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In this paper we study the survival of the entanglement of a scalar field state created during inflation. We
find that there exist UV-finite subdominant contributions to the entanglement entropy per momentum mode
that scale with the number of e-folds between horizon exit and the end of inflation, and that depend on the
logarithm of the radius of the entangling surface, which can be taken to be the Hubble sphere. We argue that
this entanglement entropy allows for the formation of entangled primordial black holes (PBHs). We find
that the entropy arising from the entanglement between PBHs is small compared with their Bekenstein
entropy.
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I. INTRODUCTION

The interplay between gravity, QFT, and quantum
information has been a subject of increasing interest in
the last decades. Following the interpretation of the
horizon area of a black hole as its entropy [1] and the
discovery of the area law of entanglement entropy in
QFT [2], there have been many studies of the entangle-
ment entropy of the vacuum in free field theories in
Minkowski [3,4] and curved backgrounds. Its applica-
tions include the entangled nature of the quantum states
arising from particle-creation scenarios, such as the
Hawking and Unruh effects [5].
Black hole physics is certainly the most studied phe-

nomenon within this interplay, even though many questions
related to this topic remain open [5,6]. However, quantum
entanglement in cosmological space-times has been less
extensively studied, but it can have potentially interesting
consequences [7,8]. In particular, the possibility of per-
forming cosmic microwave background experiments that
may prove its quantum origin has been explored [9,10]. In
the inflationary scenario, primordial cosmological pertur-
bations arise from quantum fluctuations that are stretched
out of the Hubble scale during inflation and reenter it
during the radiation- or matter-dominated eras. These
perturbations are the well-known seeds of structure for-
mation in the Universe. Their quantum origin is often
understated because the cosmological observables at hand
do not indicate any distinct quantum signature. In other
words, the Universe may not be classical, but it appears
classical. This apparent contradiction is called decoherence
without decoherence [11].

If the observable Universe appears classical it is because
it exists in a mixed state. Hence, from a quantum-mechani-
cal point of view, it is entangled with the nonobservable
Universe. The issue of the quantum-to-classical transition
of primordial fluctuations has been addressed with various
approaches, such as quantum decoherence [11–14] or
collapse models [15–17]. It is known that the vacuum
state of de Sitter (dS) space-time is entangled in a way that
goes beyond the area law found in Minkowski space-time,
as was found by Maldacena and Pimentel [18]. Its
corresponding entanglement entropy includes both UV-
divergent and UV-finite terms. The former arise from local
physics, while the latter are related to true long-range or
nonlocal correlations. If this entanglement arises in de
Sitter space-time, it must be at least partially created during
inflation as well. Entanglement may occur between differ-
ent momentum modes as well as between localized modes
and it may change during time evolution, since it may not
be unitary when restricted to individual modes due to
interactions among them. However, the whole quantum
state of the field must remain pure as dictated by unitary
evolution.
We argue that this kind of entanglement may survive

after inflation. In particular, we explore how some terms
can be related to the entanglement of isotropic modes
across a spherical entangling surface. The radius of this
sphere is arbitrary in our formalism, but we will discuss
in more detail the case of the Hubble sphere, given its
physical interest. This entanglement would also affect a
primordial black hole (PBH) formed by the gravitational
collapse of a casual domain during the radiation era [19].
We would like to understand how this entanglement
entropy between the PBHs and the rest of the Universe
may act as an entanglement trap among the PBHs
themselves and preserve a long-range correlation between
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them. In a future work we will explore the phenomeno-
logical consequences of this correlation.
The paper is organized as follows. In Secs. II and III we

set the context for our work by briefly reviewing the
concept of quantum entanglement in field theories and the
time evolution of the vacuum state during inflation in
the Schrödinger picture. In Sec. IV we reformulate the
theory of a scalar field in a radiation-dominated universe by
means of canonical quantization in spherical coordinates.
In Sec. V we compute the entanglement entropy per mode
of the resulting state. In Sec. VI we discuss how the
bipartition of a quantum mode in an inner and an outer
component works. In Sec. VII we show how the contri-
butions for each mode should be integrated to give the final
result. In Sec. VIII we make some comments about the
implications of these results for primordial black hole
formation. Finally, in Sec. IX we state our conclusions
and discuss the outlook for future research.

II. ENTANGLEMENT IN FIELD THEORY

Entanglement is the phenomenon by which correlations
of quantum origin can arise between observations of
different physical systems. Such systems are actually
subsystems of a larger quantum system and they cannot
be described separately by a vector of its corresponding
Hilbert space, which is called a pure state, but rather as a
statistical ensemble of possibly many such vectors, which
is called a mixed state. If the larger quantum system is not
entangled with other systems, then it can be described by a
vector on the tensor product of the Hilbert spaces of each of
the subsystems. The perhaps paradigmatic example of an
entangled quantum system is the singlet state of a system of
two particles with spin 1=2:

jψi ¼ 1ffiffiffi
2

p ðjþ −i− j−þiÞ: ð1Þ

The density matrix of this state is given by ρ ¼ jψihψ j.
Then, the reduced density matrix that describes the mixed
state of each subsystem is obtained by tracing over the other
subsystem:

ρi ¼ Trjρ; ð2Þ
and the entanglement entropy is given by the von Neumann
entropy of the mixed state of any of the subsystems,

Sent ¼ −Trðρi log ρiÞ: ð3Þ
Quantum entanglement also occurs when dealing with

continuously infinite degrees of freedom (d.o.f.). In fact, it
is an inevitable and natural feature of any quantum field
theory. If we take the whole field to be the quantum system
of interest, then it can be split into subsystems whose
correlations are measured by their entanglement entropy.
This entanglement entropy is dependent on the quantum

state of the field and the choice of subsystems. For instance,
if we consider the vacuum state of a scalar field theory in
Minkowski space-time, it can be expressed as a product
state of single momentum mode vacua and therefore there
is no entanglement between them:

j0i ¼ ⊗k j0ik: ð4Þ
However, if we choose the subsystems to be the localized

modes inside and outside of a sphere of radius R, then one
finds quantum entanglement between the inner and outer
modes with a UV-divergent entanglement entropy that
scales with the area of the sphere [2]:

S ∼ Λ2R2; ð5Þ
where Λ is the UVenergy cutoff. This is the celebrated area
law and describes the dominant contribution to the entan-
glement entropy of the vacuum state in Minkowski space-
time. It is interpreted as the entanglement of particles close
to the surface of the sphere and is therefore related to local
physics [18].
Other quantum states may exhibit, for instance,

quantum entanglement between different momentum
modes. Nontrivial gravitational backgrounds also have
an effect on the entanglement entropy and may add both
UV-divergent and UV-finite contributions beyond the area
law. For a massless free minimally coupled scalar field in
de Sitter space-time these are given by [18]

SdS;UV-divergent ¼ c1Λ2Aþ log ðΛ−1HÞðc2 þ c3AH2Þ;
SdS;UV-finite ¼ c4AH2 þ c5 log ð−ηÞ þ const: ð6Þ

The term ∼ log ð−ηÞ signals the presence of long-range
quantum correlations. They arise from short-range physics
due to the stretching out of length scales with the
expansion. Since during inflation the background metric
can be approximately regarded as de Sitter space-time, we
argue that such long-range quantum correlations may also
be created during inflation and survive during the sub-
sequent radiation-dominated era.

III. THE QUANTUM STATE AFTER INFLATION

We consider a massless field Φ that can be used, for
instance, to describe primordial curvature perturbations.
Since primordial gravitational waves are described by the
same dynamics, our results will also be valid for them. The
choice of the vacuum state in dS space-time is not unique
due to the lack of a time-like Killing vector. A possible
criterion to fix the vacuum state is to pick the mode
functions so that they reduce to plane waves in the distant
past. This defines the so-called Bunch-Davies vacuum,
which is usually accepted to be the most reasonable
option [20], even though alternatives exist and have been
studied [21–23]. It is particularly safe to choose the
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Bunch-Davies vacuum in applications to inflation, since
only a piece of dS space-time is actually needed to describe
a short period of accelerated expansion and those modes
with wavelengths larger than the event horizon at the
beginning of inflation are phenomenologically irrelevant.
In the Schrödinger picture, the Bunch-Davies vacuum

evolves into a squeezed state due to the action of the time-
evolution operator (S matrix)

SðηÞ ¼ e−iηHðηÞ; ð7Þ

with a Hamiltonian that contains a squeezing term,

H ¼ 1

2

Z
d3k

�
kðaðk⃗; ηÞa†ðk⃗; ηÞÞ

þ i
a0

a
ða†ðk⃗; ηÞa†ð−⃗k; ηÞ − aðk⃗; ηÞað−⃗k; ηÞÞ

�
: ð8Þ

It can be shown that the time-evolution operator can be
rewritten as [24]

log SðηÞ ¼
Z

d3k
τðk⃗; ηÞ

2
½aðk⃗; η0Það−⃗k; η0Þe−iϕðk⃗;ηÞ

− a†ðk⃗; η0Þa†ð−⃗k; η0Þeiϕðk⃗;ηÞ; � ð9Þ

and it acts on the vacuum, creating a two-mode squeezed
state, which entangles the k⃗ and −k⃗ modes,

j0; ηi ¼ SðηÞj0; η0i

¼ ⊗k
1

cosh τ

X∞
n¼0

ðe−iϕ tanh τÞnjnik⃗jni−k⃗; ð10Þ

where η0 is the conformal time at the beginning of inflation
and τ and ϕ are the squeezing parameter and phase,
respectively, which depend only on the conformal time η
and the norm of the momentum k. We refer the reader to
Ref. [25] for a review of the physics and mathematics of
squeezed states, as well as to the original references on two-
mode squeezed states [26,27]. In the problem at hand one
finds that τ ∼ N, where N is the number of e-folds between
horizon exit and the end of inflation.
This state shows entanglement between k⃗ and −k⃗ modes

and its entanglement entropy is given by [28]

Sent ¼ 2½logðcosh τÞ − logðtanh τÞsinh2τ�; ð11Þ

which reduces to Sent ≃ 2τ for τ ≫ 1, as is usually the
case. This entanglement entropy is related to the coarse-
grained entropy of primordial perturbations computed by
Brandenberger, Mukhanov, and Prokopec [29]. Indeed,
they found the entropy density to be

s ¼
Z

d3k log sinh2τk ≃
Z

d3k2τk: ð12Þ

It is true that apparently we are comparing the entropy
density with the total entropy, but this is not the case since
after integrating the entanglement entropy over all possible
momentum modes we get a quantity in units of entropy
density. The scaling can be properly regularized via
discretization,Z

d3k →
X
k

¼
�
kmax

kmin

�
∼ k3maxL3; ð13Þ

which indeed grows as the volume.
It would be interesting to check other ways in which

quantum entanglement is present in this state. In particular,
we will try to elucidate the entanglement between modes
restricted to the interior and exterior of a sphere of radius R.

IV. CANONICAL QUANTIZATION IN
SPHERICAL COORDINATES

Introducing the auxiliary field χ ¼ aΦ, the equation of
motion of the scalar field takes the simple form [20]

χ00 −∇2χ −
a00

a
χ ¼ 0: ð14Þ

Using the fact that during the radiation-dominated
era a ∼ η, the equation of motion reduces to that in
Minkowski space-time and therefore its solutions are the
well-known plane waves. In spherical coordinates this is
equivalent to

∂2χ

∂η2 −
1

r
∂2

∂r2 ðrχÞ −
1

r2
ΔS2χ ¼ 0; ð15Þ

where the Laplacian on the 2-sphere is given by

ΔS2 ¼
1

sin θ
∂
∂θ
�
sin θ

∂
∂θ
�
þ 1

sin2θ
∂2

∂φ2
: ð16Þ

The solutions to this equation are known to be

χk;l;mðη; r; θ;φÞ ¼
1ffiffiffiffiffiffi
2ω

p e−iωηjlðkrÞYlmðθ;φÞ; ð17Þ

where jlðzÞ ¼
ffiffiffiffi
π
2z

p
Jlþ1=2ðzÞ are the spherical Bessel func-

tions and Ylmðθ;φÞ are the spherical harmonics. Notice that
for a massless field, as in our case, the dispersion relation
is ω ¼ k.
We need to normalize this with respect to the Klein-

Gordon inner product,

ðχklm; χk0l0m0 Þ ¼ i
Z

∞

0

r2dr
Z

dΩðχ�klm∂η

↔
χk0l0m0 Þ

¼ π

2k2
δðk − k0Þδll0δmm0 : ð18Þ

Therefore, the choice of functions makes perfect sense from
the point of view of the Klein-Gordon inner product, since
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they are orthogonal. We reabsorb the factor 1=k2 into the
definition of the mode functions since we anticipate that it
will be important for the operator field expansion. We also
reabsorb the constant factor π=2,

χklmðη; r; θ;φÞ ¼
1ffiffiffiffiffiffi
2ω

p e−iωη
ffiffiffi
2

π

r
kjlðkrÞYlmðθ;φÞ: ð19Þ

The field operator χ can be expanded in terms of these
functions:

χðη; r; θ;φÞ ¼
Z

∞

0

dk
X∞
l¼0

Xl
m¼−l

kffiffiffiffiffiffi
2ω

p jlðkrÞ

· ðY�
lmðθ;φÞeiωηaklm þ Ylmðθ;φÞe−iωηa†klmÞ:

ð20Þ

The field operator must of course satisfy the canonical
commutation relation

½χðη; r; θ;φÞ;Πðη; r0; θ0;φ0Þ� ¼ iδð3Þðr⃗ − r⃗0Þ; ð21Þ
which is achieved by imposing

½aklm; ak0l0m0 � ¼ 0 ¼ ½a†klm; a†k0l0m0 �;
½aklm; a†k0l0m0 � ¼ δðk − k0Þδll0δmm0: ð22Þ

As one would expect, this canonical quantization in
spherical coordinates is completely equivalent to the usual
canonical quantization in Cartesian coordinates. The
destruction and creation operators in both descriptions
are related by the expression

ak⃗ ¼
X∞
l¼0

Xl
m¼−l

il

k
Ylmðk̂Þaklm; ð23Þ

and its inverse is

aklm ¼ ð−iÞlk
Z

dΩY�
lmðk̂Þak⃗; ð24Þ

where k̂ ¼ k⃗=k and is simply parametrized by two angular
variables. In terms of these creation and annihilation
operators in spherical coordinates the time-evolution oper-
ator becomes

log SðηÞ ¼
Z

d3k
τðk⃗; ηÞ

2

X
l;l0;m;m0

×

�
ilþl0

k2
Ylmðk̂ÞYl0m0 ð−k̂Þaklmakl0m0e−iϕðk⃗;ηÞ

−
ð−iÞlþl0

k2
Y�
lmðk̂ÞY�

l0m0 ð−k̂Þa†klma†kl0m0eiϕðk⃗;ηÞ
�
:

ð25Þ

After applying some properties of the spherical harmon-
ics and integrating over the angular variables, one gets a
simpler expression for the operator:

logSðηÞ ¼
Z

dk
τ

2

X
l;m

ð−1Þm

· ½aklmakl;−me−iϕ − a†klma
†
kl;−me

iϕ�: ð26Þ
This operator has a slightly different effect for l ¼ 0 and

l ≠ 0. Indeed, by expressing

SðηÞ ¼
Y
l;m

SlmðηÞ; ð27Þ

we see that

logS00ðηÞ ¼
Z

dk
τðk⃗; ηÞ

2

× ½ak00ak00e−iϕðk⃗;ηÞ − a†k00a
†
k00e

iϕðk⃗;ηÞ�: ð28Þ

The operator S00 creates nothing but a one-mode
squeezed operator out of the vacuum. By also factoring
the state as

j0; ηi ¼ ⊗lm j0; ηilm; ð29Þ

we find that

j0; ηi00 ¼ S00ðηÞj0i

¼ ⊗k2
1ffiffiffiffiffiffiffiffiffiffiffiffi

cosh τ
p

X∞
n¼0

ffiffiffiffiffiffiffiffiffiffiffið2n!Þp
n!

×

�
−
1

2
e2iϕ tanh τ

�
j2nik00: ð30Þ

On the other hand, for the other modes Slm is a two-mode
squeezing operator,

logSlmðηÞ ¼
Z

dk
τ

2
ð−1Þm

× ½aklmakl;−me−iϕðk⃗;ηÞ − a†klma
†
kl;−me

iϕðk⃗;ηÞ�;
ð31Þ

which creates a two-mode squeezed state. This kind of state
carries entanglement between the m and −m modes:

j0; ηilm ¼ ⊗k2
X∞
n¼0

ðe2iϕð−1Þmþ1 tanh τÞn
cosh τ

jniklmjnikl;−m:

ð32Þ
To summarize, in spherical coordinates the quantum

state after inflation has the following properties:
(1) The isotropic mode l ¼ 0 is found in a one-mode

squeezed state.
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(2) The anisotropic modes l ≠ 0 are found in a two-
mode squeezed state, which entangles m and −m
modes. This is one source of entanglement, but there
is still another one due to the in and out bipartition
by a spherical entangling surface of radius R.

V. COMPUTING THE ENTANGLEMENT
ENTROPY

As stated in the previous section, the anisotropic modes
(i.e., those with l ≠ 0) are found in two-mode squeezed
states and therefore show entanglement between the m and
−m modes. This entanglement is directly related to the
entanglement between k⃗ and −k⃗ modes that is found in
Cartesian coordinates. The computation of its entanglement
entropy follows analogously and delivers the same result
Sent ≃ 2τ for large τ.
The second simplest form of entanglement is the one

across a spherical entangling surface of radiusR for isotropic
modes, i.e., those with l ¼ 0. This entanglement is most
interesting when R is taken to be the Hubble radius, but we
will keep it as a free parameter for now.Wewill proceed with
the ansatz that the creation and destruction operators can be
split into inner and outer components as follows:

ak00 ≡ ak ¼ αak;in þ βak;out; ð33Þ

with jαj2 þ jβj2 ¼ 1 and the usual canonical commutation
relations, in which it should be taken into account that the
inner and outer operators commute,

½ak;in; ak0;in� ¼ ½ak;out; ak0;out� ¼ 0;

½a†k;in; a†k0;in� ¼ ½a†k;out; a†k0;out� ¼ 0;

½ak;in; ak0;out� ¼ ½a†k;in; a†k0;out� ¼ ½ak;in; a†k0;out� ¼ 0: ð34Þ

Later we will deal with the fact that, in general, the
following commutators do not satisfy the canonical
relations:

½ak;in; a†k0;in� ≠ δðk − k0Þ ≠ ½ak;out; a†k0;out�: ð35Þ
Any quantum state can be expressed in terms of n-

particle states created by these inner and outer operators,
which take the following form:

jni ¼ 1ffiffiffiffiffi
n!

p ða†Þnj0i ¼ ðα�a†in þ β�a†outÞnj0i

¼
Xn
m¼0

�
n

m

�
1=2

αmβn−mjmiin ⊗ jn −miout: ð36Þ

Now, the l ¼ 0 sector of the vacuum state is a one-mode
squeezed state, which can be written in its standard particle
basis decomposition and then split into inner and outer
components,

j0; ηi00 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

cosh τ
p

X∞
n¼0

ffiffiffiffiffiffiffiffiffiffiffið2nÞ!p
n!

�
−
1

2
e2iϕ tanh τ

�
n

·
X2n
m¼0

�
2n

m

�
1=2

αmβn−mjmiin ⊗ j2n −miout; ð37Þ

and we can build the corresponding density matrix,

ρ00 ¼ j0; ηi00h0; ηj00

¼ 1

cosh τ

X∞
n;n0¼0

ð−2Þ−ðnþn0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nÞ!ð2n0Þ!p
n!n0!

· e2iϕðn−n0Þtanhnþn0 ðτÞ ·
X2n;2n0

m;m0¼0

�
2n

m

�
1=2� 2n0

m0

�
1=2

· αmþm0
βðn−mÞþðn0−m0Þ

· jmiinhm0jin ⊗ j2n −miouth2n0 −m0jout: ð38Þ

Now we trace out the inner d.o.f. in order to obtain the
reduced density matrix of the outer d.o.f.,

ρout ¼ Trinρ ¼
X∞
q¼0

hqjinρjqiin

¼ 1

cosh τ

X∞
n;n0¼0

Xminð2n;2n0Þ

l¼0

ð−2Þ−ðnþn0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nÞ!ð2n0Þ!p
n!n0!

× e2iϕðn−n0Þtanhnþn0 ðτÞα2lβnþn0−2l

·

�
2n

l

�
1=2� 2n0

l

�
1=2

j2n − liouth2n0 − ljout: ð39Þ

In order to compute the von Neumann entropy of this
density matrix we would in principle need to compute its
logarithm and, therefore, diagonalize it. Its complicated
structure and infinite size make this seem like an impossible
task. Hence, we will compute it using a different method,
namely, by exploiting the available knowledge of the von
Neumann entropy of generic two-mode Gaussian states.
Even though it may not seem obvious that ρ00 is a Gaussian
state, it has been proven that any quantum state created by a
time evolution driven by a bilinear two-mode Hamiltonian
is a two-mode Gaussian state [25]. This means that, even
though the state itself is characterized by an infinite set of
coefficients, it only contains a much more reduced amount
of information codified in its first and second statistical
moments, that is, in its expected values and covariance
matrix. In other words: the density matrix of a single mode
is created from the vacuum by acting with a squeezing
operator, which depends on a few parameters, two per
momentum mode. Therefore, its entanglement entropy
should also depend only on these parameters. This means
that, even though one needs in principle all the matrix
elements to compute the logarithm of the matrix, it cannot
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have any nontrivial dependence that is not encoded in the
dependence on the parameters. In the following we use the
formalism described in Ref. [30] to compute the entangle-
ment entropy.
We introduce the following auxiliary field and conju-

gated momentum operators:

χin=out ¼
1ffiffiffi
2

p ðain=out þ a†in=outÞ;

πin=out ¼
−iffiffiffi
2

p ðain=out − a†in=outÞ: ð40Þ

Then, one defines the covariance matrix σ of a quantum
state as follows:

σij ¼
1

2
hxixj þ xjxii − hxiihxji; ð41Þ

where i ¼ 1, 2 and the vector x is defined as x ¼ ðχin; πinÞT .

The expected values hxii can be set to zero without loss
of generality. As a matter of fact, they are zero in our case.
Let us use the shorthand notation

ρout ¼
X∞
n;n0¼0

Xminð2n;2n0Þ

l¼0

cnn0lj2n − liouth2n0 − ljout: ð42Þ

Then,

ha†outi ¼ Trðρouta†outÞ

¼
X∞
n;n0¼0

Xmaxð2n;2n0Þ

l¼0

cnn0l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0 − l

p
· δ2n−l;2n0−l−1

¼ 0: ð43Þ
This is 0 because the condition of the Kronecker delta can
never be fulfilled since n and n0 are integers. Similarly,
one obtains haouti ¼ 0. Hence, we focus on the second
statistical moments,

ha†ai ¼ Trðρa†aÞ ¼ Trðaρa†Þ

¼ Tr

 X∞
n;n0¼0

Xminð2n;2n0Þ

l¼0

cnn0l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2n − lÞð2n0 − lÞ

p
j2n − l − 1ih2n0 − l − 1j

!

¼
X∞
n;n0¼0

Xminð2n−1;2n0−1Þ

l¼0

cnn0l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2n − lÞð2n0 − lÞ

p
δ2n−l−1;2n0−l−1

¼ 1

cosh τ

X∞
n¼0

ð−2Þ−2n ð2nÞ!ðn!Þ2 tanh
2nτ · 2n

X2n−1
l¼0

ð2n − 1Þ!
l!ð2n − l − 1Þ! α

2lβ2ðn−lÞ

¼ 1

cosh τ

X∞
n¼0

2−2n
ð2nÞ!
ðn!Þ2 tanh

2nτ · 2nβ2 ¼ β2sinh2τ; ð44Þ

and the same for the other moment,

haai ¼ TrðρaaÞ ¼ TrðaρaÞ

¼ Tr

 X∞
n;n0¼0

Xminð2n−1;2n0Þ

l¼0

cnn0l ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2n0 − lþ 1Þð2n − lÞ

p
· j2n − l − 1ih2n0 − lþ 1j

!

¼
X∞
n;n0¼0

Xminð2n−1;2n0Þ

l¼0

cnn0l ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2n0 − lþ 1Þð2n − lÞ

p
· δ2n−l−1;2n0−lþ1

¼ 1

cosh τ

X∞
n¼1

X2n−2
l¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2n − l − 1Þð2n − lÞ

p
ð−2Þ−2nþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nÞ!ð2n − 2Þ!p
n!ðn − 1Þ!

· e2iϕtanh2n−1τ

�
2n

l

�
1=2� 2n − 2

l

�
1=2

α2lβ4n−2l−2

¼ 1

cosh τ

X∞
n¼1

2−2nþ1
ð2nÞ!

n!ðn − 1Þ! e
2iϕtanh2n−1τ

X2n−2
l¼0

�
2n − 2

l

�
α2lβ4n−2l−2

¼ 1

cosh τ

X∞
n¼1

2−2nþ1
ð2nÞ!

n!ðn − 1Þ! e
2iϕβ2tanh2n−1τ ¼ e2iϕβ2 sinh τ cosh τ: ð45Þ
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In the following we will neglect the contribution of the
phase, since we can always reabsorb it by means of the
transformation a → e−iϕawhich does not affect the physics
of the problem.
With this we can compute the elements of the covariance

matrix,

σχχ ¼ hχχi ¼ β2eτ sinh τ þ 1

2
; ð46Þ

σππ ¼ hππi ¼ 1

2
− β2e−τ sinh τ; ð47Þ

σχπ ¼ 0: ð48Þ

The entanglement entropy of the quantum state is related
to the determinant of the covariance matrix as follows:

S ¼ 1 − μ

2μ
ln

�
1þ μ

1 − μ

�
− ln

�
2μ

1þ μ

�
; ð49Þ

with

μ ¼ 1

2n
ffiffiffiffiffiffiffiffiffiffi
det σ

p ; ð50Þ

where n is the number of quantum modes. In our present
case n ¼ 1, and the determinant is given by

det σ ¼ σχχσππ − σ2πχ ¼
1

4
þ β2ð1 − β2Þsinh2τ: ð51Þ

Notice that this result is symmetric under the exchange
of β2 and α2 ¼ 1 − β2 This consistency requirement is of
utmost importance.
And so,

μ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
det σ

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4β2α2 sinh2 τ

p ð52Þ

is the result for the entanglement entropy

S ¼ log

�
1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4β2α2sinh2τ

q ��

þ 1

2

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4β2α2sinh2τ

q �

· log

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4β2α2sinh2τ

p
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4β2α2sinh2τ

p �
: ð53Þ

Now, let us consider a completely equal bipartition, i.e.,
α ¼ β ¼ 1ffiffi

2
p . Then,

μ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh2 τ

p ¼ sechτ ð54Þ

for τ ≫ 1, as is usually the case in cosmological applica-
tions. This in turn leads to

S ∼ 2τ; ð55Þ

which means that the entanglement between inner and
outer modes grows linearly with τ and vanishes for τ ¼ 0.
This turns out to be the case as well for any other value of β.
The main difference is that the linear behavior is preceded
by a slow exponential growth before becoming linear, and
the more β departs from its equipartition value β ¼ 1=

ffiffiffi
2

p
the longer this linear behavior appears.
On the other hand, for fixed τ the following dependence

for α < 1ffiffi
2

p is observed:

S ∼ log α: ð56Þ

Wewill discuss this in a later section, but we advance the
following ansatz for the scaling of the coefficients α and β:

α ¼
ffiffiffiffi
R
L

r
and β ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 −

R
L

r
: ð57Þ

Thus,

S ∼ log
R
L
; ð58Þ

where L is an IR regulator. Therefore, an IR divergence
arises due to the term logL, but actually, for really small α,
we have that S → 0. This can be checked by taking the
complete formula or, more easily, performing a Taylor
expansion around α ¼ 0:

S ≃ α2½1 − log ðα2 sinh2 τÞ� sinh2 τ: ð59Þ

This result should be interpreted carefully. Indeed, if we
take the limit L → ∞ this is in a sense equivalent to taking
the limit R → 0. This would mean that all d.o.f. have been
traced out and so the entanglement entropy must vanish.
The actual quantity should be regularized. We think a
reasonable regularization scheme would be to take the
Hubble scale during inflation as the initial size of the
Universe and then expand it exponentially during the N
e-folds that inflation lasts:

L ¼ H−1eN: ð60Þ

This prescription is borrowed from regularization
schemes in quantum cosmology and stochastic inflation
[31–33]. It is also consistent with the Bunch-Davies
prescription for the vacuum state, since it cannot be applied
to modes whose wavelength was larger than the Hubble
scale at the beginning of inflation.
The key is that in any case it scales as S ∼ logR.

However, this does not violate the area law, because this
form of entanglement arises solely due to the squeezing and
vanishes the moment the limit τ → 0 is taken. The usual
short-range UV-divergent and area-scaling contribution to
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the entanglement entropy must still be present when the
total entanglement entropy is computed, but it is not related
to the isotropic modes. From our expression it can be
inferred that the entanglement entropy given by the long-
range correlations between isotropic modes is in any case
subdominant. However, to make a proper judgement it
should still be integrated for all of the available modes.

VI. MODE BIPARTITION

The expression we used to split the creation and
annihilation operators of the scalar field theory defined
on the whole space-time manifold seems a bit obscure. In
this section we will argue why the coefficients α and β
should scale as indicated before.
In order to do this, let us place the theory on a spherically

symmetric lattice, so that the radial coordinate is discretized
while keeping the angular coordinates continuous. Then,
the field itself is discretized into a set of fields χrðθ;φÞ
living at each point of the lattice and can be expanded in
terms of its associated annihilation and creation operators
ar and a

†
r . They satisfy the canonical commutation relations

½ar; a†r0 � ∼ δrr0 ; ð61Þ

or, in the continuum limit,

½ar; a†r0 � ¼
1

4πr2
δðr − r0Þ: ð62Þ

The usual momentum-defined creation and annihilation
operators are recovered through a Bessel transform in the
continuum limit:

ak ¼
Z

d3r

ffiffiffi
2

π

r
j0ðkrÞar: ð63Þ

We can split this integral into two regions and so define
the inner and outer components of the operator,

ak ¼ 4π

Z
R

0

drr2k

ffiffiffi
2

π

r
j0ðkrÞar

þ 4π

Z
∞

R
drr2k

ffiffiffi
2

π

r
j0ðkrÞar; ð64Þ

and we can approximately identify

ak;in ∼ 4π

Z
R

0

drr2k

ffiffiffi
2

π

r
j0ðkrÞar;

ak;out ∼ 4π

Z
∞

R
drr2k

ffiffiffi
2

π

r
j0ðkrÞar: ð65Þ

The integrals are defined in three dimensions and the
delta function is defined to be the spherically symmetric

three-dimensional one in order to show that this formalism
can be generalized to include anisotropic modes, even
though we will not need them here.
From this point of view it is clear that it is legitimate to

perform a bipartition of the local d.o.f. of the scalar field
into inner and outer components with respect to some
spherical surface of radius R. For cosmological applications
it is of particular interest to pick R to be the Hubble radius.
Formally, our results can be applied to any arbitrary R but,
as we will discuss in more detail in Sec. VIII, they can be
physically trusted for R of the order of or larger than the
Hubble scale.
Then there is an alternative field operator expansion in

terms of inner and outer mode functions. We restrict our-
selves in the present analysis to the isotropic modes l ¼ 0,
but it could be extended to the anisotropic modes as well:

χ0 ¼
Z

∞

0

dk
kffiffiffiffiffiffi
2ω

p ðfk;inak;in þ fk;outak;out þ H:c:Þ; ð66Þ

which means that the mode functions need to be normalized
with respect to the Klein-Gordon inner product,Z

R

0

drr2j0ðkrÞj0ðkrÞ ∼ R;Z
L

R
drr2j0ðkrÞj0ðkrÞ ∼ L − R; ð67Þ

where an IR regulator L has once more been introduced.
We find it reasonable to suggest the following scaling for
the coefficients of the mode splitting:

α ¼
ffiffiffiffi
R
L

r
and β ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 −

R
L

r
; ð68Þ

as was used in the previous section. Notice once more
that α2 þ β2 ¼ 1.
The creation and annihilation operators so constructed

must be treated carefully, since they do not exactly satisfy
the canonical commutation relations:

½ak;in; a†k0;out� ∼
Z

R

0

drdr0rr0j0ðkrÞj0ðk0r0Þ½ar; a†r0 �

∼
Z

R

0

drr2j0ðkrÞj0ðk0rÞ: ð69Þ

This integral does not give anything proportional to δkk0
even though it is clearly peaked at k ¼ k0. Of course, this
means that the scalar product hkjk0i will also be propor-
tional to this integral and, therefore, the set of states ank;inj0i
can be used to span the whole inner Hilbert space, but it
does not form an orthonormal basis. However, once the
Hilbert space is restricted to one momentum mode, the set
of vectors does form an orthonormal basis on that Hilbert
subspace thanks to the δnn0 factor appearing in the
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computation of the scalar product. The same applies of
course to the outer Hilbert space.
These considerations do not change the form of the

quantum state after inflation that we studied in Sec. II. The
reason is that, even though a single inner or outer operator
may affect several momentum modes, the combination
ak;in þ ak;out ¼ ak does not.
One may wonder as well about the validity of the

computation of the entanglement entropy, since it involves
the computation of two partial traces and no orthonormal
basis is available. We argue that, even though the partial
traces cannot be computed exactly, the computation of
Sec. II is a good enough approximation. Let us assume that
we have at our disposal an orthonormal basis jji, where j
acts as a multi-index that labels momentum and particle
number. This basis is related to our nonorthonormal basis
jj̃i via a linear transformation:

jj̃i ¼ Cjji: ð70Þ

We actually have meaningful information regarding the
linear operator C. Its matrix elements are given by

Cpqnm ≡ Cjh ≡ hj̃jCjhi ¼ hj̃jh̃i

∼
Z

R

0

drr2j0ðprÞj0ðqrÞδnm: ð71Þ

The mode functions are normalized and therefore we
have that Cjj ¼ 1, and so the linear operator can be split
into the identity plus corrections, C ¼ 1þ ϵ. Since the
integral is peaked at p ¼ q, we assume that ϵ is small. In
particular, the inverse of the operator can be written as
C−1 ≃ 1 − ϵ. Furthermore, it is traceless and so at first order
it does not affect the computation of the relevant traces for
our problem. Let us see how this works out for the trace of
some linear operator A:

TrA ¼
X
j

¼ hjjAjji ¼
X
j0
hj̃jC−1AC−1jj̃i

¼
X
j0
½hj̃jAjj̃i −ℜðhj̃jAϵjj̃iÞ þOðϵ2Þ�: ð72Þ

Now let us use this expression for the density matrix ρ of
a separable state with respect to the momentum modes such
as the one created after inflation. This operator is diagonal,
whereas all diagonal elements in ϵ vanish. Hence, the
expected value of the product of both operators is 0. This
leaves the approximate result

TrA ≃
X
j̃

hj̃0jAjj̃i: ð73Þ

This finishes the argument that the computation of the
entanglement entropy above is a good approximation.

VII. MODE COUNTING AND THE AREA LAW

The computation presented in Sec. IV does not account
for the entire entanglement entropy of the region inside a
sphere of radius R. In fact, it is limited for two reasons: it
only accounts for isotropic modes (l ¼ 0) and only those
with a given momentum k. Hence, it is a measure of the
entanglement per isotropic mode. It is characterized by its
squeezing parameter τ, which is in turn a function of the
momentum k and in particular the number of e-folds Nk
between horizon exit and the end of inflation. Roughly, one
gets τ ∼ N [24].
Then, one simply needs to integrate

S ∼
Z

dkτðkÞ logR: ð74Þ

This integral could be in principle model dependent.
Notice that there is no dependence on R2 as opposed to the
standard area law for entanglement in QFT on 3þ 1
dimensions. We can understand this from the point of
view that, effectively, the restriction to isotropic modes
delivers a 1þ 1-dimensional theory. Such theories are
known to have a logarithmic scaling of the entanglement
entropy.
In the computation of the entanglement entropy done by

Maldacena and Pimentel they also found a term propor-
tional to the number of e-folds or, more explicitly, to
logð−ηÞ. This computation is performed in the limit of very
late time and therefore we can consider that every mode
crossed the inflationary event horizon a long time ago. In
that case,

S ¼
Z

∞

0

dkNðkÞ logR
L
¼
Z

Λ

0

dk logð−ηkÞ logR
L

¼ Λ log
R
L
½logð−ηÞ þ logΛ − 1�; ð75Þ

where Λ is a UV cutoff. In the limit L → ∞ the logarithm
must be replaced by a term that goes as ∼ R

L and so tends
to 0. At the same time, we take the limit Λ → ∞ and keep
the product Λ R

L constant. Then, we get the following
contributions to the entropy:

S ¼ c logð−ηÞ þ c0 logΛ; ð76Þ

with some coefficients c and c0 to be determined. Both
kinds of terms exist in dS space-time and therefore also in a
radiation-dominated universe if we assume that it is
preceded by an extremely long inflationary epoch.
In order to recover the usual UV-divergent area-law

scaling entanglement entropy, as well as additional UV-
finite terms proportional to the area, the whole tower of l
and m modes must be taken into account. Restricting
ourselves now to the true vacuum state j0i, it carries no
angular momentum, i.e., l ¼ 0 and m ¼ 0. Angular
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momentum can be shown to be a good quantum number
of the particle states in spherical coordinates introduced
in Sec. II. This means that L2jl; mi ¼ lðlþ 1Þjl; mi and
Lzjl; mi ¼ mjl; mi. Therefore, if the vacuum is to be split,
it must be done in a way that preserves the total angular
momentum. This can be done with the formalism of the
Clebsch-Gordan coefficients, widely used in quantum
mechanics. One should therefore find an analog of the
singlet state of two-particle systems with spin. The differ-
ence here is that in QFT the total number of particles is not
fixed a priori and so there can be many contributions. This
computation will be explored in future work.

VIII. PHENOMENOLOGICAL IMPLICATIONS:
ENTANGLED PBH FORMATION

Formally, the computation shown here can be applied in
principle to any entangling sphere of radius R, whether it be
smaller or larger than the Hubble scale RH. However, from
a more physical point of view, it is expected not to hold for
R < RH. The reason is that the modes of the scalar field and
any other available quantum field defreeze after becoming
sub-Hubble and start interacting. This interaction will
presumably scramble the interior quantum state as well
as any mode reentering the Hubble scale at later times. This
scrambling should destroy any long-range correlation
inside the observable Universe, although not the correlation
of the observable Universe with other causal domains.
The story changes if we consider some of the momentum

modes to be able to trigger a gravitational collapse that
creates a primordial black hole [19,34]. The relevant scale
for the formation of a primordial black hole in a radiation-
dominated universe is the Hubble scale, as we will briefly
argue later and is supported by simple model estimates
[35,36] and numerical relativity simulations [37,38]. This
means that the PBH captures most of the long-range
entanglement of the Hubble sphere and therefore keeps
long-range correlations with the rest of the Universe,
including other causal domains that collapse to form a
PBH as well.
It is in this precise context that we view gravitational

collapse as an entanglement trap that prevents the long-
range correlation between different primordial black holes
from being destroyed by scrambling. As time passes, the
Hubble sphere grows and PBHs formed in different causal
domains come into causal contact. This creates a network
of entangled PBHs inside the observable Universe. Note
that the entanglement of super-Hubble modes arises during
inflation as those modes are stretched beyond the horizon
and keep this entanglement on noncausal patches. As these
modes reenter the Hubble scale after inflation and induce
black hole collapse, the entanglement created during
inflation is trapped inside these regions without allowing
for scrambling to take place.
In other words, a PBH keeps a long-range entanglement

with other PBHs. This is because they trap entanglement

before scrambling can take place, as scrambling is a sub-
Hubble process and PBHs form with a size of the order of
the Hubble scale at the time of collapse. This entanglement
exists regardless of whether they already came into casual
contact. A PBH keeps a long-range entanglement as well
with noncollapsed regions of the nonobservable Universe,
as they have not yet undergone scrambling.
We would like to clarify that our use of entanglement

entropy is not linked in principle to the gravitational
entropy associated to the event horizon of any black hole.
Instead, it is a description of how the d.o.f. inside a
spherical region are entangled with the d.o.f. outside that
region. This concept is applicable to any surface enclosing
a volume. When a black hole is formed, the exterior d.o.f.
cannot interact with the interior ones and therefore this
entanglement is preserved. It may be that the interior d.o.f.
interact with other d.o.f. inside the black hole. We do not
make any claim regarding the nature of the d.o.f. inside the
black hole, but rather that the entanglement entropy across
the surface is preserved by unitarity. As an analogy, we
could think of a pair of entangled photons, one of them
being captured by a black hole and another one kept
outside. It is unknown how the swallowed photon will
interact with the interior d.o.f. of the black hole, but due to
unitarity the entanglement entropy of the system formed by
the black hole and the swallowed spin will be preserved.
If this gravitational collapse is assumed to be unitary,

then the entanglement entropy will be conserved during the
process. Nothing forbids, for instance, the formation of a
black hole by the collapse of a large number of particles
which are entangled with distant objects. Such a black hole
would keep this quantum entanglement. Such a process
was described, for instance, in Ref. [39] in the context of
building a pair of maximally entangled black holes by the
gravitational collapse of the Hawking radiation of an
initially isolated black hole.
Entangled black holes have been considered before in

the literature [39,40], being usually maximally entangled.
We have presented here a viable mechanism to produce
entangled primordial black holes. It must be noted, however,
that they would not be maximally entangled, as their long-
range entanglement entropy does not saturate the Bekenstein
bound [41]. Since two causally disconnected regions that
collapse to form PBHs far away from each other are
individually entangled with the rest of the Universe, they
must necessarily be themselves entangled with each other.
We leave for future work the computation of the fraction of
long-range entanglement that actually becomes entangle-
ment entropy between primordial black holes.
It can be easily seen that RH is the relevant scale for

primordial black hole formation. In a radiation-dominated
universe the scale factor grows as a ∼ t1=2, and therefore the
Hubble scale grows as RH ¼ H−1 ¼ 2t in natural units.
With this scaling in hand, we can extract the evolution of
the energy density from the second Friedmann equation:
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H2 ¼ 8πG
3

ρ ¼ 1

4t2
; and so ρ ¼ 3

32πGt2
: ð77Þ

Then, it is possible to compute the mass contained inside
the Hubble scale:

M ¼ 4π

3
ρð2tÞ3 ¼ t

G
: ð78Þ

The Schwarzschild radius of a black hole of this mass
corresponds precisely to the Hubble radius:

RS ¼ 2GM ¼ 2t ¼ RH: ð79Þ

It is clear then that, up to a Oð1Þ factor due to the
efficiency of the gravitational collapse, the primordial
black hole will be of the size of the Hubble scale, i.e.,
MPBH ¼ γM, and so actually RS ¼ γRH. Picking RH as the
radius of the entangling sphere is therefore equivalent
to studying the entanglement trapped by the primordial
black hole.
The formation of a primordial black hole by the

gravitational collapse of the radiation contained inside
the Hubble scale is accompanied by an enormous increase
in classical entropy. Indeed, the entropy of the gas of
relativistic particles within the Hubble scale can be written
as [42,43]

Sgas ¼
2π2

45
g�SðTÞT3VH; ð80Þ

where VH is the Hubble volume, g�ðTÞ is the number of
relativistic d.o.f., and natural units including kB ¼ 1 are
used, so that the entropy is a dimensionless quantity. On the
other hand, the resulting primordial black hole carries the
Bekenstein-Hawking entropy, which is proportional to its
event horizon area:

SPBH ¼ AH

4AP
¼ 4πγ2

t2

t2P
; ð81Þ

where AP ¼ 4πL2
P is the Planck area, LP is the Planck

length, and tp is the Planck time. Since the Hubble scale is
time dependent, so are the mass and entropy of the
primordial black hole.
Time and temperature are related in a radiation-

dominated universe [42,43]:

t
tP

¼
�

45

16π3g�ðTÞ
�

1=2
�
TP

T

�
2

: ð82Þ

This way, we can express both the entropy of the
relativistic gas and the entropy of the primordial black
hole as functions of temperature:

Sgas ¼
4

3

T3
P

T3

�
45

16π3g�

�
1=2

;

SPBH ¼ 4πγ2
�

45

16π3g�

�
T4
P

T4
: ð83Þ

Thus, the ratio of both quantities is a function of
temperature as well:

SPBH
Sgas

¼
�
405

16π

�
1=2

γ2g−1=2�
TP

T
: ð84Þ

Let us apply this equation to the QCD phase transition
temperature. Then, T ≃ 200 MeV and g� ≃ 10. Taking into
account that TP ¼ 1.22 × 1019 GeV one gets

SPBH
Sgas

≃ γ2 · 5 × 1019: ð85Þ

This large number suggests that gravitational collapse via
PBH formation is an extremely efficient way of generating
a burst of entropy production which could fill the Universe
with entropy and be alarmingly close to saturating the
Bekenstein bound.

IX. CONCLUSIONS AND OUTLOOK

In this paper we have studied the quantum entanglement
of a scalar field during the radiation era after inflation.
Thanks to the inflationary dynamics, the quantum state of
the field is highly squeezed. This squeezing leads to
subdominant terms in the entanglement entropy that go
beyond the area law. This kind of terms is also found in the
entanglement entropy of a field living in dS space-time and
signals the survival during the radiation era of the entan-
glement created during inflation.
These terms arise due to the entanglement of super-

Hubble modes that are stretched beyond the horizon during
inflation and maintain entanglement on noncausal patches.
In the case of modes that reenter the Hubble scale after
inflation and induce black hole collapse, the entanglement
is trapped inside these regions without allowing for
scrambling to take place.
It may seem puzzling that quantum entanglement of the

state created during inflation should be conserved after its
end. Indeed, if inflation is capable of creating entangle-
ment, the next cosmological era may very likely destroy it.
The creation or destruction of entanglement between
quantum modes is possible since the time evolution of
an individual mode can be nonunitary in the presence of
interactions, for instance, thanks to a gravitational back-
ground. The time evolution of the total quantum state is of
course unitary and remains pure. In order to gain some
intuition about the survival of the entanglement, let us put
the evolution that the quantum state undergoes during
inflation in simpler, qualitative terms.
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Any quantum field coupled to a gravitational back-
ground (even if minimally coupled) is sourced by it, which
leads to particle creation in the form of entangled pairs in
inflation. During the radiation era, the dynamics of the field
is equivalent to that of a field in Minkowski space-time and
so there is no source that can affect the nature of the
quantum state created during inflation.
We have assumed throughout a standard single-field

inflation because of the simplicity of its treatment from a
quantum-field-theoretic point of view. However, we won-
der whether more sophisticated models of (multifield)
inflation could enhance the entanglement. In particular,
it would be fascinating if those models leading to primor-
dial black hole formation were also related to enhanced
long-range entanglement. Such long-range correlations
may give rise to the growth of isocurvature perturbations

on cosmological scales, which could have important
consequences for large-scale structure formation and evo-
lution. We intend to investigate these new phenomena in
future works.

ACKNOWLEDGMENTS

The authors acknowledge support from the Research
Project No. FPA2015-68048-03-3P(MINECO-FEDER)
and the Centro de Excelencia Severo Ochoa Program
SEV-2016-0597. The work of L. E. P. is funded by a
fellowship from the “la Caixa” Foundation (ID
100010434) with fellowship code LCF/BQ/IN18/
11660041, and the European Union Horizon 2020 research
and innovation programme under the Marie Skłodowska-
Curie grant agreement No. 713673.

[1] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
[2] M. Srednicki, Phys. Rev. Lett. 71, 666 (1993).
[3] P. Calabrese and J. L. Cardy, J. Stat. Mech. (2004)

P06002.
[4] H. Casini and M. Huerta, J. Phys. A 42, 504007 (2009).
[5] D. Harlow, Rev. Mod. Phys. 88, 015002 (2016).
[6] S. N. Solodukhin, Living Rev. Relativ. 14, 8 (2011).
[7] E. Martin-Martinez and N. C. Menicucci, Classical

Quantum Gravity 29, 224003 (2012).
[8] E. Martin-Martinez and N. C. Menicucci, Classical

Quantum Gravity 31, 214001 (2014).
[9] J. Martin and V. Vennin, Phys. Rev. D 93, 023505

(2016).
[10] J. Martin and V. Vennin, Phys. Rev. D 96, 063501 (2017).
[11] D. Polarski and A. A. Starobinsky, Classical Quantum

Gravity 13, 377 (1996).
[12] C. Kiefer and D. Polarski, Adv. Sci. Lett. 2, 164 (2009).
[13] C. Kiefer, I. Lohmar, D. Polarski, and A. A. Starobinsky,

Classical Quantum Gravity 24, 1699 (2007).
[14] C. Kiefer, D. Polarski, and A. A. Starobinsky, Int. J. Mod.

Phys. D 7, 455 (1998).
[15] J. Martin, V. Vennin, and P. Peter, Phys. Rev. D 86, 103524

(2012).
[16] S. Das, K. Lochan, S. Sahu, and T. P. Singh, Phys. Rev. D

88, 085020 (2013); 89, 109902(E) (2014).
[17] S. Das, S. Sahu, S. Banerjee, and T. P. Singh, Phys. Rev. D

90, 043503 (2014).
[18] J. Maldacena and G. L. Pimentel, J. High Energy Phys. 02

(2013) 038.
[19] J. Garcia-Bellido, A. D. Linde, and D. Wands, Phys. Rev. D

54, 6040 (1996).
[20] V. Mukhanov and S. Winitzki, Introduction to Quantum

Effects in Gravity (Cambridge University Press, Cambridge,
England, 2007).

[21] B. Allen, Phys. Rev. D 32, 3136 (1985).
[22] U. H. Danielsson, J. High Energy Phys. 07 (2002) 040.

[23] R. Brunetti, K. Fredenhagen, and S. Hollands, J. High
Energy Phys. 05 (2005) 063.

[24] A. Albrecht, P. Ferreira, M. Joyce, and T. Prokopec, Phys.
Rev. D 50, 4807 (1994).

[25] B. L. Schumaker, Phys. Rep. 135, 317 (1986).
[26] C. M. Caves and B. L. Schumaker, Phys. Rev. A 31, 3068

(1985).
[27] B. L. Schumaker and C. M. Caves, Phys. Rev. A 31, 3093

(1985).
[28] T. Prokopec, Classical Quantum Gravity 10, 2295 (1993).
[29] R. H. Brandenberger, T. Prokopec, and V. F. Mukhanov,

Phys. Rev. D 48, 2443 (1993).
[30] A. Serafini, F. Illuminati, and S. De Siena, J. Phys. B 37,

L21 (2004).
[31] J. Garcia-Bellido, A. D. Linde, and D. A. Linde, Phys. Rev.

D 50, 730 (1994).
[32] J. Garcia-Bellido and A. D. Linde, Phys. Rev. D 51, 429

(1995).
[33] J. Garriga and A. Vilenkin, Phys. Rev. D 64, 023507 (2001).
[34] S. Clesse and J. García-Bellido, Phys. Rev. D 92, 023524

(2015).
[35] B. J. Carr and S.W. Hawking, Mon. Not. R. Astron. Soc.

168, 399 (1974).
[36] B. J. Carr, Astrophys. J. 201, 1 (1975).
[37] I. Musco, J. C. Miller, and L. Rezzolla, Classical Quantum

Gravity 22, 1405 (2005).
[38] I. Musco and J. C. Miller, Classical Quantum Gravity 30,

145009 (2013).
[39] J. Maldacena and L. Susskind, Fortschr. Phys. 61, 781

(2013).
[40] W. Israel, Phys. Lett. A 57, 107 (1976).
[41] J. D. Bekenstein, Phys. Rev. D 23, 287 (1981).
[42] E.W. Kolb and M. S. Turner, The Early Universe (Addison-

Wesley, Boston, Massachusetts, 1990).
[43] V. Mukhanov, Physical Foundations of Cosmology

(Cambridge University Press, Oxford, 2005).
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