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We study string inspired two-field models of large-field inflation based on axion monodromy in the
presence of an interacting heavier modulus. This class of models has enough structure to approximate at
least part of the backreaction effects known in full string theory, such as kinetic mixing with the axion, and
flattening of the scalar potential. Yet, it is simple enough to fully describe the structure of higher-point
curvature perturbation interactions driven by the adjusting modulus backreaction dynamics. We find that
the presence of the heavy modulus can be described via two equivalent effective field theories, both of
which can incorporate reductions of the speed of sound. Hence, the presence of heavier moduli in axion
monodromy inflation constructions will necessarily generate some amount of non-Gaussianity accom-
panied by changes to ns and r beyond what results from just from the well-known adiabatic flattening
backreaction.
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I. INTRODUCTION

The scenario of cosmological inflation has become the
standard paradigm for generating the initial conditions of
the hot FRW “big bang” epoch starting with reheating and
sourcing the seeds of structure formation from a nearly
scale-invariant spectrum of phase-coherent quantum cur-
vature perturbations. Morever, inflation sources a nearly
scale-invariant spectrum of primordial gravitational waves,
yet to be detected. Observational data as obtained, e.g., by
recent CMB measurements [1] provide strong if not yet
unequivocal support. However, observations at this stage
provide access to just three observables of the inflationary
primordial fluctuation power spectra—the amplitude of the
of the curvature perturbations As, their spectral tilt ns, and
so far an upper limit on the tensor-to-scalar ratio r, the
fractional power in primordial gravitational waves [1].
Once inflation arises in setups with more than just the

minimal ingredients of a single scalar field with a suitably
flat scalar potential and a two-derivative kinetic term,
generically higher-point interactions between the infla-
tionary perturbations arise, producing non-Gaussianity of
varying wave-vector space “shapes” and of magnitude fNL.
Data has so far only provided upper limits for these
parameters [2]. A measurement here would greatly

constrain the space of allowed models by directly accessing
the interaction structure of the inflationary perturbations
[3]. Indeed, measuring non-Gaussianity amounts to
detecting 3-point interactions of the curvature perturbation
in “cosmological collider” [4,5] analogy of lab-based
scattering experiments involving interactions between in-
going particle states.
Looking at the structure of inflation models encountered

in UV completions like string theory is instructive for
restricting choices among the very large class of bottom-up
nonminimal inflation setups. In particular, higher-point
interactions of the inflationary perturbations seem to arise
in string theory models of inflation mostly in two ways:
either non-Gaussianity originates from the direct funda-
mental presence of higher-derivative kinetic terms such as
in DBI inflation [6], or it is due to the presence of more or
less heavy “spectator” moduli fields backreacting to the
dynamics of the inflaton scalar (which may be a modulus
itself, or alternatively a stringy axion arising from higher-
dimensional p-form gauge fields).
Given this context, we will focus on toy models of large-

field inflation from string theory based on axion mono-
dromy in the presence of an interacting heavier modulus.
This class of models will serve to approximate at least part
of the known effects such as flattening of the scalar
potential arising the full backreaction of the typically
several moduli and/or adjustment of the internal geometry
of the six extra dimensions of string theory. At the same
time, as large-field models these models maximize the
number of potential CMB observables by generating a
measurably large primordial tensor mode signal. Yet, this
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class of setups is simple enough to fully describe the
structure of higher-point curvature perturbation interactions
driven by the adjusting modulus backreaction dynamics.
We will find, that the 2-field effective field theory (EFT)
treatment allows us to justify an alternative description in
terms of a purely single-field EFT involving a series of
higher-derivative (HD) kinetic term corrections dictated by
the backreaction dynamics of the modulus we integrated
out. These HD terms are known to lead to a reduction of the
propagation speed for the scalar perturbations, cs, a
parameter that influences both the two and three point
curvature correlators. It is worth noting that the current
observational bounds on fNL [2] allow ample space for
subluminal propagation speeds for the scalar perturbations,
given the parametric relation fNL ∼ c−2s [7,8]. On the other
hand the validity of the perturbative treatment also con-
strains large reductions of the speed of sound [9]. In what
follows we will find that such UV motivated axion
monodromy inflation models with backreaction from
moduli separated only by a finite mass hierarchy [8] will,
in certain regions of parameter space, generate some
amount of non-Gaussianity accompanied by changes to
ns and r. The results presented below go beyond the mere
the adiabatic flattening backreaction in the scalar potential,
widely studied in this context (see, e.g., [10,11], with the
4D effective 4-form description of flattened monodromy
given in, e.g., [12,13]).
We begin in Sec. II by describing the two alternative

EFTs to analyze the dynamics and observational signatures
of these monodromy models. In Sec. III we review the
effects of pure kinetic modulus-axion mixing in the
language of the two EFTs. Section IV analyzes semi-
realistic toy models where the modulus and the axion mix
both in the kinetic term and via backreaction of the
potential. In both sections we restrict to two classes of
kinetic couplings, one of them monomial and the other
exponential in the canonically normalized modulus field.
This is motivated by the fact, that typically in string theory
setups volume deformation modes of the extra dimensions
are the lightest moduli in the spectrum, and the coupling of
these volume moduli to string axions fall into the two
classes of kinetic couplings we consider (at least in the case
of tree-level supersymmetric Calabi-Yau compactifica-
tions). We find that depending on the relative importance
of kinetic coupling vs coupling in the potential, the simple
single-field predictions of axion monodromy inflation ns −
1 ¼ −ðpþ 2Þ=ð2NeÞ and r ¼ 4p=Ne in terms of the
asymptotic flattened large-field potential V ∼ ϕp can be
significantly changed. Both red- and blue-shifts of ns and
both enhancement and suppression of the resulting r are
attainable. Section V contains a short discussion of the
structure of the underlying string theory constructions of
axion monodromy inflation, and the resulting form of the
4D effective 2-field modulus-axion Lagrangians studied
here. We conclude in Sec. VI.

II. EFFECTIVE FIELD THEORIES

Our goal is to understand the effect on the inflationary
observables of a kinetic coupling between a heavy and a
light scalar fields of the form

L=
ffiffiffiffiffi
jgj

p
¼ 1

2
ð∂ϕHÞ2 þ

f2ðϕH=ΛÞ
2

ð∂ϕLÞ2 − VðϕH;ϕLÞ
ð2:1Þ

i.e., a “gelaton” type coupling [14]. Some particular forms
of this coupling can be found in the literature, in particular
in [15] (see also [16]). Furthermore this sort of structure
arises frequently in SUGRA or string constructions of
cosmic inflation, as we will review in Sec. V.
The idea is to analyze this action with single inflation in

mind, that is in the regime mH ≫ H. One can of course
determine the observational signatures of these models by
performing a full two field analysis, following the methods
developed in [17–19]. We will see that this system can
equivalently be analyzed via two different EFTs that yield
compatible results for the inflationary observables: one can
either derive an EFT for the background evolution, in
which case one obtains a low energy action of the PðXÞ
form as shown in [14] (see also [20,21]) that ultimately
allows for a reduction of the scalar speed of sound.
Alternatively one can derive and EFT for the adiabatic
curvature perturbations, by noting that in this regime the
isocurvature perturbations are very massive and therefore
decouple, finding once again a subluminal speed of sound
for the scalar perturbations [16]. We will show below that
both EFTs yield the same results if one solves the theory as
perturbative series in the small parameter _ϕL.

1

The equations of motion that follow from Eq. (2.1) are

ϕ̈H þ 3H _ϕH ¼ fðϕHÞ∂ϕH
fðϕHÞ _ϕL

2 − ∂ϕH
V; ð2:2Þ

ϕ̈L þ 3H _ϕL þ 2
∂ϕH

fðϕHÞ
fðϕHÞ

_ϕL
_ϕH ¼ −

∂ϕL
V

f2ðϕHÞ
; ð2:3Þ

H2 ¼ 1

3

�
_ϕH

2

2
þ f2ðϕHÞ

_ϕL
2

2
þ V

�
; ð2:4Þ

_H ¼ −
�

_ϕH
2

2
þ f2ðϕHÞ

_ϕL
2

2

�
: ð2:5Þ

We assume thatmH ≫ H such that the heavy field can be
integrated out and are interested in slow-roll solutions to

1We thing of these as top down EFTs, where one knows the
UV action and integrates out heavy degrees of freedom (d.o.f.),
unlike the EFTs of [7,22] which we would call bottom up since
the starting point is to write down all operators allowed by the
symmetries, while remaining agnostic about the UV structures
that generate such terms.
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this system (ϕ̈L ≈ 0 and ϕ̈H ≈ 0) with negligible velocity
for the heavy field _ϕH ≈ 0. In this regime, the equation of
motion for the heavy scalar reads

fðϕHÞf0ðϕHÞ _ϕL
2 ≈ ∂ϕH

VðϕHÞ: ð2:6Þ

Solving this equation will allow us to integrate out the
heavy field. Let us define

ϕH ≡ ϕ0ð1þ δÞ; ð2:7Þ

where ϕ0 denotes the post-inflationary minimum for ϕH,
that is ϕ0 is the solution to VϕH

¼ 0 when the inflaton field
sits at its postinflationary minimum, and we assume that
throughout the dynamics δ ≪ 1.2 This assumption is
justified since the mass of ϕH is taken to be above H.
Expanding

δ ¼
X
n≥0

a2n _ϕL
2n ð2:8Þ

one can solve Eq. (2.6) order-by-order in the velocity of the
light field. Expanding both sides in powers of _ϕL yields

fαf0α _ϕ
2
L þ ϕ0a2

Λ
ðf02α þ fαf00αÞ _ϕ4

L þOð _ϕ6
LÞ

¼ V 0
α þ ϕ0a2V 00

α
_ϕ2
L þ ϕ0

�
a4V 00

α þ
1

2
ϕ0a22V

000
α

�
_ϕ4
L

þOð _ϕ6
LÞ; ð2:9Þ

where we have used the notation fðnÞα ≡ fðnÞðϕ0ð1þ a0ÞÞ,
VðnÞ
α ≡ VðnÞðϕ0ð1þ a0ÞÞ. From Eq. (2.10) one finds the

expressions for the a2n

V 0ðϕ0ð1þ a0Þ;ϕLÞ ¼ 0;

a2 ¼
fαf0α
ϕ0V 00

αΛ
;

a4 ¼ fαf0α
2f2α0V

00
α þ 2fαf00αV 00

α − Λfαf0αV 000
α

2Λ3ϕ0V3
α00

: ð2:10Þ

The first equation of (2.10) constitutes an implicit defi-
nition of a0 and implies that, to leading order, the heavy
field adiabatically follows its inflaton dependent minimum.
Let us stress that this procedure can be carried to arbitrarily
high order in _ϕL and, as we will now show, it allows us to
describe the evolution of the system in terms of two distinct
but equivalent EFTs.

A. Background EFT

One can use the solution to the heavy field’s equation of
motion, Eqs. (2.7), (2.8), and (2.10), to integrate it out and
find the effective field theory for the light scalar d.o.f. at the
level of the background.
In the regime where one can ignore the contribution of

the heavy field’s kinetic term, the effective action takes the
form

L=
ffiffiffiffiffi
jgj

p
¼ f2α

_ϕL
2

2
− VðϕLÞ þ

f2αf0α2

2Λ2V 00
α

_ϕL
4

þ f2αf0α2ð3f0α2V 00
α þ 3fαf00αV 00

α − Λfαf0αV 000
α Þ

2Λ2V 003
α

_ϕL
6

þOð _ϕ8
LÞ; ð2:11Þ

In Eq. (2.11) it is understood that VðϕLÞ ¼ VðϕHjV 0
α¼0;ϕLÞ.

One therefore sees that at low energies, the inflaton ϕL has
an action that is of the K-flation [24,25] or PðX;ϕLÞ form
as noted, in the absence of mixing in V, in [14]. Interactions
between the heavy and light scalars generically give rise not
only to HD terms but also corrections to the scalar potential
and kinetic terms of the light field.
The inflationary perturbations that follow from such type

of action have been studied in [25]. The main feature that
arises from the HD terms is the reduction of the speed of

sound for the scalar perturbations. Defining X ≡ _ϕL
2

2
it is

given by

c−2s ¼ 1þ 2XPXX=PX ð2:12Þ

and the first terms in this expansion take the form

c−2s ¼ 1þ 4
f0α2

Λ2V 00
α

_ϕL
2

þ 4
f2α0 ðf2α0V 00

α þ 3fαf00αV 00
α − Λfαf0αV 000

α Þ
V 003

αΛ4
_ϕL

4

þOð _ϕ6
LÞ: ð2:13Þ

The scalar spectrum has an amplitude given by [25]

As ¼
H2

8π2ϵcs

����
csk¼aH

; ð2:14Þ

with a tilt

ns ¼ 1 − 2ϵ − η − s; ð2:15Þ

where

s ¼ _cs
Hcs

: ð2:16Þ

2The requirement of δ ≪ 1 stems form the desire to have
converging analytical results. For specific choices of f and V
Eq. (2.2) can be solved analytically, making the expansion of
Eq. (2.7) and the constraint δ ≪ 1 unnecessary. See Sec. III B and
Ref. [23] for a specific example.
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The tensor to scalar ratio, by virtue of Eq. (2.14) and of the
fact that tensor perturbations are unaffected by the HD
corrections to the scalar sector, is given by

r ¼ 16ϵcs: ð2:17Þ

B. Perturbation EFT

An alternative approach to the one presented above is to
define an EFT for the scalar perturbations, whenever there
is a hierarchical mass spectrum [16,26,27]. In what follows
we sketch how this can be done, leaving out some of the
details for the sake of brevity and directing the reader
to [16].
The scalar perturbations are described in terms of the

canonically normalized gauge-invariant Mukhanov-Sasaki
variables [28,29]

va ≡ aQa ¼ a

�
δϕa þ

_ϕa

H
ψ

�
: ð2:18Þ

In two field models these can be projected in the direction
parallel and perpendicular to the background trajectory

vT ¼ aTaQa and vN ¼ aNaQa; ð2:19Þ

where

T ¼ 1

j _ϕ0j
ð _ϕ1

0; _ϕ
2
0Þ;

N ¼ 1ffiffiffiffi
G

p j _ϕ0j
ð−G22

_ϕ2
0 −G12

_ϕ1
0; G11

_ϕ1
0 þG12

_ϕ2
0Þ;

ð2:20Þ

are the tangent and orthogonal unit vectors with respect to

the field space metric G and j _ϕ0j≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gab

_ϕa
0
_ϕb
0

q
.

The quadratic action for the scalar perturbations is that of
a coupled system of two harmonic oscillators. The equa-
tions of motion for the corresponding Mukhanov-Sasaki
variables written in conformal time (dτ ¼ 1=aðtÞdt) and in
Fourier space take the form [16]:

d2vTα
dτ2

þ 2aHη⊥
dvNα
dτ

− a2H2η2⊥vTα þ dðaHη⊥Þ
dτ

vNα

þ ΩTNvNα þ ðΩTT þ k2ÞvTα ¼ 0; ð2:21Þ

d2vNα
dτ2

− 2aHη⊥
dvTα
dτ

− a2H2η2⊥vNα −
dðaHη⊥Þ

dτ
vTα

þ ΩTNvTα þ ðΩNN þ k2ÞvNα ¼ 0; ð2:22Þ

where the Greek index α labels the quantum modes of the
perturbations α ¼ 1, 2.

The mass matrix Ω of Eqs. (2.21) and (2.22) is the
fundamental quantity in the definition of an EFT for the
perturbations. It has the following elements:

ΩTT ¼ −a2H2ð2þ 2ϵ − 3ηk þ ηkξk − 4ϵηk þ 2ϵ2 − η2⊥Þ;
ð2:23Þ

ΩNN ¼ −a2H2ð2 − ϵÞ þ a2VNN þ a2H2ϵR; ð2:24Þ

ΩTN ¼ a2H2η⊥ð3þ ϵ − 2ηk − ξ⊥Þ: ð2:25Þ

Before we proceed some notation must be introduced. The
second slow roll parameters, measuring the tangential
and normal acceleration of the background trajectory are
given by

ηk ¼ −
ϕ̈0

H _ϕ0

and η⊥ ¼ VN

j _ϕ0jH
ð2:26Þ

respectively. The third slow-roll parameters in turn are
defined as:

ξk ¼ −
⃛ϕ0

Hϕ̈0

; ξ⊥ ¼ −
_η⊥
Hη⊥

: ð2:27Þ

The Ricci scalar of the scalar manifold is denoted by R.
Whenever there is a hierarchy

jΩNN j ≫ jΩTT j; jΩTN j ð2:28Þ

the two field system of Eqs. (2.21)–(2.22) can be equiv-
alently described by an EFT for the light d.o.f. vT . For large
ΩNN one can solve Eq. (2.22) in the limit of negligible
acceleration finding

vN ¼ 2aHη⊥ dvT
dτ þ dðaHη⊥Þ

dτ vT −ΩNTvT

ΩNN − ðaHη⊥Þ2 þ k2
: ð2:29Þ

Substituting this in Eq. (2.21) and defining the canonical
variable u

vT ¼ e−β=2u; ð2:30Þ

one finds that the curvature perturbations follow the
evolution equation

u00 þ ðc2sk2 þΩÞu ¼ 0; ð2:31Þ

propagating at the speed of sound [16,27]

c2s ¼ e−β ¼ k2 − aHη⊥ þ ΩNN

k2 þ 3aHη⊥ þΩNN
ð2:32Þ

and with an effective mass
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Ω ¼ ΩTT − ðaHη⊥Þ2 − aHβ0ð1þ ϵ − ηkÞ −
�
β0

2

�
2

−
β00

2
;

ð2:33Þ

to leading order in ΩNN . The validity and accuracy of this
EFT has also been considered in, e.g., [23,30–32].
Let us now apply this approach to the system of

Eq. (2.1). Neglecting the velocity for the heavy field,
_ϕH ≈ 0, one writes

Ta ¼ 1

fðϕHÞ
ð0; 1Þ and Na ¼ ð−1; 0Þ; ð2:34Þ

in which case

η⊥ ¼ −
V 0ðϕHÞ

j _ϕLjHfðϕH=ΛÞ
ð2:35Þ

implying a speed of sound

c−2s ¼ 1þ 4η2⊥
�
V 00ðϕHÞ
H2

−
_ϕL

2

H2
f00ðϕHÞfðϕHÞ − η2⊥

�−1
:

ð2:36Þ

In what follows we will ignore the momentum dependence
in cs, thereby assuming that horizon exit for each mode
happens when Eq. (2.36) is a good approximation to
Eq. (2.35). For a detailed analysis of the cases that go
beyond this regime see [8]. Note that in the above
derivation we have used the fact that the field space

curvature is given by R ¼ −2 f00ðϕHÞ
fðϕHÞ in the models under

consideration and neglected terms of the form k
aH, which is

a good approximation on superhorizon scales.
Knowing the background evolution of the system, and in

particular the series expansion of δ≡ ϕH=ϕ0 − 1, one can
determine the expansion of Eq. (2.36) in powers of _ϕL. The
first terms in this expansion are

c−2s ¼ 1þ 4
f0α2

Λ2V 00
α

_ϕL
2

þ 4
f2α0 ðf2α0V 00

α þ 3fαf00αV 00
α − Λfαf0αV 000

α Þ
Λ4V 003

α

_ϕL
4

þOð _ϕ6
LÞ: ð2:37Þ

We therefore find that the result agrees with the estimate for
cs obtained from the background EFT of Sec. II A,
Eq. (2.13). The agreement between the two estimates for
cs will hold to order 2n in _ϕL if one solves Eq. (2.6) to
order 2nþ 2.
Having established that the system of Eq. (2.1) can be

analyzed by means of two equivalent EFTs we will now

proceed to study particular examples aiming to understand
under what circumstances reductions of cs are attainable.

III. KINETIC MIXING

In this section we study in more detail the case when
there is no mixing between ϕL and ϕH in V. We explicitly
analyze two examples of coupling function and their impact
on the estimates of the speed of sound and inflationary
observables, comparing the estimates from the two EFTs
defined above to the results from the full two field
numerical evolution of the system.
We assume that the potential for the heavy scalar is

quadratic around its minimum at ϕ0, implying that the
scalar potential takes the form

V ¼ 1

2
m2

HðϕH − ϕ0Þ2 þ VðϕLÞ: ð3:1Þ

The absence of mixing in V implies that the shift of the
heavy field away from its potential minimum, δ, depends
only on the velocity of the light field (and not on the light
field itself), since from Eq. (2.10) one finds a0 ¼ 0. For the

potential of Eq. (3.1) this implies that α ¼ ϕ0, fðnÞα ¼
fðnÞðϕ0=ΛÞ≡ fðnÞ0 , VðnÞ

α ¼ VðnÞðϕ0;ϕLÞ. From Eq. (2.11)
one can define the canonically normalized variable via

ΦL ≡ f0ϕL; ð3:2Þ

in which case the action simply reads

L=
ffiffiffiffiffi
jgj

p
¼

_ΦL
2

2
− VðΦLÞ þ

f020 =f
2
0

2m2Λ2
_ΦL

4

þ f020 =f
4
0ðf020 þ f0f000Þ
2m2Λ2

_ΦL
6 þ � � � : ð3:3Þ

We therefore conclude that in the absence of mixing in V
there are no corrections to the scalar potential or to the
kinetic term, the only feature that remains from the generic
analysis of the previous section are HD terms in the form of
higher powers of first derivatives. This is the standard
gelaton scenario of [14].
Knowing that a reduction of cs entails a reduction of the

tensor-to-scalar ratio, we focus our analysis on the class of
chaotic monomials and in particular of quadratic infla-
tionary potential:

VðϕLÞ ¼
1

2
m2

Lϕ
2
L: ð3:4Þ

A phenomenological analysis of the impact of cs reductions
attainable in this class of models can be found in [33].
We work in a regime where mH ¼ 10H (at horizon exit

of CMB scales), following [15] whose results we partially
reproduce in Sec. III A. For concreteness we solve Eq. (2.6)
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to 12th order in _ϕL which as we’ll demonstrate allows the
use of the EFTs all the way down to cs ∼ 0.6.3

A. Monomial coupling

The first class of kinetic couplings we consider are
monomials of the form

f2ðϕHÞ ¼
�
ϕH

Λ

�
2p
: ð3:5Þ

The speed of sound for the scalar perturbations can be
written as

c−2s ¼ 1þ
X
n≥1

a2n

�
_ϕLðϕ0=ΛÞp
mHϕ0

�2n

; ð3:6Þ

where the first four numerical coefficients take the form

a2 ¼ 4p2;

a4 ¼ 4p3ð−3þ 4pÞ;
a6 ¼ 4p4ð10 − 27pþ 18p2Þ;

a8 ¼
4

3
p5ð−105þ 428p − 576p2 þ 256p3Þ: ð3:7Þ

Noting that in the background EFT the canonically nor-
malized inflaton is defined by Φ≡ ϕLðϕ0

Λ Þp one sees that

c−2s − 1 ∝
_Φ2

m2
Hϕ

2
0

∼ ϵ
H2

m2
H

M2
P

ϕ2
0

ð3:8Þ

and so reductions of cs for fixed mH=H can only be
achieved via the tuning of ϕ0 to small values.
In order to be more explicit and to gauge the validity of

the EFT descriptions one must choose a particular value for
p. In what follows we consider a quadratic coupling,
p ¼ 1, that may arise in supergravity theories if the two
scalars are the modulus and the angle of a given complex
scalar field. We note however that qualitatively similar
results can be found for other monomial couplings.
The speed of sound for the scalar perturbations can be

written as

c−2s ¼ 1þ
X6
n¼1

a2n

�
_ϕL

mHΛ

�2n

; ð3:9Þ

where the a2n coefficients for the background EFT are
found to be

a2 ¼ 4; a4 ¼ 4; a6 ¼ 4; a8 ¼ 4;

a10 ¼ 4; a12 ¼ 4 ð3:10Þ

and for the perturbation EFT are

a2 ¼ 4; a4 ¼ 4; a6 ¼ 4; a8 ¼ 4;

a10 ¼ 4; a12 ¼ −4: ð3:11Þ

For this simple case it is possible to go beyond the
perturbative method described above and solve the equa-
tion of motion for the heavy scalar, Eq. (2.6), exactly (in the
limit of negligible velocity and acceleration). By doing so
we can gauge the precision of the approach described
above. The solution to Eq. (2.6) is

ϕH ¼ ϕ0

1 − _ϕL
2

m2
HΛ

2

; ð3:12Þ

which implies the following effective action for the
background

LjEFTbffiffiffiffiffijgjp ¼ 1

ð1 − _Φ2
L

m2
Hϕ

2
0

Þ
_Φ2
L

2
− VðΦLÞ ð3:13Þ

and a sound speed given by

c−2s jEFTb ¼
m2

Hϕ
2
0 þ 3 _Φ2

L

m2
Hϕ

2
0 − _Φ2

L

: ð3:14Þ

For the perturbation EFT of Sec. II B one can substitute
Eq. (3.12) in Eqs. (2.35) and (2.36) to find that the speed of
sound given exactly by Eq. (3.14) as found in [15]. So in
this simple case, where the heavy field can be integrated out
exactly,4 one can show that the two EFTs are not just
approximately equivalent but are equivalent to all orders in
the _ΦL expansion. Furthermore, noting that Eq. (3.14) can
be written in the form

c−2s ¼ 1þ 4
X∞
n¼1

�
_ϕL

mHΛ

�2n

; ð3:15Þ

one can extrapolate, by comparison with Eqs. (3.10) and
(3.11), that solving (2.6) to order 2nþ 2 results in c−2s jEFTb
that is accurate to order _ϕL

2nþ2 and c−2s jEFTp that is

accurate to order _ϕL
2n.

3Having some knowledge of the UV physics allows us to go
beyond the modest reductions of cs one can reliably find when
working to next-to-leading order in the derivative expansion as in,
e.g., [34].

4Note that we are still neglecting the effects of the velocity of
the heavy field and that Eqs. (3.12)–(3.14) are to be understood as
a power series in _ΦL.
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Since the scalar potential can be written as

V ¼ m2
L

2
ϕ2
L ¼ ðmLΛ=ϕ0Þ2

2
ΦL

2; ð3:16Þ

we see that tuning ϕ0 small increases the mass of the
canonically normalized inflaton, bringing it closer toH and
to mH.
In Fig. 1 we plot cs as determined by the two EFTs and

by the solution to the 2 field perturbation system,
Eqs. (2.21)–(2.22), and the error of the two EFTs with
respect to the full two field result, defined as

Δ ¼ csjEFT − cs
cs

: ð3:17Þ

Wesee that the twoEFTs are in excellent agreementwith each
other and that they capture the full 2 field (background plus
perturbation) evolution represented by the dashed line in
Fig. 1. The errors of the EFT estimates increase as cs dec-
reases, though its absolute values are still at the percent level.
The spectral index remains essentially unchanged while

the tensor-to-scalar ratio decreases due to the reduction in
cs, in accordance with (2.17). These results are in line with
those of [15].

FIG. 1. Left: Speed of sound for a quadratic coupling. Grey dashed line represents the exact result, yellow depicts the background EFT
estimate and blue the perturbation EFT. Right: Error in the EFT estimates of the speed of sound relative to the numerical solution of the
two field system.

FIG. 2. Left: Speed of sound for a exponential coupling. Grey dashed line represents the exact result, yellow depicts the background
EFT estimate and blue the perturbation EFT. Right: Error in the EFT estimates of the speed of sound relative to the numerical solution of
the two field system.
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B. Exponential coupling

Let us now consider an exponential coupling function

f2ðϕHÞ ¼ exp

�
2
ϕH

Λ

�
; ð3:18Þ

which, as we will discuss in Sec. V, often appears in UV
embeddings of inflation. This yields a speed of sound of
the form

c−2s ¼ 1þ
X6
n¼1

a2n

�
_ϕL

mHΛe−ϕ0=Λ

�2n

; ð3:19Þ

where for the background EFT one finds

a2 ¼ 4; a4 ¼ 16; a6 ¼ 72; a8 ¼ 1024;

a10 ¼ 5000; a12 ¼ 41472; ð3:20Þ

while for the perturbation EFT the expansion is

a2 ¼ 4; a4 ¼ 16; a6 ¼ 72; a8 ¼ 1024;

a10 ¼ 5000; a12 ¼ 27648: ð3:21Þ

Writing Eq. (4.21) in terms of the canonical variable one
obtains

c−2s − 1 ∝
_Φ2
L

m2
HΛ2

∼ ϵ
H2

m2
H

M2
p

Λ2
; ð3:22Þ

implying that reductions of cs for fixed H=mH may be
obtained via tuning of Λ. In Fig. 2 we compare the various
estimates for cs as functions of the scale Λ. The qualitative
picture is similar to what was found in the quadratic
coupling case analyzed above: significant reductions of
cs are attainable in the small Λ limit, with little impact on
the tilt of the scalar power spectrum.

IV. KINETIC AND POTENTIAL MIXING

Let us now consider the generic case when there is
mixing in the scalar potential as well as in the kinetic terms.
In this case the background EFT features noncanonical
kinetic terms for the inflaton field, since fα ¼ fαðϕLÞ, a
direct consequence of the fact that the vev of the heavy field
depends both on the light field and its derivative.
Let us consider the effective action for the light field,

Eq. (2.11), and write it in terms of the canonical variable
ΦL, defined as

ΦL ¼
Z

fαðϕLÞdϕL: ð4:1Þ

One may then write the effective Lagrangian as

L=
ffiffiffiffiffi
jgj

p
¼ ð∂ΦLÞ2

2
−VeffðϕLðΦLÞÞ

þ 1

2
ð∂ΦLÞ4

ðf0αðΦLÞ=fαðΦLÞÞ2
Λ2ðm2 þ gϕ2

LðΦLÞÞ

þ 1

2
ð∂ΦLÞ6

ðf0αðΦLÞ4 þ fαðΦLÞf02αðΦLÞf00αðΦLÞÞ
Λ4ðm2 þ gϕ2

LðΦLÞÞ4fαðΦLÞ4
þ � � � ð4:2Þ

where the effective potential can be found from Eq. (2.10)
and takes the form

VeffðϕLðΦÞÞ ¼ VðϕLðΦÞÞ þ gm2
Hϕ

2
0

2

ϕ2
LðΦÞ

m2
H þ gϕ2

LðΦÞ ;

ð4:3Þ
if for concreteness one assumes that in the UV

V ¼ 1

2
m2

HðϕH − ϕ0Þ2 þ
g
2
ϕ2
Hϕ

2
L þ VðϕLÞ: ð4:4Þ

Note that in the case VðϕLÞ ¼ 0 and in the absence of
kinetic mixing, Eq. (4.3) reduces to the prototypical
flattened potential of [10], that for large values of ϕL

asymptotes to a constant V ∼m2
Hϕ

2
0=2. The crucial thing to

note is that Eq. (4.2) features not only HD terms of the type
found in the previous section, but also corrections to the
kinetic term and scalar potential, Eq. (4.3).
We can now study the same examples as in Sec. III with

the added mixing in the potential and demonstrate that this
modification leads to a very different behavior of the
system in what concerns inflationary dynamics and observ-
ables. In order to make contact with the results of Sec. III
we will assume

VðϕLÞ ¼
1

2
m2

Lϕ
2
L; ð4:5Þ

however we will also study the possibility that VðϕLÞ ¼ 0,
in which case the inflationary potential is generated by the
interaction between the heavy field and the inflaton, as is
often the case in UV constructions of inflation.

A. Monomial kinetic coupling

We now revisit the monomial kinetic couplings

fðϕHÞ ¼
�
ϕH

Λ

�
2p

ð4:6Þ

in the presence of an interaction between the fields in the
scalar potential. One can show that the speed of sound takes
the form

c−2s ¼ 1þ
X
n≥1

a2n

�
_ϕL

MHϕ0

�
ϕ0

Λ

�
p
�2n

; ð4:7Þ
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where one defined the total mass of the heavy field as
M2

H ¼ m2
H þ gϕ2

L and the numerical coefficients, a2n, are
those of Eq. (3.7). This can be rewritten as

c−2s − 1 ≈
X
n≥1

�
ϵ

�
H
MH

�
2
�
Mp

ϕ0

�
2
�
1þ gϕ2

L

m2
H

�
2p
�
n

ð4:8Þ

where one sees that reductions of cs may arise in the small
ϕ0=MP limit. For p > 0 the suppression of the speed of
sound can be further enhanced by pushing the system into

the gϕ2
L

m2
H
≥ Oð1Þ regime.

Let us be more concrete and analyze in detail the case
fðϕHÞ ¼ ϕH=Λ, which has the virtue of being simple
enough to treat exactly while keeping all the features of
higher order monomials. For this form of the kinetic
coupling one can not only perform the integration relating
the canonical and noncanonical variables but also analyti-
cally invert that relation to find that the canonical variable is

Φ ¼ mHϕ0ffiffiffi
g

p Λ
tan−1

� ffiffiffi
g

p
ϕL

mH

�
: ð4:9Þ

The effective action is a function of two mass scales besides
the inflaton mass mL, namely

μ4 ≡ 1

2
m2

Hϕ
2
0 and fa ≡mHϕ0ffiffiffi

g
p Λ

ð4:10Þ

and takes the form

Leff=
ffiffiffiffiffi
jgj

p
¼ 1

2
_Φ2 −VeffðΦÞ þ

X
n>1

_Φ2n

2nμ2n−4cos2n−2ðΦ=faÞ
;

ð4:11Þ

where the effective potential is given by

VeffðΦÞ ¼ m2
Lμ

4

gϕ2
0

tan2
�
Φ
fa

�
þ μ4

�
1 − cos2

�
Φ
fa

��
: ð4:12Þ

From Eq. (4.7) one can show that the speed of sound can
be written as

c−2s ¼ 1þ
X
n≥1

a2n

�
m2

H þ gϕ2
LðΦÞ

m4
Hϕ

2
0

�
n
_Φ2n; ð4:13Þ

where from the perturbative analysis of the background
EFT one finds

a2 ¼ 4; a4 ¼ 4; a6 ¼ 4; a8 ¼ 4;

a10 ¼ 4; a12 ¼ −80; ð4:14Þ

whereas the EFT for the perturbations yields

a2 ¼ 4; a4 ¼ 4; a6 ¼ 4; a8 ¼ 4;

a10 ¼ 4; a12 ¼ 4; ð4:15Þ

if one solves Eq. (2.6) to 12th order in _Φ. Note that these
results are compatible with those of Sec. III A, reducing to
Eqs. (3.10) and (3.11) in the g → 0 limit.
The eom for the heavy field, in the limit where one

neglects its velocity and acceleration, reduces to a linear
equation for ϕH one therefore can show that its solution is

ϕH ¼ ϕ0

1þ gϕ2
L

m2
H
−

_ϕ2
L

Λ2m2
H

: ð4:16Þ

This relation is exact to all orders in _ϕL and it allows us to
write the effective Lagrangian as

Leff=
ffiffiffiffiffi
jgj

p
¼ m2

Hϕ
2
0

2

_ϕ2
L − gΛ2ϕ2

L

Λ2ðm2
H þ gϕ2

LÞ − _ϕ2
L

− VðϕLÞ ð4:17Þ

from which the speed of sound is

c−2s ¼ Λ2ðm2
H þ gϕ2

LÞ þ 3 _ϕ2
L

Λ2ðm2
H þ gϕ2

LÞ − _ϕL
2

¼ 1þ 4
X∞
n¼1

�
_ϕL

2

Λ2ðm2
H þ gϕ2

LÞ
�n

: ð4:18Þ

Writing cs in terms of the canonical variable one finds
Eq. (4.13) with a2n ¼ 4; ∀ n. This again confirms that if
one expands the action to order 2nþ 2 in _ϕL one can
expect the results to be accurate to order 2n.
Regime 1: m2

L ≫ gϕ2
0

In this regime the inflationary potential is dominated by
the self-interactions of the inflaton field, with the heavy
field making its presence felt through the kinetic inter-
action/ canonical normalization of the inflaton. Given that
we are interested in working in the regime ϕ0=MP ≪ 1 we

conclude that in this regime m2
H

gϕ2
L
≫ 1 and that therefore

MH ¼ mH. The noncanonical kinetic term for ϕL leads to a
steepening of the potential for the canonical variable Φ,
which can schematically be written as

V ∝ Φ2

�
1þ

X
n≥1

ν2n

�
Φ
fa

�
2n
�

ð4:19Þ

with coefficients ν2n > 0 ∀ n. Such steepening will occur
whenever fðϕHðϕLÞÞ scales as a negative power of ϕL in
the relevant range for inflationary dynamics, a fact
observed already in [10]. This effect will turn out to be
crucial for the determination of the inflationary observables
and to the extent to which one can decrease the speed of
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sound while being in line with observational constraints on
the remaining observables.
In order to determine the observable signatures of this

type of system and to gauge the accuracy of the perturbative
methods developed above it is necessary to perform a
numerical analysis of the system. Our strategy is as follows:
we start with a parameter set that in the absence of potential
coupling (g ¼ 0) yields cs ∼ 0.9, r ∼ 0.12 and ns ∼ 0.965
by setting ϕ0 ≪ MP and then increase g, while keeping the
remaining parameters fixed.5 Varying g ∈ ½10−19; 10−12�
yields the results displayed in Fig. 3. We observe that a
sizeable reduction in cs is indeed achievable but that it
comes hand in hand with a reddening of ns and an increase
of r. These are clear signs that the steepening in the
potential is dominating the behavior of the system.
Regime 2: m2

L ≪ gϕ2
0

An alternative regime of the present example can be
found when the inflationary potential is generated by the
interaction between the inflaton and the heavy field. This is

the case in the stringy constructions of [11] where inflaton
self-interactions are often absent, m2

L ¼ 0. In this case the
scalar potential is reminiscent of that of natural inflation
[35]. For such a regime one can show that the low-energy
theory for the canonical field is determined by the two
dimensionful parameters μ and fa defined in Eq. (4.10),
where fa controls the curvature of the potential, while μ
sets its scale. One can then show that

c−2s − 1 ≈
X
n

ϵn

cos2nðΦ=faÞ
ð4:20Þ

and therefore that reductions of cs can be achieved if
observable inflationary dynamics take place close to the
hill-top of the effective potential, where Φ=fa ∼ π=2. In
this regime however the spectral index deviates signifi-
cantly from the observed range, as illustrated in Fig. 4. The
trajectory in the ðns; rÞ plane is identical to that of natural
inflation with small (OðMpÞ) decay constant, where hori-
zon exit of CMB scales takes place close to the maximum
of the cosine potential, and leads to an unacceptably large
red tilt.

FIG. 4. Linear f with mL ¼ 0.

FIG. 3. mL ≠ 0.

5Small adjustments are made to the masses of the heavy and
light fields in order to have mH

H ¼ 10 and to keep the amplitude of
the power spectrum in line with observations for all points.
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In Fig. 5 we plot the observational signature of the model
in both regimes and see that decreasing cs does not help in
bringing the model into the observationally allowed region,
in fact the opposite holds true: reductions of cs come hand
in hand with steepening effects that push the spectrum
away from scale invariance.

B. Exponential kinetic coupling

As a final example in this section we consider fðϕHÞ ¼
eϕH=Λ. Unlike in the previous section is not possible to
analytically find the canonical variable, Φ, which renders
the analysis more involved. We can however perform an
approximate canonical normalization that allows us to
probe the system in two different regimes, where analytical
tools can then be used.
Applying the method described at the start of this section

one finds that interaction between the light and heavy
fields induces a subluminal speed of sound for the scalar
perturbations that is given by

c−2s ¼ 1þ
X6
n¼1

a2n

�
1

Λ2ðm2
H þ gϕ2

LðΦÞÞ
�

n
_Φ2n ð4:21Þ

where both EFTs predict

a2 ¼ 4; a4 ¼ 16; a6 ¼ 72;

a8 ¼ 1024; a10 ¼ 5000; ð4:22Þ
differing only twelfth order in _ϕL.
Neglecting overall numerical coefficients, one may use

the background eoms to write

c−2s − 1 ¼
X
n≥1

ϵn
�

H
MH

�
2n
�
MP

Λ

�
2n
; ð4:23Þ

where we defined the total mass of the heavy field during
inflation as M2

H ≡m2
H þ gϕ2

L. It then becomes evident that

reductions of the speed of sound can be obtained in the
small Λ regime, just like in the exponential example of
Sec. III.
In what follows we study the dynamics of the system in

two different regimes, a strong mixing regime, where the
canonical field Φ approximately can be expressed as

Φ ≈ ϕL −
ϕ0m2

H

ΛgϕL
for

gϕ2
L

m2
H
≫ 1 and

Λ
ϕ0

≫
m2

H

gϕ2
L

ð4:24Þ
and a weak mixing regime where it is instead given by

Φ ≈ eϕ0=ΛϕL

�
1 −

1

3

ϕ0

Λ
gϕ2

L

m2
H

�
for

gϕ2
L

m2
H
≪ 1

and
Λ
ϕ0

≫
gϕ2

L

m2
H
: ð4:25Þ

In both regimes we will consider the case when the
inflationary potential is dominated by the inflaton’s self
interactions (regime 1) and when it is predominantly
generated by interaction with the heavy field (regime 2).
Regime 1: m2

L ≫ gϕ2
0

In this regime the inflationary potential comes predomi-
nantly from the inflaton’s self-interactions. We therefore
haveH2 ∝ m2

L, in particularH is essentially independent of
the post inflationary vev of the heavy field ϕ0 that, as we
will see below, parametrizes the size of the corrections
(both coming from kinetic interactions and mixing in the
potential) to the starting quadratic potential for the inflaton.

(i) gϕ2
L

m2
H
≫ 1

The potential for the approximate canonical

variable Φ can be written as a series in m2
H

gΦ2, whose

first terms are

VeffðΦÞ ¼ m2
L

2
Φ2

�
1þ ϕ0m2

H

ΛgΦ2

�
2

þm2
Hϕ

2
0

2

×

�
1 −

m2
H

gΦ2

�
1 − 2

ϕ0

Λ
m2

H

gΦ2
−

m2
H

gΦ2

��
:

ð4:26Þ
In the limit of small Λ, where reductions of cs are in
principle attainable, the effective potential induces a
mild reddening of ns, and an increase of the tensor
fraction. Since the reduction in cs is rather modest,
the potential is the determining factor in the behavior
of the observables displayed in Fig. 6. Indeed the
lower half of the ϕ0=Λ range in Fig. 6 is be well
described by a two derivative action with a potential
of the form V ∼Φ2ð1þ α=Φ2Þ with α ≪ 1.

(ii) gϕ2
L

m2
H
≪ 1

In this case the potential admits an expansion in

powers of gΦ2

m2
H
of the form

FIG. 5. Linear f with:mL ¼ 0 (blue-shaded),mL large (orange-
shaded).
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VeffðΦÞ ¼ μ21
2
Φ2

�
1þ ϕ0g

3Λm2
H
e−2ϕ0=ΛΦ2

�
2

þ μ22
2
Φ2

�
1 −

μ22Φ2

m2
Hϕ

2
0

þ 2μ22Φ2

3m2
Hϕ

2
0

ϕ0

Λ

�

ð4:27Þ

where the effective mass parameters are defined as
μ21 ≡m2

Le
−2ϕ0=Λ and μ22 ≡ gϕ2

0e
−2ϕ0=Λ. Noting that

corrections to the quadratic potential for the inflaton
(both coming from kinetic interactions and mixing
in the potential) are proportional to e−ϕ0=Λ, and that
deviations from cs ¼ 1 are attainable for small
MP=Λ, one can tune down the speed of sound by
scanning over the large ϕ0=Λ part of parameter
space. This way we can reduce cs, and consequently
r, without causing significant shift of ns form the
observed value. Numerical results are depicted in
Fig. 7 and are identical to those of Sec. III B: a
reduction of cs lowers r while the small value of ϕ0

ensures that the spectral index remains essentially
constant.

Regime 2: m2
L ≪ gϕ2

0

Let us now consider the possibility that the inflationary
potential is generated by the interaction between the

inflaton and the heavy field and consider a strong

mixing/flattening gϕ2
L

m2
H
≫ 1 and a weak mixing/flattening

gϕ2
L

m2
H
≪ 1 regimes. For simplicity we will setmL ¼ 0 in what

follows. In this region of parameter space H2 ∝ ϕ2
0 and so

ϕ0 sets the inflationary scale and is therefore constrained by
observations (unlike in regime 1), in particular by the
amplitude of the scalar power spectrum.

(i) gϕ2
L

m2
H
≫ 1

This regime corresponds to having a strong flat-
tening effect in the scalar potential, which gets
strongly distorted from its original quadratic form
and in the inflationary region is now given by

V ¼ m2
Hϕ

2
0

2

�
1 −

m2
H

gΦ2

�
1 − 2

ϕ0

Λ
m2

H

gΦ2
−

m2
H

gΦ2

��
:

ð4:28Þ

Noting that M2
H ≈ gΦ2 in this regime, one can also

write the speed of sound as

c2s − 1 ≈
X
n≥1

ϵn
�
ϕ0

Λ

�
2n
�
m2

H

gΦ2

�
n

ð4:29Þ

FIG. 6. Observables for f ¼ eϕH=Λ in the regime mL ≫ gϕ2
0 and gϕ2

L
m2

H
≫ 1.

FIG. 7. Observables for f ¼ eϕH=Λ in the regime mL ≫ gϕ2
0 and gϕ2

L
m2

H
≪ 1.
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where we are omitting numerical coefficients. The
last factor in Eq. (4.29) is hierarchically small,
c.f. Eq. (4.24), and therefore reductions of cs are
only attainable in the large ϕ0=Λ regime. Results are
displayed in Fig. 8. The scaling of ns and r with
ϕ0=Λ taken in conjunction with the negligible shift
in cs indicate that the HD operators are unimportant
in this regime and that observables are dominated by

the higher order ϕ0

Λ
m2

H
gΦ2 corrections to the scalar

potential, these render it steeper and cause an
increase of r and an abrupt departure from scale
invariance. Note that the results from the full two-
field computation are absent from Fig. 8, this is due
to the fact that in this regime, performing such a
computation to the desired level of numerical
precision becomes computationally very costly with
the tools we are using, thereby demonstrating the
usefulness of the EFT methods developed above.

(ii) gϕ2
L

m2
H
≪ 1

In this regime the potential takes the form

VeffðΦÞ ¼ μ2

2
Φ2

�
1 −

μ2Φ2

m2
Hϕ

2
0

þ 2μ2Φ2

3m2
Hϕ

2
0

ϕ0

Λ

�
ð4:30Þ

at leading order, where the effective mass parameter
is μ2 ≡ gϕ2

0e
−2ϕ0=Λ. The speed of sound can sche-

matically be written as

c2s − 1 ¼
X
n≥1

ϵn
�
ϕ0

Λ

�
2n
�
μ2Φ2

ϕ2
0m

2
H

�
n

: ð4:31Þ

Noting that gϕ
2
L

m2
H
≪ 1 ⇒ μ2Φ2

m2
Hϕ

2
0

≪ 1, decrease in cs can

only be obtained in the large ϕ0=Λ limit. In such a
regime one observes that the contribution from the
kinetic mixing to V, last term in Eq. (4.30), induces a
steepening of the potential, that will ultimately
dominate the scaling of the inflationary observables
with ϕ0=Λ as depicted in Fig. 9.

V. STRINGY MUSINGS

Axion monodromy inflation in string theory uses an
axion field descending from the p-form gauge potentials of
string theory to drive the inflationary dynamics. The scalar
potential for the axion arises from fluxes or branes which
provide an energy density for the axion displaying mono-
dromy as a function of the axion traversing multiple
fundamental periodicity domains. As compactified string

FIG. 9. Observables for f ¼ eϕH=Λ in the regime m2
L ≪ gϕ2

0 and gϕ2
L

m2
H
≪ 1.

FIG. 8. Observables for f ¼ eϕH=Λ in the regime m2
L ≪ gϕ2

0 and gϕ2
L

m2
H
≫ 1.
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theory generically contains several moduli scalar fields at
mass scales below the KK scale, the axion monodromy
potential experiences backreaction effects. These arise from
the moduli dynamically adjusting to the presence of the
potential energy stored in the inflaton axion and/or direct
moduli-axion couplings in the kinetic terms or the scalar
potential of the effective action.
A lot of the dynamics can be captured qualitatively by

considering the simplest such class of systems, where the
inflaton-axion couples to the lightest of the moduli, which
produces a 2-field system. For many of the model classes of
axion monodromy inflation studied in the literature, the 4D
scalar field effective action of this 2-field system takes the
form [10,11]

L ¼ LKðϕ; _ϕ; _bÞ − VðL; bÞ ð5:1Þ

with the scalar potential

Vðϕ; bÞ ¼ C1

ϕq1
þ C2ðμ2 þ b2Þϕq2 : ð5:2Þ

The kinetic part of the action often takes two forms,
depending on whether the lightest relevant modulus L
involved is one of the so-called “bulk” volume or shape
moduli, or whether it denotes a more “local” deformation
parameter taking only moderately large values. For a
Calabi-Yau (CY) compactification for instance, the bulk
volume or shape moduli describe the large overall volume
and large complex structure directions of moduli space.

(i) If the relevant lightest modulus is of bulk type, then
the kinetic part of the 4D effective action takes the
form

LK ¼ k1
ϕ2

_ϕ2 þ k2
ϕ4

_b2: ð5:3Þ

An example here from type IIB flux compactifica-
tions would be, e.g., ϕ ∼ L with L being the bulk
volume modulus of the internal space.

(ii) For the nonbulk case the kinetic part often takes the
form

LK ¼ K1ϕ
p1 _ϕ2 þ K2ϕ

p2 _b2 ð5:4Þ

with p1, p2 being positive Oð1Þ constants and K1,
K2 effective constants who are dominantly functions
of the bulk moduli which in this case are assumed to
be heavier than ϕ and thus effectively frozen. An
example here are the blow-up volume moduli vi of
type IIB CY flux compactifications, where wewould
have ϕ ∼ v, and p1, p2 ¼ 1 while K1, K2 ∼ 1=V.

From this structure it is immediately clear, that setups with
kinetic functions of type (ii) encompass the polynomial

kinetic mixing examples of Sec. III, while all setups of type
(i) necessarily produce exponential kinetic mixing.
Finally, we look at the structure of the modulus-axion

potential above. At the axion minimum b ¼ 0 the modulus
ϕ acquires a minimum ϕ0 ¼ ϕ0ðμ2C2=C1; q1=q2Þ. Hence,
in the vicinity of this minimum the scalar potential has an
expansion

Vðϕ; bÞ ¼ m2
0ðϕ − ϕ0Þ2 þm2

bb
2 ð5:5Þ

where m2
0 ¼ m2

0ðμ2C2=C1; q1=q2Þ and m2
b ¼ C2ϕ

q2 . This
potential is the starting point for the discussion in Sec. IV.
The string theory setups for axion monodromy inflation
captured by the above EFT hence reduce in the appropriate
limits to the toy models discussed in the previous sections.

VI. SUMMARY

Inspired by the generic features of UV constructions of
inflation, in particular by the presence of a kinetic coupling
between the inflaton and heavier d.o.f., in this paper we
developed EFT techniques to systematically study the
observable signatures of such models.
In the first part of the paper we explicitly demonstrated

how theories with kinetic coupling between the inflaton
and a heavy field can be equivalently described by two
distinct EFTs. One may study the background at the two
field level and then use an EFT for the perturbations, as
done in, e.g., [14] and [16].6 Alternatively one may
integrate out the heavy d.o.f. at the level of the background,
thereby obtaining a background EFTwith HD interactions.
We have developed a recursive method that allows us to
demonstrate that these two EFTs are equivalent and yield
results compatible with the computationally costlier two
field computation. Our results hold in the presence of both
kinetic and potential mixing. In both cases the end result is
a reduced propagation speed for the scalar perturbations, a
parameter which has an important impact on the infla-
tionary observables and one for which current observations
only place a weak lower bound.
In the second part of this work we presented specific

examples to illustrate the effects of the kinetic (and
potential) interaction between heavy and light fields. If
the mixing happens exclusively via the kinetic term, the
main effect one finds is a reduction of the speed of sound
that entails a reduction of the tensor-to-scalar ratio. One can
in fact decrease r significantly while having little or no
effect on the tilt of the scalar power spectrum. Specific
examples of this behavior have been previously reported in,
e.g., [15]. We stress that this can be done within the regime
of validity of the EFTs, with the heavy field above the
Hubble scale. This mechanism can be used to decrease the

6For a recent extension of these methods to cubic order in the
perturbations see [36].
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current tension between chaotic inflation models and
observational data. It is worth pointing out that there are
limits to how much r can be reduced [9,33] and that future
CMB polarization observations [37] will be able to place
more stringent bounds on it, so chaotic inflation models can
still be ruled out. If on top of the kinetic interaction one also
considers mixing in the potential the situation changes
drastically due to the nontrivial canonical normalization of
the inflaton. In such more complex cases, the behavior of
the observables is more model and parameter dependent
and one can find instances where cs and r can be simulta-
neously reduced and others where a reduction of cs is
attainable but comes associated with an increase of r. Either
way the present work confirms that the observable signatures
of simple looking two field models can be much richer than

what one would find in the simplest two derivative EFT
analysis. From the observational side, a significant reduction
of the upper bound on r or of the upper bounds on fNL
would be most welcome in order to further constrain this
class of UV-inspired models of inflation.
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