig. 2. The unit of length here
is the ρ̄ ¼ ρ0 case of Eq. (24):

l0 ¼
uffiffiffiffiffiffiffiffiffiffiffiffiffi

8πGρ0
p : ð29Þ

While for jξj ≪ 1, Eq. (28) matches the asymptotic result
(14) describing the soliton core, for jξj ≫ 1, it becomes

ϕðξÞ ¼ −ð1 − e−jξj=
ffiffi
2

p
Þ2 ð30Þ

which means that as jξj → ∞ the asymptotic ϕ ¼ −1 limit
is approached exponentially rapidly, and the length scale l0
in Eq. (29) also has a meaning of the soliton width. We can
now establish the range of validity of the soliton limit (23)
as a condition of lack of overlap of the cores of neighboring
solitons in the wave, λ ≫ l0. This becomes ρ0 ≫ ρ̄ − ρ0,

independent of the velocity of the wave u or the gravita-
tional constant G.

2. Periodic solution

Integrating Eq. (27) for general e2 ≤ 1, we find an
expression

−
jξjffiffiffi
2

p ¼ e− ½ð1−
ffiffiffiffiffiffiffi
−ϕ

p
Þ2 þ e2 − 1�1=2

þ ln
1−

ffiffiffiffiffiffiffi
−ϕ

p þ ½ð1− ffiffiffiffiffiffiffi
−ϕ

p Þ2 þ e2 − 1�1=2
1þ e

ð31Þ

that for e2 ¼ 1 reduces to Eq. (28). Evaluating the right-
hand side of (31) at ϕ ¼ ϕ1, Eq. (17), the period of the
wave can be determined as

λðeÞ ¼
ffiffiffi
2

p �
ln
1þ e
1 − e

− 2e

�
: ð32Þ

The solution (31) holds within one full period of the wave
−λ=2 ≤ ξ ≤ λ=2 and needs to be periodically continued
beyond that. The λðeÞ dependence (32) is a monotonically
increasing function that vanishes at e ¼ 0.
In the soliton limit e → 1 − 0 the period of the wave

diverges in a logarithmic fashion, λ → −
ffiffiffi
2

p
lnð1 − eÞ. This

is equivalent to Eq. (23) but stated in terms of the difference
1 − e. Remembering that the wavelength (32) is given in
units of l (24) and employing the definition of e2, Eq. (16),
the average density ρ̄ can be expressed in terms of e as

ρ̄ ¼ 1þ 2
ffiffiffi
2

p
e

λðeÞ ¼ 1þ 2e
ln 1þe

1−e − 2e
: ð33Þ

This is a monotonically decreasing function that for e → 0

diverges as 3=e2. Combining with the definition of the
parameter e2 (16) and restoring original physical units, we
find g ¼ 2u

ffiffiffiffiffiffiffiffiffiffiffi
3πGρ̄

p
, which is the amplitude of the gravi-

tational field in the ρ0 ¼ 0 gravitostatic wave [17]. In a
similar fashion, an expression for the period of the ρ0 ¼ 0

wave, λ ¼ u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=πGρ̄

p
[17], can be recovered.

Equation (33) can also be used to update the expression
for the lower bound on the gravitational potential in the
wave appearing in Eqs. (17) and (18) in the original
physical units:

ϕ1 ¼ −
u2

2

�
1þ 2e

ln 1þe
1−e − 2e

�
2�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
2
: ð34Þ

This is a monotonically increasing function of e: As e → 0

it tends to −9u2=8 and reproduces the earlier ρ0 ¼ 0 result
[17], while as e → 1 one finds ϕ1 ¼ −u2=2, which repre-
sents the already-analyzed soliton limit.

FIG. 2. Behavior of the matter density (25), velocity (36), and
gravitational potential (28) in the ZP soliton propagating in the
positive ξ direction. The units of the potential, velocity, and
density are u2=2, u, and ρ0, respectively. The unit of length is l0,
Eq. (29). Faint horizontal black and blue lines are background
levels of the potential and density, respectively.
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The ϕ1ðeÞ behavior as given by Eq. (34) appears to be in
contradiction with what is implied by Fig. 1. However, the
two cannot be directly compared because Eq. (34) gives the
lower bound on the gravitational potential in the original
physical units, while in Fig. 1 the potential is measured in
units of jϕ0j, Eq. (15), which includes the ðρ̄=ρ0Þ2 ratio.
Similarly, the λðeÞ dependence (32) taken at its face value
misrepresents the dependence of the measurable period of
the wave on the parameter e as e → 0, which is equivalent
to the ρ0 ¼ 0 case. Indeed, according to Eq. (32), one finds
λð0Þ ¼ 0, while the physical period in this case is finite [17]
as was already explained following Eq. (33). The reason
behind this artifact is that the unit of length l, Eq. (24), is
singular as ρ0 → 0.
We see that while measuring the potential in units of jϕ0j

(15), the velocity in units of u, the density in units of ρ0, and
the length in units of l (24) simplifies the appearance of the
already-cumbersome general expression for the gravita-
tional potential (31), these choices also create artifacts that
are resolved only by reverting to the original physical units.
This can be avoided [at the price of complicating the
appearance of Eq. (31)] by choosing different units as
follows.
The velocity, density, and gravitational potential will be

measured in units of u, ρ̄, and u2=2, respectively, while the
unit of length will be based on the average density ρ̄:

l̄ ¼ uffiffiffiffiffiffiffiffiffiffiffi
8πGρ̄

p : ð35Þ

This will have no effect on the ρðϕÞ dependence; while the
vðϕÞ dependence in Eq. (25) simplifies to

v ¼ 1 −
ffiffiffiffiffiffiffi
−ϕ

p
; ð36Þ

the expression for the period of the wave (32) acquires the
form

λ ¼
ffiffiffi
2

p �
1þ 2e

ln 1þe
1−e − 2e

�
3=2

�
ln
1þ e
1 − e

− 2e

�
; ð37Þ

the expression for the average density (33) remains
unaffected, except that now it has to be viewed as a result
for 1=ρ0. Finally, Eq. (31) has to be modified according to
the substitutions

ξ →
ξ

ρ̄3=2
; ϕ →

ϕ

ρ̄2
ð38Þ

where ρ̄ is given by Eq. (33).
Equations (33) and (37) now supply us with the λðρ̄Þ

dependence in the parametric form for arbitrary 0 ≤ e ≤ 1.
It is a monotonically decreasing function that diverges as
e → 1, the behavior already captured by the ρ̄ → ρ0 limit
(23). As e → 0, the period approaches a finite value of

2
ffiffiffi
6

p
; this captures the behavior in the ρ0 ¼ 0 limit [17].

The implications of these conclusions in the original
physical units is that the period of the gravitostatic wave
is constrained by the inequality

λ ≥ u

ffiffiffiffiffiffiffiffiffi
3

πGρ̄

s
ð39Þ

where the lower bound is the ρ0 ¼ 0 result [17].
The typical behavior of the density, velocity, and

potential in the periodic gravitostatic wave propagating
in the positive ξ direction is summarized in Fig. 3. The
major qualitative difference from the soliton, Fig. 2, can be
seen in the behavior of the particle velocity which changes
sign where the density matches the average density in the
wave: The particles in the high-density regions, ρ > ρ̄,
which include ZP singularities, are traveling in the direction
of the wave, while the particles in the low-density regions,
ρ < ρ̄, are traveling in the opposite direction.

IV. STEADY FLOW SOLUTIONS

In an inertial reference frame traveling along with the
wave, the traveling wave solutions discussed in this work
become static solutions corresponding to the presence of a
fixed mass flux j flowing in the positive x direction. The
properties of these steady flow solutions can be inferred

FIG. 3. Behavior of the matter density (25), velocity (36), and
gravitational potential given by Eqs. (31) and (38), within one full
period (37) of the gravitostatic wave propagating in the positive ξ
direction. The units of the potential, velocity, and density are
u2=2, u, and ρ̄, respectively. The unit of length is l̄, Eq. (35). The
faint horizontal blue line is the average (unit) density, while the
dotted blue line is the background density given by ρ̄−1, Eq. (21).
The plot corresponds to e ¼ 0.7.
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from already-discussed properties of the traveling wave
solutions via a substitution [17]:

u →
j
ρ̄
: ð40Þ

V. CONCLUSIONS

To summarize, we have demonstrated that the introduc-
tion of the cosmological constant into the equations of
Newtonian cosmology qualitatively changes the character of
the traveling wave solutions. In addition to periodic sol-
utions that resemble previously identified gravitostatic
waves [17], we also found solitary wave solutions at an
average matter density equal to that of Einstein’s static
universe. While Einstein’s static universe is known to be
unstable with respect to small density fluctuations [6,14],

understanding outcomes of this instability is still the area of
active scientific inquiry [19–21]. It cannot be ruled out that at
least some perturbations could lead to the final state that is a
soliton traveling in the background Einstein’s static uni-
verse. This is reasonable because the soliton is the steady-
state counterpart of the ZP; the latter are known to emerge at
nonlinear states of gravitational instability [19–21].
We have also established that periodic traveling wave

solutions can only exist at an average matter density
exceeding that of Einstein’s static universe. As the two
densities approach each other, the period of the wave
diverges, and in this limit the wave may be viewed as a train
of well-separated solitons. So as far as traveling wave
solutions are concerned, the average density that is equal to
that of Einstein’s static universe represents a marginal case
that is akin to the point of phase transition.
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