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We consider the gravitational analogue of Lyman-alpha absorption lines in astronomical spectroscopy. If
Einstein gravity with minimally coupled matter is valid up to the Planck scale, quantum bound states absorb
gravitons of a specific frequency with Planckian cross section, σabs ≈ l2p. Consequently, one can show that
gravitational absorption by bound states is inefficient in ordinary gravity. If observed, gravitational
absorption lines would therefore constitute a powerful smoking gun of new exotic astrophysical bound
states (near extremal bound states) or new gravitational physics, as well as give direct evidence of the
quantized nature of the gravitational field. We provide, as an example of new gravitational physics near the
Planck scale, a nonminimal coupling of the matter fields which breaks the equivalence principle on-shell.
We lay out a model in which absorption lines in the primordial gravitational wave spectrum are produced as
a consequence of this coupling.
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I. INTRODUCTION

When gravitational waves travel through a medium, they
are generally absorbed and reemitted by the intervening
matter. The absorption of gravitational waves in a cosmo-
logical setting was first studied by Hawking [1], who
calculated the absorption rate of gravitational radiation by
viscous matter. Recent studies considered gravitational
wave propagation through collisionless matter [2,3], as
well as quantum mechanical absorption of low frequency
gravitational radiation by inverse bremsstrahlung [4]. The
absorption processes so far considered in the literature all
involve the interaction between a graviton and a scattering
state, that is a quantum state of matter with a continuous
energy spectrum. Since the energy of the scattering state
can vary continuously, the absorption happens in broad
frequency bands.
In this work we will instead consider the interaction

between a graviton and a quantum bound statewith discrete
energy levels. In order to be absorbed, the frequency of the
graviton has to match the energy difference between any
two quantum states, therefore the absorption will take place
in a narrow frequency range, and, if the conditions are right,
produce gravitational absorption lines, analogous to their

electromagnetic counterparts. We stress that by quantum
bound states we do not mean just atoms, which are a
particular class of bound states with potential VðrÞ ∼ r−1,
but all quantum states with a localized wave function and a
discrete energy spectrum.
Strikingly, all bound states absorb gravitons with the

same probability, independently of their internal structure,
such as their mass or coupling. This includes purely
gravitational atoms [5], which consist of near Planckian
particles bound together by gravity. The remarkable fact
that all dimensions other than the Planck length drop out of
the gravitational absorption cross section was first shown
rigorously in [6,7] in the context of simple atoms. In
Appendix A we show that the result holds for all types of
quantum bound states. The absorption cross section is
universal, but tiny, of the order of the Planck area. As a
consequence, the absorption rate for gravitons travelling
through the interstellar medium is minuscule, far too small
to leave any detectable imprint on gravitational waves of
astrophysical origin today.
The absorption rate is greatly enhanced if the absorbing

material is ultradense, like for example in compact stars or
in the early universe. Nonetheless, we show that gravita-
tional absorption will not take place even in these extreme
cases: a compact star so dense to be on the verge of
collapsing to a black hole, as well as a uniform gas of
bound states dominating the energy density of the universe
at the highest temperatures after inflation, are still too dilute
to efficiently absorb gravitons. In fact, one can show that
gravitational absorption is always inefficient under very
general assumptions, namely 4D Einstein gravity with
minimally coupled matter. By inefficient we mean that

*palessandro@cp3.sdu.dk
†sloth@cp3.sdu.dk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 043504 (2020)

2470-0010=2020=101(4)=043504(18) 043504-1 Published by the American Physical Society

https://orcid.org/0000-0002-9273-5666
https://orcid.org/0000-0002-4653-5671
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.043504&domain=pdf&date_stamp=2020-02-04
https://doi.org/10.1103/PhysRevD.101.043504
https://doi.org/10.1103/PhysRevD.101.043504
https://doi.org/10.1103/PhysRevD.101.043504
https://doi.org/10.1103/PhysRevD.101.043504
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the optical depth for a graviton traversing any medium is
always less than one. The conclusion is very robust, and is
independent of the precise expansion history, the compo-
sition of the absorbing material, or even the structure of the
bound states. As a caveat, we show that gravitational
absorption can be marginally efficient (the optical depth
reaches order one) if the absorbing material is a maximally
dense condensate of a bosonic field with discrete energy
levels. We call this bound state extremal. An example of a
near extremal bound state is the black hole atom of [8].
Interestingly, hypothetical black holes with a mass gap
[9,10] are naturally extremal bound states, i.e., they absorb
gravitons with maximum efficiency in Einstein’s gravity.
The insurmountable obstacle in observing gravitational

absorption lines actually reflects something deep about the
nature of gravity in Einstein’s theory. In a classic paper
[11], Bohr and Rosenfeld showed that it is mathematically
inconsistent to have a classical electromagnetic field
interacting with quantum mechanical matter. The argument
does not carry through in the same way for gravity: the
quantization of the matter fields does not necessarily
imply the quantization of the gravitational field. A classical
gravitational wave can consistently interact with a quantum
measuring apparatus. In fact, not only is the quantization of
gravity not a logical necessity in this type of thought
experiments, it is also believed to be unobservable within
Einstein gravity. Freeman Dyson first showed that it is
impossible to detect a single graviton with high probability
in any realistic experiment, and conjectured a censorship
effect that precludes the observation of the quantization of
the gravitational field in Einstein’s theory [12]. Absorption
lines are just another way of probing the quantization of
gravity, therefore they are excluded by similar arguments.
Absorption lines become possible if minimally coupled

Einstein gravity ismodified at high energies. As an example,
we consider a nonminimal coupling to gravity which breaks
the equivalence principle for the particles in the bound state.
By tuning the nonminimal coupling parameter, one can
greatly enhance the absorption cross section. Absorption
lines in nonprimordial spectra due to nonminimally coupled
fields require light particles with strong interactions, which
are excluded by LHC constraints. However, there are in
principle no obstructions to absorption lines in primordial
gravitational spectra. In particular, we describe a scenario in
which massive particles interacting nonminimally with
gravity decouple from the hot plasma shortly after inflation
and quickly become nonrelativistic, eventually recombining
in much the same way as ordinary hydrogen atoms. The
newly formed atoms absorb primordial gravitons of a
specific frequency, leading to a series of absorption lines
in the primordial gravitational wave spectrum.
Dyson’s work was motivated by the hope that the failures

in reconciling general relativity with quantum mechanics
were really due to the fact that the gravitational field is a
purely classical entity. In the dichotomous world he

envisioned, the geometric theory of gravity would peace-
fully coexist with the quantum realm, and the obstruction
in observing individual gravitons would be attributable to
their nonexistence. Although we believe it will be very
difficult to have a consistent effective quantum field
theory description of Nature below the Planck scale without
quantizing gravity and thus introducing a graviton,1 gravi-
tational absorption lines would provide a way to discrimi-
nate between classical and quantum gravity at the
observational level. In fact, gravitational absorption lines
would probe quantum gravity in two distinct ways. First of
all, since general relativity forbids them, they would
explore and constrain exotic physics close to the Planck
scale. Second, and perhaps more importantly, they would
confirm that the gravitational field is quantized at low
energies, effectively proving the existence of gravitons.

II. A NO-GO ARGUMENT

We now show that under very general assumptions about
the theory of gravity, gravitational absorption is always
inefficient, meaning that it is impossible for a graviton to be
absorbed with high probability by any kind of bound state.
This is the main conclusion of this section. The assump-
tions are the following:

(i) Einstein gravity is valid up to the Planck scale.
(ii) All fields are minimally coupled to gravity.
(iii) The absorbing material is made up of bound states

with a discrete energy spectrum.
We define “bound state” as any type of localized

quantum state with discrete energy levels. Atoms are a
particular subclass of bound states with an inverse square
law potential, but the conclusions of this section apply more
generally to any type of confining potential. The absorption
cross section for the transition between the 1s and 3d state
of a hydrogenlike atom2 was first computed in [6],

σabs ¼
34π2

5 × 29
l2p ≈ 0.3l2p; ð1Þ

where lp is the 4d Planck length. Strikingly, all dependence
on the mass and coupling drops out and the final cross
section is comparable to the Planck area within a numerical
factor of order one, a fact emphasized also in [7,12].
Detailed calculations leading to (1), as well as some
heuristic arguments for why this is true, can be found in
Appendix A. In the Appendix we also extend the result to
multiparticle atoms, nuclei, and finally to all quantum states
with a confining potential, reaching the conclusion that
any (nondegenerate) bound state will absorb with a Planck
area cross section. Degenerate bound states with large

1We expect to return to this point in future work.
2When the atom absorbs a graviton, it transitions from the

n ¼ 1 ground state to the first excited state with l ¼ 2, namely
n ¼ 3.
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occupation numbers have a larger cross section, but are
proportionally heavier, therefore they do not constitute an
exception to the no-go, as we explain in Sec. III.
Technically, we will say that gravitational absorption is

efficient whenever the optical depth for a graviton going
through a material is strictly larger than one. If the optical
depth is equal to one we will say that the material is
marginally efficient at absorbing gravitons. We will first
prove the inefficiency of gravitational absorption in the
framework of the standard cosmological scenario. Then, we
will formulate our conclusion in the larger context of
Dyson’s conjecture and prove it more generally.

A. Heuristic no-go in standard cosmology

Here we assume that Friedmann equations govern the
evolution of the universe at all times, which is driven by
ideal fluids with equation of state p ¼ ωρ and ω ≤ 1, so
that the speed of sound cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂p=∂ρp ¼ ffiffiffiffi
ω

p
is sublumi-

nal. The energy density scales as a−3ð1þωÞ and it can
decrease at most like a−6 for a stiff fluid with ω ¼ 1.
While these extra assumptions are needed for the present
discussion, we will see in the next section that our
conclusion is actually stronger and only depends on the
nature of gravity itself.
We can consider two types of gravitational waves,

primordial and nonprimordial, depending on whether they
are created close to inflation or much later. Nonprimordial
gravitational wave sources are typically of astrophysical
origin, such as binary systems, supernovae, and spinning
neutron stars. Different processes in the early Universe
may have generated a primordial gravitational wave back-
ground, such as, among others, quantum perturbations
during inflation [13,14].
The no-go argument comes in two parts, depending on

the character of the gravitational wave signal. We start with
the nonprimordial component. Assuming that the absorp-
tion is due to gas clouds in the interstellar medium, a
necessary condition to have absorption lines in nonpri-
mordial gravitational waves is that the optical depth for a
graviton traveling through the galaxy is larger than one,

nBσabsRG > 1; ð2Þ

where RG ∼ 10 kpc is the radius of our galaxy. This gives a
lower bound on the number density of bound states today:

nB > ðσabsRGÞ−1 ∼ 10−54m3
p; ð3Þ

at least forty orders of magnitude larger than the density of
hydrogen atoms in the interstellar medium. Even if we
assume that dark matter is mostly comprised of bound
states with mass mB and a number density given by (3), for
such a dense gas not to overclose the universe, the mass
should be incredibly small, mB ≲ 10−68mp. The Compton

wavelength of a single particle λB ¼ m−1
B would then be

10 million times larger than the Hubble radius today, and
the particle description would break down.
What about absorption by superdense compact objects

(e.g., neutron stars)? Calling the mass and radius of the
compact star MS and RS, the condition for absorption is

nB >
m2

p

RS
: ð4Þ

Bound states of mass mB need to be confined inside the
star, so their size should be much smaller than the radius of
the star. Therefore, at the very least

mB > R−1
S : ð5Þ

The energy density of bound states is ρB ¼mBnB >m2
p=R2

S,
so the total mass of the star is at least ρBR3

S > m2
pRS, i.e.,

MS > m2
pRS. However, the mass of the star has to be

below the corresponding mass for a black hole of that size,
namely MS < m2

pRS, a contradiction. No compact star, no
matter its composition, will absorb gravitons with high
probability.
Analogously, the necessary condition for gravitons from

the primordial spectrum to be absorbed in the early universe
is that the absorption rate is larger than the Hubble rate:

nBσabsH−1 > 1: ð6Þ

The difference between this and the previous case is that the
size of the system H−1 is now changing with time. The
number density of bound states scales like nB ∝ a−3, while
the Hubble rate scales like H ∝ a−3ð1þωÞ=2, depending on
which fluid dominates the early evolution of the universe.
So, nB decreases faster than H for all values of ω < 1. In
the special case of a stiff fluid, the ratio between the number
density and Hubble rate remains constant.
This means that absorption will be most efficient at the

earliest time after formation of these bound states. If
condition (6) is not satisfied immediately after bound state
formation, it will never be satisfied. Assuming that the
constituent particles were in thermal equilibrium with the
SM plasma before decoupling and subsequent recombina-
tion at temperature T, the bound state number density is
bounded by the equilibrium number density of the particles
in the plasma and therefore has to satisfy

nB <
2ζð3Þ
π2

T3: ð7Þ

The Hubble rate in a radiation dominated universe is
given by

H2 ¼ 8π3

45m2
p
gSMT4; ð8Þ

GRAVITATIONAL ABSORPTION LINES PHYS. REV. D 101, 043504 (2020)

043504-3



where gSM is the number of relativistic degrees of freedom
in the visible sector at temperature T. Condition (6) is then
impossible to realize for T < mp.
Note that Eqs. (2), (4), and (6), which place a lower limit

on the number density of bound states such that gravita-
tional absorption is efficient, only depend on fixed param-
eters like the typical radius of a galaxy, the size of a
compact star, or the Hubble rate. All information about the
bound state, such as its mass or coupling, is irrelevant. This
is due to the universal nature of the gravitational absorption
cross section (1): all bound states absorb gravitons with the
same probability, regardless of their structure. Efficient
gravitational absorption is nevertheless impossible in the
examples that we discussed. Is there a deeper reason for
this? As it turns out, there is: absorption lines are forbidden
on general grounds if the theory of gravity is general
relativity. Detecting absorption lines is really the same as
proving the existence of gravitons and it appears that
Einstein’s theory somehow conspires to hide the quantiza-
tion of the gravitational field.

B. Relation to Dyson’s conjecture

Freeman Dyson first pointed out that the quantization of
the gravitational field is not a logical consequence of the
quantum behaviour of matter. This is in stark contrast with
the electromagnetic case, where one can indeed show that a
classical electromagnetic wave interacting with quantum
matter would lead to inconsistencies [11]. Dyson then
asked the question whether it is in principle possible to
detect the quantization of the gravitational field [12], and
found that this is impossible if one uses atoms as detectors,
due to the Planck area cross section for absorption. In
Appendix Awe are able to extend the result, and therefore
Dyson’s conclusion, to all types of bound states.
We briefly review Dyson’s argument. Independently

of the precise nature of the experimental apparatus, in
order to detect a single graviton with high probability the
size of the detector R should exceed the mean free path of
the graviton, or

nBσabsR ≥ 1; ð9Þ

where nB is the number density of detector particles and
σabs the absorption cross section for gravitons. The detector
particles in our case are bound states with mass mB. If the
detector has mass M, the number density of bound states is
nB ¼ M=ðmBR3Þ, within numerical factors of order one.
We can then write condition (9) as

M
R

l2p
mBR

≥ 1: ð10Þ

Now, M=R≲m2
p for any object that is not a black hole,

therefore condition (10) requires mBR≲ 1. However, at the
very least the Compton wavelength of a single particle

should be smaller than the size of the detector, m−1
B ≲ R.

The two conditions are incompatible. This constitutes a
strong indication that is in principle impossible to detect a
single graviton with high probability using bound states as
detectors, and consequently that any atomic (or nuclear)
gas will never be dense enough to produce absorption lines.
Note that condition (9) is identical to conditions (2) and

(6), with R being the typical radius of a galaxy RG and the
Hubble radius H−1, respectively. What this means is that
we can effectively treat a galaxy or the entire universe as
graviton detectors and whether these systems constitute
good graviton detectors basically depends on whether they
are efficient at absorbing gravitons. Dyson showed that
condition (9) is never satisfied in any system obeying
Einstein gravity, therefore, if true, it also forbids gravita-
tional absorption lines.
Explicitly, if we consider a detector as big as the

observable universe, containing a dense soup of bound
states with the maximum possible number density nmax

B ¼
ð3=8πÞH2m2

p=mX, the inequality (10) readsH ≳mB. Again,
the localization of the wave function requires mB ≳H, in
contradiction with the previous inequality.We conclude that
the condition can never be satisfied, even if we fill the
observable universe with the highest possible number
density of bound states, regardless of how they are created,
their morphology, or their cosmological evolution. The only
assumption our conclusion rests upon is that Einstein’s
theory of gravity, with minimally coupled matter, is valid.

III. A CAVEAT: EXTREMAL BOUND STATES

One could in principle relax condition (9) by requiring
that only an order one fraction of gravitons be absorbed by
the detector. For example, if the graviton mean free path
was twice the radius of the detector, we should still expect a
sizeable fraction of gravitons to be absorbed. That could be
enough to leave a detectable imprint on gravitational wave
signals under extreme conditions.
Suppose we have a quantum bound state of mass M and

size R made up of particles with mass mB. The constituent
particles are the ones that undergo quantum transition when
a graviton is absorbed. Gravitational absorption is most
efficient when the density is maximal. Assuming that the
system is on the verge of gravitational collapse,M=R ∼m2

p,
condition (9) is satisfied whenmBR≲ 1. On the other hand,
we need mBR≳ 1, otherwise the system would be smaller
than the Compton wavelength of its constituents. The two
conditions are both marginally satisfied whenever

mBR ∼ 1; ð11Þ

namely when the Compton wavelength of a singe particle is
as large as the whole bound state. A maximally dense
quantum bound state made up of particles that satisfy (11)
is marginally efficient at absorbing gravitons. We call such
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a physical system an extremal bound state. We stress that
extremal bound states are not only maximally dense, but
also, in a sense, maximally delocalized, as the constituent
particles are as large as the system itself. In particular, this
means that the constituent particles have to be bosons,
otherwise Pauli’s exclusion principle would prevent more
than one particle from occupying the same quantum state.
An example of an (almost) extremal bound state is the

“gravitational atom” of [8]. Ultralight bosons can induce
superradiant instabilities in spinning black holes [15,16],
tapping their rotational energy to trigger the growth of a
bosonic condensate that binds to the black hole “nucleus”
in a macroscopic quantum bound state (more conventional
quantum bound states of heavy fundamental particles held
together by gravity were considered in [5], and are also
called gravitational atoms).
The gravitational coupling constant αG of the black hole

atom is given by the ratio between the gravitational radius
of the black hole and the Compton wavelength of the
bosonic field:

αG ¼ RBH

2λC
¼ GMBHmB; ð12Þ

where MBH is the mass of the black hole, and RBH its
radius. The bosons form a cloud at a distance

rC ∼
RBH

α2G
ð13Þ

from the black hole. Unless αG is very close to one,
rC ≫ RBH, and the size of the bound state is given by the
extent of the boson cloud rC. The superradiant condition
requires αG < 1, therefore rC > λC > RBH, namely the
Compton wavelength of the bosons is smaller than the
size of the bound state, which is therefore less than
extremal. The black hole atom only becomes extremal in
the limit αG → 1, in which the boson cloud collapses on the
horizon, rC ∼ RBH, and the Compton wavelength of the
bosons becomes equal to the size of the bound state. One
can even show that the superradiance rate for spinning
black holes is maximized when the Compton wavelength of
the massive bosonic particles is comparable to the black
hole size.
There is another way to see that the black hole atom is at

best extremal. Following the triggering of the instability,
the number of bosons occupying the ground state of the
atom grows exponentially, extracting energy and angular
momentum from the black hole. The growth stops when a
fraction ΔL ∼Oð0.1Þ of angular momentum has been
extracted from the black hole, leading to occupation
numbers of the order

N ≃GM2
BHΔL ∼

�
MBH

mp

�
2

ΔL: ð14Þ

The bosons (with mass mB) have now a Compton wave-
length that is comparable to the size of the black hole,
therefore mB ≈ ðGMBHÞ−1. Since the particles making up
the atom are bosons, the cross section (1) is enhanced by
the Bose-Einstein factor,

σabs ≈ 0.3ð1þ NÞl2p; ð15Þ

where N is the occupation number of the ground state. If
N ≫ 1, the absorption cross section is much larger than the
Planck area. Condition (9) now reads

nBHσabsRBH ≥ 1; ð16Þ

where nBH ∼ R−3
BH is the number density of the black hole

bound state (in this picture, there is exactly one bound state,
the black hole), RBH ¼ 2GMBH its Schwarzschild radius,
and σabs is given by (15), where one can neglect the first
term since N ≫ 1. The condition then just becomes
ΔL ≥ 1, which is only satisfied in the extremal case
ΔL ¼ 1, in which all of the angular momentum of the
spinning black hole is extracted. In particular, note that
Dyson’s conjecture still holds, since efficient absorption
would entail ΔL > 1, an impossibility.
Black hole superradiance is not the only process in

which the absorption cross section can be enhanced via the
Bose factor. Any Bose-Einstein like condensate with large
occupation number will have an enhanced cross section. If
the ground state of each bound state is populated by N
particles of mass mB, the cross section is enhanced by
σabs ¼ Nl2p. At the same time, however, the total mass of a
single bound state proportionally increases by the same
factor, therefore the number density of bound states in a
detector of total mass M decreases to nB ¼ M=ðNmBR3Þ,
and condition (10) is left unchanged. Intuitively, the reason
why Bose enhancement does not help with the no-go is that
one cannot take very large values of N, such that absorption
is efficient, without collapsing the whole system into a
black hole. The best one can do is to saturate condition (9)
by having a bosonic condensate with discrete energy levels
that is both maximally dense and maximally delocalized, in
the sense we explained previously.
One might also speculate about hypothetical physical

systems that naturally saturate condition (9), and are
therefore perfectly extremal: black holes with a mass
gap. It has been argued that in any sensible quantum field
theory the mass of a black hole must be quantized [9,10]. If
this is true, black holes cannot emit or absorb arbitrarily soft
quanta, and they effectively act as extremal bound states. A
very simple way of seeing this is as follows. Treating the
black hole as a single macroscopic bound state of size RBH,
its number density is simply nBH ∼ 1=R3

BH. A black hole
absorbs everything that comes into contact with its event
horizon, therefore its absorption cross section is as large as
the area of the horizon
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σBHabs ¼ 4πR2
BH: ð17Þ

The optical depth for a graviton going through the black
hole is therefore

nBHσBHabsRBH ∼ 1: ð18Þ

Incidentally, one can derive the absorption cross section for
a black hole (17) also from the previous example of the
black hole atom, in the appropriate limit. In that scenario
the absorption cross section for each particle is Planckian.
In the limit αG → 1, the boson cloud collapses into the
black hole, and the occupation number becomes
N → ðMBH=mpÞ2 ∼ R2

BHm
2
p. The effective absorption cross

section of the whole system, which is now a black hole, is
then σBHabs ¼ Nσabs ∼ R2

BH.
It is interesting to compare this with the quantum portrait

view of a black hole as a Bose-Einstein condensate of soft
gravitons with large occupation numbers [17]. In this
picture the black hole is a condensate of gravitons of
wavelength RBH, and occupation number N ∼ ðRBH=lpÞ2.
The absorption cross section for exciting a single graviton
is Planckian, but, since there are N gravitons in the lowest
level and any of them can be excited, there is an extra factor
of N, so the resulting cross section is of order3 R2

BH.
While a quantized black hole could absorb gravitons

semiefficiently, it is unclear whether this will show in the
spectrum as absorption lines. Indeed, it was argued in a
series of papers starting from [18] that the level spacing for
an ordinary black hole must be absolutely minuscule.
Namely, it must be of order ≲ðSBHRBHÞ−1 ∼m4

p=M3
BH,

where SBH ¼ πðRBH=lpÞ2 is the entropy of the black hole.
In this picture, black holes are quantum states with large
occupation numbers, and are therefore effectively classical.
As a result, the quantum levels are very closely spaced,
such that the spectrum appears almost continuous.
Nevertheless, the level spacing increases for smaller black
holes, so that microscopic black holes could have a sizeable
spacing. For example, a black hole with a mass of ∼106 kg
would have a level spacing in the Hertz range, and in
particular it could only absorb particles with a frequency
that is a multiple of the Hz. In the limit of a Planckian black
hole, the level spacing would also be Planckian, ΔE ∼mp.

IV. EVADING THE NO-GO

The no-go argument we presented relies on Einstein’s
gravity with minimally coupled fields. What happens if we
relax one of these assumptions? As it turns out, the no-go
argument is remarkably robust, holding even if the gravi-
tational coupling strength is changed, or if a simple
nonminimal coupling for X is introduced. Nevertheless,

it is possible to evade the conclusions of the argument in
certain exotic scenarios, as we will show in this section.
First of all, naively increasing the strength of gravity

does not work. If we make the Planck length larger, the
absorption cross section increases, but the maximum
number density of bound states before gravitational col-
lapse ensues proportionally decreases, so that the final
absorption rate stays the same. Concretely, the absorption
cross section goes like σabs ∼ 1=m2

p, while the maximum
number density goes like nB;max ∼m2

p=ðmBR2Þ, where mB

is the atomic mass and R the size of the detector. The two
quantities scale in opposite ways with mp, so that the
maximum absorption rate Γmax ¼ σabsnB;max is independent
of the Planck mass and increasing or decreasing the
gravitational coupling does not have any effect.
We conclude that any model whose only effect is to

change the fundamental scale at which gravity becomes
nonperturbative is not going to help. These include, for
example, all scenarios with large extra dimensions (LED)
[19]. In these models the Planck scale is not fundamental,
and its enormous value is simply a consequence of the large
size of the extra dimensional space. The “true” scale of
gravity can be much lower, for instance of the order of the
electroweak scale for LED models that solve the hierarchy
problem. At low energies the extra dimensions are hidden,
and gravity is weaker compared to the other forces because
the gravitational flux also spreads in the extra dimensions.
At high energies, however, the extra dimensions are
resolved and the fundamental gravity scale restored to its
true value. In a (4þ n)-dimensional spacetime with n
compactified extra dimension of volume V, the fundamen-
tal gravity scale MP is related to the usual Planck scale via

m2
p ¼ M2þn

P V: ð19Þ

The current large value of mp (thus small value of G) is
simply due to the large volume V of the extradimensional
space. One can then envision a scenario in which V was
much smaller in the early universe, effectively making
gravity much stronger at that epoch. This however does not
make gravity more efficient at absorbing gravitons, as we
saw, since a stronger gravity also makes it that much easier
to create black holes. This is a scenario of modified gravity
that simply changes the gravity scale at high energies, and
as such it cannot work.
Similarly, introducing a nonminimal coupling for X of

the form ξRX2 does not help. The lowest order vertex
connects a single graviton line to two X lines, so it
describes X radiating off a single graviton, or, in the
time-reversed process, a single graviton being absorbed
by X. To leading order in mp the Ricci scalar is
R ∼□h=mp, where hμν is the linearized metric. Thus, in
the transverse-traceless (TT) gauge (hμμ ≡ h ¼ 0, and
∂μhμν ¼ 0) the term ξRX2 gives a contribution to the
absorption amplitude proportional to □h ¼ 0. Since the3We thank Gia Dvali for correspondence clarifying this point.
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amplitude is invariant, the nonminimal contributionvanishes
in all gauges. The same is true of all nonminimal couplings
involving the Ricci tensor, such as ðξ=m2

pÞRμν∂μX∂νX. The
Ricci tensorRμν only contains terms like□hμν∼ðpαpαÞhμν¼
0, that vanish for a graviton on-shell, or terms like ∂μ∂νh and
∂μ∂αhαν that vanish in the TT-gauge. Amplitudes derived
from this coupling with an external graviton on-shell are
therefore zero in all gauges.
While the Ricci scalar and the Ricci tensor both vanish in

vacuo, the full Riemann tensor does not in general.
Consequently, a nonminimal coupling of the form4

ξ

m4
p
Rμναβ∂μ∂αX∂ν∂βX; ð20Þ

where ξ is a dimensionless parameter, may give a nonzero
contribution to the absorption cross section. We prove that
this is the case in Appendix A. In a nutshell, the reason is
that while R and Rμν only contain terms like □h, □hμν,
∂μ∂νh and ∂μ∂αhαν, that all vanish on-shell due to gauge
invariance of the gravity action, the Riemann tensor
contains nonvanishing terms like ∂μ∂νhαβ. In general,
vacuum solutions of Einstein field equations require
Rμν ¼ 0, and as a consequence R ¼ 0, but the Riemann
tensor can be nonzero.
All nonminimal coupling terms break the equivalence

principle, as they introduce an additional coupling between
the gravity and matter sectors, but (20) is the only one that
does not automatically vanish on shell for a graviton
absorption process. The central conclusion of [6,7] that
the absorption cross section should be Planckian rests on
two major assumptions: Lorentz invariance and the equiv-
alence principle. The operator (20) preserves Lorentz
invariance but it explicitly breaks the equivalence principle,
so in general one should not expect the resulting cross
section to be Planckian.
Note that the term Rμναβ∂μ∂νX∂α∂βX would be

trivially zero because of the skew symmetry of the
Riemann tensor, Rμναβ ¼ −Rνμαβ ¼ −Rμνβα, whereas the
term in (20) is not since its index structure does not exhibit
any definite symmetry under the exchange μ ↔ ν or
α ↔ β. In the following, we will assume for simplicity
that the bound states are 2-particle atoms in their funda-
mental energy level.
The absorption cross section, corrected by the new term,

is [Eq. (A60) of the Appendix]

σabs ¼
34π2

5 × 29
G

�
1þ 210

38 × 52
ξ2
�
mX

mp

�
8

α8X

�
: ð21Þ

The highest possible value of ξ compatible with unitarity is
ξmax ∼m5

p=ðm3
Xk

2Þ. Measuring ξ in units of ξmax, ξ̃≡
ξ=ξmax, we get for the cross section

σabs ¼ ξ̃2
α4X
m2

X
: ð22Þ

We can now revise our absorption arguments with the new
cross section.
The condition for absorption (9) gives

M
R
ξ̃2α4X
m3

XR
> 1; ð23Þ

where M and R are the mass and size of the detector. As
before, we need M=R < m2

p to avoid gravitational collapse
(the Schwarzchild solution is a vacuum solution and we do
not expect it to be affected at the classical level by the
nonminimal coupling), and the atoms have to be contained
inside the detector, therefore αXmX > R−1. An additional
requirement is that the wavelength of the absorbed graviton
is smaller than the size of the detector. Since the frequency
of the graviton is of order the binding energy of the atom,
this gives the stronger condition α2XmX > R−1. Putting the
two together, we obtain

1

mXα
2
X
< R < ξ̃2α4X

m2
p

m3
X
; ð24Þ

which can be satisfied by a careful choice of parameters. In
particular, the interval in (24) is nonempty for mX <
α3X ξ̃mp.
In a concrete example, imagine the universe to be

dominated by nonminimally coupled atoms. The condition
for absorption is

nmax
B σmax

abs H
−1 > 1; ð25Þ

where nmax
B ¼ ð3=8πÞH2m2

p=mX is the maximum allowed
number density of atoms in a universe with Hubble rate H.
The bound on the Hubble rate is

H ≳ 1

ξ̃2α4X

m3
X

m2
p
; ð26Þ

while the bound on the graviton frequency is α2XmX > H.
Putting the relevant constraints together we get

m3
X

m2
p

1

ξ̃2α4X
< H < α2XmX: ð27Þ

Again, the interval is nonempty for mX < α3X ξ̃mp.
If we want the structure of the atoms to be unaffected by

the new coupling, the gauge force has to dominate the

4Incidentally, this operator was also mentioned in [20] as a
higher derivative operator beyond the Horndenski class, whose
phenomenological implications should be investigated.

GRAVITATIONAL ABSORPTION LINES PHYS. REV. D 101, 043504 (2020)

043504-7



interaction between X particles, therefore we need roughly
[see the scattering amplitude of (A62)]

αX ≳ ξ2

m10
p
m4

Xk
6
B ≡ ξ̃2; ð28Þ

where kB ¼ αXmX is the Bohr momentum of the particles
in the atom. Clearly, if ξ is equal to its maximum value, the
right-hand side of (28) is of order 1 and the condition
cannot be satisfied. This is just telling us the obvious fact
that if we saturate the unitarity bound nonminimal gravi-
tational interactions will dominate. The parameter ξ has to
be large enough to induce gravitational absorption, but
small enough to avoid overcoming the gauge forces inside
the atom. Equation (28) then simply constitutes a further
constraint on the model, in addition to (27).
For example, taking ξ̃ ∼ 0.1, and αX ∼ 0.1, (28) is

automatically satisfied, while (27) becomes 106ðm3
X=m

2
pÞ<

H< 10−2mX. The interval then is nonempty for mX≲
10−4mp. If the mass saturates the bound, the interval
closes around H ∼ 10−6mp, which is the current upper
limit on the Hubble rate coming from the non observation
of tensor modes in the CMB. Efficient gravitational
absorption today, on the other hand, is only reached for
mX ≲ 10−22mp, of the order of the electron mass or smaller.
Unfortunately, particles this light, and that interact so
strongly with gravity, would have been detected in particle
accelerators by now. In fact, the bound on the mass coming
from collider searches for ξ̃ close to one is just given by the
energy threshold at LHC, mX ≳ 10 TeV (see Appendix A
for details). For this reason, gravitational absorption in this
scenario is only viable in the very early universe. Figure 1

shows the allowed range for H as a function of the massmX,
for ξ̃ ¼ αX ¼ 0.1, and mX > 10−15mp.
So far we just showed that it is possible in principle to

tune the nonminimal coupling parameter to extremely high
values in order to efficiently absorb gravitons. We will now
describe a specific scenario in which gravitational absorp-
tion lines are produced as a consequence of this. As we saw,
our model is only viable for mX ≳ 10 TeV, so for H ≳
10−39mp (see Fig. 1), in the very early universe. We can
then imagine a scenario of the following sort:
(1) Cosmic inflation generically predicts a primordial

background of gravitational waves with a flat
spectrum.

(2) A massive field X is nonminimally coupled to
gravity through the term (20). The field is also
unstable, and decays to radiation after a typical
lifetime that is larger than the (gravitational) absorp-
tion time. Excitations of the field are initially in
thermal equilibrium with the SM plasma.

(3) We assume that the nonminimal coupling parameter
ξðψÞ depends on the value of some scalar field
condensate ψ , and is initially zero, so that the field X
is at first minimally coupled to gravity.

(4) Massive particles X, previously in thermal equilib-
rium with the SM plasma, decouple and quickly
become nonrelativistic, eventually forming atoms by
standard recombination. In Appendix B we show
that this is possible in a certain region of the
parameter space.

(5) The scalar field ψ undergoes a phase transition and
acquires a nonzero expectation value, which sends
the nonminimal coupling parameter close to its
maximal value. The field X is now nonminimally
coupled to gravity.

(6) The newly created atoms start absorbing primordial
gravitons of the right frequency. Some fraction of
them is ionized. After leaving a discernible imprint
on the primordial gravitational spectrum, they decay
to radiation.

The calculation of the exact shape of the absorption line
is heavily model dependent and beyond the scope of this
paper. We will thus limit ourselves to a couple of consid-
erations. For one thing, in any concrete cosmological
scenario, absorption lines will be broadened by the expan-
sion of the universe, since gravitons will be absorbed at
different times. The size of the broadening will depend on
the strength of the gravitational coupling and the rapidity of
the decay: gravitons will keep being absorbed until the
number density of bound states decreases below a critical
value, and the atomic gas is not dense enough to sustain
gravitational absorption.
Second, the peak frequency of the absorption line will

depend on both the binding energy of the atom and the
expansion history of the universe. In the simplest scenario,
in which gravitons are absorbed by atoms of mass mX and

FIG. 1. The shaded red region represents the range of values of
H that are consistent with gravitational absorption lines if the
universe is dominated by nonminimally coupled atoms with mass
mX , and αX ¼ ξ̃ ¼ 0.1. The red line represents the lower limit
106ðm3

X=m
2
pÞ, while the blue line represents the upper limit

10−2mX. The H range widens as the atomic mass decreases. All
quantities are in Planck units.
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gauge charge αX at temperature Tabs, and the universe
evolves dominated by radiation from Tabs until the
present time, the peak frequency of the signal as measured
today ω0 is

ω0 ¼
2

9
mXα

2
X
T0

Tabs
; ð29Þ

where T0 is the average temperature of the universe today.
Here we ignored the late stage of matter domination since it
affects the final result only slightly. Figure 2 shows the
range of frequencies where one could find absorption lines
for a given atomic mass, assuming that absorption happens
somewhere in the range given by (27), namely for
103mX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mX=mp

p ≲Tabs≲0.1 ffiffiffiffiffiffiffiffiffiffiffiffiffimXmp
p . The peak frequency

is typically large and is of order 106 Hz for strongly coupled
atomswith the highest possible mass,mX∼10−4mp, absorb-
ing immediately after reheating (Tabs ∼ 10−3mp). Lighter
atoms absorb at a lower frequency, but within a wider range
of temperatures, leading to spectral lines from 10 to
1012 Hertz.
Ionization of atoms will generically happen together

with absorption. We compute the gravitational ionization
cross section in the nonrelativistic regime in Appendix A.
The result is

σion ¼
3 × 29π2

5

η6ð4þ η2Þ
ð1þ η2Þ4

e−4ηcot
−1η

1 − e−2πη
G; ð30Þ

where η ¼ kB=k, kB is the Bohr momentum, and k the final
momentum of the ionized particle. The ionization cross

section is maximal for k ¼ 0, and rapidly goes to zero for
higher momenta. The maximum value is

σion;max ¼
3 × 29π2

5e4
G; ð31Þ

which is about a hundred times bigger than (1). Therefore,
with a flat spectrum, only a 10−2 fraction of the atoms will
absorb, while the rest will be ionized by the gravitational
radiation. We then expect discrete lines on top of some
broad absorption feature.
The intensity of the line can also vary significantly

depending on the specific scenario. In particular, if the
number of bound states greatly exceeds the number of
gravitons at the absorbing frequency, the gravitons will be
all be absorbed or rescattered, resulting in a near extinction
of the signal at that frequency. Conversely, if there are more
gravitons than bound states, the signal will only be partially
dimmed. In our simple scenario we can directly compare
the number density of bound states with the number density
of primordial gravitons from inflation. The energy density
spectrum of tensor modes from inflation is [21]

ΩGWðkÞ¼
3

128
ΩradPhðkÞ

�
1

2

�
keq
k

�
2

þ4

9
ð

ffiffiffi
2

p
−1Þ

�
; ð32Þ

where Ωrad is the density parameter of radiation, keq is the
wave number of modes that reenter the horizon at matter-
radiation equality, and PhðkÞ the inflationary tensor power
spectrum, given by

PhðkÞ ≃
2

π2
H2

i

m2
p
; ð33Þ

where Hi is the scale of inflation. The spectrum (32) is flat
for modes that entered the horizon during the radiation era,
and scales as k−2 for modes that entered the horizon during
the matter era. We are interested in absorption in the early
universe, deep in the radiation dominated era, therefore in
our case k ≫ keq, and the spectrum is flat. The energy
density in gravitational waves at frequency k is just
ρGW;k ≃ ρcΩGWðkÞ ¼ ωknGW;k, where ωk ¼ k is the energy
of a graviton of frequency k, nGW;k the number density of
gravitons at that frequency, and ρc the critical density. The
number density nGW;k then is

nGW;k ≈
ρrad
k

H2
i

m2
p
: ð34Þ

On the other hand, if the bound states are close to saturating
the critical energy density, as we assume, their number
density is just

nB ¼ ρrad
mX

: ð35Þ

FIG. 2. The shaded red region represents the peak frequency
range ω0 for absorption lines if the universe is dominated
by nonminimally coupled atoms with mass mX, and
αX ¼ ξ̃ ¼ 0.1. Absorption happens in the temperature range
103mX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mX=mp

p ≲ Tabs ≲ 0.1 ffiffiffiffiffiffiffiffiffiffiffiffiffimXmp
p . The red line corresponds

to absorption at Tabs ¼ 0.1 ffiffiffiffiffiffiffiffiffiffiffiffiffimXmp
p , while the blue line corre-

sponds to absorption at Tabs ¼ 103mX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mX=mp

p
. The range of

frequencies widen as the mass decreases. The mass is in Planck
units, while the frequency is in Hertz.
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The absorption frequency is roughly k ≈ α2XmX, therefore
the bound states will dominate whenever αX ≳Hi=mp.
Given that the current bound on the energy scale of
inflation is Hi ≲ 10−6mp, bound states will typically be
more numerous than gravitons, and the resulting absorption
lines quite sharp.
Note also that although atoms interact more strongly

with gauge forces than with gravity (even with a strong
nonminimal coupling), photon absorption is irrelevant in
this context. The typical frequency (energy) of CMB
photons is given by the temperature of the background
radiation T. In order for the atoms to be decoupled from the
radiation bath, their binding energy should be higher than
the temperature, α2XmX > T, therefore CMB photons will
generically not be energetic enough to be absorbed in
atoms. The cosmic gravitational background, on the other
hand, is assumed to contain gravitons of all frequencies,
provided that their wavelength is contained inside the
horizon, so it will also contain gravitons capable of exciting
the atoms. In other words, while the CMB has a black body
spectrum peaked at some frequency that is typically too low
to excite atoms, the cosmic gravitational background is flat
and contains gravitons of all frequencies, including the
ones capable of exciting or ionizing the atoms.
While we do not think that the very special type of

nonminimal coupling we presented in this section repre-
sents a realistic scenario for graviton absorption, it illus-
trates the kind of new physics that one needs to have in
order to produce absorption lines in gravitational spectra. In
this particular case, the equivalence principle is violated on-
shell by the particles making up the atom, leading to a
stronger coupling to gravity. The nonminimal coupling also
breaks the universality of gravity, thereby introducing
other-than-gravitational scales in the cross section.
Apart from being a strong hint to new physics beyond the

standard model of cosmology and particle physics, detection
of these absorption lines would provide direct evidence for
the quantization of thegravitational field, and the existence of
gravitons. Absorption at a single frequency is only possible if
the gravitational field is made up of quanta whose energy is
determined by their frequency (Einstein’s relation E ¼ ℏω).
Experimental observation of gravitational absorption lines
would then rule out all scenarios in which the gravitational
field is a purely classical entity, like for example inmodels of
entropic gravity. In the specific scenario we discussed in this
section, however, where absorption lines arise in the pri-
mordial gravitational spectrum produced by inflation, the
mere fact that a flat primordial spectrum is there might be
enough evidence to deduce that the gravitational field is
quantized, as argued in [22].
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APPENDIX A: GRAVITON ABSORPTION AND
IONIZATION

We derive the absorption cross section (1) for hydro-
genlike atoms in two different ways. We start with a
heuristic classical argument leading to the Planck area
cross section, followed by a detailed QFT calculation that
confirms the result. We also derive the general formula for
the gravitational ionization cross section and discuss differ-
ent limits of it. We then prove that the absorption cross
section is always Planckian for bound states with arbitrary
potential, using only the Schrodinger equation. Finally, we
extend the conclusions to nonminimally coupled theories.

1. Absorption cross section: Heuristic derivation

This section is taken from [23].
The simplest idealized graviton detector is an oscillator

driven by a steady flux of gravitational waves. The oscillator
consists of two point masses m attached at the ends of a
spring of length L, with a natural frequency of vibration ω0

and a damping time τ0 ≫ 1=ω0. Its equation of motion is

d2ξ
dt2

þ 1

τ0

dξ
dt

þ ω2
0ξ ¼

d2ξ
dt2

����
d
; ðA1Þ

where ξ is the displacement of the two masses and the term
on the right is the driving acceleration due to the wave. A
wave traveling in the z-direction past the detector in the
transverse-traceless (TT) gauge can be written as

hTTxx ¼ −hTTyy ¼ Aþðt − zÞ
hTTxy ¼ hTTyx ¼ AXðt − zÞ; ðA2Þ

where the amplitudes Aþ and AX represent the two inde-
pendent modes of polarization. Let us suppose that the
impinging wave has frequency ω and þ polarization
(AX ¼ 0) with Aþ ¼ he−iωðt−zÞ. We also assume that the
detector is much smaller than the wavelength, so that one
can set z ¼ 0. Then, the tidal acceleration produced by the
wave is

d2x
dt2

����
d
¼ −Rx0j0xj ¼ −

1

2
ω2he−iωtx

d2y
dt2

����
d
¼ −Ry0j0xj ¼ þ 1

2
ω2he−iωty; ðA3Þ

whereRμναβ is the Riemann curvature tensor. Denoting with
θ and ϕ the polar angles of the detector relative to the wave
axes, the total driving acceleration is
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d2ξ
dt2

����
d
¼ x

L
d2x
dt2

����
d
þ y
L
d2y
dt2

����
d
þ z
L
d2z
dt2

����
d

¼ −
1

2
ω2hLe−iωt sin2ðθÞ cosð2ϕÞ; ðA4Þ

and the equation of motion for the oscillator gives

d2ξ
dt2

þ 1

τ0

dξ
dt

þω2
0ξ¼−

1

2
ω2hLe−iωt sin2ðθÞcosð2ϕÞ; ðA5Þ

with a steady state solution given by (it is understood that
one should take the real value)

ξðtÞ ¼ ω2hL sin2ðθÞ cosð2ϕÞ
2ðω2 − ω2

0 þ iω=τ0Þ
e−iωt: ðA6Þ

When the incoming waves are near resonance with the
detector own frequency, ðω − ω0Þ≲ 1=τ0 ≪ ω0 (assuming
ω > 0), the solution becomes

ξðtÞ ¼ ω0hL sin2ðθÞ cosð2ϕÞ
4ðω − ω0 þ i

2τ0
Þ e−iωt: ðA7Þ

Then, the time-averaged vibrational energy of the detector is

hEvi ¼ 2
1

2
mh_ξ2i ¼ 1

16

mL2ω4
0h

2 sin4ðθÞ cos2ð2ϕÞ
ðω − ω0Þ2 þ ð1=2τ0Þ2

: ðA8Þ

Gravitational wave production by the motion of the detector
is negligible, therefore the energy dissipation rateEv=τ0 can
be equated to the rate at which the detector absorbs energy
from the incoming waves, which is in turn equal to the
(polarized) cross section for absorption σabs;P times the
incoming flux:

Ev=τ0 ¼
1

32πG
σabs;Pω

2h2: ðA9Þ

Consequently, near resonance, the polarized cross section
for absorption of gravitational waves is

σabs;P ¼ 2πGmL2ðω2
0=τ0Þ sin4ðθÞ cos2ð2ϕÞ

ðω − ω0Þ2 þ ð1=2τ0Þ2
: ðA10Þ

Averaging over all polarizations we obtain the unpolarized
cross section, which is given by the Lorentzian

σ̃abs ¼
ð8π=15ÞGmL2ðω2

0=τ0Þ
ðω − ω0Þ2 þ ð1=2τ0Þ2

; ðA11Þ

and the cross section averaged over all frequencies is

σabs ¼
1

ω0

Z þ∞

−∞
σ̃absdω ¼ 16

15
π2GmL2ω0: ðA12Þ

Therefore, the gravitational absorption cross section for a
generic detector of massm, size L, and proper frequencyω0

goes like σabs ∼GmL2ω0. If the detector is an atom, the
standing-wave quantization conditionmL2ω0 ¼ n ∈ N pla-
ces a further constraint on the parameters, and the cross
section simply becomes σabs ∼G ¼ l2p. We deduce that the
Planck squared cross section is solely a result of angular
momentum quantization, and does not depend on the
specifics of the atom. In particular, if the atom is bound
by gravity [5] the quantization condition still applies, with
L≡ rB ¼ ðmαGÞ−1 and αG ¼ m2=m2

p.

2. Absorption cross section: QFT computation

The previous derivation is heuristic at best, and merely
gives an intuitive understanding of the way the Planck area
cross section emerges from classical gravity. The gist of it is
that any oscillatory system with mass m, size L, and
frequency ω, absorbs gravitons with cross section
σabs ∼GmL2ω; atoms are particular oscillatory states with
quantized angular momentum, mL2ω0 ¼ n, hence they
absorb with a cross section proportional to G. The classical
derivation however is not fully satisfactory and does not
give the correct numerical result. For this reason, we now
derive the exact cross section in a fully consistent way
using field theoretic methods. This will also allow us to
generalize the result to nonminimally coupled matter. In the
following we will denote the mass and electromagnetic
coupling of the atom with m and α respectively.
In linearized gravity, for small metric deviations hμν ¼

gμν − ημν ≪ 1, the interaction Lagrangian density is
given by

L ¼ 1

2
hμνTμν; ðA13Þ

where Tμν is the stress energy tensor of matter. The
interaction Hamiltonian is given by H ¼ pv − L, where
L is the interaction Lagrangian (Lagrangian density inte-
grated over space), and p and v the momentum and velocity
of the particle respectively. In a local inertial frame (LIF),
the dominant term to the stress energy tensor is the mass-
energy density, so L ≈ 1

2
h00T00. Moreover, the generalized

velocities are negligible, therefore H ≈ −L ¼ − 1
2
mh00,

where m is the localized mass of the system.
In a LIF, the time-time component of the metric deviation

can be written as [6]

h00 ¼ −
1

2
ω2heiðq·x−ωtÞxjxkejk þ c:c:; ðA14Þ

where h, q, andω are the amplitude, momentum and energy
of the impinging gravitational wave, respectively. Hence,
the interaction Hamiltonian is

H ¼ 1

4
mω2hxjxkeiðq·x−ωtÞejk þ c:c: ðA15Þ
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To simplify matters, we assume that the atom interacts with
a single graviton. Then, the amplitude h is simply

h ¼
ffiffiffiffiffiffiffiffiffi
8πG

p
ω: ðA16Þ

We work in the dipole approximation, namely we
assume that the wavelength of the gravitational wave
(graviton, in our case) is much larger than the extent of
the atom, so that qrB ≪ 1 and eiq·x ≈ 1. In first order
perturbation theory, the transition probability per unit time
between two atomic statesΨ1s andΨ3d2 is equal to (Fermi’s
Golden Rule)

Γ¼ 2π

ω
jhΨ3d2jHjΨ1sij2 ¼

2π2Gω5

5

�
D�

ijD
ij−

1

3
jDi

ij2
�
;

ðA17Þ

where

Dij ¼ m
Z

Ψ�
3d2xixjΨ1sd3r ðA18Þ

is the mass quadrupole tensor, and the average is taken over
all directions of the incident gravitational wave. When a
graviton is absorbed, the transition occurs between the 1s
and the 3d2 states, whose normalized wave functions are

Ψ1s ¼
1ffiffiffi
π

p
r3=2B

e−r=rB ;

Ψ3d2 ¼
1

162
ffiffiffi
π

p 1

r3=2B

�
r2

r2B

�
e−r=3rBsin2θe2iϕ: ðA19Þ

The quadrupole components for this transition
process are

Dzz ¼ Dxz ¼ Dyz ¼ 0 ðA20Þ

Dxx ¼ −Dyy ¼ iDxy ¼
34

28
mr2B; ðA21Þ

with rB the Bohr radius of the atom. Finally, the absorption
rate for the 1s → 3d2 transition is

Γ ¼ 38π2

5 × 213
Gm2r4Bω

5: ðA22Þ

This gives the transition rate between the 1s and the 3d2
states when the atom is hit by a graviton of frequency ω.
The absorption cross section is just σabs ¼ Γ=ω3,

σabs ¼
38π2

5 × 213
Gm2r4Bω

2: ðA23Þ

For a 2-particle atom, ω ¼ ð4=9Þα2m, and rB ¼ ðαmÞ−1, so

σabs ¼
34π2

5 × 29
G ≈ 0.31l2p: ðA24Þ

The Planck area cross section is retrieved in a full QFT
calculation, with the correct numerical prefactor.

3. Ionization cross section

One can use the same machinery to compute the
ionization cross section. As before, we need to evaluate
the matrix element hΨfjHjΨii between the initial hydro-
genic ground state Ψi, and a plane wave final state Ψf, with

Ψi ¼
1ffiffiffi
π

p
r3=2B

e−r=rB ; Ψf ¼ 1

L3=2 e
ik·r; ðA25Þ

where we normalize the plane wave in a box of dimension
L, and k is the final momentum of the emerging ionized
particle. The final momentum k satisfies k ≪ m, since we
are working in the nonrelativistic regime. Moreover, the
plane wave solution for the final state is only valid when the
graviton energy is much larger than the binding energy of
the atom (Born approximation). For this reason, the final
result holds in the regime kB ≪ k ≪ m.
Fermi’s Golden Rule gives

Γ ¼ 2πρðkÞjhΨfjHjΨiij2; ðA26Þ

where ρðkÞ is the density of final states, given by

ρðkÞ ¼ mkL3

2π2
: ðA27Þ

For an incident graviton of amplitude h ¼ ffiffiffiffiffiffiffiffiffi
8πG

p
ω, the

transition rate is

Γ ¼ 3 × 211π

5

h2ω4m3r11B k5

ð1þ r2Bk
2Þ8 : ðA28Þ

The incident graviton energy ω is equal to the sum of the
binding energy and the kinetic energy of the emerging
particle, namely

ω ¼ α=2rB þ k2=2m: ðA29Þ

Using (A28) and (A29), we obtain the gravitational cross
section for ionization σion ¼ Γ=ω3 in the high energy
regime,

σion ¼
3 × 210π

5

ðrBkÞ5
ð1þ r2Bk

2Þ5G: ðA30Þ

This cross section is always much smaller than the Planck
area in its regime of validity.
It is possible to compute the ionization cross section in

the nonrelativistic limit (k ≪ m) without resorting to the
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Born approximation, and therefore extend the result
also for small final momenta. The computation was first
carried out (to our knowledge) in [24]. The continuous-
spectrum wave function for scattering in a Coulomb field
which asymptotes to a box-normalized plane wave
∼L−3=2 expðik · rÞ in the nonrelativistic limit is given
by [25]

Ψf ¼ 1

L3=2 exp

�
ik · rþ π

2
η

�
Γð1 − iηÞ

× F ½−iη; 1;−iðk · rþ krÞ�; ðA31Þ

where Γ is Euler’s gamma function, F ½a; b; c� denotes
Kummer’s confluent hypergeometric function, and η≡α=v,
where

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m
ðω − α=2rBÞ

r
¼ k

m
; ðA32Þ

is the final velocity of the ionized particle. In (A31), k · r
represents the 3-vector inner product, while kr is the simple
product between the vector magnitudes. Therefore, if we
imagine the particle to be ejected in the z-direction,
ðk · rþ krÞ ¼ krð1þ cosðθÞÞ. For large velocities η → 0,
(A31) reduces to the plane wave solution of (A25).
Plugging (A31) into (A26) we find the following cross
section,

σion ¼
3 × 29π2

5

η6ð4þ η2Þ
ð1þ η2Þ4

e−4ηcot
−1η

1 − e−2πη
G: ðA33Þ

The result is reminiscent of the photoionization cross
section, although the two differ crucially in the η depend-
ence. This cross section is valid for all k ≪ m. In particular,
one can retrieve (A30) in the high energy limit η → 0: the
ionization cross section for high momenta falls off as
ðk=kBÞ−5. In the opposite limit, η → ∞, the cross section
approaches a constant value,

σion⟶
η→∞ 3 × 29π2

5e4
G; ðA34Þ

which is about 50 times larger than G. The gravitational
ionization cross section of hydrogen was also computed in
[26], but with a different result. The author found a cross
section that vanishes for k ¼ 0, and is proportional to k=kB
in the low energy limit.
The ionization cross section (A33) is always of order G

or smaller. It reaches a maximum at k ¼ 0, and rapidly goes
to zero for k=kB ≫ 1.

4. Multiparticle atoms and generic bound states

The absorption cross section in (A24) is technically only
valid for 2-particle atoms. Is the cross section of the order of

the Planck area also for multiparticle atoms? The classical
computation gives us a clue. There, we saw that the Planck
area emerged merely as a result of angular momentum
quantization, and the angular momentum of every particle
in an atom needs to be quantized simply because of
standing wave considerations.
Concretely, take a multiparticle atom with N > 2 par-

ticles. The details of the atomic structure do not matter that
much, and will not affect the final result. The Schrodinger
equation can only be solved exactly in the case of two-
particle atoms; the orbitals of multiparticle atoms are found
by methods of iterative approximation. However, orbitals
of multiparticle atoms are qualitatively similar to those of
hydrogen, and in first approximation, they can be taken to
have the same form. The total wave function of the whole
atom is then just a direct product of single particle hydro-
genlike atomic orbitals. The particles in the outer orbit are
typically the ones responsible for the absorption by
transitioning to a higher energy state. In the atomic orbital
approximation, they feel a potential Z�α=r, where Z� is the
effective charge due to the inner particles. The energy levels
therefore are

En ¼ −m
ðZ�αÞ2
4n2

: ðA35Þ

For a given principal quantum number n, and angular
momentum quantum number l, the wave function is
proportional to

Ψn;l ∝
�
Z�

rB

�
3=2

�
Z�r
rB

�
l
exp

�
−
Z�r
nrB

�
: ðA36Þ

We can then compute the mass quadrupole tensor (A18) for
the transition ðn1; lÞ → ðn2; lþ 2Þ and plug it in the
formula for the cross section. Schematically, the nonzero
components of the quadrupole tensor scale like

Dij ∝ m
r2B

ðZ�Þ2 ; ðA37Þ

thus the absorption cross section is

σabs ∝ Gω2jhDijij2 ∼G; ðA38Þ

given that ω ¼ En2 − En1 ∼mðZ�αÞ2, and rB ¼ ðαmÞ−1.
Intuitively, this has to do with the fact that for a multi-
particle atom the Bohr radius rB is rescaled by 1=Z�, while
the frequency ω changes by ðZ�Þ2, therefore the product
m2ω2r4B is independent of Z�. Multiparticle atoms will
absorb approximately with the same probability as two-
particle atoms.
We can also ask whether the result can be extended

to other types of bound states. For example, is it true
also for a neutron or a proton bound in a nuclear potential?
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The simplest model of the atomic nucleus is the nuclear
shell model. The nuclear potential is well approximated by
the three dimensional harmonic oscillator, plus a spin-orbit
interaction that we can neglect:

VðrÞ ¼ 1

2
mω2r2: ðA39Þ

Here r is the distance between the nucleons, m their mass
and ω controls the strength of the interaction. The energy
levels are

En;l ¼ ω

�
nþ lþ 3

2

�
; ðA40Þ

where n is the radial quantum number and l the angular
momentum quantum number. Schematically, the corre-
sponding nuclear wave functions are

Ψn;l ∝ R−3=2
�
r
R

�
nþl

exp

�
−

r2

2R2

�
; ðA41Þ

where R ¼ ðmωÞ−1=2 is the typical size of the nucleus. The
nonzero components of the mass quadrupole tensor for the
transition ðn1; lÞ → ðn2; lþ 2Þ are

Dij ∝ m
R2

2
ð5þ 2lþ n1 þ n2Þ; ðA42Þ

therefore, since ω ¼ En2;lþ2 − En1;l and R ¼ ðmωÞ−1=2, the
absorption cross section is

σabs ∝ Gm2ω2R4 ∼G: ðA43Þ

It is no coincidence that we found σabs ∼ l2p for atoms and
nuclei alike, as the result is much more general and actually
applies to all bound states, as we will show now. The
nonrelativistic Schrodinger equation for a particle in a
potential VðrÞ is

�
−

1

2m
∇2 þ V

�
Ψ ¼ EΨ: ðA44Þ

A bound state is defined as a quantum state for which
E < Vðþ∞Þ. The solutions of the Schrodinger equation
with E < Vðþ∞Þ have the property that the wave function
Ψ rapidly goes to zero at large distances, which means that
the particle is confined to a region of space. We need to
examine separately the cases in which Vð∞Þ is finite and
infinite. In the former case, we can just add a constant to the
potential to make it zero at infinity, so the condition on the
total energy becomes E < 0. The Schrodinger equation at
large distances becomes

1

2m
∇2Ψ ≈ jEjΨ; ðA45Þ

therefore

ΨðrÞ !r→∞
exp ð−

ffiffiffiffiffiffiffiffiffiffiffiffi
2mjEj

p
rÞ≡ expð−2r=RÞ; ðA46Þ

where

R ¼ 1ffiffiffiffiffiffiffiffiffiffi
mjEjp ðA47Þ

can be interpreted as the size of the bound state.
If VðrÞ diverges at infinity, like in the case of the

harmonic oscillator, then the wave function will go to zero
even faster, and (A47) will give an upper bound on the size
of the bound state. This is because in Eq. (A45), jEj would
be replaced by VðrÞ, which is a monotonically increasing
function in that limit. Moreover, the case in which

VðrÞ !r→∞∞ is not realistic, since the potential cannot
diverge in any physical system and it will always reach
a plateu. For example, the nuclear potential at large
distances is better approximated by the Woods-Saxon
potential VðrÞ ¼ −V0=ð1þ expðr=RÞÞ, which approaches
zero at large distances.
The upshot is that any quantum bound state has a size

given roughly by (A47), R ¼ ðmjEjÞ−1=2, where E is the
energy of the quantum state. The wave function at large
distances is just a polynomial times a decreasing exponen-
tial, therefore the mass quadrupole moment (A18) Dij is
always proportional to mR2. Thus, the absorption cross
section is

σabs ∼Gm2jEj2R4; ðA48Þ

which, given (A47), is naturally Planckian. We conclude
that every quantum bound state absorbs with a Planck area
cross section.

5. Planck suppressed corrections

Planck-suppressed operators can affect the final result.
Take for example the case in which the matter in the atom is
nonminimally coupled through the term

Lξ ¼
ξ

m4
p
Rμναβ∂μ∂αX∂ν∂βX: ðA49Þ

We choose to work in the transverse-traceless (TT)
gauge. In this gauge, the metric perturbations satisfy
∂μh

μ
ν ¼ 1=2∂νh

μ
μ, and hμ0 ¼ hμμ ¼ 0. A metric perturbation

with amplitude h and polarization tensor eμν can be written
as hμν ¼ heμν, with e00 ¼ eμ0 ¼ eμμ ¼ 0. Consequently, a
harmonic plane gravitational wave in the TT gauge can be
written as
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hij ¼ heiðq·x−ωtÞejk þ c:c: ðA50Þ

where ω and q are the energy and momentum of the
wave. To lowest order in hμν, the Riemann curvature tensor
Rμναβ is

Rμναβ ¼
1

2
ð∂ν∂αhμβ þ ∂μ∂βhνα − ∂μ∂αhνβ − ∂ν∂βhμαÞ:

ðA51Þ

In the linear theory, Rμναβ is invariant under gauge trans-
formations xμ → x0μ ¼ xμ − ξμ, since hμν transforms as
hμν → h0μν ¼ hμν − ∂μξν − ∂νξμ. In the nonrelativistic
limit, the dominant contribution to (A49) is given by
ðξ=m4

pÞR0i0j∂0∂0X∂i∂jX, where (in TT gauge)

R0i0j ¼
1

2
ω2heiðq·x−ωtÞejk þ c:c: ðA52Þ

Since R0i0j is gauge invariant, it will take this value also
in a locally inertial frame (LIF). In a LIF, ∂0∂0X ∼m and
∂i∂jX ∼ kikj=m, where m and k are the mass and the
momentum of the particles in the bound state. As before,
we work in the dipole approximation, eiq·x ≈ 1.
Consequently, the interaction Hamiltonian is

Hξ ¼
1

4

ξ

m4
p
mω2hkikje−iωteij þ c:c: ðA53Þ

This differs from (A15) simply by the replacement
xixj → kikj. Following the same steps as before, Fermi’s
Golden Rule for the absorption of a single graviton gives

Γ¼ 2π

ω
jhΨ3d2jHjΨ1sij2 ¼

2π2Gω5

5

ξ2

m8
p

�
D̃�

ijD̃
ij−

1

3
jD̃i

ij2
�
;

ðA54Þ

where now

D̃ij ¼ m
Z

Ψ�
3d2ðkÞkikjΨ1sðkÞd3k; ðA55Þ

and Ψ1sðkÞ and Ψ3d2ðkÞ are the momentum-space wave
functions

Ψ1sðkÞ¼ r3=2B
2

ffiffiffi
2

p

π

1

ðk2r2Bþ1Þ2 ;

Ψ3d2ðkÞ¼ r3=2B
24×33

ffiffiffi
3

p

π

k2r2B
ð9k2r2Bþ1Þ4 ð3cos

2ðθÞ−1Þ:

ðA56Þ
The components of the tensor D̃ij are

D̃zy ¼ D̃xy ¼ D̃xz ¼ 0 ðA57Þ

D̃zz ¼ −D̃xx ¼ −D̃yy ¼
1

10
ffiffiffi
6

p m
r2B

; ðA58Þ

and the absorption cross section is

σabs;ξ ¼
2π2

34 × 53
ξ2G
m8

p
k8B; ðA59Þ

where kB ¼ αm is the Bohr momentum of the particles in
the atom.
Then, the absorption cross section with the nonminimal

contribution is

σabs ¼
34π2

5 × 29
G

�
1þ 210

38 × 52
ξ2
�
m
mp

�
8

α8
�
: ðA60Þ

The correction can become larger than one without
violating the unitarity bound. By simple power counting,
the scattering amplitude of X particles interacting nonmini-
mally through the coupling (A49) goes likeM ∼ ξE10

X =m10
p ,

EX being the typical energy of the process. Specifically, for
scattering in the s-channel, the amplitude squared is

jMsj2¼
ξ4

212m20
p
s6ð16m4−8m2ðsþ4tÞþ s2þ8stþ8t2Þ2;

ðA61Þ
while for scattering in the t-channel, it is

jMtj2¼
ξ4

212m20
p
t6ð16m4−8m2ð4sþ tÞþ8s2þ8stþ t2Þ2;

ðA62Þ

with s ≈ ð2mþ k2=mÞ2 the center-of-mass energy squared
and t ≈ 2k2 ≪ s (nonrelativistic regime). The unitarity
bounds jMs;tj2 ≲ 1 then read

ξ≲ m5
p

m3k2
s-channel; ξ≲ m5

p

m2k3
t-channel: ðA63Þ

Due to the high powers involved, numerical factors do not
alter the bound significantly. Since k ≪ m, the most restric-
tive of the two is the bound coming from s-channel scattering,
ξ≲m5

p=m3k2. In the limit inwhich the nonminimal coupling
dominates, we can rewrite the cross section using a rescaled
coupling ξ̃≡ ξ=ξmax, with ξmax ¼ m5

p=ðm3k2BÞ. The cross
section becomes

σabs ¼ ξ̃2
k4B
m6

¼ ξ̃2
α4

m2
: ðA64Þ

ξ ¼ ξmax gives the maximum possible cross section σabs∼
α4=m2, which can be made arbitrarily large by taking large
coupling and small masses.
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The amplitude for production of X particles by SM
particles in the s-channel, in the limit in which the kinetic
energy is much larger than the mass, is

jMSM→Xj2 ≃
ξ2

28m12
p
s2ðsþ 2tÞ4 ∼ ξ2

�
E
mp

�
12

; ðA65Þ

where E is the typical kinetic energy of the incoming
particles. The weakest bound on the nonminimal coupling
from particle collider searches then just comes from
requiring that the amplitude is less than one for
E ∼ 10 TeV ∼ 10−15mp, which gives ξ≲ 1090. In particu-
lar, ξmax ≲ 1090, which means that the mass has to be at
least greater than m≳ 10 GeV (since in the nonrelativistic
limit k ≪ m). We stress that this is a very weak bound, and
the actual bound from collider searches is likely to be much
stronger. In any case, the bound cannot be stronger than
m≳ 10 TeV, due to the collision energy threshold at LHC.
Note that the operator (A49) breaks the equivalence

principle, and as such it introduces a new additional force
between the X particles. This is the ultimate reason why the
absorption cross section is no longer Planckian. To see this,
let us look at the Hamiltonian for absorption of a graviton
by an atom in minimally coupled gravity. In the non-
relativistic limit, this is given by Eq. (A15). Classically, we
can identify the Hamiltonian with the gravitational poten-
tial between the masses. In the heuristic derivation of
Sec. A 1, we consider an idealized graviton detector
consisting of an oscillator driven by an external (gravita-
tional) force. The driving acceleration due to the gravita-
tional wave is given by Eq. (A3). One can derive the
classical driving acceleration also from the gradient of the
Hamiltonian (A15) as

d2xi
dt2

����
d
¼ −

1

m
∂iH ðA66Þ

Using the driven harmonic oscillator equation

d2ξ
dt2

þ 1

τ0

dξ
dt

þ ω2
0ξ ¼

d2ξ
dt2

����
d
; ðA67Þ

one can then derive the Planck area cross section as we
have shown.
We can do something similar when the nonminimal

coupling is present. The Hamiltonian now is given by
Eq. (A53). The classical driving force of the oscillator
then is

Fξjd ¼ −∂iHξ ¼ −
1

2

ξ

m4
p
mω2hk2kie−iωt: ðA68Þ

This is an extra force that arises from the breaking of the
equivalence principle on-shell. Note that k here is the
momentum of the particle inside the atom and is therefore

of order kB, the Bohr momentum. The classical driving
force with minimal coupling instead is

Fjd ¼ −∂iH ¼ −
1

2
mω2he−iωtxi: ðA69Þ

From the heuristic derivation of Sec. A 1, it is clear that
the absorption cross section is proportional to the square of
the driving force, therefore the ratio between the cross
section with nonminimal coupling and with minimal
coupling is just (here we neglect numerical factors, as
we are only interested in the general behavior)

σabs;ξ
σabs

¼
�
Fξjd
Fjd

�
2

¼ ξ2

m8
p
k8B: ðA70Þ

This agrees with the expression for the absorption cross
section in Eq. (A59).

APPENDIX B: RECOMBINATION
IN THE DARK SECTOR

Here we show that recombination is possible in the dark
sector even at high energy scales, provided that a large
chemical potential is present.
First of all, we assume that X binds to another massive

particle in the dark sector that we call Y. These particles are
(oppositely) charged under a Uð1Þ gauge field, of similar
mass mY ≈mX, and they are both initially in thermal
equilibrium. The reason why we do not consider the
simpler scenario in which atoms are XX̄ bound states is
that, as we will see below, successful recombination at high
energy scales requires a large chemical potential, i.e., a
large matter-antimatter asymmetry in the dark sector. The
following discussion is basically a retelling of the standard
recombination of Hydrogen, just at a higher energy scale.
The binding energy of B ¼ XY bound states is

EB ¼ α2XmX

4
: ðB1Þ

Assuming thermal equilibrium between the different spe-
cies, we can write down the Saha equation for the recombi-
nation process:

nB
nXnY

¼
�

2πmB

mXmYT

�
3=2

eEB=T: ðB2Þ

Electrical neutrality requires nX ¼ nY , thus

nB
n2X

¼
�

4π

mXT

�
3=2

eEB=T: ðB3Þ

We define the ionization fraction FX as

FX ¼ nX
nX þ nB

: ðB4Þ

Thus, we have
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1 − FX

F2
X

¼ nB
n2X

ðnX þ nBÞ: ðB5Þ

At energies well belowmX, the number densities of X and Y
particles are not exponentially decaying anymore but are
determined by the matter-antimatter asymmetry in the dark
sector, which we assume to be present. Therefore Saha
equation becomes

1 − FX

F2
X

¼ ηX
2ζð3Þ
π2

�
4πT
mX

�
3=2

eEB=T; ðB6Þ

where

ηX ¼ nX þ nB
nγ

ðB7Þ

is the ratio of X particles (free and bound) to photons in the
universe. For baryons, this ratio is of order ∼10−9 (deter-
mined by the nonzero baryon number in our universe), but
since we are considering particles in a dark sector that
decay in the early universe, this number can be in principle
larger.
We define the recombination temperature Trec as the

temperature when FX ¼ 0.1, so when 90% of X particles
are recombined. Solving for the temperature in (B6) we
obtain

Trec ¼ −
2

3

EB

ProductLog½− 2
3
η2=3X A2=3 EB

mX
�
; ðB8Þ

where

A≡ F2
X

1 − FX

2ζð3Þ
π2

ð4πÞ3=2 ≈ 0.1: ðB9Þ

The argument of the ProductLog function is small and
negative, sowe can use the approximation ProductLogðxÞ ≈
logð−xÞ for x → 0−. This gives us

Trec ≈ −
2

3

EB

logð2
3
η2=3X A2=3 EB

mX
Þ
: ðB10Þ

For the usual recombination of hydrogen atoms from
electrons and protons, the formula above gives an approxi-
mate temperature of 0.3 eV. In the paper we consider the
case in which αX ∼ 0.1. The mass range for obtaining
absorption lines goes from 10−15mp to 10−4mp. Taking a
value of mX ∼ 10−10mp and ηX ≈ 1, for example, gives a
recombination temperature of

Trec ≈ 7 × 10−14mp; ðB11Þ

slightly below the binding energy of the atom (B1)
EB ¼ α2XmX=2 ∼ 10−12mp. As it turns out, the precise value

of ηX has a minor impact on the recombination temperature.
This is all very similar to the standard recombination of
hydrogen atoms.Notice that recombination takes place in an
early matter-dominated era since Trec < mX.
To derive Eq. (B10), we have assumed thermal equilib-

rium between the particles, therefore we need to make sure
that decoupling of X particles from the plasma happens
after recombination. The interaction rate of X particles with
the plasma is

Γ ¼ nXσT ¼ ηXσT
2ζð3Þ
π2

T3FX; ðB12Þ

where σT ¼ α2X=m
2
X is the cross section for Thomson

scattering. Decoupling occurs when Γ ≈H. In a matter-
dominated phase

H2 ¼ 8πG
3

mXnX; ðB13Þ

therefore decoupling happens when

T3
d ¼

8π3

6ζð3Þ
m5

X

m2
p

1

α4XηXFXðTdÞ
: ðB14Þ

We can use the Saha equation (B6) to deduce the temper-
ature dependence of FX. Substituting in (B14) and solving
for the decoupling temperature we obtain

Td ¼
2

9

EB

ProductLogðE9
Bm

8
pα

16
X η2Xζð3Þ2

24314m17
X π11

Þ1=9
; ðB15Þ

which, in the limit mX ≪ mp, becomes

Td ¼
2EB

log ðBη2X E17
B m8

p

m25
X
Þ
; ðB16Þ

where

B≡ ζð3Þ2
24314π11

≈ 6.4 × 10−14: ðB17Þ

Recombination is efficient when Td < Trec, so that the
vast majority of X particles is in bound states when
decoupling occurs. The resulting constraint on the param-
eter space is

ηX >
1

ðA2BÞ1=4 α
−10
X

�
mX

mp

�
2

≈ 10−4α−10X

�
mX

mp

�
2

: ðB18Þ

Assuming conservatively that ηX < 1 we get the final
constraint on the mass as

mX < 100α5Xmp: ðB19Þ
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In our model we assume αX ∼ 0.1, therefore the constraint
is mX < 10−3mp, which is easily satisfied. Our parameter
space allows for successful recombination, provided that ηX

is sufficiently large. This just amounts to having a large
chemical potential for the particles in the bound states at
recombination.
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