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Superradiant clouds may develop around a rotating black hole, if there is a bosonic field with Compton
wavelength comparable to the size of the black hole. In this paper, we investigate the effects of the cloud on
the orbits of nearby compact objects. In particular, we consider the dynamical friction and the backreaction
due to level mixing. Under these interactions, the probability of a black hole dynamically capturing other
compact objects, such as stellar mass black holes and neutron stars, is generally enhanced with the presence
of the cloud. For extreme mass ratio inspirals and binary stellar mass binary black holes, the cloud-induced
orbital modulation may be detected by observing the gravitational waveform using space borne
gravitational wave detectors, such as LISA. Interestingly within certain range of boson Compton
wavelength, the enhanced capture rate of stellar mass black holes could accelerate hierarchical mergers,
with a higher-generation merger product being more massive than the mass threshold predicted by
supernova pair instability. These observational signatures provide promising ways of searching light
bosons with gravitational waves.
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I. INTRODUCTION

The existence of light bosons have been motivated from
various theoretical considerations. For example, QCD
axions are proposed as an extension of the standard model
which naturally solves the strong CP problem in particle
physics [1,2]. It is also shown that light bosons can form a
Bose-Einstein condensate in galaxies and could be a good
candidate for dark matter [3–9]. Moreover, light bosons are
predicted in string theory [10,11]. Scalar degrees of free-
dom could arise as products of compactifying extra
dimensions [12,13], the mass of which could be in a wide
range with a lower bound possibly down to the Hubble
scale. Therefore, the detection of light bosons not only
provides a smoking gun to new physics, but also has
profound indications on string theory. The coupling
between these light bosons and normal matter is model
dependent, but is weak in general, which makes the
detection of such light bosons a difficult task.
Nevertheless, thanks to the equivalence principle, these
light bosons at least couple to matter gravitationally, which
provides a universal way for searching.
Depending on their mass and coupling to the standard

model particles, light bosons could lead to different
observable effects, including [10,11,14–20]. In particular,
the detection of gravitational waves (GWs) made by LIGO

and Virgo opened up an new observational window.
Together with space borne GW detectors, such as LISA
(Laser Interferometer Space Antenna), GW observations
provide promising new ways of searching for light bosons.
In fact, it has been suggested for a long time that a massive
bosonic field near a rotating black hole (BH) may grow
exponentially by extracting angular momentum from the
BH, a process known as supperradiance [21–24]. The
growth of the field can be very efficient if the Compton
wavelength of the field is comparable to the size of a
rotating BH. More precisely, the growth rate of a scalar
field scales as [21]

Γnlm ∝ ðmΩH − ωnlmÞα4lþ5 for α ≪ 1; ð1Þ

where α≡GMμ=ℏc is the ratio between the Compton
wavelength and the size of the BH, ΩH is the angular
velocity of the BH, and ωnlm is the eigenfrequency of
a particular mode denoted by the “quantum” numbers
fn;l; mg. An eigenmode grows if mΩH > ωnlm, as neg-
ative energy flux falls into the black hole horizon. As a
result, the BH spins down. Eventually the mode instability
saturates when mΩH ≈ ωnlm, with a long-live cloud rotat-
ing around the BH [25,26].
The superradiant cloud around a BH could lead to

many interesting observational effects. For instance, the
cloud can emit monochromic GWs [27–29], which may be
observed from a single newly-formed BH right after binary
BH merger [30], or through coherent stacking a set of
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events [31]. It may also be detected in all-sky searches
[32,33] or as stochastic background by GW detectors such
as LIGO and LISA [34,35]. The evolution of the saturated
cloud also has been studied in binary systems [36,37]. If a
superradiant cloud forms around a supermassive BH, it
may affect the dynamics of compact objects orbiting
around the BH, and leave fingerprints on the waveform
of GWs emitted by such objects, providing another
approach to search for light bosons with GWs [38–40].
Previous studies on cloud-induced orbital modulation

usually assume fixed cloud density profile based on the
mode wave function, so that the gravitational effects of the
cloud may be obtained through multipole expansions
[38,39]. This assumption however neglects the cloud
density perturbation generated by the gravitational inter-
action between the cloud and the orbiting object, as
demonstrated in [36,37,40]. In particular, it has been shown
in [40] that, gravitational tidal interaction could deform the
cloud in a way that, the backreaction lead to angular
momentum transfer from the cloud to the orbiting object.
For extremum-mass-ratio inspirals, such angular momen-
tum transfer can be sufficiently strong to compensate
the angular momentum loss caused by GW emission, if
the object’s motion resonantly induces level mixing of the
cloud. As a result, the orbit stops decaying and floats at a
certain radius, emitting monochromic GWs for a long time
until the cloud is depleted. Floating orbits would not be
possible if the cloud back reaction is neglected.
In this work, we further investigate gravitational inter-

actions between superradiant clouds and their surrounding
compact objects, focusing on two effects: dynamical
friction and backreaction due to level mixing.1 When a
compact object passes through a medium, the medium
usually forms overdensity trail behind the object which
exerts gravitational drag on the object, i.e., dynamical
friction [41]. While dynamical friction generically occurs
for a compact object traveling through extended distribu-
tion of matter, the magnitude of the drag force depends on
the properties of the component matter, such as the sound
speed of the sounding medium. In the case of a scalar field,
the effects of dynamical friction depends on the mass of the
field [9]. We will show that within some mass range the
energy loss caused by dynamical friction can be much
larger than that caused by GW radiation, with the orbits
significantly altered.
On the other hand, level mixing is a specific phenomenon

associated with superradiant cloud [36,37]. Generally
speaking, a saturated cloud should be dominated by a
particular eigenmode, i.e., the mode that grows fastest,
while all modes evolve independently at the linear level. In
the presence of an orbiting object, eigenmodes of cloud that

evolve independently become coupled under the tidal
potential of the orbiting object, and the wave function of
the cloud starts oscillating between different modes. If the
object is in a quasicircular orbit, the backreaction of level
mixing “almost” vanishes after averaging over one orbital
period. The extra subtlety comes from the fact that the cloud
will lose energy to the BH when a decay mode is excited
during the Rabi oscillation, i.e., modes with mΩH < ωnlm.
Because of this dissipation, backreation on the orbits does
not vanish exactly, but is proportional to the decay rate of
the decay modes [40]. Despite of the small decay rate, the
backreaction on the orbits can still be significant, if the mass
of the cloud is much larger than that of the orbiting object
and the Rabi oscillation is resonantly excited. We shall refer
this process as resonant level mixing, as studied in [40]. In a
separate scenario, i.e., with highly eccentric and hyperbolic
orbits, different modes of the cloud usually get dynamically
excited after one pericenter passage, which leads to a
change in the cloud energy even if mode decay is neglected.
In this case, the boson particles redistribute between
different levels, and the energy change of the cloud should
be proportional to the energy gain/loss while shifting
between different modes, i.e., ΔE ∼ α2μΔc2, where Δc
is the change of the amplitude of subdominant modes.
Based on energy conservation, the orbital energy of the
object should also change by the same amount, but with a
negative sign. We shall refer to this process as dynamical
level mixing. Given the equation of motion of the cloud in
(20), we expectΔc to be proportional to the strength of tidal
coupling. The overall effect of dynamical level mixing on
the orbits is proportional to the mass ratio between the
orbiting object and the BH. It is subdominating in extra-
mass-ratio systems, but could have interesting impact on
comparable-mass binaries.
This paper is organized as follow. In Secs. II and III, we

will study the effects of dynamical friction and cloud level
mixing respectively. In Sec. IV, we will focus on extreme-
mass-ratio-inspirals (EMRIs), which are important sources
for LISA-like GW detectors. We will investigate the effects
of a superradiant cloud on the EMRI waveform as well as
on the EMRI rate. In Sec. V, we will discuss the effects of a
superradiant cloud on stellar mass BH coalescence, and on
the formation rate of stellar mass BH binaries, which are the
important sources for both space-based and ground-based
GW detectors. Section VI is devoted for discussion.
In almost all examples, we consider a scalar field of mass

μ developing a superradiance cloud around a BH of mass
M. We use the subscription � for quantities associated with
the orbiting object, which could be a stellar mass BH or a
neutron star. For example, M� is the mass of the orbiting
object, and fr�; θ�;ϕ�g are the position of the object in
spherical coordinates. We sometimes refer the compact
objects as stars, e.g., in Sec. IV. But one should keep in
mind that they could be both stars and BHs. Unless
specified, we assume natural units with G ¼ c ¼ ℏ ¼ 1.

1If the object is a stellar mass BH, its motion is also affected by
cloud accretion. However, as we will see later, the effect of
accretion is negligible comparing to dynamical friction.
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II. DYNAMICAL FRICTION

As a compact object moves through the cloud, an
overdensity trail forms behind it, which exerts a gravita-
tional drag on the object, i.e., dynamical friction. The
friction force can be written as [9,42]

FDF ¼
4πG2M2�ρ

v2
CΛ: ð2Þ

In our case, v is the velocity of the object relative to the
wave function of the cloud Ψ, ρ is the density of the cloud,
and CΛ ¼ CΛðξ; krΛÞ with ξ≡GM�μ=ℏv, k≡ μv=ℏ, and
rΛ representing the smaller quantity between for simplicity
the size of the orbit and the size of the cloud. In particular, it
is calculated in [9] that

CΛ ≡ eπξjΓð1 − iξÞj2
2ξ

Z
2krΛ

0

dzjFðiξ; 1; izÞj2

×

�
z

krΛ
− 2 − log

z
2krΛ

�
; ð3Þ

where Γ is the gamma function and F is a confluent
hypergeometric function. Following [9], the velocity of the
field is defined as

v≡ ℏ
μ
∇Θ; ð4Þ

whereΘ is thephase of thewave function, i.e.,Ψ ∝ e−iðωt−ΘÞ.
For fuzzy dark matter discussed in [9], thewave function has
no angular dependence and the velocity of the fluid vanishes.
In the case of a superradiant cloud, the wave function is
rotating with a velocity along the ϕ-direction,

v ¼ mℏ
rμ sin θ

ϕ̂: ð5Þ

Considering a circular orbit, we have

jvj
v�

∼
ffiffiffiffiffiffiffiffi
GM
rα2

r
; ð6Þ

which means the relative velocity is dominated by the
orbital velocity if r > α−2GM. As most of the cloud mass is
in the region outside α−2GM, we will approximate the
velocity relative the wave function with the orbital velocity
for simple. If we consider a stellar mass object orbiting
around a supermassive BH, we have

ξ ¼ M�
M

α

v
≪ 1; ð7Þ

in which case,

CΛðkrÞ ¼ Cinð2krÞ þ sin 2kr
2kr

− 1þOðξÞ ð8Þ

with CinðzÞ≡ R z0 ð1 − cos tÞdt=t.
We assume the orbits are Keplerian at the leading order,

in which case we neglect the relativistic corrections as well
as the gravitational effects of the cloud. For elliptical orbits,
we have

r� ¼
að1 − e2Þ
1þ e cos ν

¼ að1 − e cos zÞ; ð9Þ

z − e sin z ¼
ffiffiffiffiffiffiffiffi
GM
a3

r
ðt − t0Þ; ð10Þ

where a is the semimajor axis of the orbit, e is the
eccentricity, and z is the eccentricity anomaly. It is
convenient to define the specific energy and the specific
angular momentum of the orbit (here after energy and
angular momentum):

ϵ ¼ GM
r

−
1

2
v2 ¼ GM

2a
; J ¼ Jm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
; ð11Þ

where Jm ¼ ffiffiffiffiffiffiffiffiffiffiffi
GMa

p
is the angular momentum of the

circular orbit and is also the maximal angular momentum
for a given ϵ. The energy loss during one orbital period T is

ΔϵDF ¼
Z

T

0

FDF

M�
vdt ¼ qα3x2pIDF½xp; e; n̂; q�; ð12Þ

where n̂ is the direction of the orbit angular momentum,
and we have defined q≡M�=M, α≡GMμ and xp ≡
α2rp=GM with rp being the periapsis of the orbit.
IDF½xp; e; n̂; q� is an integral given by

IDF ≡
Z

2π

0

dz
4πCΛ

ð1 − eÞ2 R
2
nl

�
xp

�
1 − e cos z

1 − e

��

×
ð1 − e cos zÞ3=2
ð1þ e cos zÞ1=2 Y

2
lmðθ�;ϕ�Þ; ð13Þ

where Ylm is the spherical harmonic function and Rnl is the
radial function of the cloud (see Appendix A for the explicit
expression). We also defined xΛ ≡ krΛ, depending on xp,

xΛ ¼
8<
:

ffiffiffiffiffixpp ð1−e cos zÞ3=2
ð1þe cos zÞ1=2 ; xp ≤ x97;

x97ffiffiffiffi
xp

p ð1−e cos zÞ3=2
ð1þe cos zÞ1=2 ; xp > x97;

ð14Þ

where x97 represents the size of the cloud and is chosen
so that more than 97% of the cloud mass is within
r < x97α−2GM. In Fig. 1, we show x2pIDF½xp; e; n̂� with
e ¼ 0 and 1, assuming the orbit lies in the equator. In the
following, we will neglect the n̂ dependence for simple.
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We may expect the result would be changed by an Oð1Þ
factor after averaged over n̂.
As a dissipation effect, dynamical friction accelerates the

orbital decay. It would be intuitive to compare the energy
loss caused by dynamical friction to that caused by GW
radiation, the power of which averaged over one orbital
period is [43]

PGW ¼ 64π

5
ηfðeÞ

�
rp
GM

�
−7=2

; ð15Þ

with η≡M�M=ðM� þMÞ2 being the dimensionless
reduced mass and

fðeÞ ¼ 1þ ð73=24Þe2 þ ð37=96Þe4
ð1þ eÞ7=2 : ð16Þ

Together with Eq. (12), we find

PDF

PGW
¼ 5

64π

α−4

fðeÞ x
11=2
p IDF½xp; e�; ð17Þ

which means for orbits with radius comparable to the size
of the cloud, the energy loss could be enhanced by roughly
a factor of α−4 if α ≪ 1.

If the compact object is a stellar mass BH, it will
continuously absorb the cloud, resulting in a force of
FAb ¼ σAbρv2, where σAb is the absorption cross section
and v is the relative velocity between the BH and the cloud.
The absorption cross section of a massive scalar field with
M�μ ≪ 1 has been calculated in [44–46],

σAb ≃
32π2G2M2�α

v2
: ð18Þ

Together with Eq. (2), we find that

FAb

FDF
≃
8παv2

CΛ
≪ 1; ð19Þ

which means that the force caused by absorption is
negligible comparing to dynamical friction.

III. LEVEL MIXING

In the presence of a compact object, the gravitational
potential of the object will introduce couplings between the
modes of the cloud, which mix modes with different energy
levels. The effects of level mixing on the superradiant cloud
have been studied in [36,37], assuming the object is in a

FIG. 1. The value of x2pIDF½xp; e; n̂� with e ¼ 0 (blue) and 1 (orange, dotted), assuming an orbit lies in the equator. xp ≡ α2rp=GM
with rp being the periapsis of the orbit. The left panels assume the cloud is saturated at j211i mode, while the right panels assume the
cloud is saturated at j322i mode. The upper panels assume q ¼ M�=M ≪ 1, and the lower panels assume q ¼ 1.
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quasicircular orbit or an elliptical orbit. In particular, in [40]
we have shown that a perturbed cloud backreacts on the
orbit as well. In the adiabatic limit, the backreaction on
the quasicircular orbits is proportional to the decay rate of
the decay modes, because the energy/angular momentum
transfer between the cloud and the object averaged over one
orbit is effectively zero if the modes do not decay. However,
it is no longer true for hyperbolic orbits or highly eccentric
orbits, in which case the backreaction could be significant.
When the object approaches the BH, the dominated mode
of the cloud will mix with the other modes. After one
passage, the wave function of the cloud will be redistrib-
uted to each mode, resulting in a change in the cloud’s
energy, and hence in the orbital energy as well. In this
section, we will investigate the backreaction of level mixing
on orbits with eccentricity e ∼ 1. We will see that counter-
rotating orbits always deposit energy to the cloud after one
passage, while a corotating orbit may gain energy from the
cloud if the periapsis is close to the radius of the cloud, and
will lose energy to the cloud if the periapsis is relatively far
from the cloud. We will first discuss the gravitational
effects of the orbiting object on the cloud, and then estimate
the energy change of orbits after one passage. A similar
calculation for tidal excitation of star oscillations for
arbitrary eccentricity orbits can be found in [47–49].
Throughout this paper we assume that the cloud size is

much larger than the BH size, so that we can adopt a
Newtonian approximation for the cloud. For full treatment
in the relativistic setting, one can read [40] based on
techniques developed in [50–52]. Let us write the wave
function of the cloud as jψi ¼Pi ciðtÞjψ ii, where sub-
script i is a shorthand for nlm, and jψ ii is the wave
function of the eigenmode denoted by i. Initially, the cloud
is dominated by the saturated mode, say the mode with
i ¼ s, and hence we have cs ≃ 1, while all the other ci ≃ 0.
In the presence of an object, we have

i
dci
dt

¼
X
j

hψ ijV�jψ jicj; ð20Þ

where V� is the tidal perturbation generated by the
approaching object. See Appendix B for more details.
The inner product is defined as an integral weighted by
wave functions.
It is important to note a few issues regarding hψ ijV�jψ ji.

First of all, the monopole and the dipole pieces of the tidal
potential do not contribute to mode coupling if the object is
far away from the cloud [36]. It is because the monopole
does not lead to a shift in the energy level, and the dipole is
fictitious by virtue of the equivalence principle (see the
appendix in [36] for explicit calculations). Second,
hψ ijV�jψ ji is Hermitian,2 which implies

P
i jcij2 ¼ 1.

Moreover, the tidal coupling is proportional to the

perturber’s mass, so that hψ ijV�jψ ji ∝ q. The conservation
of wave function implies that the energy change of the
cloud is of order

Δϵ ∼ ΔϵijΔjcij2 ∼
α2Mc

2n2
jqcsΔtj2 ∝

α3q2M
2n2

; ð21Þ

which is suppressed by the factor q2. Here Δϵij ∼
α2Mc=2n2 is the energy difference between mode i and
mode j, and Mc ≃ αM [34] is the mass of the cloud.
Third, in computing Eq. (20) [or equivalently Eq. (25)], l�
should be summed over all l� that subject to the selection
rules jlj − lij ≤ l� ≤ lj þ li [36]. The coupling strength

hψ ijV�jψ ji, however, is typically suppressed by 1=rl�þ1
�

when the object is outside of the cloud. Therefore, Eq. (20)
is dominated by the modes near the saturated mode in
the l space. Similarly, although the energy difference
between levels of different n is roughly of the same order,
i.e., Δωij ∼ α2μ, so that all these modes should be excited
during the pericenter passage, the coupling strength
decreases if the difference between n of two modes
increases. Therefore, it is sufficient in practice to only
consider modes that are near the saturated mode for
different n’s.
In the following, we approximate hyperbolic orbits and

highly eccentric orbits with parabolical orbits,

r� ¼ rpð1þ z2Þ; z ¼ tan
ν

2
; ð22Þ

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r3p
GðM þM�Þ

s �
zþ 1

3
z3
�
; ð23Þ

where ν is the true anomaly. This is a good approximation,
as the orbits that are of interest in a capture process usually
have j1 − ej ≪ 1. Under this parametrization, it would be
convenient to solve ci in terms of z instead of t. In this case,
Eqs. (20) become

i
dci
dz

¼ Aijcj ð24Þ

with

Aij ¼ iq
ffiffiffiffiffiffiffiffi
2x3p

q X
l�;m�

4π

l� þ 1
IΩIijðx�ÞYl�m� ðθ�; 0Þ

× exp
h
i
�
ωij

ffiffiffiffiffiffiffiffi
2x3p

q
ðzþ z3=3Þ ∓ m�ϕ�

�i
; ð25Þ

where ωij ¼ ðωi − ωjÞ=μα2, and the − sign in front of
m�ϕ� is associated with corotating orbits, while the þ sign
is for counterrotating orbits. For l� ≥ 2, we have

2Here we have neglected the mode decay caused by the
nonzero but tiny imaginary eigenfrequency.
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Iij ¼
Z

x�

0

dx x2
xl�

xl�þ1
�

RniliðxÞRnjljðxÞ

þ
Z

∞

x�
dx x2

xl��
xl�þ1

RniliðxÞRnjljðxÞ; ð26Þ

and for l� ¼ 1 and 0, we have

Iij ¼
Z

∞

x�
dx x�

�
1 −

x3

x3�

�
RniliðxÞRnjljðxÞ ð27Þ

and

Iij ¼
Z

∞

x�
dx xRniliðxÞRnjljðxÞ ð28Þ

respectively. Given the initial conditions cs ¼ 1while other
ci ¼ 0 as z → −∞, we can solve ci at z → þ∞ numeri-
cally. The energy change of the cloud after one passage is
given by

Δϵ ¼ Mc

μ

X
i

ωiðjcþi j2 − jc−i j2Þ; ð29Þ

where the superscriptions þ and − denote z approaches
þ∞ and −∞ respectively.
In a simple scenario, we consider parabolic orbits that lie

in the equator, in which case θ� ¼ π=2 and ϕ� ¼ 2 arctan z.
Therefore the orbit is determined given the parameter xp,
i.e., the dimensionless periapsis. We assume a mass ratio of
q ¼ 1 and a cloud initially saturated at j211i or j322i, and
solve Eqs. (24) numerically taking into account all the
modes with n ≤ 7. The energy change of the cloud is
plotted in Fig. 2. Inclusion of higher n modes is computa-
tional expensive. On the other hand, we are more interested
in the range of xp that are capable to capture the object.
Including modes with n > 7 does not change this range
very much as the energy change is exponentially sup-
pressed at large xp, and is not necessary for the discussion
in this paper.
The net change of the cloud energy depends on the modes

that are efficiently excited. In other words, the cloudwill lose
energy if the excitation is dominated by modes with energy
lower than the initially saturatedmode, and viceversa.On the
other hand, according to Eq. (20), a mode j responds to the
tidal force efficiently if ðωs − ωjÞ=ðms −mjÞ is comparable
to the typical orbital frequency.3 In order to take into account
both corotating and counterrotating orbits, we say the orbital
frequency is positive if the orbit is corotating and is negative
if the orbit is counterrotating. Therefore, a counterrotating
orbit always rises the energy of the cloud, as there is no lower
energy level with mj > ms. For corotating orbits, the cloud

can lose energy, if the tidal force excites the lower energy
modes with mj < ms. As the energy difference between the
saturated mode and a lower energy mode is usually larger
than that between the saturated mode and a higher energy
mode, we may expect the lower energy modes will get
efficiently excitedwhen the typical orbital frequency is larger
or equivalently when xp is small.
As shown in the upper panel of Fig. 2, if the cloud

initially saturates at mode j211i, a corotating orbit can only
make it couple to higher energy modes,4 therefore the
object can only lose energy to the cloud. If the cloud
initially saturates at j322i mode, a corotating orbit can
couple it to lower energy modes, such as modes with n ¼ 1.

FIG. 2. The energy change of the cloud after one passage. We
consider parabolic orbits with periapsis rp ¼ xpα−2GM and
θ� ¼ π=2, and choose the mass ratio q ¼ 1. The upper panel
shows the casewith a cloud initially saturates at mode j211i, while
the lower panel shows the case with a cloud initially saturates at
mode j322i. We show both corotating orbits (in blue) and
counterrotating orbits (in orange) considering all modes with
n ≤ 7 (solid lines). We also show the results with different number
of modes taken into account (n ≤ 4, 5, 6 with dashed, dash-dotted,
and dotted lines). We can see that the result converges as n
increases. We mark I ¼ 0.001 defined in Eq. (51) with grey
horizontal lines in the plots.

3Recall that hψ ijV�jψ ji ≠ 0 only if m� ¼ mi −mj [36].

4Mode j211i can couple to lower energy modes with n ¼ 1
only through the monopole and dipole of V�, which are
effectively zero when the star is far away from the cloud.
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As xp decreases, the excitation is dominated by the n ¼ 1

modes, which explains the valley in the lower panel of
Fig. 2. Here we assume modes with same n have the same
energy. In principle, they have different energy due to the
higher order corrections to the BH potential. However,
the energy difference between modes with same n is
further suppressed by a factor of α2, which is negligible.
Depending on the periapsis of the orbit, the modes of the
cloud get exited to different extent, resulting a different
amount of exchanging in total energy.

IV. EFFECTS ON EMRIs

In this section, we discuss the observational effects of a
superradiant cloud on EMRIs. For quasicircular orbits, the
observational effects of level mixing has been studied
in [40] (also see Appendix C for further discussion). For
hyperbolic and highly eccentric orbits, which are of most
interest in the estimation of EMRI rate, the effects of level
mixing is suppressed by the mass ratio q to be negligible.
Therefore, we will mainly focus on dynamical friction in
the following discussion.

A. Inspiral waveform

As shown in Sec. II, dynamical friction accelerates orbit
decay and introduces phase shift in the EMRI waveform. In
fact, dynamical friction can be much more efficient in
draining orbital energy as compared to GW radiation, when
the orbiting object immerses in the cloud. However, LISA
usually starts seeing EMRIswhen the pericenter distance is at
leastwithin 20GM away from theBH,while the density peak
of the cloud is much further sway. Therefore, it is unlikely to
observe the effect of dynamical friction in the waveform,
unless the central BH is less massive than 105 M⊙.
For example, let us consider a circular obit lying in the

equator, and compare the energy loss power caused by
dynamical friction PDF to that caused by GW radiation [43]

PGW ≃ −
32

5
GM2q2r4�Ω6; ð30Þ

where we have used η ≃ q for M ≫ M�. We plot the
dependence of PDF=PGW on the orbital frequency Ω in
Fig. 3. Note that the ratio PDF=PGW does not depend on q.
For a LISA-like GW detector, the effects of dynamical
frication may be detected if PDF=PGW ≥ 10−5 in the
observation band, as the number of cycles staying in band
could be order 105. Taking M ¼ 105 M⊙ as a benchmark,
we find that this requires α > 0.1. However, in such case
the cloud might be depleted by the tidal perturbation of the
earlier falling object as suggested in [36,37] or the
supperradiant spin-down, unless the BH angular momen-
tum is fed by accretion efficiently. The requirement of
α > 0.1 can be relaxed for clouds around intermediate
mass BHs.

B. EMRI rate

Besides the waveform study for individual sources,
another important message we may receive from a pop-
ulation of future EMRI observations is the EMRI merger
rate, which encodes information of galactic-center stellar
distributions [53]. The theoretical EMRI rate can be
estimated by virtue of loss cone dynamics, which will
be briefly summarized as follows (also see [54] for a review
on loss cone dynamics).
Assuming spherical symmetry, orbits around the central

BH can be specified by two parameters, i.e., energy ϵ and
angular momentum J. Taking into account gravitational
encounters, the distribution of the orbits around a super-
massive BH can be obtained by solving the Fokker-Planck
equation. Given the orbit distribution, the rate of the stars5

FIG. 3. The ratio between energy loss rate caused by dynamical
friction and that caused byGW radiation. In the plot, we consider a
cloud saturated at j211imode (upper panel) or j322imode (lower
panel). The horizontal axis shows the orbital frequency, scaled by
the mass of the black hole. The blue/orange dashed line shows the
orbital frequency corresponding to a radius of n2α−2GM, which
locates the density peak of the cloud. The shaded region shows the
LISA frequency band (0.1 Hz − 0.001 Hz), assuming a 105 M⊙
BH. The gray vertical line denotes the innermost stable circular
orbit. The observation band shifts toward the left for smaller BHs.

5Here we refer all compact objects as stars for simplicity, but
keep in mind that they can be neutron stars or stellar mass BHs.
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falling into the BH can be found by calculating the flux of
the stars into the loss cone, a regime defined in the two-
parameter phase space and in which stars fall into the
supermassive BH in one orbital time. In particular, orbits
with higher magnitude of energy have short periods,6 and
stars in such orbits hardly penetrate beyond the loss-cone
boundary before they are consumed by the BH. This
defines the empty-loss-cone, or the diffusive regime of
the phase space. On the other hand, it is possible for a star
in a low energy orbit to diffuse across the loss cone by
gravitational encounters during a single orbital period. This
defines the full-loss-cone, or pinhole regime of the phase
space. It has been shown that both regimes contribute to the
flux of stars falling into the BH.
However, a star falling into the BH does not necessarily

lead to an EMRI. To secure a successful EMRI, the star
should avoid scattering during the orbital decay. That
means t0 < tJ, where t0 is the lifetime of the orbit, and
the tJ is the angular momentum relaxation time. The
criterion t0 < tJ indicates that the full loss cone regime
barely contributes to the EMRIs. Stars in such regime are
scattered multiple times each orbit. The probability of the
same star falling into the BH in the corresponding orbit
lifetime, even in the presence of a large number of
gravitational encounters, is effectively zero. The criterion
t0 < tJ defines a critical radius ac (or equivalently, a critical
energy ϵc), such that stars starting inspiral from an orbits
with a < ac are able to fall into the central BH with high
probability. Therefore, the inspiral rate can be estimated as

ΓEMRI ≃
Z

ac

0

daF ðaÞ; ð31Þ

where F ðaÞ is the flux of stars into the loss cone per radius
interval. Contributions to EMRIs are mainly from the
diffusive regime, the orbit distribution in which can be
well approximated by the steady state distribution obtained
from the one-dimensional (angular momentum-dependent)
Fokker-Planck equation. In this case the star flux into the
loss cone is

F ðaÞ ¼ NðaÞ
ln ðJm=JlcÞtrðaÞ

; ð32Þ

where NðaÞ is the number of stars within a, JmðaÞ ¼ffiffiffiffiffiffiffiffiffiffiffi
GMa

p
is the maximal (circular orbit) angular momentum

for a specific energy ϵ, and trðaÞ is the angular momentum
relaxation time at radius a. In the following, we will first
estimate the inspiral rate considering only GW radiation.
We will mostly follow the estimation in [55]. After that we
will discuss how the inspiral rate is changed in the presence
of a superradiant cloud.

Without the cloud, the energy dissipation is caused by
GW radiation (we neglect other dissipation effects for
simplicity), and the lifetime of the orbit is

tGW0 ¼
Z

∞

ϵ0

dϵ
dϵ=dt

≃
2π

ffiffiffiffiffiffiffiffiffiffiffi
GMa

p

ΔϵGW
; ð33Þ

where ΔϵGW is the energy loss caused by GW radiation in
one orbital period. GWs also carry away angular momen-
tum.Generally, the changes of J during inspiral is dominated
by two-body scattering, and ΔJGW can be neglected until a
becomes very small. Given the stellar velocity dispersion of
the host bulge σ, we can define the radius of influence of the
supermassive BH rh ≡GM=σ2. It is convenient to refer the
relaxation time to the relaxation time at the BH radius of
influence,

th ¼ Apq−2
TðrhÞ

Nh logΛ1

; ð34Þ

where TðrhÞ is the orbital period corresponding to rh, Nh is
the number of stars within rh, and Λ1 ¼ q−1ð2GM=rhÞ1=4.
In terms of th, the relaxation time at any radius a is given by

trðaÞ ¼ th

�
a
rh

�
p
; ð35Þ

and the angular momentum relaxation time is

tJ ¼
�

J
JmðaÞ

�
2
�
a
rh

�
p
th: ð36Þ

Simulations indicate that 0 ≤ p ≤ 0.25 [56–59], which
means tr is roughly independent of radius a. In particular,
we haveAp ≃ 0.2 forp ¼ 0 [60]. Therefore, the criterion for
a successful EMRI becomes

tGW0
tJ

¼
�
a
rh

�3
2
−p
ζ
3
2
−p
GWðJÞ < 1; ð37Þ

where we have used the fact that rp=GM ¼ 8ðJ=JlcÞ2 for
orbits with e ≃ 1, and have defined

ζGWðJÞ≡
��

J
Jlc

�
−5
�
85

ffiffiffiffiffiffiffiffi
GM

p
th

3 × 210r3=2h

�� 2
3−2p

: ð38Þ

Here Jlc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2lcðϵ −GM=rlcÞ

q
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMrlc

p
is the loss-

cone angular momentum corresponding to a loss cone
radius rlc, which is about a few GM. As we mentioned J
does not change too much for large a, and therefore J ∼ Jlc.
As a benchmark, we take p ¼ 0 and M ¼ 106 M⊙. In this
case, we have ζGW ∼ 0.016 and aGWc ¼ ζGWrh ≪ rh. That
means orbits leading to successful EMRIs usually have

6Note that in our notation of energy, orbits of smaller semi-
major axis have higher energy.

JUN ZHANG and HUAN YANG PHYS. REV. D 101, 043020 (2020)

043020-8



radius much smaller than the radius of influence. Integrating
Eq. (31) up to the critical radius gives

ΓEMRI ∼
Nh

th log ½JmðaGWc Þ=Jlc�
�
aGWc
rh

�
3=2−2p

: ð39Þ

Now let us discuss how dynamical friction affects the
inspiral rate. We will show that dynamical friction does not
affect theorbitwith rp ≃ rlc. Forα ≪ 1, the cloud is expected
to be far from the BH. The orbits with rp ≃ rlc ∼ 10GM are
affected by the cloud only if e ≃ 1. Nevertheless, for these
orbits the energy loss is dominated by GW radiation, as one
can checkΔϵDF=ΔϵGW ∼ 0.06α7IDF ≪ 1. On the other hand,
dynamical friction dominates GW dissipation if the peri-
center distance is comparable to the size of the cloud:
rp ∼ α−2GM. In this case, orbits with rp ∼ α−2GM are first
circularized by the cloud in a timescale tDF0 ≪ tGW0 and then
continuously inspiraling into theMBH due to GW radiation.
For a given orbit with semimajor axis a, we have

tDF0 ≃
2π

ffiffiffiffiffiffiffiffiffiffiffi
GMa

p

ΔϵDF
: ð40Þ

We still need to impose the condition that rp <
ðJ=JclÞ−10=ð3−4pÞaGWc according to Eq. (37). That is the
orbital life time is shorter than the angular momentum
relaxation time, otherwise the orbit cannot complete the
inspiral stage even after the circularization. Here we keep
the J-dependence in Eq. (36) as J is no longer Jlc as in the
case of GW dissipation. By doing this, we take into account
the contribution from orbits with small eccentricity.
To summarize, in the presence of the cloud, an orbit with
radius a could complete inspiral if it can be circularized
down to a radius of α−2GM in a timescale tDF0 ≪ tJ, and if
rp < ðJ=JlcÞ−10=ð3−4pÞaGWc . Assuming xp ≃ 1, we can find
that the former condition defines a critical radius

aDFc ¼
�

J
Jlc

� −10
3−2p
�
ΔϵDF
ΔϵGW

� 2
3−2p

aGWc ð41Þ

≃
�
3 × 210IDF

85π
α

� 2
3−2p

aGWc : ð42Þ

For M ¼ 106 M⊙ and p ¼ 0, we have aDFc ≃ 0.6α2=3aGWc ,
which is usually smaller than aGWc . Therefore, the EMRI rate
is still decided by GW dissipation, and dynamical friction
caused by the superradiant cloud should not alter the EMRI
rate significantly. This result is expected, because usually the
EMRI rate is not determined by capture mechanism, but by
howefficient the loss conegets repopulated,where the later is
still determined by gravitational scattering even in the
presence of the superradiant cloud.
However, a superradiant cloud can affect the eccentricity

distribution of EMRIs. During orbital decay, the evolution

of the eccentricity e in terms of the semimajor axis a is
given by

de
da

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e

ffiffiffiffiffiffiffiffi
GM

p

2a5=2

	
dL
dt


	
dE
dt



−1

þ 1 − e2

2ea
; ð43Þ

where hdLdti and hdEdt i are the angular momentum and the
energy loss rate averaged over one orbital period. If the
orbital decay is dominated by GW radiation, we have

de
da

¼ 1

2

1 − e2

ea

�
208e2 þ 37e4

96þ 292e2 þ 37e4

�
: ð44Þ

If the orbital decay is dominated by a friction F, we have

	
dL
dt



¼ 1

2π

Z
r3=2F

a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2a − r

p dθ ð45Þ

and

	
dE
dt



¼ 1

2π

Z
r2F

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM
r

−
GM
a

r
dθ; ð46Þ

with r ¼ að1 − e2Þ=ð1þ e cos θÞ, which generally results
in a different evolution of eccentricity as it is dominated by
GW radiation.

V. EFFECTS ON STELLAR MASS BINARY
BLACK HOLE COALESCENCE

Stellar mass BH binary is one of the main sources for
future spaced-based and ground-based GW detectors, and
some of them will be detected by both types of detectors to
allow multiband analysis [61–64]. In this section, we would
like to investigate the effects of a superradiant cloud on
inspiral wavefom of stellar mass BH binaries, as well as on
the binary formation rate.

A. Inspiral wavefom

Let us consider a binary of two 30 M⊙ BHs, inspiraling
in a circular orbit. The separation of the binary that
corresponds to LISA’s most sensitive observation band
(10−3 Hz − 0.1 Hz) is from 2 × 104GM to 103GM. As a
result, LISA may observe rapid orbit decay if the cloud
radius is within such range, for example when α ∼ 0.01. At
leading order, the chirp of GWs emitted by the orbit is

df
dt

¼ −
3

π
M−1P; ð47Þ

where M≡ ðMM�Þ3=5=ðM þM�Þ1=5 is the chirp mass,
and P is the dissipation power of the orbital energy. Using
P ¼ PGW as a benchmark, we can write
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df
dt

¼ 96

5
π8=3M5=3f11=3ð1þ γÞ; ð48Þ

where γ is the fractional energy loss power caused by
additional dissipation mechanisms other than the GW
radiation, for example γDF ¼ PDF=PGW for dynamical
friction. The lifetime of the orbit can be estimated by

t
M

¼
Z

40

3
ð8πMfÞ−11=3 8πMdf

1þ γ
: ð49Þ

In terms of observation, we are interested in the timescale
that a GW signal sweeps over the observation band, given
the initial frequency fi (or equivalently the initial separa-
tion of the binary). This timescale can be obtained by
integrating Eq. (49) from fi to fmax with fmax being the
higher boundary of the observation band. In Fig. 4, we
show the timescales taking into account dynamical friction
caused by the cloud. Note that the cloud could be depleted

due to the level mixing happened earlier when the BHs
were in a lower frequency orbit. In this case, the mass of the
cloud could be suppressed at most by a factor of e−4 for all
α < 0.05 [36,37]. Nonetheless, the cloud is still able to
accelerate the orbit decay significantly. In fact, we find
that in most cases considered here the GW signals
sweep through the observation band within one year, if
0.012 < α < 0.04 assuming no depletion of the cloud, or
0.016 < α < 0.036 assuming a depleted cloud.
The detection of continuous signals is sensitive to the

accumulated phase, which can be estimated by [65]

Φ ¼
Z

ff

fi

10

3
ð8πMfÞ−8=3 8πMdf

1þ γ
: ð50Þ

Here fi and ff are the initial and final frequency of the
observation. In Fig. 5, we calculated the phase difference
between the case with and without dynamical friction. We
assume one year integration time, and a binary of two
30 M⊙ BHs spiraling in a circular orbit. We can see that the
phase difference caused by the cloud can be as large as 104

when the dynamical friction is much stronger than the GW
radiation reaction. Order Oð1Þ phase shift is likely detect-
able by LISA parameter estimation procedures.
In principle, level mixing also affects the inspiral wave-

form. However, for stellar mass binaries, the effects of level
mixing is either subdominated comparing to dynamical
friction or happening outside the observation band.7

Depending on the orbit frequency, level mixing can be
dominated by Bohr resonance or hyperfine resonance
[36,37]. If the transient resonance timescale is longer than
the observation time, one can use a similar argument as in
the dynamical friction case to estimate the phase modula-
tion due to a continuous tidal force by mode mixing. On the
other hand, if the transient resonance phase is much shorter
than the observation time, the resonance essentially intro-
duces a “kick” in the orbital energy (see similar discussion
in [66–68]) that affects the accumulated phase later on.
Bohr resonance usually happens when the orbit size is

comparable to that of the cloud, in which case the energy
loss is usually dominated by dynamical friction. In par-
ticular, the resonance condition is that the orbital frequency
Ω ≃ Δω=Δm ∼ μα2=Δm, which corresponds to an orbital
separation of 21=3Δm2=3α−2GM. In this case, PLM=PDF ∼
α4l−1 ≪ 1. Comparing to Bohr resonance, hyperfine res-
onance could happen further away from the cloud, i.e., with
a separation of 21=3Δm2=3α−4GM. In this case, we have
PLM=PDF∼α4lþ3IDFðx∼Δ21=3m2=3α−2Þ. As IDF decreases
exponentially as x increases, we may expect that for small
α, level mixing will eventually dominate dynamical fric-
tion. However, the corresponding frequency is usually
outside LISA’s observation band for such a small α.

FIG. 4. The timescales that the GW signal sweeps over
the observation band of a LISA-like GW detector, i.e.,
0.001 Hz − 0.1 Hz. We assumed a binary of two 30 M⊙ BHs,
and show the timescales with different initial frequency fi, and
different α (solid lines). We also show the case with no cloud
(gray dashed lines) for comparison. In the upper panel, we
assume no depletion of the cloud. In the lower panel, we assume
the mass of the cloud is suppressed by a factor of e−4 due to a
previous depletion [36,37].

7Note that this is not true for EMRIs, in which case effects of
level mixing is enhanced by η−2 with η being the small mass ratio.
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For these reasons, we will not consider the effects of level
mixing on the waveform.

B. Binary formation rate

Binary BHs may be born out of star binaries, or through
dynamical multibody interactions in dense stellar environ-
ments, e.g., galactic nuclei where the number density can
exceed 1010 pc−3 [69] in the inner region and globular
clusters where the number density is about 105 pc−3 [70].

In the LIGO O3 run new binary BH merger events are
roughly detected in a weekly basis, where for third-
generation detectors the event rate could be once per a
few minutes [71]. With more detections it will be interest-
ing to understand different possible formation channels. In
the following, we will show that, in a certain range of
velocity, the presence of superradiant clouds leads to a
larger impact parameter for gravitational capture and hence
a higher dynamical formation rate for binaries. It is
particularly interesting if one or both BHs in the binary
is(are) already product of previous mergers, because
hierarchical mergers may be able to produce BHs heavier
than the upper bound predicted by supernova pair insta-
bility [72–77].
It would be convenient to write the loss of the orbit

energy after one pericenter passage as

Δϵ ¼ α3I; ð51Þ

where we approximately take I > 0.01 for 1 < xp < 10
due to dynamical friction (see Fig. 1), and I > 0.001 for
10 < xp < 20 due to level mixing (see Fig. 2). The angular
momentum change caused by the cloud satisfies ΔJ ≪ J
and will be neglected in the following discussion. Let us
consider two BHs of comparable masses aiming at each
other with an impact parameter b and relative velocity v∞.
In this case, the closest distance is

rp ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

b2
þ M2

tot

b4v4∞

s
þ Mtot

b2v2∞

!−1

ð52Þ

≃
b2v2∞
2Mtot

�
1 −

b2v4∞
4M2

tot

�
: ð53Þ

These two BHs will form a binary if they release
enough energy during one passage, i.e., Δϵ > v2∞=2. For
Δϵ ≫ v2∞=2, the semimajor axis of new formed binary can
be estimated by

a0 ≃
M2

totη

2ΔϵMBH
; ð54Þ

and the eccentricity is

e0 ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

ΔϵMBHb2v2∞
M3

totη

s
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

ΔϵMBHrp
M2

totη

s
; ð55Þ

where we have used that rp ≃ b2v2∞=2Mtot. As Δϵ ≪ 1, we
have e0 ≃ 1. In addition, a successful merger requires that
the newly formed binary should not be disrupted by further
gravitational encounter with a third body within the merger
timescale. The lifetime of a highly eccentric (e ≃ 1) orbit
(due to GW emission) is given by [43]

FIG. 5. The phase difference ΔΦ between the case with and
without dynamical friction, assuming a binary of two 30 M⊙ BHs
and one year integration time. In the gray region, the signal will
sweep the observation band within one year taking into account
the dynamical friction. The contours are labeled by log10 ΔΦ. In
the lower panel, we assume the mass of the cloud is suppressed by
a factor of e−4 due to a previous depletion [36,37].
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t0 ≃
3

85

a40
M3

totη
ð1 − e20Þ7=2; ð56Þ

while the typical timescale for an encounter to disrupt the
binary is [69]

te ≃
1

12πa20nBHv
≃

v3

12πM2
totnBH

; ð57Þ

where nBH is the number density of the BHs, and v is the
typical velocity of the binary. If the energy dissipation is
dominated by dynamical friction or level mixing, we have

a0
Mtot

≃
Mtotη

2M
α−3I−1; ð58Þ

and

1 − e20 ≃
4M
Mtotη

αIxp: ð59Þ

Therefore, we have

t0
te
¼ 2 × 10−3I−1=2

�
xp
10

�
7=2
�

v
100 kms−1

�
−3

×

�
α

0.1

�
−17=2

�
M

30 M⊙

�
3
�

nBH
108 pc−3

�
; ð60Þ

whichmeans t0 ≪ te if theBHnumber density is not extreme
large. For example, we can find that for v ¼ 100 kms−1,
in order for t0 ∼ te, the number density of BHs must be
nBH ≥ 2 × 1010 pc−3 for α ¼ 0.1 or nBH ≥ 8 × 108 pc−3 for
α ¼ 0.05. As long as the BH number density is below the
corresponding value, the rate of merger is roughly the rate of
binary formation.
For simplicity, we simplify the mass distribution of BHs

by assuming all BHs have the same mass, in which case the
binary formation rate can be estimated as

ΓBF ¼
Z

n2BH4π
2b2maxv∞r2dr; ð61Þ

where bmax is the maximum impact parameter for two BHs
with relative velocity v∞ to be bound. For instance, in the
galactic nuclei, we have nBH ∝ rβ, where r is the distance to
the galaxy center, and v∞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMSMBH=r

p
with MSMBH

being the mass of the supermassive BH in the center of the
galaxy. For globular clusters, v∞ is given by the typical
velocity dispersion. If we are only interested in binaries that
lead to successful mergers, the integral (61) should have a
lower cutoff at r such that t0 ≃ te. This cutoff may be
relevant for binary formation in galactic nuclei, where the
BH number density in the inner region could be too large
for new formed binaries to survive. On the other hand, it
may not be a problem in globular clusters where the BH
number density is usually much lower.

Without superradiant cloud, BHs can form binaries
by GW dissipation, which defines a maximum impact
parameter [69]

bGW ¼
�
340π

3

�
1=7

η1=7Mtotv
−9=7
∞ : ð62Þ

Similarly, we can also find the maximum impact parameter
if the dissipation is caused by the cloud

bcloud ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α−2xpMtot

v2∞M

s
: ð63Þ

As the dissipation caused by cloud becomes significant
only when the periapsis is comparable to the size of the
cloud, we can choose xp ∼ 10 for v∞ < 500 kms−1 with α
ranged from 0.01 to 0.1. We see that the maximum impact
parameter becomes larger in the presence of superradiant
clouds. For example, we have bDFmax ¼ 10bGWmax for α ¼ 0.01
and v∞ ¼ 100 kms−1.
Beside the formation dynamics, binary formation rate also

depends on the environments, such as the BH distribution in
the galactic nuclei. Therefore, we shall compare the for-
mation rate in the presence of cloud with that associated with
GW radiation, by computing γ ≡ Γcloud

BF =ΓGW
BF . In galactic

nuclei, integrating Eq. (61) with Eqs. (62) and (63), gives

γGN ≃ 56Cβ

�
xp
10

��
α

0.01

�
−2
�
MSMBH

106 M⊙

�
2=7

; ð64Þ

where

Cβ ¼
R xmax

xcloudmin
dxx2βþ5

2R xmax

xGWmin
dxx2βþ39

14

ð65Þ

is an order one coefficient depends on the slope of the
BH number density β. For instance, we have Cβ ≃ 0.7 for
β ¼ −2 [78], and Cβ ≃ 1.6 for β ¼ −7=4 [79]. For binary
formation in globular clusters, both number density nBH and
v∞ are smaller than that in galactic nuclei, therefore we have

γGC ¼ b2cloud
b2GW

≃ 213

�
xp
10

��
α

0.01

�
−2
�

v∞
60 kms−1

�
4=7

: ð66Þ

Equations (64) and (66) indicate that, in the presence of
superradiant cloud, the binary formation rate will be signifi-
cantly enhanced if α < 0.1.
In the above estimation,wehave assumed that allBHs have

the same mass. In the realistic case, we may expect BH mass
ranges from∼5 M⊙ to∼50 M⊙. Given themass of the scalar
field, BHs of different mass should be surrounded with cloud
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of differentα.According toEqs. (64) and (66),wemay expect
that small BHs are more like to form binaries comparing to
large BHs. The estimation can also be improved by consid-
ering a more accurate velocity distribution instead of
v∞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMSMBH=r

p
. A detailed modeling is beyond the

scope of this paper, and will be left for future works.

VI. DISCUSSION

Superradiant cloud may develop around a rotating
(astrophysical) BH, if the Compton wavelength of the
boson field is comparable to the size of the BH. In this
paper, we investigate the effects of the superradiant cloud of
a scalar field on the orbits of nearby compact objects,
focusing on dynamical friction and backreaction of cloud
level mixing. We compute the dynamical friction caused by
the cloud, see Eq. (12). Depending on the mass of the scalar
field, the dynamical friction dissipation can be larger than
the dissipation caused by GW radiation. Therefore the
dynamical friction dissipation is able to accelerate orbit
decay, leaving fingerprints in the GW waveform. For
EMRIs around super-massive BHs, it is not very likely
to detect the effects of dynamical friction in the EMRI
waveform, as a LISA-like detector usually see inspirals
with separations much less than the size of the cloud
and the effects of dynamical friction is not maximized
in the observation band. The effects are much more
significant on stellar mass BH inspirals. For example, with
0.016 < α < 0.036, GW signals from a binary of two
30 M⊙ BHs can sweep over the whole LISA band within
one year, which usually takes 104 year in the absence of the
cloud. For α > 0.036, the cloud could also introduce a large
phase difference that is up to 104 assuming one year
observation. However, for EMRIs around intermedia mass
BHs, there could be interesting GW signals that can be
observed by LISA [40]. In addition to dynamical friction,
when a compact object approaches the cloud, it could
dynamically excite the eigenmodes of the cloud. In most
cases, the object will lose energy to the cloud due to the
tidal interaction. We calculate the energy loss during one
passage by considering a parabolic orbit, see Fig. 2.
In both cases, we expect that the dissipation caused by

the cloud will facilitate the cloudy BH capturing other
objects, such as BHs and neutron stars. We estimate the
effects of the superradiant cloud on the EMRI rate, and find
the EMRI rate does not change very much in the presence
of the cloud. It is because the EMRI rate is mainly
determined by repopulation mechanism of the loss cone.
We also investigate the formation rate of stellar mass BH
binaries. Assuming a single mass distribution of BHs, we
find the formation rate is enhanced in the presence of
superradiant cloud, if α < 0.1. All of these effects provide
promising ways of searching for light bosons.
A large binary formation rate could lead to interesting

observational signatures. One possible consequence is

hierarchical mergers, i.e., mergers with one BH being
the remnant of a previous merger. If there is a scalar field
of mass 10−11 eV, we would have cloud developing around
stellar mass BHs. The growth time of superradiant cloud
with α ≪ 1 can be estimated as [21]

τ ≃ 24ða=MÞ−1α−ð4lþ5ÞðGM=c3Þ; ð67Þ

where a is the spin of the BH. For 30 M⊙ BHs, the
growth time for l ¼ 1 mode is about 108 years if
α ¼ 0.01 or equivalently if there is a scalar field of mass
μ ¼ 4.5 × 10−11 eV. Obviously in order to be astrophysi-
cally relevant, according to Eq. (67) α cannot be much
smaller than 0.01, or the growth timescale will be longer
than the Hubble time. With α ≥ 0.01 the cloud may develop
around the remnant BHs of previous mergers and
enhance the formation rate of binaries with higher gen-
eration BHs.
On the other hand, such rate enhancement mechanism

may play a role in the growth of supermassive BHs, e.g.,
QSO SDSS 1148þ 5251 found at z ¼ 6.43 and with mass
∼109 M⊙ [80]. It remains an open question that how do the
supermassive BHs grow out of their much lighter seeds.
Gas accretion may not be able to support sufficiently
fast mass growth [81], so that BH merger is expected to
play a role. The enhanced capture rate with scalar cloud
may allow fast growth of the host BH across one order of
magnitude.
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APPENDIX A: SUPERRADIANT CLOUDS IN
NONRELATIVISTIC LIMIT

In this appendix, we summarize the nonrelativistic
description of a superradiant cloud. The Lagrangian of a
free complex scalar field Ψ is

L ¼ −gab∂aΨ�∂bΨ − μ2Ψ�Ψ; ðA1Þ

where gab is the metric of Kerr BH, assuming the back-
reaction of the field’s stress-energy on the metric is
negligible. One can make an ansatz
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Ψðt; rÞ ¼ 1ffiffiffiffiffi
2μ

p ψðt; rÞe−iμt; ðA2Þ

where ψ is a complex scalar field which varies on a
timescale much longer than μ−1. Given Lagrangian (A1),
the action of ψ is

S ¼ −
1

2μ

Z
d4x

ffiffiffiffiffiffi
−g

p ½∂aψ
�∂aψ þ μ2ðg00 þ 1Þψ�ψ

þ iμg0aðψ�∂aψ − ψ∂aψ
�Þ�: ðA3Þ

Keeping only terms up to first order in r−1 and α2, we can
obtain the effective action,

S2 ¼
Z

dt d3r

�
ψ�∂tψ −

1

2μ
∇ψ�∇ψ þ α

r
ψ�ψ

�
; ðA4Þ

which leads to the Schrödinger equation

i
∂
∂tψðt; rÞ ¼

�
−

1

2μ
∇2 −

α

r

�
ψðt; rÞ: ðA5Þ

The stationary eigenmode of cloud is denoted by jnlmi
with the wave function

ψnlm ¼ e−iðω−μÞtRnlðxÞYlmðθ;ϕÞ; ðA6Þ

where x ¼ α2r=GM, Ylm is the spherical harmonic
function, and

RnlðxÞ ¼
��

2

n

�
3 ðn − l − 1Þ!
2nðnþ 1Þ!

�
1=2

e−
x
n

�
2x
n

�
l

× L2lþ1
n−lþ1

�
2x
n

�
ðA7Þ

with L2lþ1
n−lþ1½x� being the generalized Laguerre polynomial

of degree n − l − 1.

APPENDIX B: TIDAL PERTURBATION

In this appendix, we show the explicit expression of V�.
In the frame centered at the BH, the Hamiltonian of the
system is

Htot ¼
�
p2

2μ
−
μM
r

�

þ
�
p2�
2M�

−
M�M
R�

−
M�μ

jR� − rj þ
M�μ
R3�

r ·R�

�
; ðB1Þ

where p ¼ μ_r, p� ¼ M� _R� with r and R� being the
positions of the cloud and the star relative to the BH. For
r < R�, we have

1

jR� − rj ¼
1

R�
þ r cosΔθ

R2�
þ
X
l�≥2

X
jm�j≤l�

4π

2l� þ 1

×
rl�

Rl�þ1
�

Y�
l�m� ðθ�;ϕ�ÞYl�m� ðθ;ϕÞ; ðB2Þ

where Δθ is the angle between r and R�. The first term on
the r.h.s. of Eq. (B2) does not change the eigenstate of the
cloud, and the second term cancels with the last term in
Eq. (B1). For R� < r, we have

1

jR� − rj ¼
1

r
þ r ·R�

r3
þ
X
l�≥2

X
jm�j≤l�

4π

2l� þ 1

×
Rl��
rl�þ1

Y�
l�m� ðθ�;ϕ�ÞYl�m� ðθ;ϕÞ; ðB3Þ

in which case the monopole and dipole terms contribute.
The inner product can be written as

hψ ijV�jψ ji ¼ −M�μ
X
l�;m�

4π

2lþ 1
IΩIrðr�ÞYl�m� ðθ�; 0Þ

× exp ½iðωi − ωjÞt ∓ im�ϕ��; ðB4Þ

where the upper sign in front of m�ϕ� corresponds to
corotating orbits, while the lower sign corresponds to
counterrotating orbits. For l� ≥ 2, we have

Ir ¼
Z

∞

0

dr r2
rl�<
rl�þ1
>

Rnili
ðxÞRnjljðxÞ; ðB5Þ

where x≡ α−2r=GM, r< is the smaller of r and r� and r> is
the lager of r and r�. For l� ¼ 1 and 0, we have

Ir ¼
Z

∞

r�
dx r�

�
1 −

r3

r3�

�
RniliðxÞRnjljðxÞ ðB6Þ

and

Ir ¼
Z

∞

r�
dr rRniliðxÞRnjlj

ðxÞ ðB7Þ

respectively.

APPENDIX C: EFFECTS OF MODE DECAY
AND FLOATING ORBITS

In this appendix, we will discuss the effects of mode
decay. In particular, we will show that for EMRIs with
quasicircular orbits, dynamical friction dominates over the
backreation of level mixing during most of the time, while
the floating orbits proposed in [40] are still possible at
resonance frequency.
The tidal field of the star can mix the modes of the cloud,

which leads to angular momentum transfer between the star
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and the BH-cloud system. For a quasicircular orbit, the
angular momentum transfer has been calculated in [40],

	
dL�
dt



¼ ΔmΓ

Q2

2ω2
R

Mc

μ
; ðC1Þ

where Γ is the decay rate of the mode that the saturated
mode coupling to, Q is the coupling strength, ωR is the
Rabi frequency defined as

ωR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ ðΔω − ΔmΩÞ2=4

q
; ðC2Þ

where Δω and Δm are the energy level and quantum
number difference between the two modes. On the other
hand, the angular momentum carried away by GW radi-
ation is 	

dL
dt


����
GW

¼ −
32

5
η2MðGMΩÞ7=3: ðC3Þ

Figure 6 shows the relative magnitude of angular momen-
tum changing caused by level mixing and GW radiation.
Floating orbits occur when the angular momentum loss by
GW radiation is compensated by that gained through level
mixing. When there is dynamical friction, the occurrence of
floating orbits also requires energy gained from level
mixing can balance the dissipation caused by dynamic
friction. The maximum power of energy gaining due to
level mixing, comparing GW radiation is

PLM

PGW

����
max

∼
5

64
Δm10=3η−2αpl ; ðC4Þ

where pl ¼ 4l − 1 for Bohr resonance and pl ¼ 4l − 8
for hyperfine resonance. On the other hand, the ratio
between the effects of GW is given by Eq. (17), comparing
to which we have

PLMjmax

PDF
>

PLMjmax

PDFjmax
∼ 109Δm10

3 αplþ4

�
η

10−5

�
−2
: ðC5Þ

For orbits around a supermassive BH, we usually have
η ≪ 10−5, in which case the energy gain due to the
coupling to a decaying mode can still compensate the
energy loss caused dynamical friction. For orbits around an
intermedia mass BH, the energy gain due to the coupling to
a decaying mode may no longer support the orbital decay in

the presence of dynamical friction. However, a floating
orbit still exists if one considers the time dependence of the
orbital frequency as discussed in [82]. In the presence of the
dynamical friction, the change of the orbital frequency near
the resonance frequency may be dominated by dynamical
friction. Nevertheless, the Landau-Zener parameter defined
in [82] is still much greater than 1. Therefore, one can still
expect long-lasting monochromatic GW signals from
floating orbits around intermedia mass BHs as predicted
in [40].

FIG. 6. The ratio between angular momentum changing rate
caused by level mixing and that caused by GW radiation. We
consider a circular orbit with the inclination i ¼ π=4 (as some
coupling strength is proportional to cos i or sin i), and show the
ratio for the dominant level mixing with j211i and j322i.
α ¼ 0.1for the upper plot and α ¼ 0.3 for the lower plot. The
gray dashed line shows the orbital frequency corresponding
to a radius 4α−2, which locates the density peak of the
cloud. The shaded region shows the LISA frequency band
(0.1 Hz − 0.001 Hz), assuming a 105 M⊙ BH. The gray vertical
line denotes the innermost stable circular orbit.
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