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We consider the possibility that, in the semiclassical Einstein equation for cosmological spacetimes,
gravity is sourced by the amount of stress-energy that is above that of the instantaneous ground state. For
this possibility to be consistent, the Bianchi identities must continue to hold. This is nontrivial, because it
means that the ground state expectation value of the stress-energy tensor must be covariantly conserved in
spite of the fact that the ground state is generally a different state at different times. We prove that this
consistency condition does hold. As a consequence, we find that the vacuum stress-energy which is above
the instantaneous ground state does not renormalize the cosmological constant, as long as the instantaneous
ground states and the instantaneous adiabatic vacua exist.
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I. INTRODUCTION

In the semiclassical Einstein equation, the cosmological
constant receives contributions from the stress-energy
of the vacuum of all matter fields [1–3]. However, the
measured value of the cosmological constant is extremely
small compared to the scale of each known contribution,
and one must also expect large contributions from new
particles that might emerge at energies higher than probed
so far. In addition, and most importantly, the required fine-
tuning is unstable in the sense that it needs to be repeatedly
re-fine-tuned as more loops are taken into account in the
calculation of the vacuum polarization. This problem of
radiative instability is an essential part of the cosmological
constant problem; see, e.g., [1,3].
A key question in this context is which part of the in

principle infinite stress-energy of a quantum field actually
gravitates and therefore contributes to the right-hand side of
the semiclassical Einstein equation.
The answer is straightforward for Minkowski space,

where the Poincaré symmetry singles out the Minkowski
vacuum state as a reference state for gravity. The
assumption then is that only the stress-energy above the
stress-energy of the Minkowski vacuum state is gravitating.
In generic curved spacetimes, however, it is not obvious
which state could play the role of such a reference state, i.e.,
a state whose stress-energy is subtracted when determining
the amount of stress-energy that actually gravitates.

At this point, it is useful to consider that the search for
such a gravitational reference state is logically independent
from the search for another important reference state,
namely, the vacuum state in the sense of a no-particle state.
In fact, a vacuum state in the sense of an overall

no-particle state does not exist on generic spacetimes,
due to gravity’s ability to parametrically excite modes of
matter fields and given the observer dependence of the very
notion of a particle, as demonstrated, e.g., by the Unruh
effect. In the case of Friedmann-Lemaître-Robertson-
Walker (FLRW) spacetimes, the so-called adiabatic vac-
uum is in a sense the best approximation to a vacuum state
in the sense of a no-particle state for comoving observers;
see, e.g., [4].
In the present paper, we are concerned with FLRW

spacetimes, and we will discuss also the adiabatic vacuum
and its role as the reference state with respect to which the
particle content in a field is determined. However, our focus
here will be on the search for the gravitational reference
state with respect to which it is determined how much of the
stress-energy of a quantum field contributes to the right-
hand side of the semiclassical Einstein equation.
Concretely, we consider the possibility that, at least for

FLRW spacetimes, the gravitational reference state at any
given time is the ground state j0GSðtÞi of the quantum field’s
energy density operator ρ̂ ∼ T̂00 at that time. This means
that it is the stress-energy above the instantaneous ground
state expectation value that acts as the source of gravity on
the right-hand side of the semiclassical Einstein equation.
Note that our proposal does not rely on any particular
criterion for identifying the vacuum state in the sense of a
no-particle state.
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That this ansatz is consistent with diffeomorphism
invariance is nontrivial, because the stress-energy of the
ground state possesses two time dependencies: Since both
T̂μνðt; xÞ and j0GSðtÞi are time dependent,1 we will need to

show below that the Bianchi identity ∇μT̂μν ¼ 0 still
yields ∇μh0GSðtÞjT̂μνðtÞj0GSðtÞi ¼ 0.
Also, as is well known, at generic times t, the lowest-

energy state is generally not the adiabatic vacuum state. On
one hand, this means that the adiabatic vacuum state is
generally an energetically excited state. On the other hand,
this means that the energetic ground state is a state with
particles from the perspective of the adiabatic vacuum.
We are here proposing, therefore, a clear distinction

between the two basic reference states: the vacuum state,
relative to which the particle content is defined, and the
gravitational reference state, with respect to which the
gravitating part of the stress-energy is determined.
While the basic idea that only the excess stress-energy

above the energetic ground state gravitates is simple, it has
potentially far-reaching consequences. As we will show,
the contribution of the subtracted vacuum energy density to
the renormalization of the cosmological constant vanishes
exactly.
We prove our results nonperturbatively for an arbitrary

quantum field theory (QFT) on a cosmological background
while assuming only the existence of ground states and
adiabatic vacua. The definition of these states is straight-
forward for free theories, as we show in the examples of
Sec. III, but it can become a challenging task for interacting
theories. Our results will hold for any QFT for which the
ground states and adiabatic vacua can be proven to exist.
Despite the different starting point and physical inter-

pretation, the renormalization resulting from our procedure
is consistent with other renormalization methods, such as
the Hadamard renormalization [5,6]. Our proposal does not
predict the numerical value of the cosmological constant.
But once radiative instability is prevented, the cosmological
constant problem is much lessened: Since the subtracted
vacuum energy density does not contribute to the cosmo-
logical constant, its bare value is not renormalized and can
be arbitrary, constrained only by observations. What our
proposal does is to protect this value from the renormal-
ization due to the vacuum fluctuations of matter fields,
making its value natural in the technical sense. The
existence of the cosmological constant per se is of course
not a conundrum, as it already arose with the discovery of
general relativity [7].
Our paper is organized as follows. In Sec. II, we outline

our proposal, discussing its diffeomorphism invariance and
the role of the physical (adiabatic) vacuum. We conclude

the section discussing renormalization and the interpreta-
tion of our results, including the radiative stability of the
cosmological constant. This is followed in Sec. III by
explicit calculations in three toy models: a free scalar,
fermion, and massive vector boson.
In the following, we use the Heisenberg picture of

quantum mechanics, in which operators are time dependent
and individual states are constant. We use the mostly minus
signature for the metric and set ℏ ¼ c ¼ 1.

II. THE EFFECTIVE STRESS-ENERGY TENSOR

We begin by considering the semiclassical Einstein
equation

1

8πG
Gμν − ρΛgμν ¼ hT̂μνiΨ; ð1Þ

where ρΛ ¼ 1
8πGΛ is the energy density corresponding to

the cosmological constant. The metric is treated as a
classical background field, while matter fields are quan-
tized. We regard (1) as an effective field theory that arises as
the low-energy limit of a more fundamental theory of
gravity [8]. We are, therefore, neglecting higher-order
curvature terms that, in the ultraviolet, might arise on
either side of the equation.
The expectation value of the stress-energy tensor

hT̂μνiΨ ¼ hΨjT̂μνjΨi in the state of the field, jΨi, is a
divergent quantity which we assume covariantly regular-
ized. In Minkowski spacetime, we can use the unique
ground state of the Hamiltonian, j0Mi, as a gravitational
reference state. One postulates that it is only the stress-
energy above the stress-energy of this state that gravitates:

hT̂μνirenΨ ¼ hT̂μνiΨ − hT̂μνiM: ð2Þ
In Minkowski spacetime, the ground state j0Mi of the
Hamiltonian respects the Poincaré symmetry of the back-
ground, and it also happens to play the role of the vacuum
state, in the sense that it is the no-particle state.
As discussed in the introduction, in a fully generic

curved spacetime, the notions of vacuum state and gravi-
tational reference state are both highly nontrivial. In this
paper, we therefore specialize to homogeneous and iso-
tropic (FLRW) n-dimensional spacetimes.
Assumption 1.—The background metric is that of an

n-dimensional FLRW spacetime.
First, we note that, to preserve the symmetries of

FLRW spacetimes, the expectation value hT̂μνi has only
two distinct nonzero components: the energy density
ρ ¼ nμnνhT̂μνi, where nμ is the unit normal to the homo-
geneous hypersurfaces, and the pressure p from the relation
hT̂i ¼ ρ − ðn − 1Þp. For most of this paper, we will use the
preferred foliation that exists on an FLRW spacetime such
that the homogeneous hypersurfaces are parametrized by
the time coordinate t≡ x0 and nμ ¼

ffiffiffiffiffiffi
g00

p
ð1; 0;…; 0Þ.

1Note that even if we consider the Heisenberg picture, in which
states do not evolve with time, the instantaneous ground states
have a parametric time dependence.
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We now define an effective2 expectation value of the
stress-energy tensor by subtracting the expectation value of
the stress-energy of a gravitational reference state, similar
to the case of a Minkowski spacetime in (2), in a way that
also ensures that the resulting effective energy density that
actually gravitates is positive.
In a sense, the obvious choice for this subtraction is to

subtract the stress-energy of the state with lowest energy
density. And in homogeneous spacetimes, minimizing the
energy density is, of course, equivalent to minimizing the
total energy, at any given time. We call the states under
consideration ground states,3 and we define them formally
as follows.
Definition 1.—Given a QFT on an FLRW spacetime, the

(instantaneous) ground state at time t is defined as the
vacuum state j0GSðtÞi which respects the symmetries of the
background metric and satisfies

δψðnμnνhψ jT̂μνðtÞjψiÞjt;ψ¼0GSðtÞ ¼ 0; ð3Þ
where the domain of variation δψ is the set of all vacuum
states that respect the symmetries of the FLRW background.
We assume the existence of ground states in the

following, and we discuss this assumption at the end of
Sec. II D.
Assumption 2.—An instantaneous ground state exists

uniquely at each moment of time.
The immediate concern in subtracting the stress-energy

of the ground state is, however, that generically no single
state minimizes the energy density ρðtÞ at all times
simultaneously. The ground state at one time t0 is an
energetically excited state at another time t1. One can speak
only of an instantaneous ground state j0GSðtÞi that mini-
mizes the energy at a given time t, while the ground states at
different times are generically different states—see the
explicit examples of ground state vacua provided in
Sec. III.
What we are proposing, therefore, is to define for each

time t its own gravitational reference state, namely, the
energetic ground state at that time t. Using this family
fj0GSðtÞi; t ∈ Rg of instantaneous ground states, we can
define the effective expectation value of the stress-energy
tensor by subtracting the corresponding ground state value
at every time, such that

hT̂μνieffΨ ðtÞ≡ hT̂μνðtÞiΨ − hT̂μνðtÞiGSðtÞ: ð4Þ

The counterintuitive fact that this quantity is covariantly
conserved is one of the main results of this paper, and it
will be proven in the next section as Theorem 1. We then
propose that the source to the semiclassical Einstein
equation for an FLRW background is the effective part
(4) of the stress-energy tensor expectation value:

1

8πG
Gμν − ρΛgμν ¼ hT̂μνieffΨ : ð5Þ

A. Covariant conservation law

When we choose a time-dependent vacuum family for
the subtraction as in (4), the major concern is preserving
the consistency of the semiclassical Einstein equation
under a covariant derivative. The left-hand side in (5)
consists of covariantly conserved tensors. For any indi-
vidual state, the expectation value hT̂μνi of the stress-
energy tensor is also covariantly conserved by diffeo-
morphism invariance. However, this argument does not
apply to the vacuum family expectation value hT̂μνiGSðtÞ
because of the parametric time dependence of the state.
The reader might expect the conservation law to be
broken for this quantity.
This turns out not to be the case. We find that this is a

nontrivial property of the ground state family on an FLRW
background and summarize this result in the following
theorem.
Theorem 1.—The ground state family expectation value

of the stress-energy tensor is covariantly conserved on an
FLRW spacetime:

∇μhT̂μνðtÞiGSðtÞ ¼ 0: ð6Þ

Proof.—The line element on an n-dimensional FLRW
spacetime is given by

ds2 ¼ dt2 − aðtÞ2dΣ2
n−1; ð7Þ

where dΣ2
n−1 is the line element on each spatial section. For

any time-parametrized family fjψ ti; t ∈ Rg of states which
respect the homogeneity of the FLRW background, such as
the ground states, we can write

hψ tjT̂μνðtÞjψ tidxμdxν ¼ ρðt;ψ tÞdt2 þ pðt;ψ tÞaðtÞ2dΣ2
n−1;

ð8Þ

where ρðt;ψ tÞ is the energy density and pðt;ψ tÞ is the
pressure at time t for each state jψ ti. Writing the compo-
nents of the covariant derivative explicitly for the ground
state expectation values, we find

2The reason for calling this quantity effective instead of
renormalized will be explained in Sec. II D.

3In the literature, the term ground state is reserved for the
eigenstate of the Hamiltonian operator with the lowest eigen-
value, which might be different from the state with the lowest
energy density that we consider here. This distinction is particu-
larly important if the quantum field is coupled to the curvature.
The fact that we minimize the energy density will turn out to be
important to preserve the Bianchi identity.
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∇μhT̂μ0ðtÞiGSðtÞ ¼ ðn − 1Þ a
0ðtÞ
aðtÞ ðρðt; 0GSðtÞÞ þ pðt; 0GSðtÞÞÞ

þ ∂
∂t ρðt; 0GSðtÞÞ;

∇μhT̂μjðtÞiGSðtÞ ¼ 0: ð9Þ

Since the spatial components of the covariant derivative
vanish identically, we will focus on the time component.
There are two kinds of time dependence in ρðt; 0GSðtÞÞ.

First, for each fixed ground state j0GSðuÞi at time u ∈ R, the

expectation value ρðt; 0GSðuÞÞ≡ hT̂00ðtÞiGSðuÞ is a function

of time t, since the operator T̂00ðtÞ evolves over time. The
second one is the choice of the parameter u that specifies
the time at which the state minimizes the energy density.
Our proposal sets these two parameters equal: u ¼ t. The
same discussion applies to pðt; 0GSðuÞÞ.
Let us distinguish between the parameters t and u for a

moment and define θ ¼ t − u. The quantity ρðt; 0GSðuÞÞ
depends on two of these variables independently. The first
term in (9) is understood as first setting u ¼ t and then
taking the derivative with respect to t. This is equivalent to
taking the partial derivative with respect to t while holding
θ fixed and then setting u ¼ t:

∇μhT̂μ0ðtÞiGSðtÞ

¼
�∂ρðt; 0GSðuÞÞ

∂t
����
θ

þ ðn − 1Þ a
0ðtÞ
aðtÞ ðρðt; 0GSðuÞÞ

þ pðt; 0GSðuÞÞÞ
�����

u¼t
: ð10Þ

On the other hand, the standard conservation law gives
∇μhT̂μ0ðtÞiGSðuÞ ¼ 0 for every fixed state, i.e., for every

fixed u. If we first evaluate the covariant derivative for fixed
u and then set u ¼ t, this becomes

0 ¼
�∂ρðt; 0GSðuÞÞ

∂t
����
u
þ ðn − 1Þ a

0ðtÞ
aðtÞ ðρðt; 0GSðuÞÞ

þ pðt; 0GSðuÞÞÞ
�����

u¼t
: ð11Þ

A simple calculation for the derivatives on the t-u space
shows that

∂fðt; uÞ
∂t

����
θ

¼ ∂fðt; uÞ
∂t

����
u
þ ∂fðt; uÞ

∂u
����
t

ð12Þ

for every scalar function f. Hence, if we subtract (10) from
(11) and use (12), we get

∇μhT̂μ0ðtÞiGSðtÞ ¼
∂ρðt; 0GSðuÞÞ

∂u
����
t;u¼t

: ð13Þ

Note that we have not used any properties of the ground
states up to this point; thus, (13) holds for any time-
dependent family of states. The defining property of an
instantaneous ground state j0GSðtÞi at time t is that it
minimizes the energy density ρðtÞ at that time among all
states as in (3). This implies that j0GSðtÞi also minimizes
the instantaneous energy density ρðtÞ among the family
fj0GSðuÞi; u ∈ Rg of ground states at different times.
Therefore, the right-hand side of (13) vanishes. ▪
In conclusion, Theorem 1 ensures that our proposal for

the semiclassical Einstein equation in (4) and (5) is
consistent with diffeomorphism invariance, i.e., with the
Bianchi identity.
Note that the proof of Theorem 1 relies on diffeo-

morphism invariance for fixed states, since we use (11) to
convert the time derivative at step (10) into a derivative over
the state parameter at step (13). Therefore, the statement of
Theorem 1 does not have an analog in systems that do not
possess diffeomorphism invariance, such as the time-
dependent harmonic oscillator.

B. Vacua in cosmology

Naively, one might expect that the momentary ground
state is the vacuum state, i.e., the no-particle state.
However, in this case, the predicted amount of particle
creation would exceed the upper bound from astrophysical
observations (see [4], p. 73, and references therein). As a
result, the instantaneous ground state and the related
Hamiltonian diagonalization were ruled out as vacuum
identification criteria. The lowest-energy state and the
physical no-particle state must be, therefore, distinct states
for quantum field theories in generic curved backgrounds.4

The candidates for the physical vacuum states that are
generally considered to be most plausible for cosmological
backgrounds belong to the family of adiabatic vacuum
states. These vacua are obtained by solving a certain
perturbative expansion up to a finite number of derivatives
of the metric components. See, e.g., [12] for a rigorous
definition of the concept. Originally, the adiabatic vacuum
states were introduced in Ref. [13].
The basic idea is that the criterion for identifying which

state is the vacuum state at any given time t should be such
that the amount of cosmological particle creation which is
predicted as a consequence of applying this criterion is
minimized.
At this point, we remark that the adiabatic vacuum

identification criterion may also be motivated in a new way
that is based on first principles, i.e., without the need to
appeal to data. To this end, we begin with the intuition
that, when the Universe either expands or shrinks, any field
state which possesses a nonzero particle content must in

4For recent discussions on the topic of vacuum states in
cosmology, see [9–11].
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some way change over time, the change being due to the
fact that the particle content of the state has to either dilute
or concentrate. This yields a criterion for identifying the
no-particle state. Namely, whatever the criterion for
singling out the vacuum state at time t is, it should be
such that, when applied over a range of times, the so-
obtained vacuum states, parametrized by t, should change
as little as possible—as determined via Bogoliubov β
coefficients. This then implies the conventional adiabatic
vacuum identification criterion: The amount of particle
production should be minimal. In this new way, the vacuum
is identified as the state that is most immune to dilution and
concentration, so that all particle creation or annihilation
that does happen due to expansion or shrinkage is solely
due to quantum parametric excitation.
Technically, the procedure for identifying the adiabatic

vacua is to solve the Wronskian condition5 by a WKB-type
ansatz and to approach a solution of the equation of motion
iteratively around a Minkowski-like zeroth-order solution.
A finite number s of iterations gives an approximate solu-
tion failing to be exact only by terms with at least 2sþ 2
derivatives of the metric. The mode functions for the adia-
batic vacua are then found by evaluating the initial con-
ditions for the equation of motion along the approximate
solutions. Hence, similarly to the ground state family, the
adiabatic vacuum states fj0AVðtÞi; t ∈ Rg are parametrized
by the time at which they are defined. Explicit examples of
adiabatic vacuum solutions are provided in Sec. III.
The rigorous definition of adiabatic vacua in the liter-

ature has focused mostly on free theories and might become
nontrivial for generic QFTs. While we did not need to
specify a physical vacuum state for our main proposal (5),
we will rely on this concept in the following for discussing
renormalization. Therefore, we include it here as our final
assumption.
Assumption 3.—The adiabatic vacua exist at every time

and represent the right choice for physical vacuum states.
Subtracting the physical—here taken to be the

adiabatic—vacuum family expectation value should
already give a renormalized (finite) stress-energy tensor,
corresponding to the quantum and classical sources from
observed fields:

hT̂μνirenΨ ðtÞ≡ hT̂μνðtÞiΨ − hT̂μνðtÞiAVðtÞ: ð14Þ

Clearly, this is different from the effective part defined
in (4). We can say that, while the effective part measures the
gravitating stress-energy excitation, the renormalized part
measures the stress-energy in particle excitation over the
adiabatic vacuum. The difference between the two,

hT̂μνivacðtÞ≡ hT̂μνieffΨ ðtÞ − hT̂μνirenΨ ðtÞ
¼ hT̂μνðtÞiAVðtÞ − hT̂μνðtÞiGSðtÞ; ð15Þ

is independent of the particle content; i.e., it is a purely
geometrical contribution. It will be discussed in more detail
in Sec. II C. In conclusion, we can write the effective
expectation value as

hT̂μνieffΨ ¼ hT̂μνirenΨ þ hT̂μνivac: ð16Þ

See also the schematic representation in Fig. 1. The first
term, hT̂μνirenΨ , should be finite and match the observed
sources of gravitation, while the second term, hT̂μνivac,
measures the elevation of the vacuum energy above the
ground state. After making this split in (4), we write
the semiclassical Einstein equation (for an FLRW space-
time) as

1

8πG
Gμν − ρΛgμν − hT̂μνivac ¼ hT̂μνirenΨ : ð17Þ

The vacuum part hT̂μνivac is still divergent and acts as a
counterterm in this equation.
Let us further comment on our assumption that the

adiabatic vacuum family and the state of the matter fields,
jΨi, are such that hT̂μνirenΨ is finite. In fact, the divergence in
the jΨi expectation value is the same as the divergence in its
corresponding no-particle state [4]. Therefore, we are
merely assuming that the particles described by Ψ are
excitations of the adiabatic vacuum, i.e., that the adiabatic
vacuum is the physical no-particle state.

FIG. 1. The total expectation value hT̂μνiΨ of the stress-energy
tensor is split into various parts based on its ground state value
and the (adiabatic) vacuum value. Note that hT̂μνivac and
hT̂μνiGSðtÞ are infinite quantities.

5The Wronskian condition is obtained from the consistency
requirement between the canonical commutation relations of the
field operators and those of the annihilation and creation
operators. More details can be found in the examples in Sec. III.
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C. Renormalization

Both hT̂μνiGSðtÞ and hT̂μνiAVðtÞ depend only on the
metric; i.e., they are purely geometric quantities. The
former is also covariantly conserved by Theorem 1.
Since the only covariantly conserved geometric tensors
up to second order are the metric gμν and the Einstein tensor
Gμν, we can write

hT̂μνiGSðtÞ ¼ AGSgμν þ BGSGμν þ higher curv: terms:

ð18Þ

The quantity hT̂μνiAVðtÞ, on the other hand, is not cova-

riantly conserved. Nevertheless, we prove the following
result.
Theorem 2.—For adiabatic vacua of at least second order

(at least s ≥ 1 iteration), the adiabatic vacuum family
expectation value of the stress-energy tensor ceases to be
covariantly conserved only by terms that contain at least
four derivatives of the metric. Schematically, we write
this as

∇μhT̂μνiAVðtÞ ¼ 0þOð∂4Þ: ð19Þ

Proof.—Similarly to the proof of Theorem 1, we dis-
tinguish between the time parameter t on which the
operator T̂μν depends and the time parameter u at which
an adiabatic vacuum state is defined, before setting
θ≡ t − u ¼ 0. Using again diffeomorphism invariance
and the relation (12) between derivatives, we obtain

∇μhT̂μνiAVðtÞ ¼ ∇μhT̂μ
νðtÞiAVðuÞ

���
θ;u¼t

¼
�
∇μhT̂μ

νðtÞiAVðuÞ
���
u

þ ∂
∂u hT̂

0
νðtÞiAVðuÞjt

����
u¼t

¼ ∂
∂u hT̂

0
νðtÞiAVðuÞ

���
t;u¼t

: ð20Þ

Now, recall that the approximate solution at s-th iteration,
which is used to define the initial conditions for the
adiabatic vacua, ceases to be an exact vacuum solution
only at the order ofOð∂2sþ2Þ. Hence, the adiabatic vacuum
at uþ δu differs from the one at u at the equal time t ¼ u
only by Oð∂2sþ2ÞδuþOðδu2Þ. Then, we find

∇μhT̂μνiAVðtÞ ¼ Oð∂2sþ2Þ: ð21Þ

If we consider the adiabatic vacua at iteration s ≥ 1, the
statement of the theorem is proven. ▪
Using Theorem 2, we can also write

hT̂μνiAVðtÞ ¼ AAVgμν þ BAVGμν þ higher curv: ð22Þ

for the adiabatic vacuum family, because the failure of
conservation is completely contained in the higher curva-
ture terms.
The constant coefficients AGS, BGS, AAV, and BAV are

independent of the background geometry; i.e., they can
depend only on the parameters of the theory, such as the
field mass.
Theorem 3.—The instantaneous ground states and the

adiabatic vacua coincide at the zeroth adiabatic order,
i.e., AGS ¼ AAV.
Proof.—We consider smoothly flattening the FLRW

background as follows: We replace the scale factor aðtÞ
with aðt0 þ ϵðt − t0ÞÞ for arbitrary t0 ∈ R and shift the
value of ϵ from 1 to 0. The coefficients AGS, BGS,AAV and
BAV are independent of ϵ. When ϵ reaches 0, the spacetime
becomes flat and all curvature terms in (18) and (22)
vanish.
Note that the Minkowski vacuum serves as both the

ground state and the adiabatic vacuum on a Minkowski
spacetime. Therefore, the expectation values hT̂μνiGSðtÞ and
hT̂μνiAVðtÞ coincide with hT̂μνiM in the flat limit ϵ → 0.

Since they also converge to AGSgμν and AAVgμν, respec-
tively, and the coefficients are unchanged by the flattening,
we conclude AGS ¼ AAV. ▪
By Theorem 3, Eq. (15) becomes

hT̂μνivac ¼ ðBAV − BGSÞGμν þ higher curv: ð23Þ

Then, we may define the renormalized couplings for the
semiclassical Einstein equation (17) as

ρrenΛ ¼ ρΛ and Gren ¼ G
1 − 8πGðBAV − BGSÞ

: ð24Þ

In accordance with the truncation of the Einstein-Hilbert
action, we neglect the higher curvature terms in (23). After
the renormalization of the parameters, the semiclassical
Einstein equation (17) can finally be written as

1

8πGrenGμν − ρrenΛ gμν ¼ hT̂μνirenΨ : ð25Þ

By neglecting higher curvature terms, we are neglecting
two features of the equation: First, higher curvature terms
would contribute to the renormalization of the parameters
of a higher curvature gravity theory, beyond the Einstein-
Hilbert action. This problem is related to the perturbative
nonrenormalizability of gravity and is beyond the scope of
this paper.
Second, the right-hand side of (25) fails to be covariantly

conserved at higher-than-second adiabatic order, i.e., at the
neglected higher curvature terms. This slight violation of
the Bianchi identity in the finite part is due entirely to the
choice of adiabatic vacua to separate the finite part of the
stress-energy tensor from the vacuum contribution. It is
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neither a consequence of our main proposal in (5), nor does
it change the fact that, due to Theorem 1, the stress-energy
that sources gravity strictly obeys the Bianchi identity.

D. Discussion

We have argued that the stress-energy expectation of the
instantaneous ground state, hT̂μνiGSðtÞ, is a good choice for
subtraction from the full stress-energy of the actual state
of the matter fields for two reasons: First, this subtraction
as in (4) maintains a positive energy density for the
difference, consistent with the weak energy condition.
Second, hT̂μνiGSðtÞ is covariantly conserved exactly, as

we have shown in Theorem 1.
The proposed scheme has direct consequences for the

renormalization of the cosmological constant. Recall that
the counterterm in (17) is a difference of the stress-energy
tensor expectation values in the physical (adiabatic) vac-
uum and in the ground state. As we have shown in Sec. II C,
and in (24), in particular, this counterterm does not affect
the value of the parameter ρΛ ¼ 1

8πGΛ. This particular
combination of parameters that is linearly related to the
cosmological constant becomes protected from vacuum
fluctuations. In this sense, our proposal contributes to the
resolution of the cosmological constant problem under the
given assumptions.
We assumed that the Universe is well described by an

FLRWmetric at cosmological scales and that instantaneous
ground states exist. Furthermore, we assumed the existence
of adiabatic vacua as physical vacua in discussing the
renormalization of the Einstein equation. In Sec. III, we
analyze three free QFTs, where Assumptions 2 and 3 are
shown explicitly to hold. For interacting theories, the
definition and existence of ground states and adiabatic
vacua might be more challenging. In specific theories, the
one-loop order can be worked out following the techniques
in Ref. [14].
Free theories still provide important insights on the

renormalization of the cosmological constant at different
scales, e.g., considering new degrees of freedom (d.o.f.)
that might come into play as the renormalization scale is
dialed. Just like for their low-energy companions, the
contribution of higher-energy d.o.f. to the cosmological
constant will be canceled by the ground state expect-
ation value.
Finally, note that ground states and adiabatic vacua

have different coefficients, BGS and BAV, at second
adiabatic order. This is due to the local curvature ambi-
guities in the definition of the stress-energy expectation
value as discussed in Ref. [15]. Therefore, when we
subtract the ground state family expectation value, we
do not remove the vacuum contribution completely:
hT̂μνivac ≠ 0. In this sense, we still allow vacuum fluctua-
tions to play a role in the renormalization of gravity in
curved backgrounds.

III. EXAMPLES

In this section, we compute the stress-energy tensor
expectation value in the instantaneous ground states and
adiabatic vacua and confirm the results of the last section
in three different models: a scalar, a Dirac spinor, and a
Proca vector field. Some, but not all, of the results
presented in this section are present in the literature
[4,16–18], and we find it convenient to rederive them
here. These toy models demonstrate explicitly how the
instantaneous ground states provide a covariantly con-
served expectation value, how the adiabatic vacua fulfill
the same property up to second adiabatic order, and how
the subtraction cancels the radiative contributions to the
cosmological constant but not those to the gravitational
constant.
Regularization is an essential step when dealing with a

divergent expectation value. To ensure that the vacuum
expectation value of the stress-energy tensor has the correct
properties—e.g., it is covariantly conserved—it is impor-
tant to use a covariant regularization method. For bosonic
theories, we use dimensional regularization; for the spin-
1=2 theory, we use Pauli-Villars regularization6 and fix the
number of spacetime dimensions to 4.
The only dimensionful coupling included in our exam-

ples is the gravitational constant, which, in n spacetime
dimensions, has mass dimension ½GðnÞ� ¼ M2−n. In dimen-
sional regularization, in order to preserve the correct
dimensionality while expanding around n ¼ 4, we intro-
duce GðnÞ ¼ Gμ4−n, where μ is an arbitrary mass scale and
½G� ¼ M−2. The second equation in (24) becomes

Gren ¼ G
1 − 8πGðBAV − BGSÞμ4−n

: ð26Þ

For simplicity, we specialize throughout this section to the
flat FLRW metric with line element

ds2 ¼ aðtÞ2
�
dt2 −

Xn−1
i¼1

dx2i

�
; ð27Þ

where t ¼ x0 is the conformal time and xi are comoving
coordinates. We denote derivatives with respect to the
conformal time t by a prime.

6Note that the divergence in the spin-1=2 theory is logarithmic,
while it is quadratic in the bosonic theories; therefore, we could
not reliably use Pauli-Villars regularization for the latter [19]. On
the other hand, the generalization of gamma matrices to an
arbitrary number of dimensions is a tricky issue; therefore, we
chose not to use dimensional regularization in the fermionic
theory.
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A. Spin 0

Consider a scalar field ϕ with the action

Sϕ ¼
Z

dnx
ffiffiffiffiffi
jgj

p �
1

2
gμν∂μϕ∂νϕ −

1

2
ðm2 − ξRÞϕ2

�
; ð28Þ

where m is the mass, ξ is a dimensionless coupling
constant, and R is the Ricci scalar. The equation of motion
for ϕ is given by

ϕ00 þ ðn − 2Þ a
0

a
ϕ0 − ∂⃗2

ϕþ a2ðm2 − ξRÞϕ ¼ 0: ð29Þ

1. Decomposition

We decompose the field ϕ into its Fourier modes:

ϕðt; xÞ ¼
Z

dn−1k

ð2πÞðn−1Þ=2
1ffiffiffi
2

p aðtÞ−ðn−2Þ=2

× ðχkðtÞe−ikxâk þ χ�kðtÞeikxâ†kÞ; ð30Þ

where âk and â†k are annihilation and creation operators,
respectively, and χk is a complex mode function. Note that
this decomposition is not unique: One can choose a
different set of annihilation and creation operators or,
equivalently, a different set of mode functions. Each set
of operators defines a vacuum according to âkj0i ¼ 0 ∀ k.
The mode functions satisfy the equation of motion

χ00k þ ðk2 þm2a2 þ ðξn − ξÞa2RÞχk ¼ 0; ð31Þ

where we defined ξn ≡ n−2
4ðn−1Þ. The scalar field is minimally

coupled when ξ ¼ 0 and conformally coupled when
ξ ¼ ξn.
We perform the canonical quantization by imposing

canonical commutation relations ½ϕ̂ðt; xÞ; Π̂ðt; yÞ� ¼
iδn−1ðx − yÞ, where Π≡ δSϕ=δϕ0 ¼ an−2ϕ0 is the conju-
gate momentum, as well as ½âk; â†l � ¼ δn−1ðk − lÞ. Con-
sistency between the commutation relations requires the
Wronskian condition

χkχ
0�
k − χ0kχ

�
k ¼ 2i: ð32Þ

Since (31) is a second-order differential equation of a
complex function, the space of solutions is four dimen-
sional for each mode k. One of them is an arbitrary global
phase. The Wronskian condition (32) constrains one more
d.o.f. Then, we are left with two physical d.o.f. for χk (for
each k).
It is possible to decouple the nonphysical d.o.f. from the

mode functions as follows: We write the mode function χk
in the polar form as χk ¼ Rk expf−iSkg, where RkðtÞ and
SkðtÞ are real functions. In these new variables, the
Wronskian condition (32) becomes R2

kS
0
k ¼ 1. This

equation is solved by any positive real function Ωk with

Ωk ¼ R−2
k and SkðtÞ ¼

R
t Ωkðt̄Þdt̄ with an arbitrary lower

limit of integration:

χkðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ΩkðtÞ

p exp

�
−i

Z
t
Ωkðt̄Þdt̄

	
: ð33Þ

Then, the equation of motion (31) becomes

Ω2
k ¼ ω2

k þ ðξn − ξÞa2Rþ 3

4

Ω0
k
2

Ω2
k

−
1

2

Ω00
k

Ωk
: ð34Þ

Here, and for the examples to follow, ω2
k ¼ k2 þm2a2.

The solutions Ωk of (34) have two d.o.f. (for each k),
which correspond to the two physical d.o.f. in χk. We
solved the Wronskian condition, and the global phase went
into the arbitrary lower integration bound in (33). The
problem of defining the vacuum has reduced to choosing a
solution to the nonlinear differential equation (34).

2. Stress-energy tensor

The stress-energy tensor Tμν for the scalar field ϕ is
given by

Tμν ¼ ∂μϕ∂νϕþ ξRμνϕ
2 − ξ∇μ∇νðϕ2Þ þ ξgμν▫ðϕ2Þ

−
1

2
gμνgαβ∂αϕ∂βϕþ 1

2
gμνðm2 − ξRÞϕ2: ð35Þ

We promote this to an operator T̂μν with symmetrized

operator ordering,7 e.g., ϕϕ0 → 1
2
fϕ̂; ϕ̂0g [20]:

h0jT̂00j0i ¼
1

4an−2

Z
dn−1k
ð2πÞn−1

1

Ωk

×

�
k2 þm2a2 þ Ω2

k þ
Ω0

k
2

4Ω2
k

þ Ξ
�
; ð36aÞ

h0jT̂0jj0i ¼ 0; ð36bÞ

h0jT̂ijj0i ¼
1

4an−2

Z
dn−1k
ð2πÞn−1

1

Ωk

×

�
2kikj þ δijðξn − ξÞ4ξa2Rþ δijΞ

þ δijð1 − 4ξÞ
�
Ω2

k − k2 −m2a2 þ Ω0
k
2

4Ω2
k

��
;

ð36cÞ

where

7Normal ordering, the standard operator ordering in QFT on
flat spacetimes, does not have a generally covariant analog and
cannot be implemented in our setting. Symmetrized ordering, on
the other hand, is covariant.
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Ξ≡ ðξn − ξÞðn − 1Þ a
0ððn − 2Þa0Ωk þ 2aΩ0

kÞ
a2Ωk

ð37Þ

and i; j ∈ f1;…; n − 1g.
Note that if Ωk depends only on the modulus k≡ jk⃗j of

the mode vector k⃗, then all nondiagonal terms of h0jT̂μνj0i
vanish. This is the case for the adiabatic and ground state
vacua that we will consider. The integrals are also sim-
plified by the imposition of spherical symmetry.

3. Ground state

The instantaneous ground state at time t is given by the
initial values fΩkðtÞ;Ω0

kðtÞg which minimize the energy
density h0jT̂00j0iðtÞ at that time. Solving the equations

∂
∂ΩkðtÞ h0jT̂00j0iðtÞ ¼ 0 ¼ ∂

∂Ω0
kðtÞ h0jT̂00j0iðtÞ for (36a), we

find

ΩkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2aðtÞ2 þ 4ðn − 1Þ2ξðξn − ξÞ a

0ðtÞ2
aðtÞ2

s
;

ð38aÞ

Ω0
kðtÞ ¼ 4ðn − 1Þðξ − ξnÞ

a0ðtÞ
aðtÞ ΩkðtÞ: ð38bÞ

We clarify here that, while these initial conditions can be
used together with (34) and (33) to define a ground state
mode function at all times, we wish to compute our
expectation values at every time t on the ground state at
that time. The same holds true for the instantaneous
adiabatic vacuum.
We therefore substitute the expressions (38) at every time

t into (36) in order to find the ground state expectation
value of the stress-energy tensor at the instant of minimum
energy:

hT̂00iGSðtÞ ¼−
a2

2

1

ð4πÞn=2Γ


−
n
2

�

×

�
m2þ4ðn−1Þ2ξðξn−ξÞa

02

a4

�
n=2

; ð39aÞ

hT̂jjiGSðtÞ ¼
a2

2

1

ð4πÞn=2 Γ


−
n
2

�

×

�
m2 þ 4ðn − 1Þ2ξðξn − ξÞ a

02

a4

�ðn=2Þ−1

× ðm2 − 2ξðξn − ξÞRÞ; ð39bÞ

where R≡ nRþ ðn2 − 2nþ 2Þðn − 1Þ a02a4 . Using these
expressions and

∇μhT̂μ0i ¼
1

a2
∂
∂t hT̂00i þ ðn − 3Þ a

0

a3
hT̂00i

þ ðn − 1Þ a
0

a3
hT̂jji;

∇μhT̂μji ¼ 0; ð40Þ

for the metric in (27), one can check that hT̂μνiGSðtÞ is

covariantly conserved.
For the renormalization of ρΛ and G, we expand (39)

according to the number of derivatives on the scale factor
aðtÞ. We can write the result as

hT̂μνiGSðtÞ ¼
�
m2

4π

�
n=2

Γ


−
n
2

�

×

�
−
1

2
gμν þ

n
2

ξ

ξn
ðξ − ξnÞm−2Gμν

�
ð41Þ

up to Oð∂4Þ terms.

4. Adiabatic vacuum

In order to define the adiabatic vacua, we try to solve
(34) iteratively, such that

ðW½0�
k ðtÞÞ2 ≡ ωkðtÞ2; ð42aÞ

ðW½sþ1�
k ðtÞÞ2 ≡ ωkðtÞ2 þ ðξn − ξÞaðtÞ2RðtÞ

þ 3

4

�
W½s�

k
0ðtÞ

W½s�
k ðtÞ

�2

−
1

2

W½s�
k

00ðtÞ
W½s�

k ðtÞ
: ð42bÞ

The second-order adiabatic vacua at time t are defined by
the initial conditions

ΩkðtÞ ¼ W½1�
k ðtÞ; Ω0

kðtÞ ¼ W½1�
k

0ðtÞ: ð43Þ

Note that if we had chosen to use a higher-order adiabatic
vacuum, these equations would change only up to Oð∂4Þ.
In order to find the adiabatic vacuum expectation value of
the stress-energy tensor, we substitute (43) into (36a) and
(36c). After expanding the result around the number of
derivatives on the scale factor, we get

hT̂μνiAVðtÞ ¼
�
m2

4π

�
n=2

Γ


−
n
2

�

×

�
−
1

2
gμν þ

nð1 − 6ξÞ
12

m−2Gμν

�
ð44Þ

up to Oð∂4Þ terms.

5. Result

Our results (41) and (44) confirm Theorems 1 and 2,
since they are a linear combination of the covariantly
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conserved tensors gμν and Gμν. They also confirm
Theorem 3 as

AGS ¼ AAV ¼ −
1

2

�
m2

4π

�
n=2

Γ


−
n
2

�
: ð45Þ

Finally, by subtracting (44) and (41), we obtain

hT̂μνivac ¼ BΔGμν þOð∂4Þ; ð46Þ

where BΔ ¼ BAV − BGS is given for the scalar theory by

BΔ ¼
�
m2

4π

�
n=2

Γ


−
n
2

�
n
12

�
1 −

24ðn − 1Þ
n − 2

ξ2
�
m−2: ð47Þ

Equation (46) confirms the results of Sec. II C.
In order to complete dimensional renormalization, we

expand BΔ ¼ BΔðnÞ around n ¼ 4. Depending on the
parameter ξ, this can be accomplished in two different
ways. If we fix the parameter ξ to the conformal coupling
number ξ ¼ ξn for every dimension n, we get a finite result
at n ¼ 4, namely,

μ4−nBΔjξ¼ξn;n¼4 ¼
m2

288π2
: ð48Þ

Alternatively, we can fix the parameter ξ to a constant
independent of n and make a Laurent expansion around
n ¼ 4 to get

μ4−nBΔjξ¼constðnÞ ¼
ð1 − 36ξ2Þm2

48π2ð4 − nÞ

−
ð1 − 36ξ2Þm2

96π2

�
γ þ log

m2

4πμ2

�

þ ð1 − 48ξ2Þm2

96π2
þOð4 − nÞ; ð49Þ

where γ is the Euler-Mascheroni constant.

B. Spin 1=2

Next, we consider a massive Dirac fermion Ψðt; xÞ in
four dimensions:

SΨ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
LΨ;

LΨ ≡ 1

2
iðΨ̄γαēαμ∇μΨ − ð∇μΨ̄ÞēαμγαΨÞ −mΨ̄Ψ: ð50Þ

Here, eαμ ¼ diagða; a; a; aÞ is a tetrad, which satisfies
gμν ¼ eαμeβνηαβ for a local flat metric ηαβ ¼ diagðþ;
−;−;−Þ, while ēαμ is its inverse. The constant gamma
matrices fγαgα¼0;…;3 satisfy fγα; γβg ¼ 2ηαβ, and their
curved counterparts are defined as γ̃μ ≡ ēαμγα [4]. We
use the Dirac representation

γ0 ¼
�
1 0

0 −1

�
; γj ¼

�
0 σj

−σj 0

�
: ð51Þ

The conjugate spinor is defined as Ψ̄ ¼ Ψ†γ0. The covar-
iant derivative of a Dirac spinor is defined as
∇μΨ ¼ ∂μΨþ ΓμΨ, where the connection is given by

Γμ ≡ 1

8
½γα; γβ�gνρēανð∂μēβρ þ Γρ

μσ ēβσÞ ð52Þ

and Γρ
μσ is the Levi-Civita connection. The equation of

motion for Ψ is given by

iγ0
�
1

a
Ψ0 þ 3

2

a0

a2
Ψ
�
þ i

1

a
γj∂jΨ −mΨ ¼ 0: ð53Þ

Most of the following derivations can already be found,
e.g., in Refs. [17,18].

1. Decomposition

The field operator Ψ̂ can be decomposed into a complete
set of modes such that

Ψ̂ðt; xÞ ¼ aðtÞ−3=2
Z

d3k

ð2πÞ3=2
×
X
s¼�

ðuskðtÞe−ikxâsk þ vskðtÞeikxb̂s†k Þ; ð54Þ

where s ¼ � is the spin, usk and vsk are the mode functions,
âsk is the particle annihilation operator, and b̂s†k is the
antiparticle creation operator. The mode functions satisfy
the equations of motion

iγ0usk
0 þ γjkjusk −mausk ¼ 0; ð55aÞ

iγ0vsk
0 − γjkjvsk −mavsk ¼ 0: ð55bÞ

The conjugate momentum Π is defined as Π≡ δSΨ=
δΨ0 ¼ ia3Ψ†. We perform a canonical quantization of the
field operators by imposing the equal-time anticommuta-
tion relations fΨ̂aðt; xÞ; Π̂bðt; yÞg ¼ iδ3ðx − yÞδab, as well
as fârk; âs†l g ¼ fb̂rk; b̂s†l g ¼ δ3ðk − lÞδrs. The requirement
for consistency between these anticommutation relations
yields the Wronskian condition:

X
s¼�

ðuskus†k þ vs−kv
s†
−kÞ ¼ 1: ð56Þ

The particles and antiparticles are related to each other by
charge conjugation. The charge conjugate spinor is defined
as Ψc ≡ CΨC ¼ −iðΨ̄γ0γ2ÞT , together with CâskC ¼ b̂sk
and Cb̂skC ¼ âsk. This implies that u and v are related as
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usk ¼ −iγ2vs�k and vsk ¼ −iγ2us�k : ð57Þ

Under these relations, one can show that each of (55a) and
(55b) is satisfied if and only if the other one is satisfied.
Now, we make the ansatz [21]

vsk ¼
� ðiχ0k þmaχkÞφs

σjkjχkφs

�
; ð58Þ

where the 2-spinors φþ ¼ ð1; 0ÞT and φ− ¼ ð0; 1ÞT are
helicity eigenstates and χkðtÞ is a C-valued function that
satisfies χ−k ¼ χk. With this ansatz, the equations of motion
(55) and the Wronskian condition (56) are reduced to the
two equations

χ00k þ ðk2 þm2a2 − ima0Þχk ¼ 0 ð59Þ
and

jiχ0k þmaχkj2 þ k2jχkj2 ¼ 1: ð60Þ
We proceed analogously to the case of a scalar field. We
can write the complex mode function χ in polar form as
χkðtÞ ¼ RkðtÞ exp f−i

R
t Ωkðt̄Þdt̄g with two real functions

Rk and Ωk and with an arbitrary lower boundary on the
integral that corresponds to the global phase ambiguity. The
equation of motion (59) can be split into a real and an
imaginary part:

R00
k þ ðk2 þm2a2 −Ω2

kÞRk ¼ 0; ð61aÞ

2ΩkR0
k þ ðma0 þ Ω0

kÞRk ¼ 0: ð61bÞ

The second equation (61b) is solved by

RkðtÞ ¼
c1ffiffiffiffiffiffiffiffiffiffiffi
ΩkðtÞ

p exp

�
−
1

2

Z
t

t1

ma0ðt̄Þ
Ωkðt̄Þ

dt̄

	
; ð62Þ

where c1 and t1 are arbitrary constants. Then, (61a) and
(60) become

Ω2
k ¼ k2 þm2a2 −

ma00 þΩ00
k

2Ωk
þ ðma0 þ Ω0

kÞðma0 þ 3Ω0
kÞ

4Ω2
k

ð63Þ

and

c21
Ωk

exp

�
−
Z

t

t1

ma0ðt̄Þ
Ωkðt̄Þ

dt̄

	

×

�
k2 þ ðmaþ ΩkÞ2 þ

ðma0 þΩ0
kÞ2

4Ω2
k

�
¼ 1: ð64Þ

Now, the time derivative of (64) is satisfied automatically
by virtue of (63). Hence, we can fix the constant c1 at an
arbitrary time, say, t ¼ t1, as

c1 ¼ c1ðt1Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωkðt1Þ

p �
k2 þ ðmaðt1Þ þ Ωkðt1ÞÞ2

þ ðma0ðt1Þ þΩ0
kðt1ÞÞ2

4Ωkðt1Þ2
�

−1=2
: ð65Þ

Finally, we have shown that we can write the complex
mode function as

χkðtÞ ¼
c1ðt1Þffiffiffiffiffiffiffiffiffiffiffi
ΩkðtÞ

p exp

�
−i

Z
t
Ωkðt̄Þdt̄ −

1

2

Z
t

t1

ma0ðt̄Þ
Ωkðt̄Þ

dt̄

	
;

ð66Þ

where Ωk is a real (positive) valued function which
satisfies (63). The arbitrariness of the parameter t1 is
supported by the observation that the value of χk is
independent of t1.

2. Stress-energy tensor

The stress-energy tensor Tμν for the Dirac spinor Ψ is
given by [4]

Tμν ¼
1

2
iΨ̄γ̃ðμ∇νÞΨ −

1

2
ið∇ðμΨ̄Þγ̃νÞΨ: ð67Þ

We promote this to an operator T̂μν with antisymmetrized

operator ordering, such asΨΨ0 → 1
2
½Ψ̂; Ψ̂0�. After a long but

straightforward calculation, we find

h0jT̂00j0i ¼
2

a2

Z
d3k
ð2πÞ3

�
maþ 2k2Ωk

K

�
; ð68aÞ

h0jT̂0jj0i ¼ 0; ð68bÞ

h0jT̂ijj0i ¼
4

a2

Z
d3k
ð2πÞ3

kikjðmaþΩkÞ
K

; ð68cÞ

where

K ≡ k2 þ ðmaþ ΩkÞ2 þ
1

4Ω2
k

ðma0 þ Ω0
kÞ2: ð69Þ

3. Ground state

Now, we examine the ground state. The initial conditions
ΩkðtÞ and Ω0

kðtÞ which minimize the energy density in
(68a) at time t are given by

ΩkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2aðtÞ2

q
; ð70aÞ

Ω0
kðtÞ ¼ −ma0ðtÞ: ð70bÞ
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From these, we get

hT̂00iGSðtÞ ¼
1

π2a2

Z
∞

0

dkk2ωk; ð71aÞ

hT̂ijiGSðtÞ ¼
δij
π2a2

Z
∞

0

dk
k4

3ωk
: ð71bÞ

These integrals diverge quartically; therefore, we cannot
use Pauli-Villars regularization yet. Nevertheless, the
covariant conservation of the ground state expectation
values can be shown using (71) and the formula (40)
without evaluating the integrals.

4. Adiabatic vacuum

For the adiabatic vacua, we try to solve (63) iteratively:

ðW½0�
k Þ2 ≡ ω2

k; ð72aÞ

ðW½sþ1�
k Þ2 ≡ ω2

k −
ma00 þW½s�

k
00

2W½s�
k

þ ðma0 þW½s�
k

0Þðma0 þ 3W½s�
k

0Þ
4ðW½s�

k Þ2
: ð72bÞ

The second-order adiabatic vacuum at time t are defined
by the initial conditions

ΩkðtÞ ¼ W½1�
k ðtÞ; Ω0

kðtÞ ¼ W½1�
k

0ðtÞ: ð73Þ

Writing (73) into (68a) and (68c) and then expanding the
integrands by the number of derivatives on the scale factor,
we get

hT̂00iAVðtÞ ¼
1

π2a2

Z
∞

0

dkk2ðωk þm2τ0ðk;mÞÞ; ð74aÞ

hT̂ijiAVðtÞ ¼
δij
π2a2

Z
∞

0

dkk2
�

k2

3ωk
þm2τ1ðk;mÞ

�
ð74bÞ

up to Oð∂4Þ terms, where we define

τ0ðk;mÞ≡ −
k2a02

8ðk2 þm2a2Þ5=2 ; ð75aÞ

τ1ðk;mÞ≡−
k2

24ðk2þm2a2Þ7=2
× ððk2þm2a2Þða02−2aa00Þþ5m2a2a02Þ:

ð75bÞ

5. Result

By subtracting (74) and (71), we get

hT̂00ivac ¼
m2

π2a2

Z
∞

0

dkk2τ0ðk;mÞ þOð∂4Þ; ð76aÞ

hT̂ijivac¼
m2

π2a2
δij

Z
∞

0

dkk2τ1ðk;mÞþOð∂4Þ: ð76bÞ

These integrals diverge only logarithmically; therefore, we
can use Pauli-Villars regularization on them. Since Tμν has
mass scale ½M2�, we factor outm2 and consider the rest as a
function of the mass. For an auxiliary mass scale μ, we find

m2

π2a2

Z
∞

0

dkk2ðτ0ðk;mÞ − τ0ðk; μÞÞ ¼
m2 logðm=μÞ

24π2
3a02

a2

ð77aÞ

and

m2

π2a2
δij

Z
∞

0

dkk2ðτ1ðk;mÞ − τ1ðk; μÞÞ

¼ m2 logðm=μÞ
24π2

a02 − 2aa00

a2
: ð77bÞ

Therefore, in agreement with the general discussion of
Sec. II C, we find that subtracted vacuum fluctuations do
not renormalize the cosmological constant:

hT̂μνivac ¼ BΔðμÞGμν þOð∂4Þ;

BΔðμÞ ¼
1

24π2
m2 log

m
μ
: ð78Þ

C. Spin 1

As our final application, we consider the Proca theory for
a massive vector boson Aμðt; xÞ in n dimensions:

SA ¼
Z

dnx
ffiffiffiffiffi
jgj

p �
−
1

4
FμνFμν þ

1

2
m2AμAμ

�
; ð79Þ

where m is the mass and Fμν ¼ ∇μAν −∇νAμ is the field-
strength tensor. The equation of motion for Aμ is the Proca
equation

∇μFμν þm2Aν ¼ 0: ð80Þ

Taking the divergence of the Proca equation yields the
Lorentz condition

∇μAμ ¼ 0: ð81Þ

The adiabatic regularization method was previously applied
to a spin-1 field in the context of Stueckelberg theory
in Ref. [22].
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1. Quantization

We decompose the Proca field into its temporal and
spatial components, such that Aμ ¼ ðϕ; A⃗Þ. The Proca
theory is a constrained system: There is no kinetic term
for ϕðt; xÞ in the action (79).
We denote the conjugate momenta to ϕ and A⃗ byΠ and P⃗,

respectively. The system has two second-class constraints:

Π ¼ 0; ∂⃗ · P⃗þm2an−2ϕ ¼ 0: ð82Þ

Applying the Dirac quantization procedure for a constrained
system, we find the commutation relations

½Âiðt; xÞ; P̂jðt; yÞ� ¼ iδijδn−1ðx − yÞ; ð83aÞ

½ϕ̂ðt;xÞ; Âjðt;yÞ� ¼ im−2a2−n
∂
∂xj δ

n−1ðx−yÞ; ð83bÞ

and all other commutators vanish.

2. Decomposition

We split the spatial vector A⃗ into its transverse and
longitudinal parts as

Ajðt; xÞ ¼ Bjðt; xÞ þ ∂jCðt; xÞ with ∂⃗ · B⃗ ¼ 0: ð84Þ

The equations of motion (80) and the Lorentz condition
(81) yield

B⃗00 þ ðn − 4Þ a
0

a
B⃗0 − ð∂⃗2ÞB⃗þm2a2B⃗ ¼ 0; ð85aÞ

ϕ0 þ ðn − 2Þ a
0

a
ϕ − ∂⃗2C ¼ 0; ð85bÞ

∂⃗2C0 − ∂⃗2
ϕþm2a2ϕ ¼ 0: ð85cÞ

The Proca field Aμ, obeying the Lorentz condition (81),
has n − 1 independent polarizations: n − 2 of them are
transversal (in B⃗) and 1 is longitudinal (in ϕ and C). Hence,
we expand the functions ϕ; B⃗; C in their Fourier modes as

Bjðt; xÞ ¼
Z

dn−1k

ð2πÞðn−1Þ=2
Xn−2
r¼1

εjðk; rÞ

× ðχk;rðtÞe−ikxârk þ χ�k;rðtÞeikxâr†k Þ; ð86aÞ

ϕðt; xÞ ¼
Z

dn−1k

ð2πÞðn−1Þ=2 ðukðtÞe
−ikxâ0k þ u�kðtÞeikxâ0†k Þ;

ð86bÞ

Cðt; xÞ ¼
Z

dn−1k

ð2πÞðn−1Þ=2 ðvkðtÞe
−ikxâ0k þ v�kðtÞeikxâ0†k Þ:

ð86cÞ

Here, the label r ¼ 1;…; n − 2 stands for the transversal
polarizations of the vector boson. The polarization
vectors ε⃗ðk; rÞ of the transverse modes satisfy the trans-
versality condition

P
n−1
j¼1 kjεjðk; rÞ ¼ 0 and the nor-

malization conditions
P

n−1
j¼1 εjðk; rÞεjðk; r0Þ ¼ δrr0 andP

n−2
r¼1 εiðk; rÞεjðk; rÞ ¼ δij −

kikj
k2 . The mode functions

χk;r, uk, and vk satisfy the equations of motion

χ00k;r þ ðn − 4Þ a
0

a
χ0k;r þ ω2

kχk;r ¼ 0; ð87aÞ

u00kþðn−2Þa
0

a
u0kþ

�
ω2
k−ðn−2Þa

02−aa00

a2

�
uk¼0 ð87bÞ

and the constraint

vk ¼ −
1

k2

�
u0k þ ðn − 2Þ a

0

a
uk

�
: ð88Þ

We impose the canonical commutation relations ½â0k; â0†k0 � ¼
δn−1ðk − k0Þ and ½ârk; âr

0†
k0 � ¼ δrr0δ

n−1ðk − k0Þ on the anni-
hilation and creation operators. The requirement for con-
sistency between these relations and the commutators (83)
yields the Wronskian conditions

χk;rχ
0�
k;r − χ�k;rχ

0
k;r ¼ ia4−n ð89Þ

and

uku0k
� − u�ku

0
k ¼ ik2m−2a2−n: ð90Þ

Similarly as in the previous examples, we can eliminate the
Wronskian conditions by writing the complex mode
functions in the polar form:

χk;rðtÞ ¼
aðtÞð4−nÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ωk;rðtÞ

p exp



−i

Z
t
Ωk;rðt̄Þdt̄

�
; ð91aÞ

ukðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2

m2aðtÞ2

s
aðtÞð4−nÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ΘkðtÞ
p exp



−i

Z
t
Θkðt̄Þdt̄

�
: ð91bÞ

The positive-valued functions Ωk;r and Θk satisfy the
vacuum equations

Ω2
k;r ¼ ω2

k − ðn − 4Þ ðn − 6Þa02 þ 2aa00

4a2
þ 3

4

Ω02
k;r

Ω2
k;r

−
1

2

Ω00
k;r

Ωk;r
;

ð92aÞ

Θ2
k ¼ ω2

k − ðn − 2Þ na
02 − 2aa00

4a2
þ 3

4

Θ0
k
2

Θ2
k

−
1

2

Θ00
k

Θk
: ð92bÞ
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3. Stress-energy tensor

The stress-energy tensor Tμν for the Proca field Aμ is
given by

Tμν ¼
1

4
gμνFρσFρσ − gρσFμρFνσ

þm2AμAν −
1

2
m2gμνAρAρ: ð93Þ

Again, we promote this to an operator T̂μν with sym-
metrized ordering. In a straightforward calculation, we find
the vacuum expectation value of this operator to be

h0jT̂00j0i ¼
1

4an−2

Z
dn−1k
ð2πÞn−1

×

�
1

Θk
ðω2

k þϒΘÞ þ
Xn−2
r¼1

1

Ωk;r
ðω2

k þϒΩÞ
	
;

ð94aÞ

h0jT̂0jj0i ¼ 0; ð94bÞ

h0jT̂ijj0i ¼
1

4an−2

Z
dn−1k
ð2πÞn−1

�
2kikj

�
1

Θk
þ
Xn−2
r¼1

1

Ωk;r

�

þ
Xn−2
r¼1

1

Ωk;r
ð2εi;k;rεj;k;r − δijÞðω2

k −ϒΩÞ

þ 1

Θk

�
δij −

2kikj
k2

�
ðω2

k −ϒΘÞ
	
; ð94cÞ

where

ϒΩ ≡Ω2
k;r þ

1

4

�Ω0
k;r

Ωk;r
þ ðn − 4Þ a

0

a

�
2

; ð95aÞ

ϒΘ ≡ Θ2
k þ

1

4

�
Θ0

k

Θk
þ ð2 − nÞ a

0

a

�
2

: ð95bÞ

4. Ground state

At any given time t, the instantaneous ground state which
minimizes the energy density (94a) is given by the initial
conditions

Ωk;rðtÞ ¼ ωkðtÞ; Ω0
k;rðtÞ ¼ ð4− nÞa

0ðtÞ
aðtÞ ωkðtÞ; ð96aÞ

ΘkðtÞ ¼ ωkðtÞ; Θ0
kðtÞ ¼ ðn − 2Þ a

0ðtÞ
aðtÞ ωkðtÞ: ð96bÞ

Substituting these into the vacuum expectation value of
the stress-energy tensor, we get

hT̂μνiGSðtÞ ¼
�
m2

4π

�
n=2

Γ


1 −

n
2

�
n − 1

n
gμν: ð97Þ

Since this quantity is proportional to the metric, its
covariant conservation is manifest.

5. Adiabatic vacuum

As usual, we try to solve (92) iteratively:

ðW½0�
k Þ2 ≡ ω2

k; ð98aÞ

ðW½sþ1�
k Þ2 ≡ ω2

k − ðn − 4Þ ðn − 6Þa02 þ 2aa00

4a2

þ 3

4

�
W½s�

k
0

W½s�
k

�2

−
1

2

W½s�
k

00

W½s�
k

; ð98bÞ

ðZ½0�
k Þ2 ≡ ω2

k; ð98cÞ

ðZ½sþ1�
k Þ2 ≡ ω2

k − ðn − 2Þ na
02 − 2aa00

4a2

þ 3

4

�
Z½s�
k

0

Z½s�
k

�2

−
1

2

Z½s�
k

00

Z½s�
k

: ð98dÞ

The second-order adiabatic vacua at time t are defined by
the initial conditions

Ωk;rðtÞ ¼ W½1�
k ðtÞ; Ω0

k;rðtÞ ¼ W½1�
k

0ðtÞ; ð99aÞ

ΘkðtÞ ¼ Z½1�
k ðtÞ; Θ0

kðtÞ ¼ Z½1�
k

0ðtÞ: ð99bÞ

The expectation value of the stress-energy tensor is then,
to second adiabatic order,

hT̂μνiAVðtÞ ¼
�
m2

4π

�
n=2

Γ


1 −

n
2

�

×

�
n − 1

n
gμν þ

7 − n
6

m−2Gμν

�
ð100Þ

up toOð∂4Þ terms. To the best of our knowledge, this is the
first derivation of the adiabatic vacuum and adiabatic stress-
energy tensor expectation value for a Proca field.

6. Result

Subtracting (100) and (97), we finally arrive at

hT̂μνivac ¼ BΔGμν þOð∂4Þ;

BΔ ¼
�
m2

4π

�
n=2

Γ


1 −

n
2

�
7 − n
6

m−2; ð101Þ

once again confirming the results of Sec. II C. For dimen-
sional renormalization, we can separate the divergent and
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finite parts of μ4−nBΔ using a Laurent expansion around
n ¼ 4:

μ4−nBΔ ¼ m2

16π2ðn − 4Þ þ
m2

32π2

�
γ þ log

m2

4πμ2

�

−
5m2

96π2
þOðn − 4Þ: ð102Þ

IV. CONCLUSION

We here considered the possibility that the source of
gravity in the semiclassical Einstein equation is the differ-
ence in the stress-energy expectation value between the
state of the Universe and the instantaneous ground state.
We proved that for homogeneous and isotropic cosmologi-
cal spacetimes, for which one can of course identify the
instantaneous ground state, the proposed stress-energy
tensor satisfies the Bianchi identity.
We discussed renormalization and the rôle of the

physical (no-particle, adiabatic) vacuum in our scheme.
We find that, as a consequence of the instantaneous ground
state subtraction, the vacuum energy density ρΛ ¼ 1

8πGΛ
becomes radiatively stable, i.e., protected from renormal-
ization at the UV scale. We demonstrate this explicitly in
the case of a scalar field with arbitrary coupling to the scalar
curvature, for a free spinor and a free Proca field.

Our assumptions in this study were (i) that the back-
ground metric is of the FLRW kind, (ii) the existence of
instantaneous ground states, and (iii) the existence of
adiabatic vacua. The validity of the last two assumptions
is nontrivial for generic interacting theories. This invites
further investigation of the stabilization of the cosmological
constant along the lines outlined here.
Finally, it will be very interesting to explore to what

extent our results can be developed beyond highly sym-
metrical cosmological backgrounds. It will also be in-
triguing to understand if and how existing quantum gravity
models can accommodate a first-principles derivation for
our proposal.
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