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Individual supermassive black hole binaries in noncircular orbits are possible nanohertz gravitational
wave sources for the rapidly maturing Pulsar Timing Array experiments. We develop an accurate and
efficient approach to compute Pulsar Timing Array signals due to gravitational waves from inspiraling
supermassive black hole binaries in relativistic eccentric orbits. Our approach employs a Keplerian-type
parametric solution to model third post-Newtonian accurate precessing eccentric orbits while a novel
semianalytic prescription is provided to model the effects of quadrupolar order gravitational wave
emission. These inputs lead to a semianalytic prescription to model such signals, induced by nonspinning
black hole binaries inspiraling along arbitrary eccentricity orbits. Additionally, we provide a fully analytic
prescription to model Pulsar Timing Array signals from black hole binaries inspiraling along moderately
eccentric orbits, influenced by Boetzel et al. [Phys. Rev. D 96, 044011 (2017)]. These approaches are being
incorporated into Enterprise and TEMPO2 for searching the presence of such binaries in Pulsar Timing
Array datasets.
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I. INTRODUCTION

Pulsar Timing Array (PTA) experiments are expected to
inaugurate the field of nanohertz gravitational wave (GW)
astronomy during the next decade [1]. This will augment
the ground-based GW astronomy, established by the LIGO
Scientific Collaboration and the Virgo collaboration during
the present decade, operating mainly in the hectohertz to
kilohertz frequency regime [2]. A PTA experiment mon-
itors an ensemble of millisecond pulsars (MSPs) to search
for correlated deviations to their pulse times of arrival
(TOAs) to infer the presence of GWs [3]. These efforts
are sensitive to long-wavelength (∼1 nHz–100 nHz) GWs,
where the lower and upper limits of the frequency range
are, respectively, set by the total span and cadence of the
PTA observations [4]. Therefore, PTAs are expected to
detect GWs from supermassive black hole (SMBH) bina-
ries with milliparsec orbital separations [5]. At present,
there exist three matured PTA efforts, namely the Parkes

Pulsar Timing Array (PPTA) [6], the European Pulsar
Timing Array (EPTA) [7], and the North American
Nanohertz Observatory for Gravitational Waves
(NANOGrav) [8,9]. Additionally, there are emerging
PTA efforts from India, China, and South Africa [10–12].
The International Pulsar Timing Array (IPTA) consortium
combines data and resources to achieve more quickly the
first detection of nanohertz GWs [13–15].
There are a number of promising astrophysical and

cosmological GW sources in the nanohertz frequency
window [16,17]. We expect the first detected signal to
be the ensemble of GWs from many SMBH binaries,
producing a stochastic GW background (SGWB). This
should be followed by the detection of bright individual
SMBH binaries that resound above this background
[18,19]. Stringent observational constraints are being
placed on both types of PTA sources due to the absence
of any firm detections in the PTA datasets [20–25]. In the
case of SMBH binaries in circular orbits, the present sky-
averaged upper limit on GW strain is below 7.3 × 10−15 at
8 nHz [21].*s.abhimanyu@tifr.res.in
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Such constraints on SMBH binaries can be invoked to
restrict their astrophysical formation and evolution scenar-
ios [26–30]. It will be desirable to extend the above bounds
to eccentric binaries since SMBH binaries emitting nano-
hertz GWs can have non-negligible orbital eccentricities
[17]. It was noted that SMBH binaries originating from gas-
rich galaxy mergers may have non-negligible eccentricities
even during their late inspiral phase [31,32]. Additionally,
realistic N-body simulations of massive galaxy mergers
result in SMBH binaries in eccentric orbits due to stellar
interactions [33–36]. Therefore, it will be interesting to
probe the presence of such binaries in the existing PTA
datasets. This demands general relativistic constructs that
can be implemented in the popular pulsar timing software
packages like TEMPO2 and Enterprise [37–39].
In the present paper, we develop an accurate and efficient

prescription to obtain PTA signals induced by isolated
SMBH binaries inspiraling along general relativistic eccen-
tric orbits. Our approach employs the post-Newtonian (PN)
approximation which allows us to model black holes (BHs)
as point particles [40]. Recall that PN approximation
provides general relativistic corrections to Newtonian
dynamics in powers of ðv=cÞ2 ∼GM=c2r, where v, M,
and r are, respectively, the relative velocity, total mass, and
relative separation of a BH binary. We let BH binaries move
in 3PN-accurate precessing eccentric orbits with the help of
generalized quasi-Keplerian parametrization [41], where the
3PN-accurate description incorporates ðvcÞ6-order general
relativistic corrections to Newtonian motion. Additionally,
we incorporate the effects of GW emission at the dominant
quadrupolar order with the help of a GW phasing formalism,
detailed in Refs. [42,43], while adapting recent results from
Ref. [44]. This allows us to model PTA signals due to
nonspinning SMBH binaries inspiraling along 3PN-accurate
eccentric orbits in a semianalytic manner. The numerical
treatments are required only to solve the PN-accurate Kepler
equation and to integrate the resulting fractional pulsar
frequency shift induced by passing GWs. These consider-
ations ensure that the prescription is general relativistically
accurate and computationally efficient. It turns out that
the PN description is quite appropriate to model such
PTA signals as the SMBH binaries are expected to merge
at orbital frequencies outside the PTA frequency window
[17]. Additionally, we provide a fully analytic prescription to
compute PTA signals induced by isolated SMBH binaries
inspiraling along moderately eccentric orbits. This result
heavily depends on a fully analytic approach to compute
temporally evolving GW polarization states for compact
binaries moving in PN-accurate moderately eccentric orbits
[45]. We note in passing that the present effort extends and
improves efforts to compute PTA signals due to GWs from
compact binaries inspiraling along Newtonian accurate
eccentric orbits [46,47].
In what follows, we list below the salient features of the

present paper.

(i) A brief description of our approach for computing
quadrupolar-order PTA signals due to inspiral
GWs from nonspinning massive BH binaries in
PN-accurate precessing eccentric orbits while emp-
loying the PN-accurate Keplerian-type parametric
solution and the GW phasing approach of Ref. [42]
is presented in Sec. II A and Sec. II B.

(ii) An accurate and computationally efficient way to
incorporate the effects of GW emission on the
parametrized conservative PN-accurate orbital dy-
namics and its salient features are presented in
Sec. II C. This subsection explains why we require
a one-time numerical solution of a differential
equation to incorporate the effects of quadrupolar
GWemission in our approach. Plots displaying PTA
signals that arise from our semianalytical approach
and their various facets are provided in Sec. II D.
The computational costs associated with our mod-
eling of the PTA signals, induced by GWs from
massive BH binaries in PN-accurate arbitrary eccen-
tricity orbits are provided in Sec. II E.

(iii) A fully analytic way of computing PTA signals for
moderate eccentricities (e≲ 0.3) is presented in
Sec. III where we employed crucial inputs from
Ref. [45]. This approach provides a powerful check
on our detailed semianalytic prescription, and this is
demonstrated by comparing PTA signals computed
using our semianalytic and fully analytic methods in
the low-eccentricity regime.

In brief, we developed an accurate and efficient prescrip-
tion to compute PTA signals induced by isolated SMBH
binaries inspiraling along general relativistic eccentric orbits,
employing for the first time an accurate semianalytic solution
to describe PN-accurate orbital evolution of BH binaries.
An implementation of the PTA signals derived in this work is
available at https://github.com/abhisrkckl/GWecc.

II. PTA SIGNALS FROM BH BINARIES IN
QUASI-KEPLERIAN ECCENTRIC ORBITS

We begin by deriving expressions for the dominant
quadrupolar order þ=× residuals in Sec. II A. How we
describe temporal evolution of various dynamical variables
that appear in these expressions is described in Sec. II B and
Sec. II C, which is followed by a pictorial exploration of
our main results in Sec. II D and an exploration of the
associated computational costs in Sec. II E. The present
paper explores the effects of far-zone GWs on the pulsar
TOAs, and this is realistic as our GW sources are extra-
galactic while the pulsars exist within our Galaxy.

A. Timing residual expressions at the dominant
quadrupolar order

When a GW signal passes across the line of sight
between a pulsar and the observer along a direction n̂, it
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perturbs the underlying space-time metric. This induces
temporally evolving changes in the measured pulsar rota-
tional frequency ν [48]

ΔνðtEÞ
ν

≡ zGWðtEÞ ¼ hðtEÞ − hðtPÞ; ð1Þ

where h stands for the dimensionless GW strain, tE and tP
denote, respectively, the instances when a GW passes the
solar system barycenter (SSB) and the pulsar, and the
rotational frequency ν is measured in the SSB frame.
These two time instances differ by the usual geometric
delay such that

tP ¼ tE −
DP

c
ð1þ n̂ · p̂Þ ¼ tE −

DP

c
ð1 − cos μÞ; ð2Þ

where DP is the distance to the pulsar while p̂ specifies its
direction with respect to the SSB, and μ provides the angle
between n̂ and p̂. Influenced by Ref. [49], the GW strain h
can be written in terms of the two GW polarization states
hþ;× as

hðtÞ ¼ ½Fþ F× �
�
cos 2ψ − sin 2ψ

sin 2ψ cos 2ψ

��
hþðtÞ
h×ðtÞ

�
; ð3Þ

where Fþ;× are the antenna pattern functions that depend
on the sky locations of the pulsar and the GW source, and ψ
is the polarization angle of the GW. The explicit expres-
sions for Fþ;× involve angles that specify the directions n̂

and p̂ [namely, the right ascension (RA) and declination
(DEC) of the GW source and the pulsar], and are available
in Ref. [50].
The temporally evolving GW-induced redshift causes

differences between the expected and the observed TOAs
of pulses. This is given by

RðtEÞ ¼
Z

tE

0

zGWðt0Þdt0 ¼ sðtEÞ − sðtPÞ; ð4Þ

where sðtÞ is given by

sðtÞ ¼
Z

t

0

hðt0Þdt0 ¼ FþsþðtÞ þ F×s×ðtÞ; ð5Þ

and we have defined

sþ;×ðtÞ ¼
Z

t

0

hþ;×ðt0Þdt0: ð6Þ

This quantity RðtEÞ is usually referred to as the GW-
induced (prefit) pulsar timing residual or the PTA signal,
and is essentially prescribed by the values of sþ;× at the
SSB and the pulsar positions. It is customary to refer to
sðtEÞ and sðtPÞ as the Earth and pulsar terms, and sþ;× as
the plus/cross residuals, respectively.
The leading quadrupolar order hþ;× expressions for a

nonspinning eccentric binary, available in Ref. [45], read

hQþ ¼ GMη

DLc2
x

1

ð1 − χÞ2
�
−2ðc2i þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q
ξ sinð2ϕÞ þ ðc2i þ 1Þð2e2t − χ2 þ χ − 2Þ cosð2ϕÞ þ s2i ð1 − χÞχ

�
; ð7aÞ

hQ× ¼ GMη

DLc2
x

1

ð1 − χÞ2 2ci
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q
ξ cosð2ϕÞ þ ð2e2t − χ2 þ χ − 2Þ sinð2ϕÞ

�
; ð7bÞ

where ϕ denotes the angular coordinate in the orbital plane,
called the orbital phase [see Eqs. (9b) and (14) below for
the definition of ϕ for Newtonian and PN-accurate orbits]
while the superscript Q indicates the quadrupolar order
contributions to hþ;×. The total mass, symmetric mass ratio
and luminosity distance to the binary are represented by
M ¼ m1 þm2, η ¼ m1m2

M2 , and DL, respectively. Further, we
use shorthand notations to denote trigonometric functions
of the orbital inclination i, namely ci ¼ cos i and si ¼ sin i,
while χ ¼ et cos u and ξ ¼ et sin u, where u is the eccentric
anomaly. The orbital eccentricity is specified by et and it is

associated with the PN-accurate Kepler equation [41]. The
dimensionless PN parameter x ¼ ðGMn=c3Þ2=3 employs
the mean motion n associated with the Kepler equation,
which is related to the orbital period Pb by n ¼ 2π=Pb. In
addition, the polarization angle ψ present in Eq. (3)
provides a measure of the longitude of the ascending node
in the case of nonspinning binaries.
To obtain Eqs. (7), we begin from the quadrupolar order

hþ;× expressions that are valid for compact binaries in
noncircular orbits [42]

hQþðr;ϕ; _r; _ϕÞ ¼ −
GMη

DLc4

�
ð1þ c2i Þ

��
GM
r

þ r2 _ϕ2 − _r2
�
cos 2ϕþ 2r_r _ϕ sin 2ϕ

�
þ s2i

�
GM
r

− r2 _ϕ2 − _r2
��

; ð8aÞ

hQ×ðr;ϕ; _r; _ϕÞ ¼ −
GMη

DLc4
2ci

��
GM
r

þ r2 _ϕ2 − _r2
�
sin 2ϕ − 2r_r _ϕ cos 2ϕ

�
; ð8bÞ
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where r and ϕ provide the radial and angular coordinates
that specify the position of the reduced mass m1m2=M
around the total mass M in the center of mass frame of the
binary, while _r ¼ dr=dt and _ϕ ¼ dϕ=dt. We employ the
Keplerian parametric solution for eccentric orbits to pro-
vide parametric expressions for these dynamical variables.
The classical Keplerian parametric solution, neatly sum-
marized in Ref. [51], provides the following parametric
expressions for r and ϕ:

r ¼ að1 − e cos uÞ; ð9aÞ

ϕ − ϕ0 ¼ f; ð9bÞ

where a and e specify, respectively, the orbital semimajor
axis and the Newtonian orbital eccentricity such that
0 ≤ e < 1, while ϕ0 is some initial orbital phase. The true
anomaly f is related to the eccentric anomaly u by the
relation

f ¼ 2 arctan

��
1þ e
1 − e

�
1=2

tan
u
2

�
: ð10Þ

This approach provides temporal evolution for r and ϕ in a
semianalytic manner as u is related to the coordinate time t
by the transcendental Kepler equation [51]

l≡ nðt − t0Þ ¼ u − e sin u; ð11Þ

where l is called the mean anomaly and t0 denotes the
epoch of periapsis passage.
With the help of the such a parametric solution, it is fairly

easy to obtain expressions for r, _r, and _ϕ in terms of u, e
and x. This essentially leads to Eqs. (7) from Eqs. (8) for
hQþ;×. Note that we need an accurate and efficient method to
tackle the above transcendental Eq. (11) to obtain the actual
temporal evolution for the two polarization states. We note
in passing that Eqs. (7) and (8) are also invoked to obtain
inspiral templates for stellar mass compact binaries in
eccentric binaries [52,53].
In the next subsection, we summarize our approach to

provide fully 3PN-accurate temporal evolution for our hQþ;×

expressions.

B. Accurate description for the evolution
of nonspinning BH binaries inspiraling

along precessing eccentric orbits

We begin by outlining our approach to describe the
orbital evolution of nonspinning BH binaries inspiraling
along 3PN-accurate quasi-Keplerian eccentric orbits. This
prescription is crucial to specify how the angular variables
(ϕ; u) and the orbital elements (n; et) vary in time while
computing RðtÞ as evident from Eqs. (7). First, we adapt
the GW phasing formalism, detailed in Refs. [42,43], for

computing temporally evolving hþ;×ðtÞ. This approach
involves splitting the orbital dynamics of compact binaries
into certain conservative and reactive parts. In the PN
terminology, the conservative dynamics usually provides
PN corrections that are even powers of (v=c), while reactive
dynamics involves odd powers of (v=c) beginning with
Oððv=cÞ5Þ contributions. Such a split is justified as the
reactive effects due to GW emission first enter the orbital
dynamics only at the ðv=cÞ5 (2.5PN) order and act in
timescales much longer than the orbital period when the
binary is not close to its merger. This split also allows us to
employ a PN-accurate Keplerian-type parametric solution
for describing the 3PN-accurate conservative orbital
dynamics, detailed in Ref. [41]. Extending Eq. (9b) to
3PN order, we write the 3PN-accurate orbital phase as

ϕ − ϕ0 ¼ ð1þ kÞlþWðuðlÞ; n; etÞ; ð12Þ

where the angular variable WðuÞ is 2π periodic in u, and k
represents the advance of periapsis per orbit [42,43]. We do
not display here the explicit 3PN-accurate expressions for k
and WðuÞ in terms of n, et, M, and η. However, these
expressions in the modified harmonic gauge are available
as Eqs. (11b) and (25a–25h) in Ref. [43]. Clearly, we need
to specify how u varies with time to obtain 3PN-accurate
temporal orbital phase evolution. The following 3PN-
accurate Kepler Equation, which extends Eq. (11), provides
the required ingredient

l ¼ u − et sin uþFtðuÞ; ð13Þ

where the explicit 3PN-accurate expression for FtðuÞ in
terms of u, n, et,M, and η is given by Eq. (27) in Ref. [43].
It is helpful to solve the above equation by invoking an
improved version of Mikkola’s method to obtain 3PN-
accurate temporal phase evolution [52]. Recall that
Mikkola’s method provides the most accurate and efficient
method to solve the classical Kepler Equation and deter-
mine uðlÞ [54]. For the present effort, it is rather convenient
to rewrite the above expression for the orbital phase as

ϕ ¼ lþ γ þ ð1þ kÞðf − lÞ þFϕðuÞ; ð14Þ

where γ − γ0 ¼ knðt − t0Þ tracks the evolution of the
periapsis, and the true anomaly f is given by

f ¼ 2 arctan

��
1þ eϕ
1 − eϕ

�
1=2

tan
u
2

�
; ð15Þ

where eϕ is some angular eccentricity such that 0 ≤ eϕ < 1.
The explicit 3PN-accurate expression for eϕ in terms of et,
n, M and η is available in Ref. [42]. We note that the
angular variable γ is not identical to the argument of
periapsis ω, usually defined for Keplerian orbits as
ϕ − ω ¼ f. This angular variable is termed as the angle
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of periapsis and evolves as γ − γ0 ¼ knðt − t0Þ for
conservative PN orbits. Further, the definition of the mean
anomaly l, namely l ¼ nðt − t0Þ, ensures that both l and γ
are linear-in-time varying angular variables. Note that the
use of Eqs. (13) and (14) in our expressions for hQþ;×, given
by Eqs. (7), leads to an essentially analytic way for
modeling temporally evolving quadrupolar GW polariza-
tion states. The resulting waveforms are displayed as the
dashed line plots in Fig. 1 and we clearly see the periapsis
advance-induced amplitude modulations in moderate to
high eccentricity plots. It is important to note that these
dashed line plots provide hQþ;× associated with compact
binaries moving in conservative 3PN-accurate precessing
eccentric orbits.
Clearly, we need a prescription to include the effects of

GW emission to model hþ;×ðtÞ for compact binaries

inspiraling along PN-accurate eccentric orbits. This is
pursued by adapting the GW phasing formalism of
Refs. [42,43]. This formalism demonstrated that GW
emission forces n and et to change with time and it is
possible to split their temporal evolution into two parts
[42]. The first part leads to the secular or orbital-averaged
evolution equations for n and et which ensure that both n
and et can change substantially over the gravitational
radiation reaction timescale. The second part essentially
provides periodic variations to n and et in the orbital
timescale, which remain tiny during the early inspiral phase
of compact binary evolution [42]. Therefore, we ignore
such periodic variations to n and et for the present
investigation as our focus is indeed on the early part of
the BH binary inspiral. The secular evolution of n and et
ensures that l and γ no longer follow linear-in-time
variations as noted earlier. With the inclusion of gravitation

FIG. 1. Temporally evolving hQþ;×, namely quadrupolar order GW polarization states, associated with massive BH binaries in 3PN-
accurate eccentric orbits. The solid line plots incorporate the effects of GW emission that enter the binary BH dynamics at the 2.5PN
order and we ignore the effects of gravitational radiation reaction in the dashed line plots. We let M ¼ 109M⊙, η ¼ 0.25, DL ¼ 1 Gpc,
Pb ¼ 1.5 years, i ¼ 0 and ψ ¼ 0 while selecting three et values (the listed et values provide orbital eccentricities at tE ¼ 0 epoch in all
our figures). The periapsis advance-induced amplitude modulations are clearly visible in the plots for moderately high to high eccentric
binaries while GW emission-induced chirping is apparent in the e ¼ 0.8 plots.
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radiation reaction effects, the explicit temporal evolution
for l and γ becomes

l − l0 ¼
Z

t

t0

nðt0Þ dt0; ð16aÞ

γ − γ0 ¼
Z

t

t0

kðt0Þnðt0Þ dt0; ð16bÞ

where we have ignored orbital timescale variations in these
angular variables [42]. These considerations imply that the
GW phasing formalism provides a set of coupled differ-
ential equations for n, et, γ, and l. The resulting set of four
coupled ordinary differential equations (ODEs) that incor-
porate secular effects of quadrupolar order GW emission
read [42],

dn
dt

¼ 1

5

�
GMchn
c3

�5
3

n2
ð96þ 292e2t þ 37e4t Þ

ð1 − e2t Þ7=2
; ð17aÞ

det
dt

¼ −1
15

�
GMchn
c3

�5
3

net
ð304þ 121e2t Þ
ð1 − e2t Þ5=2

; ð17bÞ

dγ
dt

¼ kn; ð17cÞ

dl
dt

¼ n; ð17dÞ

where Mch ¼ η3=5M is the chirp mass of the binary. Note
that we are required to solve the above set of four differ-
ential equations along with 3PN-accurate expressions for u
and ϕ, given by Eqs. (13) and (14) to describe the orbital
phase evolution of compact binaries inspiraling along 3PN-
accurate eccentric orbits. In the next subsection, we develop
a method to tackle these coupled differential equations in an
essentially semianalytic way.

C. Semianalytic description for nðtÞ,
etðtÞ, γðtÞ, and lðtÞ

We begin by describing our computationally efficient
way to obtain nðtÞ and etðtÞ, influenced by Refs. [42,44].
Our approach involves deriving certain analytic expres-
sions for nðetÞ and tðetÞ and appropriately treating them
numerically to obtain an accurate and efficient way to track
the temporal evolution in nðtÞ and etðtÞ. To obtain an
analytic expression for nðetÞ, we divide Eq. (17a) by
Eq. (17b), and this leads to

dn
det

¼ −3
n
et

1

ð1 − e2t Þ
ð96þ 292e2t þ 37e4t Þ

ð304þ 121e2t Þ
: ð18Þ

It is easy to integrate the above equation to obtain

nðetÞ ¼ n0

�
et0
et

�18
19

�
1 − e2t
1 − e2t0

�3
2

�
304þ 121e2t0
304þ 121e2t

�1305
2299

; ð19Þ

where n0 and et0 are the values of n and et at some initial
epoch t ¼ t0 [42]. Unfortunately, it is not easy to obtain
such a compact expression for etðtÞ. To obtain an equation
that can be analytically tackled, we substitute the above
equation for nðetÞ in Eq. (17b). The resulting equation may
be written as

det
dt

¼ −κ
ð1 − e2t Þ3=2

e29=19t ð121e2t þ 304Þ1181=2299
; ð20aÞ

where

κ ¼ 1

15

�
GMchn0

c3

�5
3 n0e

48
19

t0ð121e2t0 þ 304Þ34802299

ð1 − e2t0Þ4
: ð20bÞ

Note that the coefficient κ is only a function of certain
intrinsic binary BH parameters like the chirp mass, initial
values of the mean motion and orbital eccentricity. Further,
it is not difficult to infer that κ has the dimensions of
frequency and is nonzero for eccentric binaries. These
considerations influenced us to introduce a dimensionless
temporal parameter τ such that τ ¼ τ0 − κðt − t0Þ, and
Eq. (20a) in terms of τ becomes

det
dτ

¼ ð1 − e2t Þ3=2
e29=19t ð121e2t þ 304Þ1181=2299

; ð21Þ

and we will clarify the significance of the constant τ0 later.
Interestingly, this equation does not contain any intrinsic
(and constant) binary BH parameters. In other words, the
above equation is valid for all eccentric compact binaries
while restricting the GW emission effects to the leading
quadrupolar order. It turns out that it is possible to obtain
an analytical solution for Eq. (21), as noted in Ref. [44], and
it reads

τðeÞ ¼ e
48
19

768
FA1

�
24

19
;
−1181
2299

;
3

2
;
43

19
;
−121e2

304
; e2

�
; ð22Þ

where FA1 represents Appell’s 2D hypergeometric function
[55], and we have chosen the initial condition τð0Þ ¼ 0 so
that the constant of integration vanishes. It is indeed
computationally very expensive to invert the above expres-
sion to get etðτÞ, mainly due to the difficulty in computing
FA1 numerically. Therefore, we precompute etðτÞ at a
sufficiently dense set of points and interpolate between
those points to get etðτÞ for arbitrary values of τ. Such a
look-up table of etðτÞ may be obtained either by numeri-
cally solving Eq. (21) or by inverting Eq. (22). The
resulting etðτÞ plot is displayed in Fig. 2 and it is important
to note that GWemission forces et to advance from right to
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left in our etðτÞ plot. This is essentially due to the way τ is
related to the coordinate time t, namely τ ¼ τ0 − κðt − t0Þ.
We have verified that our etðτÞ evolution is consistent with
Eq. (51) of Ref. [44].
We note here that the frequency n → ∞ as et → 0 as

evident from Eq. (19) and it influenced us to define certain
merger time in our 2.5PN approximation as the instant
when et → 0. We are now in a position to explain the
meaning of τ0 and, for this purpose, we define certain
dimensionless merger time by invoking the initial condition
τð0Þ ¼ 0. This allows us to specify the above undetermined
constant as τ0 ¼ τðet0Þ, where τðetÞ is given by Eq. (22).
We identify τ0 as certain dimensionless merger time
because it is possible to compute certain “Newtonian”
merger time for compact binaries with its help. The relevant
expression for such a merger time is given by

t2.5PNmerg ¼ τ0
κ
; ð23Þ

and we have verified that this expression, in the small
eccentricity limit, is indeed consistent with Eq. (50) of
Ref. [56]. Recall that Ref. [56] computed the “Newtonian
merger time” for compact binaries that incorporates the
leading order eccentricity contributions as

lim
e0→0

t2.5PNmerg ∼
5

n0

�
GMchn0

c3

�
−5
3

�
1

256
−
157e20
11008

�
: ð24Þ

Additionally, we have computed an equivalent expression
for such a merger time in the Appendix B while clarifying
our way to treat the κ → 0 scenario.
Note that as a binary BH approaches the τ ¼ 0 epoch, its

orbital dynamics becomes more relativistic and this even-
tually leads to the breakdown of the present quadrupolar

(or 2.5PN) order description of the binary BH reactive
dynamics. Therefore, our prescription should only be used
for an observational duration t − t0 which is substantially
smaller than t2.5PNmerge . It turns out that our fully 3PN-accurate
orbital description that incorporates the effects of quadru-
polar order GW emission is quite appropriate while dealing
with the expected isolated SMBH binary PTA sources.
We now turn our attention to the evolution equations

for γ and l, given by Eqs. (17c) and (17d). The plan is to
express both n and kn in terms of et, n0 and e0 with the help
of our nðetÞ expression. Further, we employ our τ variable
rather than its coordinate time (t) counterpart. This leads to

dl
dτ

¼ −α
ð1 − e2t Þ32

e
18
19
t ð304þ 121e2t Þ13052299

; ð25aÞ

dγ
dτ

¼ −β
ð1 − e2t Þ32

e
30
19
t ð304þ 121e2t Þ21752299

; ð25bÞ

where the dimensionless coefficients α and β are given by

α ¼
�
GMchn0

c3

�
−5
3 15ð1 − e2t0Þ5=2
e
30
19

t0ð121e2t0 þ 304Þ21752299

; ð26aÞ

β¼
�
GMchn0

c3

�
−5
3

�
GMn0
c3

�2
3 45ð1−e2t0Þ3=2
e
18
19

t0ð121e2t0þ304Þ13052299

: ð26bÞ

It should be noted that we have only used the dominant
order contributions to k, namely k ¼ 3x=ð1 − e2t Þ, while
obtaining the above equation for dγ=dt. Its 3PN extension
is provided in Appendix A.
The next step is to obtain differential equations for l and

γ that are independent of binary BH intrinsic (and constant)
parameters. To this end, we define two scaled and shifted
variables l̄ ¼ L0 − l=α and γ̄ ¼ Γ0 − γ=β. Invoking
Eqs. (25a) and (25b), it is fairly straightforward to obtain
the following differential equations for l̄ and γ̄

dl̄
dτ

¼ ð1 − e2t Þ32
e
18
19
t ð304þ 121e2t Þ13052299

; ð27aÞ

dγ̄
dτ

¼ ð1 − e2t Þ32
e
30
19
t ð304þ 121e2t Þ21752299

; ð27bÞ

with the following initial conditions lðτ0Þ ¼ l0 and
γðτ0Þ ¼ γ0. These initial conditions imply that the shifts
L0 and Γ0 are given by

L0 ¼ l̄ðτ0Þ þ
l0
α
; ð28aÞ

Γ0 ¼ γ̄ðτ0Þ þ
γ0
β
: ð28bÞ

FIG. 2. Numerical solution of Eq. (21) that provides etðτÞ.
Note that the dimensionless temporal variable τ is defined as
τ≡ τ0 − κðt − t0Þ and this is why a compact binary evolves from
right to left along the τ axis. Let us emphasize that this curve
defines the orbital eccentricity evolution for all compact binaries
and the origin provides certain Newtonian merger epoch.
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The structure of the above two differential equations
support analytic solutions if we compute the dl̄=det and
dγ̄=det versions of Eqs. (27a) and (27b) with the help of
Eq. (21) for det=dτ. This results in

dl̄
det

¼ e11=19t

ð121e2t þ 304Þ124=2299 ; ð29aÞ

dγ̄
det

¼ e−1=19t

ð121e2t þ 304Þ994=2299 : ð29bÞ

The fact that the rhs of these equations depend only on et
allows us to obtain the following expressions for l̄ and γ̄:

l̄ðetÞ ¼
19

2175
2299

30 × 2
496
2299

e
30
19
t 2F1

�
124

2299
;
15

19
;
34

19
;
−121e2t
304

�
; ð30aÞ

γ̄ðetÞ ¼
19

1305
2299

36 × 2
1677
2299

e
18
19
t 2F1

�
994

2299
;
9

19
;
28

19
;
−121e2t
304

�
; ð30bÞ

where 2F1 is the Gaussian hypergeometric function, and we
have verified that the above expression for l̄ is consistent
with Eq. (52) of Ref. [44]. In Fig. 3, we plot these variables
against et and find the expected sharp rise in l̄ for higher
orbital eccentricities. It is important to note that these plots
are independent of the intrinsic (and constant) binary BH
parameters like the total mass, mass ratio, and initial orbital
eccentricity and period.
To obtain the actual temporal evolution for the above set

of variables, namely n, et, l and γ, we proceed as follows.
First, we compute a look-up table for etðτÞ by solving
the differential equation for det=dτ as described earlier.
We emphasize here that this is a one-time computation
since the differential equation (21) does not contain any

system-dependent parameters, which implies that the look-
up table, once computed, may be saved and reused for later
computations. (Details of this computation are given in
subsection II C 1.) Thereafter, we determine nðτÞ, lðτÞ, and
γðτÞwith the help of Eqs. (19), (30a), and (30b) that involve
hypergeometric functions. Using the explicit expressions
for τ0, κ, α, and β and specific relations that connect τ to t, l̄
to l, and γ̄ to γ, it is straightforward to obtain binary BH
system-dependent temporal evolution for n, et, l, and γ in
terms of the regular coordinate time t. Let us emphasize that
these variable changes are easy to implement as they
essentially involve analytic expressions. To ascertain the
accuracy of this procedure, we compared nðtÞ, etðtÞ, γðtÞ
and lðtÞ computed using this method to results obtained by
numerically solving the system of ODEs (17) for different
initial conditions, masses and mass ratios. We find that the
results agree up to the numerical precision of the ODE
solver as expected.
The variables u and ϕ which appear in the waveform (7)

may be computed using Eqs. (13)–(14). Finally, the PTA
signal RðtÞ can be computed by numerically integrating
the waveform as given by Eqs. (3)–(6). We are forced to
perform this integral numerically owing to the fact that the
waveform (7) is a function of u and ϕ which are not simple
functions of the coordinate time.

1. Computation of etðτÞ
Clearly, an accurate and efficient prescription to obtain

etðτÞ is crucial for describing the temporal evolution of
(n, et, γ, l) in terms of the coordinate time t. The fact that an
explicit expression is available only for τðetÞ and not for
etðτÞ forced us to obtain etðτÞ either by numerically
integrating Eq. (21) or by numerically inverting the analytic
expression for τðetÞ given by Eq. (22). However, we
pursued the relatively computationally inexpensive
approach of computing a look-up table for etðτÞ at a
sufficiently dense sample of τ values for one time.
Thereafter, we obtain values of etðτÞ at arbitrary τ values
by interpolating between the precomputed values and this is
heavily influenced by the universal nature of Eq. (21). In
practice, we solve Eq. (21) using an adaptive ODE solver,
which adjusts the step size to ensure an optimal accuracy of
the solution while constructing the look-up table. This is
important as the curvature of the function etðτÞ is highly
variable, as evident from Fig. (2). Therefore, the look-up
table must be computed at a nonuniform sample of points
such that the regions of high curvature are sampled at
sufficiently high density for ensuring high accuracy.
This approach poses a new challenge since our det=dτ

equation diverges at et ¼ 0 as evident from Eq. (21). This
implies that the numerical integration cannot start with the
expected initial condition, namely etð0Þ ¼ 0. We avoid this
issue by starting the numerical integration at a small
nonzero value of τ, say certain τmin. To compute such an
initial condition etðτminÞ, we explore the asymptotic

FIG. 3. The nonlinear variation of our two scaled angular
variables l̄ and γ̄ as function of et. The use of these variables
ensures that such variations are system independent at the
quadrupolar order GW emission.
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ðτ; etÞ → ð0; 0Þ behavior of Eq. (21). In this limit, Eq. (21)
becomes

lim
τ;et→0

det
dτ

∼
1

304
1181
2299e

29
19
t

; ð31Þ

where we have expanded the rhs of Eq. (21) to the leading
order contributions in et. This equation can be integrated to
obtain

lim
τ→0

etðτÞ ∼
2559=726319=48

19145=242
τ19=48: ð32Þ

Therefore, the new initial condition becomes

et;min ¼
2559=726319=48

19145=242
τ19=48min ; ð33Þ

for some sufficiently small τmin. The look-up table for τðeÞ
can now be computed by integrating Eq. (21) from τmin to
some τmax such that it covers all eccentricity values of
interest.
It is also possible to provide an estimate for τmax where

we can stop the numerical integration. Using the fact that
limτ→∞et ¼ 1, we write Eq. (21) in the τ → ∞ limit as

lim
τ→∞

dϵ
dτ

∼
2

ffiffiffi
2

p
ϵ3=2

5 563=2299171181=2299
; ð34Þ

where we have substituted ϵ ¼ 1 − et in Eq. (21) and
expanded the rhs of the resulting equation to the leading
order in ϵ. This equation can be solved fairly easily to
obtain

lim
τ→∞

et ∼ 1 −
4

ðaτ þ bÞ2 ; ð35Þ

where we have defined the coefficient

a ¼ 2
ffiffiffi
2

p

5 × 563=2299171181=2299
: ð36Þ

In contrast, the coefficient bmay be computed by imposing
the initial condition etðτmaxÞ ¼ et;max to be

b ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − et;max

p − aτmax: ð37Þ

In our approach, we provide these limits to obtain an
accurate and efficient prescription to evaluate etðτÞ.
We are now in a position to obtain the PTA signals due

to massive BH binaries inspiraling along 3PN-accurate
eccentric orbits, and this is what we explore in the next
subsection.

D. Pictorial exploration of RðtÞ due to BH binaries
in relativistic eccentric orbits

We begin by displaying temporally evolving quadrupolar
order hQþ;×ðtÞ, specified by Eqs. (7), while employing our
semianalytic prescription for evolving n, et, γ, and l in
Fig. 1. It should be noted that our explicit expressions for
hQþ;× involve u and, therefore, we additionally need to invert
the 3PN-accurate Kepler Equation, given by Eq. (13), at
every l value to obtain the temporal evolution of our
dominant order GW polarization states. The treatment of
PN-accurate Kepler Equation, as noted earlier, is performed
by adapting and extending the Mikkola’s method [54,57].
The resulting hþ;×ðtÞ associated with massive BH binaries
inspiraling along fully 3PN-accurate eccentric orbits are
displayed in Fig. 1, and are labelled “Conservativeþ
Reactive”. The effects of GW emission are clearly visible
in e ¼ 0.8 plots and it causes certain waveform dephasing
while comparing with plots that do not include the effects
of GW emission. Let us emphasize that our semianalytic
approach is capable of treating orbital eccentricities that are
≤ 1 as we explicitly employ the eccentric anomaly u to
trace the PN-accurate eccentric orbit.
We now have all the ingredients to obtain ready-to-use

PTA signals associated with nonspinning SMBH binaries
inspiraling along PN-accurate eccentric orbits. As mentioned
earlier, the fact that hQþ;× expressions given by Eqs. (7)
explicitly contain u and ϕ prevents us from evaluating
analytically the integrals that appear in the expression for
RðtÞ as evident from Eqs. (4)–(6). Therefore, we employ an
adaptive numerical integration routine, namely the QAG

routine [58] to evaluate Eqs. (4)–(6) while computing pulsar
timing residuals. We first provide a pictorial depiction of
RðtÞ and explain its various features with the help of þ=×
residual plots.
We display in Fig. 4 PTA signals induced on PSR J0437–

4715 by a fiducial equal mass BH binary having M ¼
109 M⊙ with face-on orbit (i ¼ 0) at a luminosity distance
of 1 Gpc, for three different eccentricities and two different
orbital periods. We let the sky location of the GW source to
be RA 08h00m00s, DEC −20°0000000, with ψ ¼ 0. Each
panel in Fig. 4 corresponds to a particular combination of
orbital eccentricity and orbital period at the tE ¼ 0 epoch.
Additionally, we choose two estimates for the pulsar
distance, namely 156.79 pc and 157.04 pc, which are
consistent with the 1σ uncertainty for its measurement,
available in Ref. [59]. These choices lead to two plots each
in six panels of Fig. 4. Amplitude modulations, visible in
the moderate to high eccentricity cases for Pb ¼ 1.5 yrs,
are due to the fact that the pulsar term contributions can
have substantially different orbital eccentricity and period
for such high eccentric systems. Interestingly, temporal
evolution of RðtÞ is pulsar distance-dependent especially
for the lower and moderate e values as evident from the first
two panels for Pb ¼ 1.5 yrs. Prominent dephasing in the
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Pb ¼ 1.5 yrs case may be due to the fact that the change in
pulsar distance is roughly equivalent to half of the orbital
period. Such changes in the RðtÞ evolution are less
pronounced for the high e case as the underlying frequen-
cies of the Earth and pulsar terms are significantly different.
In contrast, such strong dependence of RðtÞ on the pulsar
distance is not observed in the Pb ¼ 5 yrs case due to the
fact that the pulsar distance difference is not tuned to the
orbital period. Interestingly, the epochs of the sharp
features, visible in Fig. 4, are very sensitive to the pulsar
distance in the Pb ¼ 1.5 yrs case, and its implications are
being investigated.
To get a pulsar-independent view of these timing

residuals, we plot in Fig. 5 the associated þ=× residuals

while separating the Earth and the Pulsar term contribu-
tions using identical parameters to Fig. 4, with Pb ¼
5 yrs. These plots confirm our earlier statement that the
pulsar term, which provides a snapshot of the orbital
configuration of our GW source at an earlier epoch,
can have substantially different orbital eccentricity and
period, especially for highly eccentric BH binaries. It is
clearly the mixing of the two contributions with very
different evolution timescales that produces various fea-
tures present in our RðtÞ plots.
We now proceed to display the quadrupolar nature of our

PTA signal in Fig. 6. Specifically, we plot certain strength
of the Earth term as a function of the sky location of the
pulsar for a given GW source. This strength of the Earth

FIG. 4. PTA signals induced on PSR J0437–4715 by a fiducial massive BH binary at 1 Gpc away with two different Pb values and
three et values at tE ¼ 0 epoch. The location of this pulsar is given by RA 04h37m16s, DEC −47°1500900 and is at a distance of 156.79 pc
[59]. The sky location of the binary is arbitrarily chosen to be RA 08h00m00s, DEC −20°0000000 and other binary parameters are the
same as in Fig. 5. The dashed plots correspond to a pulsar distance of 157.04 pc, which is off from the measured distance by its 1σ
uncertainty [59]. It is very clear that the features of RðtÞ for Pb ¼ 1.5 yrs are very sensitive to the pulsar distance, especially for low and
moderate eccentricities. This may be attributed to the frequencies of the Earth and pulsar terms being similar for low and moderate
eccentricities and the pulsar distance difference being roughly equivalent to half the orbital period. In contrast, the features of the
Pb ¼ 5 yrs case are much less sensitive to the pulsar distance as the pulsar distance difference is not tuned to the orbital period.
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term is defined as the difference between the maximum
and minimum of sðtEÞ within a given time span. The top
and bottom panels show such sðtEÞ strength for ψ ¼ 0 and
ψ ¼ 45° values, respectively. For these plots, we let the
orbital eccentricity of the GW source to be 0.5 and the all
other parameters are same as in Fig. 4 and Fig. 5. Our
plots clearly show the quadrupolar pattern of the expected
PTA signal, and the comparison between the top and
bottom panels reveals the 45° rotation that is expected
from the ψ values. Additionally, these plots essentially
confirm that we are employing appropriate expressions
for F× and Fþ.
We now turn our attention towards the numerical costs of

our approach to obtain the temporal evolution of n, et, γ,
and l as well as the computation of the PTA signal RðtÞ, and
this is what we explore in the next subsection.

E. The cost of computing the orbital evolution
and the PTA signal

We begin by comparing the computational cost of our
semianalytic approach against numerically solving
Eqs. (17) to obtain the orbital evolution. Excluding the
one-time cost of computing the look-up table for eðτÞ, the
execution time texec taken to compute the state of the orbit
ðn; et; γ; lÞ at a given set of TOAs should depend on the
number of TOAs (NTOA) as well as their total observation
span/integration span (specified by some t0 and t1). This is
illustrated in the top panel of Fig. 7 where we plot the
execution time per TOA (texec=NTOA) required to compute
our variables ðn; e; γ; lÞ as a function of NTOA for different
integration spans (t1 − t0) in our semianalytic approach.
This panel shows that the computational time required for
evaluating ðn; e; γ; lÞ at a given TOA is independent of both

FIG. 5. Plots of sþ;×ðtÞ, namely the plus/cross residuals, for a 1 Gpc away equal mass binary BH having different orbital eccentricities
at the initial Earth epoch while all other binary parameters are similar to those in Fig. 1 with Pb ¼ 1.5 yrs at tE ¼ 0. We plot both the
Earth and the Pulsar term contributions while assuming a geometric delay of 1000 years between these two locations. The GWemission
ensures that fiducial pulsar contributions to sþ;×ðtÞ have higher orbital eccentricities and periods. This is very prominent for the large
initial eccentricity (e ¼ 0.8) binary BH configuration.
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the integration span as well as the number of TOAs when
the number of TOAs is sufficiently large. This impressive
feature may be contrasted with the fact that the execution
time, when TOA numbers are small, is dominated by the
one-time evaluation of various coefficients like κ, α and β.
The bottom panel of Fig. 7 compares the performance

gain of our semianalytic method with respect to the usual
approach of solving numerically Eqs. (17) by employing
the ratio of execution times (texecnum=texecanl ). The associated
plots reveal that this ratio increases substantially as one
increases the integration span, especially for low NTOA
values. However, the ratio eventually decreases and essen-
tially converges to a value close to 5 when NTOA is a large
number. This behavior is expected, since a numerical ODE
solver is required to compute the right hand side of
Eqs. (17) at many points between the TOAs where the
solutions are required while evolving the binary over time.
In contrast, our semianalytic approach only computes the
solutions at the required TOAs. However, as the number of
TOAs within an integration span increases, the number
of intermediate points required by the numerical solver
decreases too. This leads to the behavior displayed in the
bottom panel of Fig. 7, and we infer that the semianalytic
solution usually outperforms the numerical one.

Figure 8 shows the time taken to compute the PTA signal
RðtÞ per TOA (texecsignal=NTOA) as a function of NTOA for
different integration spans. Once again, we see that the
execution time is dominated by the one-time computations
when NTOA is small, but is independent of NTOA when
NTOA is large. A comparison of Fig. 8 with the top panel of
Fig. 7 reveals that the execution time of computing RðtÞ is
dominated by the cost of numerically integrating hðtÞ to
get RðtÞ.
Clearly, it is desirable to provide appropriate checks to

verify the correctness of our detailed prescription for
computing pulsar timing residuals, induced by relativistic
eccentric binaries as it involves many numerical ingredients
and detailed and lengthy analytic expressions. This is
pursued in the next section where we provide a fully analytic
way to computeþ=× residuals for nonspinning BH binaries
moving in PN-accurate moderately eccentric orbits.

FIG. 6. Graphical display of the “strength” of the Earth term
sðtEÞ as a function of pulsar’s sky location. The two panels are
for two specific values of the GW polarization angle and
the rest of the parameters are identical to those employed in
Fig. 4 with Pb ¼ 1.5 yrs at tE ¼ 0. In these plots, the red dot
represents the sky location of the GW source and the expected
quadrupolar pattern is clearly visible. We rotate the bottom
panel plot by 45° with respect to the top panel plot in
accordance with the ψ values used.

FIG. 7. Plots that compare execution times associated with
the evolution of an eccentric binary using two approaches. The
numerical approach (num) solves the set of four differential
equations, given by Eqs. (17), by employing the gsl_odeiv2_
step_rkf45 adaptive integration method of the GNU Scientific
Library (GSL). The special functions, required by our analytic
approach, are also evaluated with the help of GSL. We consider
equal mass BH binaries with M ¼ 109 M⊙, Pb0 ¼ 1.5 years,
et0 ¼ 0.5, and let l0 ¼ γ0 ¼ 0. These computations were per-
formed in C++ in an Intel Core i7 machine using a single core.
These plots reveal that our semianalytic approach is more
efficient that the regular numerical approach.
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III. FULLY ANALYTIC + =× RESIDUALS
FOR BINARIES IN POST-KEPLERIAN

SMALL-ECCENTRICITY ORBITS

This section provides a fully analytic way of computing
pulsar timing residuals due to BH binaries moving in
quasi-Keplerian orbits of moderate eccentricities. This effort
invokes explicit analytic expressions for hQþ;×ðtÞ that are
associated with nonspinning compact binaries moving in
conservative 3PN-accurate small eccentricity orbits, derived
in Ref. [45]. The main motivation, as noted earlier, is to
provide a powerful check on the results, originating from our
semianalytic approach, for computing sþ;×ðtÞ associated
with quasi-Keplerian orbits of arbitrary eccentricities. The
present section is also influenced by Ref. [47] that provided
explicit analytic expressions for the quadrupolar order þ, ×
residuals from BH binaries in Newtonian eccentric orbits.
The effort, detailed in Ref. [47], employs various results

from the Fourier analysis of the classical Kepler equation in
terms of the Bessel functions, available in Ref. [60] and
apply them in the quadrupolar order hQþ;× expressions, given
by Eqs. (7) [61]. The resulting fully analytic Newtonian GW
polarization states may be symbolically written as [47]

hþðtÞ ¼
X∞
p¼0

ðaþp cos ðplÞ cos ð2ωÞ

þ bþp sin ðplÞ sin ð2ωÞ þ cþp cos ðplÞÞ; ð38aÞ

h×ðtÞ ¼
X∞
p¼0

ða×p cos ðplÞ sin ð2ωÞ

þ b×p sin ðplÞ cos ð2ωÞÞ; ð38bÞ
where the coefficients aþ;×

p , bþ;×
p and cþp contain trigono-

metric functions of the orbital inclination i, while the orbital

eccentricity et enters in terms of Bessel functions of the
first kind [62]. Recall that ω provides the argument of
periapsis, which remains a constant for Newtonian orbits.
This ensures that such Newtonian compact binaries emit
GWs at frequencies that are integer harmonics of n. It is also
possible to incorporate in an ad hoc manner the linear-in-
time evolution of ω to the above Newtonian order hþ;×

expressions [63,64]. Employing the above Newtonian order
expressions for the two GW polarizations states, Ref. [47]
computed analytically the þ=× residuals which may be
written symbolically as

sþðtÞ ¼
X∞
p¼0

1

np
ðaþp sin ðplÞ cos ð2ωÞ

− bþp cos ðplÞ sin ð2ωÞ þ cþp sin ðplÞÞ; ð39aÞ

s×ðtÞ ¼
X∞
p¼0

1

np
ða×p sin ðplÞ sin ð2ωÞ

− b×p cos ðplÞ cos ð2ωÞÞ: ð39bÞ
The explicit form of these coefficients may be easily
extracted with the help of Eqs. (21) and (22) of Ref. [47].
In what follows, we provide a fully post-Newtonian accurate
version of these results.
Recall that fully analytic hQþ;×ðlÞ expressions for com-

pact binaries moving in conservative 3PN-accurate quasi-
Keplerian small eccentric orbits were derived in Ref. [45].
This derivation employed Eqs. (7) for hQþ;× and an analytic
treatment of the PN-accurate Kepler equation. The detailed
analysis of Ref. [45] provided PN-accurate expressions for
both eccentric and true anomalies in terms of infinite series
expressions involving l and et. We write symbolically the
resulting quadrupolar order hþ;×ðlÞ expressions as

hþ;×ðtÞ ¼
X∞
p¼0

X∞
q¼0

faþ;×
p;q cos ðplÞ cos ðqλÞ

þ bþ;×
p;q sin ðplÞ cos ðqλÞ

þ cþ;×
p;q cos ðplÞ sin ðqλÞ

þ dþ;×
p;q sin ðplÞ sin ðqλÞg; ð40Þ

where we have defined λ ¼ lþ γ [45]. A straightforward
integration of the above expression leads to

sþ;×ðtÞ ¼
1

n

X∞
p;q¼0

0fAþ;×
p;q cos ðplÞ cos ðqλÞ

þ Bþ;×
p;q sin ðplÞ cos ðqλÞ

þ Cþ;×
p;q cos ðplÞ sin ðqλÞ

þDþ;×
p;q sin ðplÞ sin ðqλÞg; ð41Þ

where we have ignored the effects of GW emission while
performing various integrations. This is justified as the

FIG. 8. The execution time per TOA for computing RðtÞ. For
small NTOA the execution time is dominated by one-time
computations whereas for largeNTOA it is essentially independent
of NTOA. A comparison with the top panel of Fig. 7 also reveals
that the execution time is dominated by the numerical integration
of hðtÞ to compute RðtÞ.
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radiation reaction timescale is substantially larger than
the orbital and advance of periapsis timescales. Further,
the primed sum excludes the p ¼ q ¼ 0 term in the above
expressions. These multi-index A, B, C, D coefficients
involve x, η, trigonometric functions of i, and et contri-
butions via infinite series of Bessel functions. They may be
expressed as

Aþ;×
p;q ¼ −pbþ;×

p;q þ ð1þ kÞqcþ;×
p;q

p2 − ð1þ kÞ2q2 ; ð42aÞ

Bþ;×
p;q ¼ paþ;×

p;q þ ð1þ kÞqdþ;×
p;q

p2 − ð1þ kÞ2q2 ; ð42bÞ

Cþ;×
p;q ¼ −pdþ;×

p;q − ð1þ kÞqaþ;×
p;q

p2 − ð1þ kÞ2q2 ; ð42cÞ

Dþ;×
p;q ¼ pcþ;×

p;q − ð1þ kÞqbþ;×
p;q

p2 − ð1þ kÞ2q2 : ð42dÞ

Clearly, it is neither advisable nor feasible to evaluate
these coefficients for arbitrarily high p and q values to high
precision. This is because the underlying Bessel function

evaluations are computationally very expensive. However,
it is straightforward to obtain Taylor expansions of these
coefficients around et ¼ 0. The resulting expansions,
accurate up to some Oðemt Þ, ensure that the Fourier
coefficients beyond a certain pmax and qmax vanish for
any given m. This is essentially due to the following
property of the Bessel functions of the first kind

lim
x→0

JmðxÞ ∼OðxmÞ:

Unfortunately, both the Fourier series, given by Eqs. (42)
and the associated power series expansions for the involved
A, B, C, D coefficients converge slowly for moderately
large et values. This might signal the breaking down of the
approximation and may be associated with the celebrated
Laplace limit [65]. Detailed comparisons of various Bessel
function contributions, computed numerically and analyti-
cally, reveal that such an expansion accurate up to Oðe8t Þ
can be used to compute timing residuals for eccentricities
less than 0.3. In what follows, we display the explicit
expressions for the quadrupolar order hQþðlÞ that includes
all the eccentricity corrections up to Oðe4t Þ, and the
associated þ residual:

hQþ ¼ H0

��
ets2i −

1

8
e3t s2i

�
cosðlÞ þ

�
e2t s2i −

1

3
e4t s2i

�
cosð2lÞ

þ
�
−
1

8
23e4t c2i þ 5e2t c2i − 2c2i −

23e4t
8

þ 5e2t − 2

�
cosð2λÞ

þ
�
1

8
e4t c2i þ

e4t
8
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cosð4l − 2λÞ þ

�
−
1

4
81e4t c2i −

81e4t
4

�
cosð2λþ 4lÞ

þ
�
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16
e3t c2i −

9etc2i
2

þ 171e3t
16

−
9et
2

�
cosð2λþ lÞ þ

�
7

48
e3t c2i þ

7e3t
48

�
cosð3l − 2λÞ

þ
�
−

1

48
625e3t c2i −

625e3t
48

�
cosð2λþ 3lÞ þ ð20e4t c2i − 8e2t c2i þ 20e4t − 8e2t Þ cosð2λþ 2lÞ

þ
�
−

1

16
13e3t c2i þ

3etc2i
2

−
13e3t
16

þ 3et
2

�
cosðl − 2λÞ þ 9

8
e3t s2i cosð3lÞ þ

4

3
e4t s2i cosð4lÞ

�
; ð43aÞ

sQþ ¼ H0

n

��
ets2i −

1

8
e3t s2i

�
sinðlÞ þ

�
1

2
e2t s2i −

1

6
e4t s2i

�
sinð2lÞ

þ
�
−

1

16
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2
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23e4t
16
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16
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−
3et
2

�
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16
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þ 57e3t
16

−
3et
2

�
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�
1

16
e4t c2i þ

e4t
16

�
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�
−
1

8
27e4t c2i −

27e4t
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sinð2λþ 3lÞ
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where we have defined H0 ¼ GMη
DLc2

x. We note in passing

that we have explicitly computed the quadrupolar order
hþ;×ðlÞ and its temporally evolving þ=× residuals that
include all the Oðe8t Þ corrections. Additionally, these
expressions were employed while making comparisons
of our analytic and semianalytic approaches to compute
sþ;×ðtÞ, displayed in Fig. 9.
We are now in a position to use these expressions to

test our involved semianalytical approach to obtain þ=×
residuals valid for arbitrary eccentricities. In Fig. 9, we
overlay plots of sQþ;×ðtÞ that arise from the above mentioned
analytic approach and our semianalytic approach while
focusing only on the Earth term for three initial values of et.
Additionally, we let the orbital elements and angles vary
according to our improvised GW phasing approach,
detailed in Sec. II C, in both the approaches. We observe
excellent agreement between the two approaches for initial
et values up to 0.3 and it is difficult to distinguish the

dashed line plots in the first two panels. Therefore, these
plots give us the confidence about the correctness of our
semianalytic approach to obtain RðtÞ for BH binaries
inspiraling along relativistic eccentric orbits. However,
our analytic postcircular approach becomes progressively
worse for a larger initial e value as evident from the bottom
panel plots. We quantify the deviation between our semi-
analytic and fully analytic temporally evolving plus/cross
residuals with the help of the following normalized
integrated error defined as

εðe0Þ ¼
P

i½ðsnumþ ðtiÞ − sanlþ ðtiÞÞ2 þ ðsnum× ðtiÞ − sanl× ðtiÞÞ2�P
i½ðsnumþ ðtiÞÞ2 þ ðsnum× ðtiÞÞ2�

:

ð44Þ

In Fig. 10, we plot ε as a function of initial orbital
eccentricity for different combinations of Pb, M and η.
This plot reinforces our conclusion that our postcircular

FIG. 9. We overlay sþ;×ðtÞ plots for an equal mass binary with different eccentricities that arise from our fully analytic postcircular
approximation and the earlier described semianalytic approach. The binary parameters are the same as in Fig. 5 with Pb ¼ 1.5 yrs at
tE ¼ 0 and the postcircular approximation includes all terms accurate up to Oðe8t Þ. We observe that the quality of the postcircular
approximation degrades as the eccentricity increases, as expected.
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approximation shows good agreement with the numerical
approach for e < 0.3 values. The accuracy of the post-
circular approximation is also seen to degrade for shorter
orbital periods and for higher masses (i.e., more relativis-
tic). This behavior is reflective of the truncation error
arising from the analytic Fourier series solution for the 3PN
Kepler equation and it is discussed in detail in Ref. [45].
We note in passing that substantial differences between our
two approaches for higher e0 values may be related to the
Laplace limit associated with the analytic solution to the
classical Kepler equation.

IV. SUMMARY AND DISCUSSIONS

The present work provides a computationally efficient
way to compute pulsar timing residuals induced by GWs
from isolated massive BH binaries inspiraling along
general relativistic eccentric orbits. The use of an impro-
vised version of the GW phasing approach, detailed in
Refs. [42,43], and the PN-accurate quasi-Keplerian para-
metrization allowed us to model binary BH orbits that

inspiral due to the emission of quadrupolar GWs along
3PN-accurate eccentric orbits in an essentially analytic
manner. This leads to analytic solutions for the mean
motion n, mean anomaly l and the periapsis angle γ in
terms of PN-accurate time eccentricity et as well as system-
dependent constants and initial conditions. This is aug-
mented by using a computationally efficient way to obtain
certain scaled temporal evolution for et imposed by the
quadrupolar order GW emission. These inputs allowed us
to obtain the quadrupolar order temporally evolving GW
polarization states, the associated þ=× residuals and the
resulting pulsar timing residuals RðtÞ due to PN-accurate
eccentric inspirals in a computationally inexpensive way.
Additionally, we provided a fully analytic prescription to
compute analyticþ=× residuals due to BH binaries moving
in 3PN-accurate small eccentricity orbits. The excellent
agreement between these two approaches provided a power-
ful check for our very involved semianalytic approach,
appropriate for arbitrary orbital eccentricities.
We have implemented our prescription to compute

pulsar timing residuals induced by GWs from arbitrary

FIG. 10. The normalized integrated error in the postcircular approximation as a function of the initial eccentricity for different
combinations of Pb, M and η. Rest of the binary parameters are identical to those used in Fig. 9 and the normalized integrated error is
defined using Eq. (44). Clearly, the approximation gets progressively worse as we increase initial eccentricity values. In addition, the
accuracy of the approximation decreases with shorter orbital periods and with higher masses. However, the error is only weakly
dependent on the mass ratio.
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eccentricity BH binaries, developed in Sec. II, as well as our
fully analytic prescription to compute timing residuals for
low-eccentricity binaries developed in Sec. III, in a C++
package called GWecc [66]. We are working to integrate
these codes into the popular PTA-relevant packages like
TEMPO2 and Enterprise. This should allow us to constrain
the presence of isolated eccentric BH binaries in the
latest Parkes Pulsar Timing Array (PPTA) dataset [67].
Further, efforts are ongoing to tackle the IPTA DR2 and
Nanograv 12.5 year datasets by employing the present
prescription [68]. Clearly, it will be interesting to explore
the effects of higher order GW radiation reaction effects in
the equations for _n and _et. It is reasonable to expect that
such contributions will be more relevant for the pulsar
contributions to RðtÞ due to the lengthy temporal separation
between the Earth and the Pulsar epochs and this is currently
under investigation. Moreover, we are also pursuing detailed
investigations on the implementation of certain Generalized
Likelihood Ratio Tests for the PTA detection of eccentric
precessing BH binaries, influenced by Ref. [69].
It turns out that the spin-orbit coupling can influence

the nature of PTA signals from nonspinning massive BH
binaries as this contribution enters the dynamics at the
1.5PN order. Therefore, we are extending the present
approach by incorporating the spin effects, influenced by
Refs. [70,71]. This effort relies on the availability of a
Keplerian-type parametric solution for the dynamics of
compact binaries that incorporates the effects of dominant
order spin-orbit interactions [72].
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APPENDIX A: HIGHER ORDER PN
CORRECTIONS TO γðtÞ

This Appendix details our approach to integrate 3PN-
accurate expression for dγ=dt which may be written
symbolically as

dγ
dt

¼ ðk1 þ k2 þ k3Þn: ðA1Þ

Recall that we have tackled the 1PN version of above
equation, namely dγ=dt ¼ k1n in subsection II C. This
Appendix extends such a solution while incorporating 2PN
and 3PN contributions to the rate of periapsis advance. The
fact that this rate is independent of γ allows us to express
our Eq. (A1) as

dγj
dt

¼ kjn; ðA2Þ

where

γ ¼
X∞
j¼1

γj: ðA3Þ

At the 2PN order, we have [43]

k2 ¼
�
GMn
c3

�
4=3 ðð51 − 26ηÞe2t − 28ηþ 78Þ

4ð1 − e2t Þ2
: ðA4Þ

This leads to

dγ2
dt

¼ 1

4

�
GMn
c3

�
4=3

n
ðð51 − 26ηÞe2t − 28ηþ 78Þ

ð1 − e2t Þ2
: ðA5Þ

Introducing τ variable with the help of Eqs. (19), (20b) and
(21) allows us to write

dγ2
dτ

¼ −β2
ð1 − e2t Þ32

e
42
19
t

ðð51 − 26ηÞe2t − 28ηþ 78Þ
ð304þ 121e2t Þ30452299

; ðA6Þ

where

β2 ¼
15

4

�
GMchn0

c3

�
−5=3

�
GMn0
c3

�
4=3

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t0

p
e6=19t0 ð121e2t0 þ 304Þ435=2299

: ðA7Þ

We now introduce γ̄2 ¼ Γ20 −
γ2
β2
, where Γ20 is a constant.

The above equation then becomes

dγ̄2
dτ

¼ ð1 − e2t Þ32
e
42
19
t

ðð51 − 26ηÞe2t − 28ηþ 78Þ
ð304þ 121e2t Þ30452299

: ðA8Þ

We define γ2 such that γ2ðτ0Þ ¼ 0. This allows us to fix Γ20

to be Γ20 ¼ γ̄2ðτ0Þ. We move on to obtain dγ̄2=det by
dividing Eq. (A8) by Eq. (21), which gives us

dγ̄2
det

¼ e2t ð51 − 26ηÞ − 28ηþ 78

e13=19t ð121e2t þ 304Þ18642299

: ðA9Þ
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This can be integrated to obtain

γ̄2ðetÞ ¼
e6=19t

336

�
4ð121e2t þ 304Þ 435

2299ð51 − 26ηÞ þ 3 × 2
1740
229919

435
2299ð2ηþ 23Þ2F1

�
3

19
;
1864

2299
;
22

19
;
−121e2t
304

��
: ðA10Þ

Few comments are in order at this point. It should be obvious that we are splitting the GW emission-induced temporal
evolution for γ in parts. This is mainly because we assume that the GW emission is fully prescribed by Eqs. (17). And, it
explains why we divided dγ̄1=dτ and dγ̄2=dτ equations the same equation, namely Eq. (21) for det=dτ. In other words, the
above split and our division of the resulting equations by Eq. (21) is rather inconsistent if there are higher order
contributions to GW emission.
With the help of these considerations, we move on to write 3PN contributions to dγ=dt as dγ3=dt ¼ k3n where

k3 ¼
�
GMn
c3

�
2 1

128ð1 − e2t Þ3
�
18240 − 25376ηþ 492π2ηþ 896η2 þ ð28128 − 27840ηþ 123π2ηþ 5120η2Þe2t

þ ð2496 − 1760ηþ 1040η2Þe4t þ ð1920 − 768ηþ ð3840 − 1536ηÞe2t Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q �
: ðA11Þ

Following the steps that we pursued at the 2PN order leads us to

dγ̄3
det

¼ 1

e
25
19
t ð121e2t þ 304Þ27342299

�
18240 − 25376ηþ 492π2ηþ 896η2 þ ð28128 − 27840ηþ 123π2ηþ 5120η2Þe2t

þ ð2496 − 1760ηþ 1040η2Þe4t þ ð1920 − 768ηþ ð3840 − 1536ηÞe2t Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q �
; ðA12Þ

where we have defined γ̄3 ¼ Γ30 −
γ3
β3
, Γ30 ¼ γ̄3ðτ0Þ. Further, the coefficient β3 is given by

β3 ¼
15

128

�
GMchn0

c3

�
−5=3

�
GMn0
c3

�
2 e6=19t0 ð121e2t0 þ 304Þ435=2299ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2t0
p : ðA13Þ

The equation for γ̄3 can be solved to get

γ̄3ðetÞ ¼ −
2957312
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Let us note again that, assuming the GWemission is fully
characterised by our quadrupolar order equations, we write

γðetÞ ¼ γ0 − β1ðγ̄1ðetÞ − γ̄1ðet0ÞÞ − β2ðγ̄2ðetÞ − γ̄2ðet0ÞÞ
− β3ðγ̄3ðetÞ − γ̄3ðet0ÞÞ; ðA15Þ

as we strictly assume that the GW emission is fully
characterized by our quadrupolar order equations.

APPENDIX B: REACTIVE EVOLUTION OF
CIRCULAR ORBITS

This Appendix lists the circular limit of GW phasing
equations, detailed in Sec. II C. A careful treatment is
required as κ → 0 for circular orbits. However, we may
obtain et → 0 limit of Eqs. (17) and it reads

dn
dt

¼ 96

5

�
GMchn
c3

�5
3

n2; ðB1aÞ

det
dt

¼ 0; ðB1bÞ

dl
dt

¼ n; ðB1cÞ

dγ
dt

¼ 3

�
GMn
c3

�
2=3

nþ ð78 − 28ηÞ
4

�
GMn
c3

�
4=3

n

þ ð896η2 þ 492π2η − 26144ηþ 20160Þ
128

�
GMn
c3

�
2

n;

ðB1dÞ

where we have included the 2PN and 3PN contributions to
dγ=dt, using the circular limits of Eqs. (A4) and (A11).
Since the periapsis is not well defined for a circular orbit, it

is advisable to define the angular variable λ ¼ lþ γ and the
sidereal orbital frequency ns ¼ ð1þ kÞn. It is straightfor-
ward to see that, in terms of λ and ns, the orbital evolution
can be written as

dns
dt

¼ 96

5

�
GMchns

c3

�5
3

n2s ; ðB2aÞ

dλ
dt

¼ ns; ðB2bÞ

where we have restricted the reactive evolution to the
leading order in the PN expansion.
These equations lead to the following analytic expres-

sions for nsðtÞ and λðtÞ:

nsðtÞ ¼
ns0

ð1 − 256
5
ðGMchns0

c3 Þ53ns0ðt − t0ÞÞ3=8
; ðB3aÞ

λðtÞ ¼ λ0 þ
1

32

�
GMchns0

c3

�
−5
3

�
1 −

�
ns0
ns

�
5=3

�
; ðB3bÞ

where ns0 and λ0 are the values of these variables at some
initial epoch t ¼ t0. The orbital eccentricity does not vary
in time and its value is chosen to be zero.
The GW emission-induced merger time is obtained by

demanding that n → ∞ and this allows us to write

tmerg ¼ t0 þ
5

256n0

�
GMchn0

c3

�
−5
3

: ðB4Þ

We have verified that our eccentric version of the merger
time, given by Eq. (24), reduces to Eq. (B4) in the
circular limit.
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