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We explore the use of field solvers as approximations of classical Vlasov-Poisson systems. This
correspondence is investigated in both electrostatic and gravitational contexts. We demonstrate the ability
of field solvers to be excellent approximations of problems with cold initial condition into the nonlinear
regime. We also investigate extensions of the Schrödinger-Poisson system that employ multiple stacked
cold streams, and the von Neumann–Poisson equation as methods that can successfully reproduce the
classical evolution of warm initial conditions. We then discuss how appropriate simulation parameters need
to be chosen to avoid interference terms, aliasing, and wave behavior in the field solver solutions. We
present a series of criteria clarifying how parameters need to be chosen in order to effectively approximate
classical solutions.
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I. INTRODUCTION

Field solvers have proved useful for simulating a number
of physical phenomena. These solvers have been applied to
study two distinct types of systems. The first are those
systems in which the quantum nature of the constituents is
relevant, such as fuzzy dark matter [1–12], quantum plasma
[13], small electronics [14,15], nonlinear optics [16], and
superfluids [17], among others. The second type are systems
where the field solver approximates the classical solution,
such as cold dark matter [7,11,18–23] and classical plasma
[24–27]. One motivation in the latter application is to map
out and understand the regimes of correspondence between
field solvers and traditional classical methods [7,14,
18–21,24–26]. This correspondence is of particular interest
because of field solvers’ potential ability to reduce the
computational resources necessary to simulate certain sys-
tems [11,14,18,20] as well as circumvent some of the
problems associated with classical solvers [7].
The most commonly used field solver, i.e., the

Schrödinger-Poisson (SP) method, at the most basic level,
evolves an array of complex numbers in time using the
Schrödinger-Poisson equations. This array can be thought
of as representing a “wave function” in some basis, but is
more often interpreted as a complex classical field [20]. As
with true quantum wave functions, however, one can
interpret the square of the absolute value of a given element

as the probability density at that position in the chosen
basis, typically the position or velocity bases [18]. In
the limit of a large number of particles, as in classical
systems, this probability density corresponds to a physical
density. Further, the derivative of the phase can be
interpreted as a position of that density in the reciprocal
space of the basis. For example, when represented in the
position basis, the derivative of the phase corresponds to the
velocity of the stream at that position [20]. This wave
function is advanced in time using the Schrödinger equa-
tion, where the potential term appearing in the equation is
computed using the Poisson equation—and the density is
given by the square of the absolute value of the wave
function in the position basis [20]. Note that Fourier
transforms relate position and momentum spaces, allowing
the wave function, and by extension, the field solver
methods, to represent both spatial density and velocity
dispersion [18]. An approximation of a classical phase
space representation can then be created with the Husimi
transform [7,18,20,21,28], allowing a full description of
our system. The correspondence between the Husimi
distribution and coarse grained Vlasov distribution is also
of mathematical interest [29].
Investigation of the classical limit of these solvers has

been a topic of active research in the literature for some
time [7,14,18–21,24–26]. The specific way in which the
solutions from the field solvers reduce to the classical limit,
as well as the limitation and benefits of using these solvers
in quantum scenarios is not fully understood, but it has
been shown that field methods are quite successful in
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simulating some classical plasma problems involving cold
initial conditions [13,14,18,20].
When used as approximations of classical systems, field

solvers present a scenario which a 2 × n dimensional phase
space can be represented by an n dimensional array of
complex numbers [7,18,20]. This means that for appro-
priate systems, the quantum representation may use fewer
computational resources. Understanding the limitations and
benefits of field solvers may provide new means to
investigate these systems via simulation. Further, classical
methods are known to exhibit shot noise in low density
regions [7,30]. Field techniques which use continuous
fields can, in principle, circumvent this problem [7].
In this work, we investigate the field solvers’ correspon-

dence with classical solvers by looking at the results of a
number of idealized test problems. We discuss both how the
classical limit is achieved, as well as the cause of devia-
tions. We demonstrate that separation of streams in phase
space is necessary to approximate the classical solutions
using the standard Schrödinger method. Importantly, we
show that the limit of validity can be extended to warm
initial conditions, in which streams may be poorly resolved,
by using modifications to this technique.
We organize the paper as follows. In Sec. II, we discuss

the background physics of the system being simulated.
Section III contains a description of each solver used in the
paper, including a description of how to create initial
conditions, the employed algorithms, and a discussion of
how field solvers correspond to classical counterparts.
Section IV contains a series of test cases involving both
gravitational and electrostatic problems in which we
investigate the ability of field solvers to reproduce classical
results. In this section, we start with simple cold distribu-
tions and move to initial conditions with velocity dispersion
to track how and why the field solver can fail, and strategies
that can improve the convergence toward a classical
solution. We include a discussion of the results in
Sec. V, focusing on the limitations and behavior of the
field solvers and the regimes in which they can be used as a
classical approximation. Conclusions regarding the overall
utility of these methods and future directions are presented
in Sec. VI.

II. BACKGROUND

The fundamental systems being discussed here are
collisionless plasma or self-gravitating “dust” which source
their own potential. The potential is given by the Poisson
equation,

∇2V ¼ Cρ; ð1Þ

where V is the potential and ρ is a density. We will refer to
C as the Poisson constant. When C < 0, the potential is an
electrostatic one and the relevant density is a charge
density. When C > 0, the potential is gravitational and

the relevant density is a mass density. All the simulation
methods presented in this paper can be used to solve both
types of problems.
A key tool in the analysis of these systems will be the

investigation of the distribution function on phase space
ftðx; uÞ which gives the density of particles at time t with
velocity u at position x. We will be interested in two classes
of solvers. The first class is our classical solver, which
solves the Vlasov equation, written as

∂f
∂t ¼ q∇V ·

∂f
∂u − u · ∇f; ð2Þ

where q ¼ e=m is the charge to mass ratio in the
electrostatic case and q ¼ 1 in the gravitational case.
Qualitatively, this solver tracks and evolves the position
and velocity of a large number of particles and uses their
spatial distribution to calculate a density [31].

A. Schrödinger-Poisson system

The second class of solvers will include our field solvers.
The most basic and well investigated in the literature is the
Schrödinger-Poisson solver which solves the nonlinear
Schrödinger equation,

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
∇2ψ þ qmVψ : ð3Þ

Qualitatively, this solver tracks and evolves a complex field
[7,20,21], which can be represented in position or velocity
space. When represented in position space, the amplitude
of the field is interpreted as the spatial density and
the derivative of the phase is interpreted as the velocity
of the density at that position [20]. The extent to which this
system, and its extensions, can be used to approximate the
classical solver is the main focus of this work.
The field representation of our system makes phase

space representation difficult, as in general a quantum
system has no direct classical phase space analog [28].
However, there exist phase space representations which
maintain many of the properties of classical phase space
and work as approximations of classical phase space. These
can be useful tools to analyze the correspondence between
the classical and quantum systems.
Phase space representations of quantum states typically

have properties that deviate from those of classical phase
space representations. Wigner and Husimi distributions
have both been used [7,11,18–21,26,27,32]. However,
Wigner distributions are only everywhere positive when
the quantum state is a superposition of Gaussians and the
Husimi distribution only recovers the coarse-grained
moments of the given distribution [28]. Here we use the
Husimi distribution, which has the advantage of being
everywhere positive, as an approximation of classical phase
space. When interpreting the Husimi distribution as an
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approximation of the classical phase space, it is important
to recall that structures in phase space below the character-
istic area of the smoothing kernel cannot be resolved.
The Husimi function represents a mapping from a state

to phase space. The phase space itself is composed of basis
states for a given position (q) and momentum (p) in phase
space given as follows [28] (in the position basis of our
wave function):

hxjq; pi≡ ð2πs2Þ−1=4e−ðx−qÞ2=4s2eipx=ℏ; ð4Þ
in which s ∈ R is a free parameter representing the spatial
width of the Gaussian smoothing kernel. These states are
obviously not orthogonal but can be made to form a
resolution to the identity as follows:

ð2πℏÞ−1
Z

jp; qihp; qjdpdq ¼ I: ð5Þ

In general, the phase space distribution (fHt ðq; pÞ)
can be obtained by taking the modulus squared of the
wave function evaluated in the ðq; pÞ basis states. Note,
however, that

jψðqÞj2 ≠
Z
All

fHðq; pÞdp; ð6Þ

jψðpÞj2 ≠
Z
All

fHðq; pÞdq: ð7Þ

Instead, the right-hand sides of these equations corre-
spond to the coarse grained spatial and momentum den-
sities with smoothing scales s and ℏ=2s, respectively.
Finding the probability distribution for each field solver

then simply involves taking an inner product of the basis
states with the wave functions or density matrices,
described in Table I. For the Schrödinger system, this is
done as

fHt ðq;pÞ¼ð2πℏÞ−1
����
Z

dxð2πs2Þ−1=4e−ðx−qÞ2=4s2eipx=ℏψðxÞ
����2

¼ð2πℏÞ−1jhq;pjψij2: ð8Þ

B. von Neumann–Poisson system

It is also possible to evolve a statistical ensemble of
classical fields using traditionally quantum methods. For
this, we turn to the density matrix formalism and use the
von Neumann (VN) equation,

∂P
∂t ¼ −i

ℏ
½H;P�; ð9Þ

where P is the density operator representing our ensemble
of fields and H is the same Hamiltonian used in the
Schrödinger-Poisson system,

H ¼ p2

2m
þmV: ð10Þ

A thorough discussion of the von Neumann equation and
matrix density formalism can be found in many graduate
level quantum textbooks, for example [28]. This formalism
is used to describe the evolution of statistical mixtures quite
frequently in other subfields in physics [33–35]. Our
density operator is written as

P ¼
X
i

wijψ iihψ ij; ð11Þ

where wi is the probability weight of the ith field ψ i. In
general, a change of basis can be performed on the density
operator as follows [28]:

P̃ ¼ hfjPjf0i ¼
X
i

X
i0
hfjiihijPji0ihi0jf0i; ð12Þ

where P̃ is the density operator represented in the basis new
states jfi, and hijPji0i represents the density operator
represented in the original basis states jii.
This extension of the Schrödinger-Poisson equation

allows the evolution of a dispersion of different velocity
streams without having them interfere with one another. We
will show that this is useful for simulating warm initial
conditions. In general, this formalism should be more
accurate if the phase space we are trying to represent is

TABLE I. Shown for each solver is the full step position update, momentum update, density deposit, and phase space rules. A
comparison of Schrödinger method and its extensions reveals the similarities between all the field solvers. At its core each of the field
solvers involves update via unitary operators diagonal in either the momentum or position basis. Likewise, the phase space distribution
for each is simply given as a norm of the fields after a change of basis into the phase space eigenstates.

Classical Schrödinger Multiple Hilbert spaces von Neumann

Position rtþΔt ¼ rt þ vΔt ψ̃ tþΔt ¼ UT
t ðΔtÞψ̃ t ψ̃ tþΔt;i ¼ UT

t ðΔtÞψ̃ t;i P̃tþΔt ¼ UT
t ðΔtÞP̃tU

T†
t ðΔtÞ

Momentum vtþΔt ¼ vt þ aΔt ψ tþΔt ¼ UV
t ðΔtÞψ t ψ tþΔt;i ¼ UV

t ðΔtÞψ t;i PtþΔt ¼ UV
t ðΔtÞPtU

V†
t ðΔtÞ

Density CIC deposit jψ j2 PNs
i¼1 jΨij2 DiagðPÞ

ftðq; pÞ CIC deposit ð2πℏÞ−1jhq; pjψij2 ð2πℏÞ−1 Pns
i jhq; pjΨiij2 ð2πℏÞ−1hq; pjPjq; pi
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not a one-to-one function of q and p, as is the case with
multiple spatially overlapping streams.

III. SOLVERS

In this section, we discuss the different numerical
methods employed in this paper, including the procedures
for setting up consistent initial conditions for the different
solvers, along with the update rules for the variables of each
method. We also discuss the conditions under which these
solvers reproduce the classical time evolution of Vlasov-
Poisson systems, along with the conditions under which
they deviate from the classical analog. The system of units
is discussed in the Appendix A.
All solvers use a symplectic drift-kick-drift update

scheme that works as follows [36]:
(1) Half step position update
(2) Calculate potential
(3) Full step momentum update
(4) Half step position update

A. Classical solver

1. Initial conditions

For the classical solver, the system is discretized in terms
of particles. We generate initial conditions for this solver
simply by choosing an initial position and velocity for each
particle, sampled from the initial distribution function.
Generally, we will discuss initial conditions by describing
their constituent streams. Here a stream refers to a collec-
tion of particles all with the same velocity. Streams may be
spatially uniform or given some spatial density depend-
ence. Generally, we will initialize streams with some spatial
or velocity perturbation.
For our classical solver, we first divide up the total number

of particles Npart into individual streams. The streams are
populated with particles according to their Boltzmann
weights, i.e., the number of particles in the ith stream is

Ni
part ¼ Npart

e−v
2
i =v

2
th

Z
; ð13Þ

where Ni
part is the total number of particles in stream i, vi is

the mean velocity of the stream, and vth is the thermal
velocity. Z is the partition function of the system, defined as

Z ¼
X
i

e−v
2
i =v

2
th : ð14Þ

To determine the position of particles within a given stream,
we compute the cumulative distribution function (CDF)
of the initial density distribution. Note that if all particles
have the same mass that a mass density function normalized
by the total mass, Mtot, can be interpreted as a probability
distribution function. Therefore, the CDF can be written as
follows:

CDFðrÞ≡ 1

Mtot

Z
r

−∞
ρðxÞdx: ð15Þ

The position for the jth particle in the stream can be found by
inverting this CDF, i.e., the particle is assigned position rj
which satisfies

CDFðrÞjr¼rj ¼
jþ 1

Ni
part þ 2

: ð16Þ

For the plasma simulations, the initial spatial density is
constant and so this procedure implies that the particles are
spaced uniformly over the simulation length. Finally, the
velocity for particle j, starting in stream i is assigned as
follows:

vj ¼ vi þ vp sin

�
2π

rj
λ

�
; ð17Þ

where vp controls the magnitude of the perturbation of
velocity about the mean velocity vi of the stream and λ its
wavelength.

2. Update

Once the initial conditions have been set up, we have two
arrays of length Npart representing the positions and
velocities, which need to be updated at every time step.
The update rule is described in Table I and is as follows:

rtþΔt ¼ rt þ vΔt=2 ðposition update half stepÞ
ðcalculate accelerationÞ

vtþΔt ¼ vt þ aΔt ðvelocity update full stepÞ
rtþΔt ¼ rt þ vΔt=2 ðposition update half stepÞ; ð18Þ

which is a common leap frog integrator known to be
symplectic [36,37].
The accelerations, a, are computed as follows: the

particle positions are used to create a density field ρðxÞ
on the grid using the particle-in-cell deposition scheme. For
these simulations, we use a simple top hat deposit of grid
spacing width or cloud-in-cell (CIC) deposit [31], we will
define a top hat deposit as follows:

TiðxÞ ¼ Θ
�
x − ri þ

Δxg
2

�
− Θ

�
x − ri −

Δxg
2

�
; ð19Þ

where the density is then constructed as a sum over the
particles as follows:

ρðxÞ ¼ q
X
i

TiðxÞ: ð20Þ

Here q is the particle mass or charge, depending on whether
the system is interacting under gravity or electromagnetism,
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ri the position of the ith particle, and Δxg ≡ L=N is the
width of a grid cell.
The computation of the acceleration from the density

field is done in Fourier space, so we consider the Fourier
transform of the density,

ρ0ðkÞ ¼
Z

ρðxÞeikxdx: ð21Þ

In Fourier space, the Poisson equation has a particularly
simple form, and the potential is calculated as [38]

ṼðkÞ ¼ −
C

ð2πÞ2
ρ0ðkÞ
k2

: ð22Þ

The potential is then transformed back to configuration
space,

VðxÞ ¼ 1

2π

Z
ṼðkÞe−ikxdk: ð23Þ

While the above expressions have been written for con-
tinuous fields for conceptual clarity, the actual calculations
are performed on a grid of size Ngrid using discrete Fourier
transforms.
Finally, the acceleration defined on the grid is

computed as

aðxiÞ ¼ ai ¼ −
X
j

DijVj; ð24Þ

where aðxiÞ and Vi ≡ VðxiÞ are the value of the accel-
eration and potential at the xi grid cell, respectively. Dij

represents the differentiation stencil

Dij ¼
δi;j−1 − δi;jþ1

2
: ð25Þ

Here δi;j ¼ 1 when i ¼ j is the Kronecker delta function.
The acceleration at the ith particle position, ri, is then
interpolated from the grid to the particles’ position as

aðriÞ ¼
1

Δxg

Z
aðxÞTiðxÞdx; ð26Þ

which has been written as continuous here for conceptual
clarity. However, in practice, aðxÞ is defined on the grid.
aðriÞ is then the acceleration of the ith particle. Apart from
the computation of the acceleration in the final step, the
procedure of going from the density field to the potential as
outlined above is also used for all the other solvers that are
described below.

B. Schrödinger-Poisson solver

1. Initial conditions

We generate the initial conditions of this solver by
populating our phase space with streams represented by
a single one-dimensional (1D) wave function defined on a
grid with Ngrid cells. The wave function can be represented
in the following way in either configuration space or
momentum space:

ψðxÞ ¼
ffiffiffiffiffiffiffiffiffi
ρðxÞ

p
eiϕðxÞ; ð27Þ

ψ̃ðkÞ ¼
ffiffiffiffiffiffiffiffiffi
ρ̃ðkÞ

p
eiϕ̃ðkÞ; ð28Þ

where ψ ; ψ̃ ∈ C are single valued functions of x and k,
respectively. Recall momentum, p, and wave number, k,
are simply related by constants as p ¼ ℏk ¼ ℏ̃u. To define
a stream, we specify a single valued line in either position
or momentum space where at each point the amplitude
defines the density and the momentum or position is given
by the derivative of the phase. For example, a stream s in
real space is defined as

ψ sðxÞ ¼
ffiffiffiffiffiffiffiffiffi
ρðxÞ

p
eiϕðxÞ; ð29Þ

psðxÞ ¼ ℏ∇xϕðxÞ: ð30Þ

The phase should be chosen here such that the quantum
pressure of a given stream is small compared to the classical
potential. This constraint is discussed in greater detail
in Sec. V.
Likewise, a single value stream s̃ can be defined in

momentum space as

ψ̃ sðpÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ρ̃ðpÞ

p
eiϕ̃ðpÞ; ð31Þ

xsðpÞ ¼ ℏ∇pϕ̃ðpÞ: ð32Þ

To build up the equivalent of a velocity dispersion, we
add up the contributions of different streams,

ψðxÞ ¼ 1ffiffiffiffiffiffi
Ns

p
XNs

s

ψ sðxÞ: ð33Þ

An individual stream ψ sðxÞ with velocity us, spatial density
ρsðxÞ, and sinusoidal velocity perturbation with magnitude
δu and wavelength λ can be written as

ψ sðxÞ ¼ ρsðxÞ exp
�
iusx

ℏ̃
−
iλδu

ℏ̃
cos

2πx
λ

�
: ð34Þ

We will frequently construct our phase space out a sum of
such streams. We define ℏ̃≡ ℏ=m.
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Wewill discuss below how a sum of streams allows us to
approximate warm phase space distributions. It should be
noted that formulating the wave function in this way makes
phase space periodic in position and momentum by
construction. Because the momentum of our wave function
is represented by oscillations on the grid, the highest
momentum that can be simulated before aliasing sets in is

pmax ¼ ℏπ=Δxg; ð35Þ

where Δxg is the grid cell spacing. This means the
maximum magnitude positive and negative momenta iden-
tify since, when defined on a grid, we cannot distinguish
left and right going waves with pmax momentum.

2. Update

The update rule for the Schrödinger-Poisson set of
equations follows a scheme similar to the classical
update outlined in Sec. III A. It is a spectral kick-drift-
kick solver implemented in [3]. We start from the
Schrödinger equation,

iℏ _ψðxÞ ¼ HψðxÞ ¼
�
p2

2m
þmVðxÞ

�
ψðxÞ; ð36Þ

where p≡ −iℏ∇. For slowly changing Hamiltonians, the
wave function update between time t and tþ Δt can be
approximated as follows [28]:

ψ tþΔtðxÞ ¼ exp

�Z
tþΔt

t

−iHt0

ℏ
dt0

�
ψ tðxÞ

≡Uðtþ Δt; tÞψ tðxÞ; ð37Þ

where UðT; tÞ is the unitary operator which takes the wave
function at time t to the wave function at time T. Note that
“slowly changing” in this context means the time step is
chosen such that [20]

ðHðtþ ΔtÞ −HðtÞÞΔt
ℏ

≪ 1: ð38Þ

Discretizing this equation, we can write the update step that
takes ψ t → ψ tþΔt,

ψ tþΔt ¼ exp

�
−iHt

ℏ
Δt

�
ψ t; ð39Þ

which will be accurate when H
ℏ Δt ≪ 1. We also notice

that the Hamiltonian is separable into terms which depend
only on the momentum or only on position. We can
therefore rewrite the Hamiltonian as potential and kinetic
terms,

H ¼ TðpÞ þ VðxÞ: ð40Þ

This also implies that the operator UðT; tÞ can also be
written as a product of two terms,

UtðΔtÞ≡Uðt; tþΔtÞ

¼ exp

�
iΔtp2

2mℏ

�
exp

�
−iΔtmVt

ℏ

�
expðOðΔt2½T;V�ÞÞ

≈UT
t ðΔtÞUV

t ðΔtÞ: ð41Þ
Notice that UT

t is diagonal in the momentum basis and that
UV

t is diagonal in the position basis and correspond to the
kinetic and potential energy contributions, respectively. Vt
is the potential at time t. Also, recall that position and
momentum are related by Fourier transform and so the
momentum density of our wave function is represented by
the k-space wave function scaled appropriately. This means
that the update can be separated into two parts—the first
changes the phase of the configuration space wave func-
tion, and the second changes the phase of the momentum
space wave function. The update and density deposit rules
are described in Table I and given below. To compute the
potential, we follow the same procedure as for the classical
solver. The solver used here is also used in [12,19].

ψ̃ tþΔt ¼ UT
t ðΔt=2Þψ̃ t ðposition update half stepÞ

ðcalculate VtÞ
ψ tþΔt ¼ UV

t ðΔtÞψ t ðmomentum update full stepÞ
ψ̃ tþΔt ¼ UT

t ðΔt=2Þψ̃ t ðposition update half stepÞ:

To compute the potential, we follow the same procedure as
for the classical solver, but with the density defined
as ρðxÞ ¼ jψðxÞj2.
The quantum analog of classical phase space density for

the Schrödinger-Poisson system is described in Sec. II and
Table I and is given

fðq; pÞ ¼ ð2πℏÞ−1jhq; pjψij2: ð42Þ

It should be noted that in this work the Husimi
distribution is only evaluated in postprocessing and is
not directly factored into the evolution of the system.
When using the Husimi as a diagnostic tool, the smoothing
length scales should be kept in mind.

3. Formal correspondence to and deviation
from classical method

Equations. (30) and (32) imply that for a single stream,
the derivative of the position space phase can give us the
momentum of the stream at a given position, while the
derivative of the momentum space phase can give us
the position of the stream at a fixed momentum. For a
single stream in phase space, at any phase space grid cell
populated by a constituent packet of the stream, the
position q and momentum p can be defined as
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r≡ ℏ∇pϕ̃ðpÞ; ð43Þ

v≡ ℏ̃∇xϕðxÞ: ð44Þ

Therefore, the derivative of our phases at that location in
phase space gives us the position and momentum of that
packet. Further, the amplitude of the wave function at that
point gives the density at that ðq; pÞ in phase space. Now
recall that our update is as an update of the momentum
space and position space phases, respectively, such that we
can rewrite our update rule as follows:

ϕ̃tþΔt ¼ ϕ̃t þ
Δtp2

4mℏ
ðupdate position half stepÞ

ðcalculate VÞ

ϕtþΔt ¼ ϕt þ
−ΔtmV

ℏ
ðupdate momentum full stepÞ

ϕ̃tþΔt ¼ ϕ̃t þ
Δtp2

4mℏ
ðupdate position half stepÞ:

We can then use Eqs. (30) and (32) to recast the update
rules as

rtþΔt ¼ rt þ
vΔt
2

ðupdate position half stepÞ
ðcalculate VÞ

vtþΔt ¼ vt þ aΔt ðupdate momentum full stepÞ

rtþΔt ¼ rt þ
vΔt
2

ðupdate position half stepÞ;

where a≡ −∇xV. This set of updates are exactly the same
as those used for the classical solver; see Eq (18). At face
value, this would suggest that the classical solver and the
Schrödinger-Poisson solver will agree with each other up to
terms proportional to OðΔt2½T; V�Þ. However, we assumed
an isolated single-valued stream in phase space. It is easy to
define the derivative of the phase in either position space or
momentum space for a one-dimensional wave function
provided there is only one stream. However, this is more
challenging when we have multiple streams. Consider the
simplest possible case of a system with two Gaussian
streams with constant momenta p1 ¼ ℏ∇xϕ1ðxÞ and p2 ¼
ℏ∇xϕ2ðxÞ and identical position space densities ρi=2 where
ρiðxÞ ∼ exp ð−x2Þ. This wave function can be written as a
superposition as follows:

ψðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρiðxÞ=2

p
ðep1xi=ℏ þ ep2xi=ℏÞ: ð45Þ

For uniform constant momenta, we set ϕ1=2 as follows:

ϕ1=2 ¼
ℏ

p1=2
x: ð46Þ

Using the center of mass momentum pc ¼ ðp1 þ p2Þ=2
and momentum difference Δp ¼ p1 − p2, we can rewrite
the above equation as

ψðxÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρiðxÞ=2

p
cos ðΔpx=2ℏÞeipcx=ℏ: ð47Þ

Notice that the amplitude of the wave function oscillates as
a function of the position and depends on the momentum
difference Δp. This stream interference present in the SP
method has been noted in [11,24,27]. A higher separation
in momentum leads to a more rapidly varying function in
configuration space as noted in [24]. In fact, the amplitude
of the wave function goes to 0 wherever the argument of the
cosine term is equal to ðnþ 1Þπ=2. It is straightforward to
show that the density is also spatially varying,

ρðxÞ ¼ 2ρiðxÞ cos2ðΔpx=2ℏÞ: ð48Þ

However, we note that the average value of cos2 over a
period is 1=2 and so the density is correct as long as we
average over a distance xav ¼ 2πℏ=Δp. This implies that
the higher the momentum separation of the streams, Δp,
the smaller the length scale over which the density needs to
be smoothed to reproduce the classical solution. Note that
this means that the “classical limit,” where the oscillation
frequency becomes large, the oscillation present in the
wave function remains order unity [11]; however, the
fractional distance over which the average of the density
approaches the correct value becomes small. Because our
momenta are represented by a Fourier transform of the
spatial wave function, there is an upper limit on the
maximum possible momentum representable in the system.
This momentum corresponds to the Fourier mode whose
wavelength is the same as the grid cell spacing. Thus, our
phase space is periodic in momentum space, by which we
mean that the maximum and minimum momenta map to
each other. Therefore, there is an upper limit on the
separation of the two streams along the momentum
direction. This suggests that when the averaging length
scale set by the momentum difference is smaller than the
smallest dynamic length scale of the problem, xD, the
classical solution can be recovered. That is, our solution
approaches the classical solution when

xav
xD

¼ 2πℏ
xDΔp

≪ 1: ð49Þ

Figure 1 shows our solution deviates strongly from the
classical solution when the momentum separation between
streams is too small, causing the oscillation term to be of
order or greater than the smallest dynamic length scale. A
similar argument as the one outlined above implies that for
a one-dimensional wave function representing two different
streams in configuration space, the momentum space
resolution has a bound,
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pav

pD
¼ 2πℏ

pDΔx
≪ 1: ð50Þ

It should be noted that it is also possible for a single stream
to interfere with itself if appropriately stretched and bent in
phase space such that it becomes double valued as a
function of p or x.
In the language of quantum mechanics, the implicit

assumption contained in the Schrödinger-Poisson solver is
that the evolved wave function corresponds to a pure state.
This means that streams are added in superposition as
opposed to being in a classical statistical mixture. Using
this method as an alternative to a classical solver, we choose
to interpret the wave function densities as corresponding
to classical distribution functions but the solver itself
allows for wave mechanic effects like interference that
would not be present in the classical solution. When using

this solver to approximate classical solutions, it should be
noted that ℏ̃ is not the physical constant but a simulation
parameter qualitatively representing a minimum phase
space resolution [19].
It should also be noted that if the spatial smoothing scale

of the Husimi distribution s ≥ OðxavÞ, then the interference
will not appear in the Husimi representation of the phase
space. This property can allow for better classical phase
space approximation. However, the phase space agreement
can be misleading if the dynamical length scales are also
below this length scale, i.e., s ≥ OðxDÞ, as the Husimi
distribution will not be useful in diagnosing why the field
solver and classical solver evolution differ. In this work, the
Husimi distribution is only evaluated in postprocessing and
is not directly factored into the evolution of the system.
This is analogous to constructing a smooth classical phase
space density from the N particles.

FIG. 1. Plot of the Schrödinger quantum phase space representation and spatial density of two Gaussian streams. The left column
shows the results for well separated streams, and the right column shows poorly separated streams. The wavelength of the oscillation in
the Schrödinger spatial density decreases as the stream velocity separation increases. The oscillation structure can also be seen in the
interference fringes between the stream representations in phase space (top right). The classical (Cl), von Neumann (VN), and
multistream/multiple Hilbert spaces (MS) methods lack the oscillation and match the expected density profile.
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C. von Neumann–Poisson solver

As noted in Sec. III B, the Schrödinger-Poisson method
of simulating classical systems is only valid for initial
conditions which can be represented as a pure state. In this
section, we present a von Neumann solver that relaxes the
assumption contained in the Schrödinger-Poisson solver.
Specifically, the solver follows the evolution of the density
matrix of the system as opposed to a wave function; this
allows for the correct evolution of mixed states, as well as
pure states. Mixed states correspond to a classical statistical
mixture or distribution of wave functions. A classical
mixture of wave functions each exists in a separate
Hilbert space and thus does not interfere with one another,
an opposed to quantum superpositions of different streams,
where interference terms arise naturally.
The von Neumann scheme increases the numerical

scaling of the problem to OðN2n logNÞ. However, there
has been some interest in the solvers with similar scaling
[39–41], and in some cases where a continuous (as opposed
to discretely sampled with sheets) velocity dispersion is
necessary to recover the correct solution this solver may be
preferable.

1. Initial conditions

The von Neumann method requires the introduction of
the density matrix P. This is represented as an N × N
matrix in some basis. The diagonal of this matrix is the
density in the chosen representation basis. As mentioned
earlier, density matrices can represent a classical mixture of
quantum states, unlike the wave function [28].
The increased dimensionality of our fundamental object

increases the scaling of the solver to be OðN2 logNÞ for a
one-dimensional problem. In this sense, the von Neumann
solver is more analogous to solvers which act directly on 2n
dimensional phase space, where n is the number of spatial
dimensions. However, this method may be beneficial as the
evolution of this solver still involves unitary operators and
so we expect tracking of conserved quantities to remain
accurate to machine noise. Additionally, the density matrix
still represents a continuous field as opposed to discrete
particles.
To populate the phase space, we can once again use the

formalism of adding up multiple streams defined in
position space in the following manner, with coordinate
or index notation, respectively:

Pðx; x0Þ≡ 1

Ns

XNs

s

ψ sðxÞψ†
sðx0Þ; ð51Þ

Pij ≡ Pðxi; xjÞ; ð52Þ

where ψ sψ
†
s represents the outer product of the wave

functions, and an individual stream is represented as before,

jψ sðxÞi ¼
ffiffiffiffiffiffiffiffiffi
ρðxÞ

p
exp ðiϕðxÞÞ; ð53Þ

pðxÞ ¼ ℏ∇xϕðxÞ: ð54Þ

Notice that P does not uniquely define a sum of streams,
that is, there are infinite possible different summations
which would give the same P. However, the evolution of P
is unique. We index individual elements of the discretized
matrix P with i, j such that P ∈ CN×N and Pij ∈ C. Since
the diagonal of P can be treated as a density in the position
basis, Pii ∈ R, i.e., the diagonal elements are real. The
density in any basis is the diagonal of the density matrix
represented in that basis,

ρ ¼ diagðPÞ: ð55Þ

We can compute the phase space as

fðp;qÞ¼ ð2πℏÞ−1hq;pjPjq;pi

¼ ð2πℏÞ−1
Z Z

dxidxjhq;pjxiihxijPjxjihxjjq;pi

¼ ð2πℏÞ−1ð2πs2Þ−1=2

×
ZZ

dxidxjPije−ððxi−qÞ
2þðxj−qÞ2Þ=4s2e−ipðxj−xiÞ=ℏ:

ð56Þ

2. Update

The evolution of the density matrix proceeds using the
von Neumann equation,

PtþΔt ¼
1

Ns

X
UtðΔtÞψ tðUtðΔtÞψ tÞ† ð57Þ

¼ UtðΔtÞPtU
†
t ðΔtÞ: ð58Þ

Note that update operator UtðΔtÞ in the above equation is
similar in form to the one in Eq. (37), and therefore also
splits into independent updates of the position space phase
and the momentum space phases of the matrix. The update

P̃tþΔt¼UT
t ðΔt=2ÞUT†

t ðΔt=2ÞP̃t ðposition update half stepÞ
ðcalculate VtÞ

PtþΔt¼UV
t ðΔtÞUV†

t ðΔtÞPt ðmomentum update full stepÞ
P̃tþΔt¼UT

t ðΔt=2ÞUT†
t ðΔt=2ÞP̃t ðposition update half stepÞ

ð59Þ

and density deposit rules are described in Table I.
The potential is computed from the density described in

Table I. Element wise, the position and momentum update
rules can be written as
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P̃ij;tþΔt ¼ P̃ij;t exp

�
iΔt
2mℏ

ðp2
i − p2

jÞ
�
; ð60Þ

Pij;tþΔt ¼ Pij;t exp

�
iΔt
ℏ

ðVj − ViÞ
�
; ð61Þ

where P̃ is the momentum space representation of the
density matrix. This is computed by performing a Fourier
transform on the axis labeled by i and an inverse Fourier
transform on the axis labeled by j of the real space density
matrix,

P̃ij ¼ hpijPjpji

¼
Z Z

dxkdxlhpijxkihxkjPjxlihxljpji

¼
Z Z

dxkdxle
i
ℏðpjxl−pixkÞPðxk; xlÞ

¼ F−1
ik FjlPkl; ð62Þ

whereF−1
ik ,Fjl represent the inverse Fourier transform along

axis 0 (horizontal) and Fourier transform along axis 1
(vertical), respectively.

3. Formal correspondence to and deviation
from classical method

For a single stream, the correspondence of the von
Neumann method with the classical solution can be shown
using the samemethod as presented in Sec. III B 3—the only
difference being that we start with the density matrix instead
of thewave function. This result is expected since the single-
stream scenario represents the equivalent of a pure state in
our formalism, and the Schrödinger and the von Neumann
approach are formally equivalent for pure states [28].
The two Gaussian-streams scenario we discussed in

Sec. III B 3, on the other hand, can be naturally represented
as a mixed state in the density matrix setup, see Eq. (51), so
that the von Neumann and Schrödinger approaches produce
different results. To show this, we once again consider two
streams with momenta p1 ≡ ℏ∇xϕ1 and p2 ≡ ℏ∇xϕ2 and
identical position space densities ρi=2. Wewrite our density
matrix as

Pij¼
ρiðxÞ
2

�
exp

�
ip1

ℏ
ðxi−xjÞ

�
þ exp

�
ip2

ℏ
ðxi−xjÞ

��
:

ð63Þ
The density field is therefore given by

ρðxÞ ¼ diagðPÞ ¼ ρiðxÞ
2

ðe0 þ e0Þ ¼ ρiðxÞ: ð64Þ

The density field has the correct value as can be seen in Fig 1.
The oscillations that were present in the density field in the
Schrödinger solver for two streams are thus eliminated in the
vonNeumannmethod. This implies that different streams no

longer interfere with each another. However, streams can
still interferewith themselves if they are evolved to the point
where they become highly distorted in phase space.

D. Multiple Hilbert spaces

As we saw in Sec. III B 3, interference between different
streams leads to the breakdown of the correspondence
between the classical solution and the Schrödinger-
Poisson solution. Since interference terms only arise for
wave functions defined on the same Hilbert space, this
problem can be mitigated by defining each stream in its own
Hilbert space as in [14,42]. The individual Hilbert spaces are
then evolved in the joint potential. Since the underlying
variables of thismethod are one-dimensionalwave functions,
rather than the full density matrix, this method has lower
computational cost than the von Neumann method—the von
Neumann method scales as OðN2Þ, while the Schrödinger
method scales asOðNÞ. Therefore, evolving wave functions
in multiple Hilbert spaces scales asOðnsNÞ, where ns is the
number of streams and N is the grid size. When the stream
number is small compared to the grid size, this method
represents a large speedup over the von Neumann method.

1. Initial conditions

The object of interest in this method is a vector of wave
functions Ψ where

ΨiðxÞ ¼
1ffiffiffiffiffiffi
Ns

p ψ iðxÞ: ð65Þ

Therefore, the ith element in the vector represents the ith
stream, with each stream defined the same way as before.
The density can now be calculated,

ρðxÞ ¼
XNs

i¼1

jΨiðxÞj2: ð66Þ

The phase space is given as

fðp; qÞ ¼ ð2πℏÞ−1
Xns
i

jhq; pjΨiij2: ð67Þ

2. Update

Each individual stream, i, is updated using the same
procedure as outlined in Sec. III B 2. The only difference is
that the density that enters the Poisson solver is the one
described in Table I and given below.

ψ̃ tþΔt;i ¼UT
t ðΔt=2Þψ̃ t;i ðposition update half step;∀ iÞ

ψ tþΔt;i ¼UV
t ðΔtÞψ t;i ðmomentum update full step;∀ iÞ

ðcalculate VtÞ
ψ̃ tþΔt;i ¼UT

t ðΔt=2Þψ̃ t;i ðposition update half step;∀ iÞ:
ð68Þ
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3. Formal correspondence to and deviation
from classical method

Again, the same definitions of p and r will reproduce the
classical update rule as before. Returning to the two stream
test problem, we find that our vector can be written with
two components as

Ψ0ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ρiðxÞ
2

r
eip0x=ℏ;

Ψ1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ρiðxÞ
2

r
eip1x=ℏ: ð69Þ

Equation (65) implies that the density for this system is
given by

ρðxÞ ¼ jΨ0ðxÞj2 þ jΨ1ðxÞj2 ð70Þ

¼ ρiðxÞ þ ρiðxÞ
2

¼ ρiðxÞ: ð71Þ

Therefore, this method recovers the correct density (Fig. 1),
that is, without the interference terms which appeared
Sec. III B 3.

IV. TEST CASES

In this section, we present the results of simulations of
various test cases using the different methods outlined in
the previous section. For every test problem, we use the
classical solver as a benchmark for the accuracy of the other
solvers.

A. Cold stream distributions

The systems represented here correspond to a classical
electrostatically or gravitationally interacting plasma com-
posed of a large number of particles with common mass
and charge. The system can be described by a continuous
phase space distribution obeying the Vlasov-Poisson equa-
tions in which the potential is sourced by the charge density
of the particles. When the relevant physics involves a small
number of cold streams, well resolved in phase space, all
the field solvers are capable of reproducing the classical
result. We demonstrate this correspondence by simulating
two stream instability and sine wave collapse.

1. Two stream instability

Our first test problem is 1D two stream instability, a
classic instability relevant in the evolution of cold plasma
[43,44]. For example, this system can describe the evolu-
tion of fast electron beams moving through slower moving
background solar wind [44]. Streams of different velocities
with separation below the critical velocity uc should be
unstable and perturbations will grow exponentially.

This problem demonstrates the ability of all of our
solvers to accurately model multiple cold streams well
resolved in phase space and recover the expected insta-
bility. Two streams at different velocities are given an initial
perturbation. We set up the system with the two cold
streams spaced apart in phase space such that their velocity
separation is less than twice the critical velocity u0 (see
Appendix for the definition of u0). The initial perturbation
will then grow exponentially for a time following these
initial conditions [13,14,43].
We initialize streams with the dimensionless velocity

us ≈�0.8 (see Appendix for the definition of us) and
introduce a sinusoidal perturbation to the stream velocities
with perturbation wavelength equal to the size of the box
and amplitude δu ¼ 0.05u0. The amplitude of the pertur-
bation over time can be measured (when the perturbation is
approximately linear) following the evolution of the root
mean square value of electric field. For these simulations,
we useN ¼ 256 grid cells, n ¼ 216 particles in the classical
solver, ℏ̃ ¼ 1 × 10−6; we define our timescale, t0 and
Poisson constant, C such that Ct20=4π ≡ 1. We expect
linear growth in the early evolution, where the electric
field is proportional to the amplitude of the spatial
perturbation,

E ¼ −∇V ∼ δx; ð72Þ

where E is the electric field, V is the electric potential, and
δx is the amplitude of the spatial perturbation.
It has been previously demonstrated that classical two

stream instability can be reproduced using quantum meth-
ods [13,14,27]. We find that all four methods produce the
same perturbation growth, i.e., all the field solvers agree
with the classical solution, as well as with each other. This
is shown in Fig. 2, where we find that the electric field from
all the implementations broadly agree. There are some
quantitative differences between the Schrödinger solver
and the other solvers at early times and small length scales,
but these disappear with time. The interference terms are
responsible for washing out the small scale structure. We
can see in Fig. 3 that as we increase the resolution of our
simulation, we are able to better approximate the classical
solution. We also plot the phase space from each simulation
in Fig. 4, which corroborates the idea that all the solvers
produce a similar time evolution, in good agreement with
our expectations. Note that all the field solvers, including
the Schrödinger-Poisson method, are expected to perform
well for this test because the separation of the streams is
well resolved in phase space. This means that any inter-
ference terms in the SP solver to have a vanishing effect on
the large scale physics.
We note that [13,14] presented a detailed analysis of the

field solver and classical solver correspondence for two
stream instability by scanning over two dimensionless
parameters. The parts of parameter space which deviated
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strongly from the classical results are exactly those regions
which resulted in the streams being more poorly resolved in
phase space compared to the velocity resolution of the
simulation. This is in good agreement with the results
derived in Sec. III B 3.

2. Sine wave collapse

We now consider the gravitational collapse of a sine
wave perturbation, a standard simulation test problem for
self-gravitating collisionless matter. In this problem, the
sign of the Poisson constant is made positive to model an
attractive potential. The perturbation will grow exponen-
tially resulting in density shell crossings and a character-
istic spiral structure in phase space [45]. There has been
much discussion on the behavior of field solvers during
shell crossing [18,19,21]. When shell crossing occurs, the
density and wave function go to zero. Formally, this means
that the phase of the wave function at this point is not well
defined. Therefore, it is useful to demonstrate the ability of
our solvers to reproduce the classical results in systems
where shell crossing is expected.
In the one-dimensional case, we initialize a cold

stream with a sinusoidal velocity perturbation with wave-
length equal to the size of the box and amplitude δu ¼
0.05u0 and wavelength L. For these simulations, we use
N ¼ 512 grid cells, n ¼ 212 particles in the classical solver,
ℏ̃ ¼ 7 × 10−7; we define our timescale, t0 and Poisson
constant, C such that Ct20=4π ≡ −1. We track the phase
space of each solver in Fig. 5 and the spatial densities
in Fig. 6.
In the two-dimensional case, we initialize a cold stream

with a sinusoidal velocity perturbation in x with wave-
length equal to L=3 and a velocity perturbation in y equal to
L=2 both with amplitude δu ¼ 0.1u0. For these simula-
tions, we use N ¼ 64 grid cells, n ¼ 223 particles in the
classical solver, ℏ̃ ¼ 7 × 10−7; we define our timescale, t0
and Poisson constant, C such that Ct20=4π ≡ −1. We track
the two-dimensional spatial density of each solver in Fig. 7.
As previously demonstrated in [18,20], the field solvers

are capable of reproducing the expected results in both one
and two dimensions. The phase space in Fig. 5 shows good
agreement between all methods. The small scale structure
at the center of the spiral at late times is below the Husimi
smoothing scale and, as expected, is washed out. However,
the large scale spiral structure is reproduced. By sufficiently
decreasing the value of ℏ̃ the agreement between the field
solvers and classical solvers can be improved in principle,
so that the spiral arms and centers would agree well with the
classical solution.

B. Warm stream distributions

The first place that the SP solver begins to fail is for
conditions which contain streams that are poorly resolved
in phase space. Any conditions with a continuous nonzero

FIG. 2. Plotted is the root mean square value of the E field as a
function of time for two stream instability simulations for each
solver. All four solvers agree quite well even at relatively late
times. At early times, when the perturbation is small, we find that
interference terms wash our smallest scale structure in the
Schrödinger-Poisson (SP) case. However, the solution agrees
at later times. Increasing the resolution of these simulations
would decrease the smallest resolvable scale for SP solver.

FIG. 3. Plotted is the root mean square value of the electric field
as a function of time for two stream instability. We plot the results
of a classical solver and three Schrödinger-Poisson solvers at
varying resolutions. The higher resolution simulations have less
impactful interference and are able to closer approximate the
classical solution especially at small scales where the interference
terms will tend to wash out structure.
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velocity dispersion would be considered warm conditions
for which stream resolution is not possible. These cases
are also of interest to astrophysics and so we demonstrate
the ability of the multistream and VN solvers to reproduce
the classical results for Landau damping, bump on tail
instability, and Jean’s instability.

1. Landau damping

We turn now to the test problem of Landau damping.
This effect dampens plasma oscillations by allowing
lower energy particles to “surf” perturbations, which trans-
fer energy from the perturbation to the particles [44].

We expect initial perturbation amplitudes to exponentially
dampen [25,39,44]. This test problem will demonstrate the
ability of our field solvers to represent the interaction of
many streams in a warm distribution as well as track the
expected decay of perturbations beyond where the classical
solver begins to break down.
Landau damping is driven by the derivative of the

dispersion relation [44]. Therefore, the correct initial
conditions for this problem are a large number of streams
approximating a continuous velocity dispersion as opposed
to a small number of interacting cold streams which are
well resolved in phase space. The initial conditions are a
warm stream with Gaussian velocity dispersion with mean

FIG. 4. The phase space for two stream instability. Each row represents a different solver and each column a time. All four solvers
show roughly the same evolution. The right image in the top row shows interference present in the phase space due to streams
overlapping in both position and velocity space at late times. The right images in the middle two rows show interference due to streams
interfering with themselves in velocity space for the von Neumann (VN) and multistream (MS) methods. This demonstrates that all
methods are effective at representing the evolution of a small number of cold streams for electrostatically interacting systems.
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FIG. 5. The phase space for 1D sine wave collapse. Each row represents a different solver and each column a time. All four solvers
show consistent behavior at early times. This demonstrates that all methods are effective at representing the evolution of cold streams for
gravitationally interacting systems. In the final column, we see the field solvers break down as the relevant length scales get smaller as
the collapse continues; this is due to the choice of ℏ̃, which sets the simulation phase space resolution.

FIG. 6. The spatial density for 1D sine wave collapse. All four solvers show consistent behavior initially, but as the stream begins to
wind in phase space we see interference terms in the spatial density of the field solvers (FS), here plotted in blue. The evolution of the
spatial density for all the field solvers was identical in this test problem, so here we only use the SP solver. At early times, the wavelength
of this interference is much smaller than the length scales in the classical system, for example, distance between caustics. However, at
late times the relevant length scales get increasingly small, eventually approaching the wavelength of the interference.
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voffset ¼ 0 and standard deviation vth ¼ 0.49u0. All streams
are initialized with velocity perturbation δu ¼ 0.05u0
and wavelength L. For these simulations, we use N ¼
256 grid cells, n ¼ 216 particles in the classical solver,
ℏ̃ ¼ 1 × 10−6, Ns ¼ 200 streams; we define our timescale,
t0 and Poisson constant, C such that Ct20=4π ≡ 1. We track
the amplitude of the density by following the evolution of
the root mean square of the electric field over time in Fig. 8.
The multistream and VN solvers reproduce the solu-

tion obtained using the classical solver. The electric
field for these methods clearly shows the expected expo-
nential decay. The success of the multistream method
was predicted in [14], although it was not demonstrated.

The SP solver is unable to reproduce the correct results
unless the simulation resolution parameters, ℏ̃ and N, are
chosen such that streams are well resolved in phase space.
When streams are not well resolved in phase space using
the SP method, nonphysical interference terms dominate
the simulation. It has been shown in [25] that an ensembled
average of SP solver simulations can produce Landau
damping. No such averaging is necessary using the multi-
stream and VN methods. Additionally, a direct integration
of the Wigner function on phase space has been shown in
[26] to reproduce Landau damping. However, as we have
demonstrated here, it is not necessary to implement a phase
space solver.

FIG. 7. The density for two-dimensional sine wave collapse. Each row represents a different solver and each column a time. All four
solvers show the same evolution at early times. This demonstrates that all the field solvers can be extended into higher dimensions and
still recover the expected results for the evolution of cold streams.

INVESTIGATING THE USE OF FIELD SOLVERS FOR … PHYS. REV. D 101, 043011 (2020)

043011-15



The multiple stream interference prevents a simple
simulation of Landau damping for the SP solver. If,
however, we try and represent the same problem but with
a decreasing number of streams we can see how the
interference terms affect the evolution by plotting the
potential for Ns ¼ 7 and Ns ¼ 33 in Figs. 10 and 9,
respectively. The SP is able to track the solution of the
other solvers better when the number of streams is
decreased; however, as the number increases the interfer-
ence terms begin to dominate.

Also plotted in Figs. 9 and 10 is the spatial average of the
ratio of the density weighted quantum potential to the
density weighted classical potential term for the SP solver
given as [28]

VQMðxÞ ¼ −
ℏ2

2m
∇2jψðxÞj
jψðxÞj ð73Þ

Q≡ hρVQMi=hρVi; ð74Þ

where VQM is the ratio and Q is the ratio.

FIG. 8. Plotted is the average of the absolute value of the potential (left) and the root mean square value of the electric field (right), as a
function of time for Landau damping simulations for each solver. The Schrödinger-Poisson (SP) solver fails to reproduce the correct rms
E field as the interference terms between the many streams in the system wash out the structure below a certain scale. However, if we
increase the resolution of our SP solver, to account for the additional computational resources used by the VN and MS solvers, we can
recover the correct behavior for the average potential energy although the rms electric field still has a minimum resolvable scale and does
not match the other simulations. The higher resolution SP, von Neumann (VN), multistream (MS), and classical (Cl) solvers are in good
agreement for the average potential energy, although the SP is not for the rms electric field.

FIG. 9. Plotted is the potential for each solver at three different times for a Landau damping simulation using Ns ¼ 33 and N ¼ 28.
The MS and VN solvers have identical evolutions in this test problem. Also shown is the average ratio of the density weighted quantum
potential to the density weighted classical potential, Q. The relatively large number of streams produces interference terms in the SP
solver that dominate the evolution and cause its solution to diverge from the classical solution. However, it is unclear from evaluating the
quantum potential alone when the solution will diverge.
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The existence of the quantum potential term when
developing the SP system from theMadelung representation
is frequently mentioned in the literature [11,14,18,19,21].
However, in the simulations presented in this section, the
quantum potential is not a good predictor for when the
solution diverges from the classical evolution, as the ratio is
of the same order in solutions that both agree, and disagree,
with the classical solution. The SP solver still begins to
diverge from the correct evolution in Fig. 9 due to the
inability to accurately represent the density. It should be
noted that a large or small quantum pressure is not
necessarily a sign that the SP method will deviate strongly
from the classical solution.Other effects such as interference
need also be considered. In fact, the quantum potential can
reasonably be thought of more as an indicator of velocity
dispersion as shown in [21].

2. Bump on tail instability

The bump on tail instability occurs in plasma when a
small overdensity at a velocity separated from the back-
ground plasma velocity is unstable to perturbations. The
importance of the bump on tail instability to plasma
dynamics is discussed in [44,46]. Here we use the insta-
bility to again demonstrate the ability of our field solvers to
produce accurate results for warm stream conditions by
correctly tracking velocity density and phase space.
Bump on tail instability again involves a continuous

velocity dispersion. We start with an initial background
distribution with mean velocity voffset ¼ 0 and thermal
velocity vth ¼ 0.07u0. A bump is created with mass
Mbump=Mbackground¼0.1 and velocity offset vbump¼ 0.7u0
and the same velocity dispersion as the background. All
streams are initialized with velocity perturbation δu¼
0.05u0. For these simulations, we use N ¼ 256 grid cells,
n ¼ 216 particles in the classical solver, ℏ̃ ¼ 1 × 10−6,

Ns ¼ 200 streams; we define our timescale, t0 and
Poisson constant, C such that Ct20=4π≡1. We plot both
the phase space in Fig. 11 and the velocity density in
Fig. 12 over time. As expected, the multistream and VN
solvers reproduce the classical results. We see excellent
agreement both in the evolution of the phase space and the
velocity density.

3. Jean’s instability

For warm distributions subject to their own gravity, the
Jean’s length determines which modes will be stable or
unstable. Perturbations with length greater than the Jean’s
length will undergo exponential growth, while perturba-
tions with length less than the Jean’s length will undergo
exponential decay [39,44]. This test problem will demon-
strate the ability of our field solvers to reproduce the correct
evolution of the power spectrum at early times for warm
initial conditions.
We start with an initial velocity distribution with

vth ¼ 0.15u0. We then produce a flat initial power spectrum
for k ∈ ½0; 32π=L� by adding spatial perturbations with
wavelengths λ¼½L=1;L=2…;L=16� of initial size δx ¼ :05.
For these simulations, we use N ¼ 512 grid cells, n ¼ 216

particles in the classical solver, ℏ̃ ¼ 1 × 10−7, Ns ¼ 240
streams, and we define our timescale, t0 and Poisson
constant, C such that Ct20=4π ≡ −1. We plot the power
spectrum over time in Fig. 13.
We can see that the field solvers used here are able to

track the classical solver power spectrum. The expected
behavior occurs, with modes above the Jeans scale growing
and modes below the scale damping. The von Neumann
and multistream solvers successfully reproduce the
expected results. Here, like the Landau damping example,
we expect that the SP solver is able to reproduce the correct
results for small enough ℏ̃.

FIG. 10. Plotted is the potential for each solver at three different times for a Landau damping simulation using Ns ¼ 7. The MS and
VN solvers have identical evolutions in this test problem. Also shown is the average ratio of the density weighted quantum potential to
the density weighted classical potential,Q. With a low number of streams in the system we see that all solvers succeed in recovering the
correct behavior, the oscillation is given by the interference discussed in previous sections. Because the oscillation is small compared to
the dynamic length scales it has little impact on the large scale behavior of the system. Compared with Fig. 9, we see that looking at the
strength of the quantum potential alone is not enough to indicate strong deviation from the classical solution.
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V. DISCUSSION

A. Interference

The most obvious problem with field solvers is inter-
ference between streams that are poorly resolved in phase

space. The interference term comes from the inability of a
single valued function of momentum or position to re-
present a generic function in phase space, for instance,
multiple streams that are too closely spaced. This is most
problematic for the Schrödinger-Poisson solver with only a

FIG. 12. The velocity density over time for each solver for bump on tail instability. All three solvers show the same evolution. Here we
see the velocity dispersion represented directly. Even at late times the field solvers are able to very accurately recover the correct
distribution without any interference present.

FIG. 11. The phase space for bump on tail instability. Each row represents a different solver and each column a time. All three solvers
show the same evolution, demonstrating that the field solver extensions can be used to simulate electrostatic systems with a velocity
dispersion.
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single wave function. The interference between overlap-
ping streams can be overcome by separating the Hilbert
spaces of the streams by either putting them into a classical
mixture as in the von Neumann solver or by separately
evolving each stream in a shared potential. However, it
should be noted that this does not prevent streams from
interfering with themselves if a single stream becomes
multivalued in either position or momentum.
Interference can have a large effect on the ability of

solvers to approximate the classical solution. If the inter-
ference occurs over length or momentum scales that are
relevant to the evolution of the system, the solver may
deviate strongly from the classical solution. This leads to
the two interference constraints listed in Table II. It should
also be noted that interference can prevent a solver from
being accurate even where the quantum pressure term is
vanishingly small. For example, if you are interested in
length scales smaller than the oscillation. Therefore, it is
not necessary to demand a vanishingly small quantum
pressure in order to reproduce the correct classical results.
Recall that the relevant quantity governing the interfer-

ence is proportional to ℏ̃. This is analogous to the physical
constant, but in these simulations is just a free parameter
governing the relationship between the numerical repre-
sentations of position and momentum. Therefore, we can
arbitrarily decrease the interference between streams by
simply lowering the value of ℏ̃. This, of course, incurs
another problem discussed in the next section.

B. Fixed maxima and aliasing

The momentum and position representations of the wave
function encode information about density in phase space
by using derivatives of the complex angle in the wave
function. The maximum wave number that can be accom-
modated by a finite grid of size N and physical length L is

kmax ¼ Nπ=L: ð75Þ

Momentum and wave number are related by p ¼ ℏk,
implying that the maximum physical momentum that can
be represented in the system is fixed by the starting grid size
and choice of ℏ and L. Consequently, while a wider range
of physical momenta can be achieved by increasing ℏ, this
also increases the influence of interference terms. This
means the classical limit is only achieved by making N
large and not by varying the value of ℏ. The fact that
position and momentum are related by the Fourier trans-
form on a finite grid means that the phase space is periodic
in both momentum and position space. Therefore, while
periodic positions are generally not problematic, the
maximum momentum present in the simulation should

FIG. 13. The power spectrum over time for Jean’s instability for each solver. The vertical blue line represents the Jean’s scale for this
simulation, modes to the left should grow and modes to the right should be damped. The horizontal black dotted line shows the initial
power spectrum. All three solvers show the same expected growth of modes below the Jean’s scale and damping of modes above the
scale. This demonstrates that the field solver extensions can be used to simulate gravitational systems with a velocity dispersion as we
clearly recover both the large and small scale physics in this system.

TABLE II. A list of the constraints on simulation parameters
necessary for field solvers to approximate classical systems. The
first column describes the cause of the constraint, which is listed
in the second column. The third column lists which simulation
parameters are relevant to the constraint in question. The spatial
interference constraint only effects streams in the same Hilbert
space and therefore, for warm distributions before nonlinearity,
this constraint does not apply to the von Neumann and multi-
stream solvers.

Cause Constraint Parameters

Kick operator aliasing Δt ≪ ℏ̃
V

Δt

Drift operator aliasing Δt ≪ L2

ℏ̃N2
ℏ̃, N, Δt

Quantum potential ℏ̃ ≪
ffiffiffiffiffiffiffiffiffiffi
jψ sjVcl

∇2jψ sj
q

ℏ̃

Spatial interference ℏ̃ ≪ Δu xD ℏ̃
Momentum interference ℏ̃ ≪ Δx uD ℏ̃
Momentum aliasing N > uphL

ℏ̃π
ℏ̃, N
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be checked against the maximum allowed momentum to
prevent the formation of spurious structures as in Fig. 14.
This leads to the momentum aliasing constraint listed in
Table II.

C. Taking ℏ → 0

Generally, when we want the limit in which a quantum
system becomes classical, we take the limit ℏ → 0.
However, it is not immediately clear what this limit is
taken with respect to. It becomes increasingly confusing
when ℏ represents not a physical constant but a simulation
parameter, as when using field solvers for classical
problems.
It is clear from the Madelung formalism, discussed in

other works [11,14,18,19,21], that for cold initial condi-
tions ℏ should be sufficiently small such that the quantum
potential term is small compared to the classical potential,
i.e., ℏ̃ ¼ ℏ=m must be chosen such that for each stream

ℏ̃ ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jψ sjVcl

∇2jψ sj
:

s
ð76Þ

However, we have shown that the above condition is
insufficient to assure that the classical solution is obtained.
And, in fact, we expect a non-negligible quantum potential
for warm distributions. This constraint is listed in Table II.
We must also consider the interference terms in the
representation of the density. Let us again consider two
streams separated by Δp ¼ mΔu in phase space. As we
take ℏ → 0, the density will never approach the classical
density. Instead, the frequency of the oscillation will
increase, meaning a smaller and smaller spatial average
will be needed to approach the classical solution. The
distance over which it is necessary to average to achieve the
classical density must be small compared to the dynamical
length and velocity scales of the system xD and uD. By
taking the necessary spatial average to be the order of the
wavelength of the interference, we can say that

FIG. 14. Shown is the phase space for sine wave collapse with ℏ̃ ¼ 5 × 10−7 with N ¼ 512 and N ¼ 256 grid cells for the top and
bottom rows, respectively. Between t ¼ 0.67 and t ¼ 0.75, the simulation first attempts to represent velocities beyond the maximum
allowed velocity in the smaller simulation. The bottom row shows how this creates spurious overdensities in phase space that persists in
the simulation. Explicit checks need to be performed to ensure that overdensities due to aliasing are not created.
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ℏ̃ ≪ Δu xD
ℏ̃ ≪ Δx uD ð77Þ

must also be satisfied, which is our interference
constraints in Table II. The similarity to the uncertainty
principle is not a coincidence. Δx refers to the distance
between over densities in phase space at a constant velocity.
Qualitatively, ℏ̃ can be thought of as an area in phase space.
Multiple streams sharing a phase space region on the order
of ℏ̃ will begin to deviate from the classical solution.
Streams and overdensities can also interfere if they overlap
in momentum not just position. Note that this implies
that in the nonlinear regime a single stream can interfere
with itself. Thus, we also need to consider the dynamical
velocities, uD, and spatial separation of phase space over
densities at these velocity, Δx. However, the appropriate
orientation of this phase space area depends on the relevant
xD at a given point and so this interpretation of ℏ̃ should be
used conservatively.

D. Classical approximation

Using field solvers as approximations of classical sys-
tems can be understood as satisfying a series of require-
ments on the simulation parameters. Parameters must be
chosen to address each of the following:
(1) Operator aliasing
(2) Quantum potential term
(3) Wave function interference
(4) Momentum aliasing
Temporal aliasing refers to the fact that we evolve our

system with unitary operators represented as arrays of
complex numbers. Any given complex number z ¼ Aeiϕ

does not have a unique representation. We can write

z ¼ Aeiϕ ≡ Aeiðϕþ2πmÞ ð78Þ

for m ∈ Z. As noted in [3,19], we must choose a time step
such that our unitary operators which evolve the system
forward in time, U ¼ UVUT ¼ eiΔϕðxÞeiΔϕðkÞ have phases
all small compared to unity, i.e.,

Δϕ ≪ 1: ð79Þ

Using Eq. (41) implies two constraints on our time
step, Δt,

Δt ≪
mℏ
p2
max

; ð80Þ

Δt ≪
ℏ

mVmax
: ð81Þ

We can then substitute in our maximum representable
momentum using Eq. (75). In general, the maximum

possible potential should be proportional to the maximum
density which means roughly it should scale as Vmax ∝
MtotNd=Ld−2 where d is the number of spatial dimensions
in the system. Therefore, we can rewrite our constraints on
the time step and simulation resolution, N, as

Δt ≪
L2

ℏ̃N2
; ð82Þ

Δt ≪
ℏ̃Ld−2

MtotNd : ð83Þ

L and Mtot can generally be set to 1.
The quantum potential is caused by an inability to

compress quantum states to occupy areas in phase space
smaller than ℏ. The effects of the quantum potential on the
use of field solvers as classical approximations has been
well studied [14,18,18,19,21] and results in the constraint
on ℏ̃ given in Eq. (76),

ℏ̃ ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jψ sjVcl

∇2jψ sj

s
:

Interference between streams represented in the same
Hilbert space can also prevent simulations from being
accurate approximations if the length scale of the interfer-
ence approaches the dynamical length and velocities scales
of the system being simulated. Taking this into consid-
eration, we arrive at the constraint given in Eq. (77),

ℏ̃ ≪ Δu xD
ℏ̃ ≪ Δx uD:

The first inequality is the spatial interference constraint
which only effects streams in the same Hilbert space and
therefore, for warm distributions before nonlinearity sets in,
this constraint does not apply to the von Neumann and
multistream solvers. It should also be noted that it is not just
the actual de Broglie wavelength associated with particles
at stream velocities us we are interested in for interference
terms but the de Broglie wavelength associated with the
difference in stream velocities Δu.
We have shown that spatial interference in certain limits

causes the breakdown of the Schrödinger-Poisson system
as an approximation of a classical system and that this can
be particularly problematic when working with warm
distributions that include many streams. The wave function
interference limits are extremely important to satisfy when
trying to reproduce classical evolution and often provide a
more relevant scale to compare with ℏ than limitations set
by the quantum pressure. The von Neumann and multi-
stream solver extensions we presented here are able to
simulate warm stream physics because they put each stream
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in its own Hilbert space which prevents spatial interfer-
ence terms.
Momentum aliasing is caused by the fact that our

momentum states are represented by waves on a spatial
grid. This means that the positive and negative maximum
magnitude momentum identify with each other. The maxi-
mum physical momentum in the system pph ¼ ℏkph ¼
muph must remain below the maximum representable
momentum. This gives the following constraint on the
simulation resolution, N, and ℏ̃:

N >
uphL

ℏ̃π
: ð84Þ

The combination of these constraints prescribes a choice
of simulation parameters Δt, ℏ̃, and N, necessary to
approximate a classical system with properties uph, xD,
uD. These constraints are summarized in Table II.

VI. CONCLUSIONS

We have demonstrated that field solvers can be used to
approximate the classical evolution of a number of plasma
and gravitational systems. Single wave function field
solvers, such as our Schrödinger-Poisson solver, can
simulate initial conditions in which simulation parameters
are chosen such that streams are well resolved in phase
space. Furthermore, we have shown that introducing addi-
tional wave functions, as in our multiple Hilbert solver, or
multistream solver, we can extend the region of validity of
field solvers to include warm initial conditions where
streams are very close in phase space. We have also
introduced a new extension using the density matrix
formalism and von Neumann equation. This solver is
somewhat analogous to phase space solvers in that it is
a 2n dimensional solver, where n is the number of
dimensions. We have demonstrated that this solver can
also be used to simulate warm distributions.
The limits in which field solvers can be used as

approximations of classical systems have been explored.
Operator aliasing, the quantum potential, interference, and
momentum aliasing can produce spurious evolution. These
limitations put constraints on the choices of simulation
parameters.
Developing a method that would adaptively resize or

change simulation parameters may provide a more robust
solver. Given the potential usefulness of representing 2n
degrees of freedom in an n dimensional wave function, it
would be interesting to produce solvers that more carefully
adhere to classical solutions. More work comparing the
accuracy of the von Neumann solver to full phase space
solvers was not included in this work but would further
explore the utility of this extension.
It is apparent that field solvers can in certain limits

reproduce classical solutions. All of our methods approxi-
mate the classical solutions in some regimes at some

resolutions. It is not immediately obvious which systems
are most efficient for which regimes; a more detailed
analysis from an information content perspective would
be useful.
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APPENDIX A: UNITS

In this Appendix, we discuss how we create a set of
dimensionless units for length, velocity, and time, which
define our code units. All positions and lengths are
measured in units of the simulation box, L, such that
0 ≤ xs ≤ 1. For certain test problems, we also adopt
−0.5 ≤ xs ≤ 0.5. All perturbation length scales λ for the
plasma problems are defined in these length units. Next, we
cast Poisson’s equation as

∇2V ¼ Cρ; ðA1Þ

noting that C can be greater or less than 0. C > 0 represents
attractive forces, while C < 0 represents repulsive forces.
In the electromagnetic systems, we define a frequency in
the following manner:

ω0 ¼
ffiffiffiffiffiffiffi
−C
2

r
: ðA2Þ

We also define a time and velocity unit as

t0 ¼
2π

ω0

; ðA3Þ

u0 ¼
λω0ffiffiffi
2

p
π
: ðA4Þ

Note that the unit for velocity is motivated by the critical
velocity in two stream instability. We normalize the total
mass in the system to unity, i.e., Mtot ≡ 1. For the plasma
problems, we can also define a unit of electric field,

E0 ¼
C
Mtot

: ðA5Þ

Using these definitions, we can define the following
dimensionless simulation units for length, mass, time,
velocity, and electric field, respectively:
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xs ¼
x
L
∈ ½0; 1� or ½−:5; :5�; ðA6Þ

ms ¼
m
Mtot

∈ ½0; 1�; ðA7Þ

ts ¼
t

ffiffiffiffiffiffiffi
−C

p

2π
ffiffiffi
2

p ¼ t
t0
; ðA8Þ

us ¼
2πu

λ
ffiffiffiffiffiffiffi
−C

p ¼ u
u0

: ðA9Þ

For our nonclassical solvers, we also need to choose a value
for ℏ̃≡ ℏ=mpart which describes the relationship between
position and momentum in these solvers.

APPENDIX B: von NEUMANN
GENERALIZATION TO 2D

In this Appendix, we discuss how to generalize the von
Neumann solver to higher dimensions by example with the
two-dimensional case. The fundamental object, the density
matrix, P, is a 2n dimensional object still given by the sum
of the outer product of stream wave functions, which can be
written element wise as

Piljm ≡ 1

Ns

XNs

s

ψ ij;sψ
�
lm;s: ðB1Þ

P̃ can then be calculated using a series of Fourier
transforms. Here we use Einstein summation notation to
describe discrete Fourier transforms on a given axis, i.e.,

ρ̃ĩ ¼ Fĩiρi ≡
X
i

Δxe−ikĩxiρi; ðB2Þ

ρ̃ĩ ¼ F−1
ĩi
ρi ≡

X
i

Δxeikĩxiρi; ðB3Þ

Using this notation, we write

P̃ĩ l̃ j̃ m̃ ≡ F−1
ĩi
F−1
j̃j
Fl̃lFm̃mPiljm: ðB4Þ

The density is given using the generalization of the
diagonal

ρij ¼ Piijj; ðB5Þ

we can write the element wise position and momentum
updates as

P̃iljm;tþΔt ¼ P̃iljm;t exp

�
iΔt
2mℏ

ðp2
ij − p2

lmÞ
�

Piljm;tþΔt ¼ Piljm;t exp

�
iΔt
ℏ

ðVlm − VijÞ
�
: ðB6Þ
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