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We consider an inelastic dark matter model, in which a fermion is charged under a broken U(1)
gauge symmetry, and introduce a tiny Majorana mass term to split the fermion into two states with the
light one being a dark matter candidate. If the gauge boson is light, it can mediate both elastic and
inelastic dark matter self-interactions in dark halos, leading to observational consequences. Using a
numerical technique based on partial wave analysis, we accurately calculate the elastic and inelastic
self-scattering cross sections. We assume a thermal freeze-out scenario and fix the gauge coupling
constant using the relic density constraint. Then, we focus on six benchmark masses of dark matter,
covering a wide range from 10 MeV to 160 GeV and map parameter regions where the elastic
scattering cross section per unit mass is within 1 cm2=g − 5 cm2=g, favored to solve small-scale issues
of cold dark matter. If the heavy state can decay to the light state and a massless species, the inelastic
up-scattering process can cool the halo and lead to core collapse. Taking galaxies with evidence of dark
matter density cores, we further derive constraints on the parameter space. For dark matter masses
below 10 GeV, the mass splitting must be large enough to forbid up scattering in the dwarf halo for
evading the core-collapse constraint; while for higher masses, the up-scattering process can still be
allowed. Our results show astrophysical observations can provide powerful tests for dark matter models
with large elastic and inelastic self-interactions.

DOI: 10.1103/PhysRevD.101.043002

I. INTRODUCTION

It is well established there is a nonluminous com-
ponent in the Universe, called dark matter. Since its
influence has, so far, only been observed to be gravita-
tional in nature, the particle properties of dark matter are
still largely elusive. Self-interacting dark matter (SIDM) is
a class of particle physics models in which dark matter
particles are assumed to have a large self-scattering cross
section [1,2], see Ref. [3] for a recent review. N-body
simulations of structure formation demonstrate that strong
dark matter self-interactions can lead to heat transfer in the
halo and allow its inner region to thermalize [4–10].
Recently, it was shown that SIDM can explain a number of
long-standing puzzles in astrophysics presented in the
prevailing cold dark matter theory, such as diverse galaxy
rotation curves of spiral galaxies in the field [11–14], dark
matter distributions in satellite galaxies of the Milky Way
[5,15–19], and shallow inner dark matter density profiles

in galaxy clusters [2,20]. SIDM also inherits all the
success of cold dark matter in explaining the large-scale
structure of the Universe [21] and many important aspects
of galaxies [22,23].
Many SIDM models assume there is only one dark

matter state and a light force carrier mediates elastic dark
matter self-scattering in the halo; see, e.g., Ref. [3]. In this
case, the initial and final states in the collisions are the
same, and they only redistribute energy of dark matter
particles, as the halo as a whole does not lose energy. More
recently, there has been growing interest in considering
particle physics realizations of SIDM with multiple states.
For example, to avoid strong bounds from direct detection
experiments [24–28], Refs. [29,30] propose an inelastic
SIDM model, in which there are two dark states and they
differ by a small mass splitting [31,32]. One can adjust the
splitting to kinematically forbid transitional up scattering in
nuclear recoils but still allow strong elastic self-interactions
between two light states in the halo. In addition, Ref. [33]
studies dark matter self-interactions in the exciting dark
matter model [34–37], in which dark matter collisions can
produce a heavy state that subsequently decays back to the
light one and a standard model particle. More generally, if
the SIDM candidate is made of composite states, such as
dark atoms [38–48] and strongly coupled particles [49–52],
it is natural to expect inelastic excitations during dark
matter collisions in dark halos.
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In this paper, we consider an inelastic SIDM model
and study its astrophysical implications. It assumes that a
Majorana mass term induces a small mass splitting between
two fermionic dark matter states and they interact with a
U(1) gauge boson. We assume the gauge boson is light and
develop a numerical method to calculate both elastic and
inelastic dark matter self-scattering cross sections. After
imposing the relic abundance constraint on the gauge
coupling constant, we focus on benchmark dark matter
masses, which cover a wide range from 10MeV to 160 GeV,
and search for parameter regions where the elastic self-
scattering cross section per unit mass (σV=mχ) satisfies
1 cm2=g ≤ σV=mχ ≤ 5 cm2=g, as favored by observations
on galactic scales [3]. Our work is a natural and simple
extension to the minimal SIDMmodel that contains only one
dark matter state, but calculations of the self-scattering cross
sections in the current model are much more challenging
than the minimal one [53,54]. In addition, we explore a
broader mass range for both dark matter and mediator
particles, compared to earlier studies [30]. As we will show,
for the dark matter mass below approximately GeV, inelastic
up scattering dominates over elastic scattering if the former
is kinematically open in the dark halo. This has important
implications for constraining the parameter space.
We further consider the endothermic up-scattering proc-

ess of dark matter particles and its influence on halo
evolution and inner halo structure. If the heavy state decays
back to the light state by releasing a massless species, the
SIDM halo profile can become cuspy again because the
dissipative self-interactions can cool the inner halo [55] and
speed up the onset of core collapse [56,57]. Using dwarf
galaxies that show density cores, Ref. [56] derives con-
straints on parameters that characterize the cooling rate of
dissipative dark matter collisions. In this work, we will take
the results in Ref. [56] to further narrow down the
parameter space of the inelastic SIDM model.
The paper is organized as follows. In Sec. II, we present

details of the model and outline the numerical method used
in calculating the elastic and inelastic dark matter self-
scattering cross section. In Sec. III, we present the
astrophysical constraints on the parameter space. We
conclude in Sec. IV. In the Appendix, we provide details
of substitutions and transformations exploited in this work
for solving the Schrödinger equation with two states.

II. PARTICLE PHYSICS MODEL
FOR INELASTIC SIDM

A. Scattering cross sections

We assume that the dark matter particle is a fermion (Ψ)
and it interacts with a dark U(1) gauge boson (ϕμ). The
model can be described by the Lagrangian [33–35]

L ¼ Ψ̄ði=∂ −mÞΨ −
Δm
4

ðΨ̄Ψc þ Ψ̄cΨÞ − 1

4
ϕμνϕμν

þ 1

2
m2

ϕϕ
μϕμ þ gχΨ̄γμΨϕμ; ð1Þ

where Ψc is the charge conjugation of Ψ, ϕμν is the field
strength of ϕν, gχ is the gauge coupling constant, m is the
Dirac mass of the dark matter state, and Δm is its Majorana
mass. In this work, we assume m ≫ Δm. Defining the
Majorana mass eigenstates as χ1 ¼ iðΨ −ΨcÞ= ffiffiffi

2
p

and
χ2 ¼ ðΨþ ΨcÞ= ffiffiffi

2
p

, we rewrite Eq. (1) as

L ⊃
1

2
χ̄1ði=∂ −mχÞχ1 þ

1

2
χ̄2ði=∂ − ðmχ þ ΔmÞÞχ2

þ i
2
gχ χ̄2γμχ1ϕμ þ H:c:; ð2Þ

where mχ ¼ m − Δm=2 is the mass of the light state χ1.
Since the mass eigenstates are Majorana states, they

carry no charge and only interact through an off-diagonal
coupling. The relevant Feynman diagrams for both elastic
and inelastic dark matter self-scattering are shown in Fig. 1.
The tree-level elastic scattering process involves mixed
initial and final states. All other elastic scatterings occur
through high-order box or ladder diagrams. As the
Universe cools, the up-scattering process becomes kine-
matically unfavorable, driving the density of the heavy state
down [30,58]. Thus, we assume dark matter is made of the
light state in the halo and only consider elastic and inelastic
scattering processes shown in the left and right panels of
Fig. 1, respectively.
In the nonrelativistic limit, we can apply the Schrödinger

formalism. There are two wave functions coupled by a
matrix potential of the form

i
∂
∂t ψ̃ ¼

�
−

1

2μ
∇2 þ V

�
ψ̃ ; ð3Þ

FIG. 1. Feynman diagrams for elastic (left) and inelastic (right) dark matter self-interactions.
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where μ ¼ mχ=2 is the reduced mass, the vector ψ̃T ¼
½ψ1;ψ2� detonates the wave functions for the two particle
modes, and the matrix potential V is

V ¼
"

0 − αχ
r e

−mϕr

− αχ
r e

−mϕr 2Δm

#
: ð4Þ

We have defined αχ ≡ g2χ=4π as the dark fine structure
constant. The energy needed to create the heavy state as a
pair is 2Δm. The numerical solution to this set of coupled
differential equations gives the scattering cross sections
through the method of partial waves.

B. Numerics

We assume that dark matter freezes out in the early
Universe with the relic abundance to be consistent with the
observed density. In this paper, we set the dark fine
structure constant to αχ ¼ 0.01ðmχ=270 GeVÞ such that
the annihilation cross section is 6 × 10−26 cm2=g. The dark
matter self-scattering cross sections, both elastic and
inelastic, are in general velocity dependent. To capture
the relevant physics on dwarf scales, we set the dark matter
relative velocity to be 60 km=s in the halo throughout this
paper unless otherwise stated. The model is left with three
free parameters, the dark matter massmχ , the mass splitting
Δm, and the mediator mass mϕ.
Performing a separation of variables on Eq. (3), we have

the radial equation

�
1

r2
∂
∂r
�
r2

∂
∂r
�
−
lðlþ 1Þ

r2
þ k2

�
Rl;iðrÞ ¼ mχVi;jRl;jðrÞ;

ð5Þ

where l is the angular momentum mode, k is the magnitude
of the wave vector, Rl;iðrÞ are the radial wave functions for
i ¼ 1, 2, and Vi;j denotes components of the matrix (4).
Defining the dimensionless parameters and substitutions

x≡ 2αχμr; a≡ v
2αχ

; b≡ 2αχμ

mϕ
;

c2 ≡ a2 −
Δm
μα2χ

; χl;iðxÞ≡ xRl;iðxÞ; ð6Þ

we rewrite the radial equation (5) in the matrix form as

d2

dx2

�
χl;1

χl;2

�
¼
" lðlþ1Þ

x2 − a2 − 1
x e

−x
b

− 1
x e

−x
b

lðlþ1Þ
x2 − c2

#�
χl;1

χl;2

�
: ð7Þ

The wave function can be expanded in terms of spherical
waves,

ψ̃ ¼
X∞
l¼0

ð2lþ 1ÞPlðcos θÞ
"
ψ̃ in

eipinx − ð−1Þle−ipinx

2ipinx

þ
 
αχmχF x;l

eiax
x

αχmχF y;l
eicx
x

!#
; ð8Þ

where F x=y;l are the scattering amplitudes for the two
particle system and pin ¼ a, c, depending on the initial
state. If the initial state is χ1 as we consider in this work,
pin ¼ a and ψ̃T

in ¼ ½1; 0�. The differential cross section is
given by

dσ
dΩ

¼ pout

pin

����X∞
l¼0

ð2lþ 1ÞPlðcos θÞF l

����2; ð9Þ

where pin, pout, and F l again depend on the initial and final
states. For elastic scattering χ1χ1 → χ1χ1, pin ¼ pout ¼ a,
and F l ¼ F x;l. For inelastic scattering χ1χ1 → χ2χ2,
pin ¼ a, pout ¼ c, and F l ¼ F y;l.
To find the scattering amplitudes F x=y;l, we need to first

find the wave function by numerically solving Eq. (7) and
then map its form at large radii onto the spherical wave
expansion in Eq. (8). However, a direct numerical solution
to the wave equation (7) is unstable for a large part of the
parameter space of interest. To tame these instabilities, we
follow the procedure discussed in Refs. [30,59] and make a
number of substitutions to transform the wave equation into
a more manageable form; see the Appendix for details. In
this work, we calculate the viscosity cross section for dark
matter self-interactions [54],

σV ¼
Z

dΩ
dσ
dΩ

sin2 θ; ð10Þ

which regulates both forward and backward scatterings.
See the Appendix for an explicit expression of the viscosity
cross section in terms of phase shifts.
In Fig. 2, we show the elastic (solid) and inelastic

(dashed) self-scattering cross sections vs the relative
velocity for a few representative cases, in which we choose
a wide range of dark matter masses from 10 MeV to
160 GeV. Overall, the cross sections decrease as the
velocity increases. For dark matter masses below 1 GeV
(left panel), there is a clear indication of the threshold
velocity below which inelastic up scattering is kinemati-
cally forbidden. In this mass range, when the coupling
constant is set by the relic abundance constraint [60–63],
i.e., αχ ¼ 0.01ðmχ=270 GeVÞ, the inelastic scattering cross
section is much larger than the elastic one as long as the up-
scattering channel is open. As we discussed, in this model,
inelastic up scattering occurs at the tree level, while elastic
scattering occurs at the high-order level. For small mχ

below 1 GeV, the dark fine structure constant αχ is small as
well, and the nonperturbative quantum effect is absent to
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enhance the elastic cross section. To demonstrate this point,
we present another case, in which we set αχ ¼ 0.01 for
mχ ¼ 40 MeV. In this case, both elastic and inelastic cross
sections are similar for the velocity larger than 18 km=s.
For high dark matter masses (right panel), the elastic and
inelastic cross sections become more compatible, aside
from resonance peaks, and the up-scattering process is
kinematically allowed in the plotted velocity range. As mχ

increases, the gauge coupling αχ increase accordingly, and
the nonperturbative effect boosts the elastic scattering cross
section significantly.

III. ASTROPHYSICAL CONSTRAINTS

Taking the benchmark mχ values shown in Fig. 2, we
scan parameter space of the Δm-mϕ plane, such that the
elastic cross section falls within the range of 1 cm2=g ≤
σV=mχ ≤ 5 cm2=g for the relative velocity 60 km=s, a
characteristic value for dwarf galaxies that prefer a dark
matter density core. In Fig. 3, we show the resulting
parameter space (shaded). For a given dark matter mass,
there is a preferred range in the plane, where the elastic self-
scattering cross section is large enough to thermalize the
inner halo in accord with observations [3]. For all cases, if
the mass splitting Δm is small, the mediator mass mϕ is
almost a constant. While, as Δm increases toward the high
end, mϕ must decrease to preserve the elastic cross section
in the desired range, since the elastic process involves
virtual up-scattering processes, as shown in Fig. 1 (left).
The transition occurs when the mass splitting reaches the

kinematic threshold, where up scattering is forbidden for
larger values of Δm, i.e., 2Δm ¼ μv2rel=2 with vrel ¼
60 km=s. In Fig. 3, the orange shaded regions are where
χ1χ1 → χ2χ2 is kinematically forbidden, while in the
magenta and blue regions, the up scattering is allowed.
Note that in the case of mχ ¼ 40 GeV there is more than
one branch for the favored parameter space because the
scattering is in the strong resonance regime [54,64] and
multiple ranges of the mediator mass are allowed; see
also Ref. [30].
If the mass splitting is large enough and up scattering is

forbidden, dark matter self-interactions are purely elastic,
and the condition of 1 cm2=g ≤ σV=mχ ≤ 5 cm2=g is suffi-
cient enough to specify astrophysical constraints. However,
if χ1χ1 → χ2χ2 is allowed in the halo and the resulting χ2
can further decay to χ1 and some light species, this
dissipative process may cool the inner halo and speed
up the SIDM core collapse [56]. For the model we consider,
mϕ ≫ Δm in the parameter regions of interest, e.g., the
shaded regions in Fig. 3; hence, the decay process χ2 →
χ1ϕ is kinematically forbidden. On the other hand, if we
consider a more general setup, there are other interaction
terms that may lead to dissipative decays of χ2. For
example, Ref. [37] introduces a dimension-5 dipole oper-
ator ð1=MÞχ̄2σμνχ1Fμν, whereM is the cutoff scale and Fμν

is the field strength of the standard model photon. With this
operator, χ2 can decay to χ1 and γ. The rate is Γχ2→χ1γ ¼
4Δm3=ðπM2Þ, and χ2’s lifetime is τ ¼ 1=Γχ2→χ1γ ∼
0.5 sec ðM=TeVÞ2ðkeV=ΔmÞ3. For Δm ∼ 10−3 eV, it is

FIG. 2. The dark matter self-scattering cross section vs the relative scattering velocity for benchmark cases with the dark matter mass
in the MeV (left panel) and GeV (right panel) ranges, where we fix the dark coupling constant using the relic abundance relation,
αχ ¼ 0.01ðmχ=270 GeVÞ. The solid and dotted curves correspond to the elastic and inelastic cross sections, respectively. For
comparison, we also show a case for mχ ¼ 40 MeV and αχ ¼ 0.01 in the left panel.

GERARDO ALVAREZ and HAI-BO YU PHYS. REV. D 101, 043002 (2020)

043002-4



FIG. 3. The shaded regions correspond to the accessible parameter space in the Δm-mϕ plane, where the elastic scattering
cross section is in the range of 1 ≤ σVmχ ≤ 5 cm2=g, favored by solving the small-scale issues. We have set the dark matter
relative velocity to be 60 km=s, a characteristic value in dwarf galaxies that prefer a dark matter density core. In the
orange regions, the up-scattering process (χ1χ1 → χ2χ2) is kinematically forbidden, and dark matter self-interactions are purely
elastic. In the magenta (blue) regions, the up-scattering process is allowed, and the dissipation process associated with the χ2
decay can lead to core collapse in dwarf galaxies with a timescale shorter (longer) than 10 Gyr. The starred and triangle
points are references which show the mapping between the elastic scattering and the core-collapse constraints, as explicitly
shown in Fig. 4.
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comparable to the age of galaxies, approximately 10 Gyr,
for M up to approximately 1 TeV. Thus, this dissipative
decay is relevant to halo dynamics if the dipole operator is
present. In addition, in atomic dark matter models, an
excited atomic state can decay to a ground state by emitting
a massless dark photon.
In what follows, we assume that χ2 can decay to χ1 and a

massless species that escapes the halo and study additional
astrophysical constraints on the parameter space. Using
dwarf galaxies that show shallow density cores, Ref. [56]
derives bounds on dissipative dark matter interactions by
demanding the core-collapse timescale longer than the age
of galaxies, approximately 10 Gyr. In particular, it uses the
energy loss per collision and the ratio of inelastic to elastic
cross sections, i.e., νloss ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eloss=mχ

p
and σ0=σ, respec-

tively, to characterize the cooling effect and places con-
straints on their combinations. To apply the core-collapse
constraints on our model, we set Eloss ¼ Δm, calculate νloss
and σ0=σ values for each favored model point shown in
Fig. 3 (shaded) and then compare them with the limits on
the σ0=σ-νloss plane from Ref. [56] as reproduced in Fig. 4
(gray shaded). In the magenta shaded regions of Fig. 3, the
dissipative self-interactions are strong enough to cause core
collapse in dwarf halos within 10 Gyr. While in the blue
regions, inelastic up scattering can occur, but the overall
cooling rate is small to trigger core collapse in the age of
galaxies.
To better understand these constraints, we show the

distribution of the model points in the σ0=σ-νloss plane for
three benchmark cases in Fig. 4, along with the bounds
from Ref. [56] (gray). All points (magenta) that lie within
the gray regions are disfavored, as they result in a core-
collapse timescale too short to fit the observations, while
the points (blue) outside are still allowed. We classify the
model points shown in Fig. 3 using the same color scheme.

Note that we have extrapolated the disfavored parameter
space following the trend beyond the upper limit of σ0=σ in
Ref. [56] (black dashed). This is reasonable because the
bounds should be stronger as σ0 further increases.
From Fig. 4, we see that as the dark matter decreases

from 160 GeVmore of the parameter space is disfavored by
the core-collapse constraints. When the mass approaches
10 GeVor smaller, all the model points lie within the gray
regions. Since the gauge coupling reduces as the dark
matter mass decreases, the inelastic scattering gradually
dominates over the elastic one if the former is open. For the
dark matter below approximately 10 GeV, only the portion
of the parameter space, where inelastic scattering is
kinematically forbidden, remains viable. While for the
cases of mχ ¼ 160 GeV and 40 GeV, some parts of the
parameter space evade the collapse constraints, although
inelastic up scattering is allowed. This is because the
cooling rate is not significant, i.e., either the inelastic cross
section or the energy loss per collision is small. We
demonstrate this by using the reference points in both
Figs. 3 and 4 (stars and triangles), which are in one-to-one
correspondence. In the case of mχ ¼ 160 GeV, the two
references have similar Δm and σ=m, but the star point has
much smaller σ0=m than the triangle one as the former is
closer to the threshold of the up scattering, while in the case
of mχ ¼ 40 GeV, the reference points mainly differ in Δm,
resulting different locations in the σ0=σ-νloss plane.

IV. CONCLUSION

We have studied an inelastic dark matter model with a
light mediator, based on a U(1) gauge symmetry. The
presence of a small Majorana mass splits a Dirac fermion
into two Majorana states, and the light one is the dark
matter candidate. In this model, both elastic and inelastic

FIG. 4. Mapping between elastic scattering and galaxy core-collapse constraints on the σ0=σ-νloss plane. In the gray regions within the
black contour, the halo core collapse induced by dissipative dark matter self-interactions occurs within the age of galaxies, adapted from
Ref. [56]. The dashed black lines are the linear extrapolation of the contour for σ0=σ > 1. The magenta points that lie within the gray
regions are disfavored by the core-collapse constraints, while the blue points outside are still allowed. The stars and triangles are
reference points, and their correspondences are shown on the Δm-mϕ plane in Fig. 3.
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dark matter self-interactions can be present in the halo. The
former is mediated by a high-order process with multiple
exchanges of the light mediator; while the latter is mediated
by a tree-level process when it is kinematically allowed.
Using the technique of partial waves, we have developed a
numerical procedure to calculate the elastic and inelastic
scattering cross sections.
We have explored astrophysical constraints on the model

parameters, i.e., the dark gauge coupling constant, dark
matter mass, mediator mass, and mass splitting between
the two Majorana states. We first imposed the relic density
constraint on the coupling constant by assuming the
standard freeze-out scenario, then chose six benchmark
cases that cover a wide range of the dark matter mass,
10 MeV–160 GeV. For each case, we have found the
parameter regions where the elastic scattering cross section
falls within the range of 1 cm2=g − 5 cm2=g in dwarf
galaxies in order to solve the small-scale issues. Our
analysis shows that if the mass splitting gets too large,
the kinematic suppression of the intermediate virtual
processes demands that the mediator becomes lighter to
preserve the desired elastic cross section. We also found
that when the dark matter mass decreases the inelastic
scattering cross section dominates over the elastic one. This
is because the coupling constant becomes smaller as the
mass decreases and the nonperturbative quantum enhance-
ment for the elastic cross section diminishes accordingly.
If the heavy state can decay to the light state and a

massless degree of freedom (d.o.f.), inelastic dark matter
self-interactions may induce a dissipative process that
cools the inner halo and leads to SIDM core collapse.
Observations of dark matter density cores in many low
surface brightness galaxies put a constraint on the rate of
energy loss. We studied its implications for the dark matter
model we consider and found it eliminates the majority of
the parameter space for dark matter masses below approx-
imately 10 GeV, unless the mass splitting is large enough
that the up-scattering process is forbidden. For a higher
mass, there are parameter regions where the model evades
the core-collapse constraints while the inelastic scattering
is kinematically allowed. Our work demonstrates that
astrophysical observations can provide powerful tests for
inelastic dark matter models with a light mediator. The
analysis can be used to constrain models in which dark
matter is made of a composite state, such as dark atoms and
nuclei. It is also interesting to test those models using
observations of galaxy clusters that show evidence of a
density core in their inner halos [2,20].
Additionally, if there are portals connecting the dark

matter sector to the standard model, our scenario may have
important ramifications for terrestrial detection experi-
ments. For example, it could produce distinct signals in
direct detection experiments because the mediator mass is
comparable to or less than recoil energies and scattering
with the target is inelastic. The mediator may also lead to
formation of SIDM bound states that could be probed at

particle colliders [65]. Furthermore, the mass splitting in
the inelastic dark matter model has relevant signatures that
could be tested in present and future high-intensity fixed
target experiments; see Ref. [66]. We will leave these
interesting topics for future work.
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APPENDIX: CROSS SECTION CALCULATIONS

1. Reformulation

In this Appendix, we outline the variable phase space
approach to reformulate Eq. (7); see Ref. [59] for a more
detailed discussion on this method. The basic idea is to
build a solution to Eq. (7) using solutions to the free-
particle case (αχ → 0). In the noninteracting limit, the
solutions can be written as superpositions of spherical
Bessel and Neumann functions with constant coefficients.
To build solutions to (7), we use superpositions of
free-particle solutions and upgrade the coefficients to
functions, i.e.,

χðlÞi ðxÞ ¼ αðlÞi ðxÞfðlÞðpixÞ − βðlÞi ðxÞgðlÞðpixÞ; ðA1Þ

where χðlÞi ðxÞ are the component solutions to (7), αðlÞi ðxÞ
and βðlÞi ðxÞ are numerical functions, pi ¼ a, c, depending
on the particle state, and fðlÞðpixÞ and gðlÞðpixÞ are the free-
particle solutions. They obey the differential equation

�
d2

dx2
−
lðlþ 1Þ

x2
þ p2

i

�
zðlÞðpixÞ ¼ 0; ðA2Þ

where z takes the place of f or g. The function fðlÞðpixÞ is
defined to be regular at the origin, and gðlÞðpixÞ is irregular
as x → 0.
To form a general solution to Eq. (7), we must solve two

coupled second-order differential equations. We therefore
require four linearly independent solutions. The expression
(A1) represents only one of the four solutions but has
4 d.o.f.; two of them come from αðlÞi ðxÞ and βðlÞi ðxÞ, and the
other two from the normalization of fðlÞðpixÞ and gðlÞðpixÞ.
We must impose constraints to reduce the extra d.o.f.

Suppose that dχðlÞi ðxÞ=dx is independent of the derivatives

of αðlÞi ðxÞ and βðlÞi ðxÞ, which is trivially true for constant
coefficients. This requires that
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dαðlÞi ðxÞ
dx

fðlÞðpixÞ −
dβðlÞi ðxÞ

dx
gðlÞðpixÞ ¼ 0: ðA3Þ

We set the normalization of fðlÞðpixÞ and gðlÞðpixÞ by
defining the Wronskian of the system to be

dfðlÞðpixÞ
dðpixÞ

gðlÞðpixÞ − fðlÞðpixÞ
dgðlÞðpixÞ
dðpixÞ

≡ pi: ðA4Þ

After imposing the constraints, we have only 1 d.o.f. and an
overall constant per linearly independent solution. A con-
sistent choice for fðlÞðpixÞ and gðlÞðpixÞ is

fðlÞðpixÞ≡ xjlðpixÞ; gðlÞðpixÞ≡ ixhð1Þl ðpixÞ; ðA5Þ

where jlðpixÞ is the spherical Bessel function and hðlÞl ðpixÞ
is the spherical Hankel function of the first kind.
To keep track of the linearly independent solutions, we

introduce a new subscript,

χinðxÞ ¼ αinðxÞfðpixÞ − βinðxÞgðpixÞ; ðA6Þ

where we have dropped the angular momentum label l for
brevity, n ¼ 1, 2 for the two independent solutions for a
given i ¼ 1, 2, which labels the particle state. Defining

f ðxÞ≡
�
fðaxÞ 0

0 fðcxÞ

�
; gðxÞ≡

�
gðaxÞ 0

0 gðcxÞ

�
;

αðxÞ≡
�
α11ðxÞ α12ðxÞ
α21ðxÞ α22ðxÞ

�
; βðxÞ≡

�
β11ðxÞ β12ðxÞ
β21ðxÞ β22ðxÞ

�
;

χ ðxÞ≡
�
χ11ðxÞ χ12ðxÞ
χ21ðxÞ χ22ðxÞ

�
; ðA7Þ

we can rewrite Eq. (A1) in a compact form,

χ ðxÞ ¼ f ðxÞαðxÞ − gðxÞβðxÞ: ðA8Þ

Further defining

ξðxÞ≡ χ ðxÞα−1ðxÞ; MðxÞ≡ βðxÞα−1ðxÞ; ðA9Þ

we have

ξðxÞ ¼ f ðxÞ − gðxÞMðxÞ: ðA10Þ

Taking the x → ∞ limit of the choices for fðpixÞ and
gðpixÞ, we can see the virtue of the conventions and
definitions employed so far,

lim
x→∞

fðpixÞ ¼
ð−iÞlþ1eipix þ ðiÞlþ1e−ipix

2
;

lim
x→∞

gðpixÞ ¼ ð−iÞlþ2eipix: ðA11Þ

Inserting (A11) into (A10) and comparing with Eq. (8), one
can find that the components of M are related to the
scattering amplitudes as

M11ðx → ∞Þ
a

¼ αxmxF x;
M21ðx → ∞Þ

a
¼ αxmxF y;

ðA12Þ

where the incoming scatterers are of type 1. Similarly,

M12ðx → ∞Þ
c

¼ αxmxF x;
M22ðx → ∞Þ

c
¼ αxmxF y

ðA13Þ

for incoming particles of type 2. The ith column of ξ is
interpreted as the scattered wave functions for the two
particle states in which the incoming states are of type i.
Next, we make the definition

UijðxÞ≡ fðpixÞgðpixÞδij − gðpjxÞMijðxÞgðpjxÞ: ðA14Þ

Using the formalism developed in this subsection, we can
derive the first-order different equation for UijðxÞ

dUijðxÞ
dx

¼ piδij þ
�
pi

g0ðpixÞ
gðpixÞ

þ pj
g0ðpjxÞ
gðpjxÞ

�
UijðxÞ

−UilðxÞ
ṼlmðxÞ
pl

UmjðxÞ ðA15Þ

where

ṼðxÞ≡
�

0 − e−x=b
x

− e−x=b
x 0

�

and g0ðpixÞ≡ dgðpixÞ=dðpixÞ. As x → 0, βijðxÞ → 0 since
the solution χijðxÞmust be regular at the origin and we take
αijðxÞ → δij. Therefore, Mijðx → 0Þ ¼ 0, and the initial
condition for UijðxÞ becomes

Uijðx → 0Þ ¼ fðpixÞgðpixÞδij: ðA16Þ

The advantage of this differential equation is that only
logarithmic derivatives of the free solutions enter into the
equation, greatly increasing its numerical stability. We can
now solve Eq. (A15) using the initial condition (A16) for
UijðxÞ. Once UijðxÞ is known, then the scattering ampli-
tudes approximately MijðxÞ can be obtained using the
definition (A14). Finally, the scattering cross section can be
calculated using Eq. (9). It is useful to note that the
transformation Δm → −Δm changes the incoming par-
ticles from one type to the other (a ↔ c). Therefore, we
only need to solve for M11ðxÞ and M21ðxÞ, once Δm is
changed to −Δm, in order to obtain all scattering cross
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sections. Also, there is an equation for αijðxÞ (βijðxÞ) which
carries information needed to solve for the Sommerfeld
enhancements but are not needed in calculating the self-
scattering cross sections [30].

2. Formulas

Here, we develop formula for the total scattering cross
section as well as the viscosity and transfer cross sections.
Starting from Eq. (9), we can write the expression for the
total cross section as

σtot ¼
pout

pin

X∞
l¼0

X∞
l0¼0

ð2lþ 1Þð2l0 þ 1ÞF lF �
l0

×
Z

dΩPlðcos θÞP�
l0 ðcos θÞÞ: ðA17Þ

Using the identityZ
1

−1
dxPlðxÞP�

l0 ðxÞ ¼
2δll0

ð2lþ 1Þ ; ðA18Þ

the total cross section is given by

σtot ¼ 4π
pout

pin

X∞
l¼0

ð2lþ 1ÞjF lj2: ðA19Þ

The transfer cross section is weighted such that forward
scattering events (scattering angle θ → 0) do not contribute
at all and backward scattering events (θ → π) give the
largest contribution to the cross section,

σT ≡ pout

pin

Z
dΩ
����X∞
l¼0

ð2lþ 1ÞPlðcos θÞF l

����2ð1 − cos θÞ:

ðA20Þ

Using (A18) and the recursion relation

ðlþ 1ÞPðlþ1ÞðxÞ ¼ ð2lþ 1ÞxPlðxÞ − lPðl−1ÞðxÞ; ðA21Þ

we have

Z
1

−1
dxPlðxÞP�

l0 ðxÞð1 − xÞ ¼ 2

ð2lþ 1Þ
�
δll0 −

ðlþ 1Þ
ð2lþ 3Þ δðlþ1Þl0 −

l
ð2l − 1Þ δðl−1Þl0

�
: ðA22Þ

Identity (A22) allows the transfer cross section to be written as

σT ¼ 4π
pout

pin

X∞
l¼0

½ð2lþ 1ÞjF lj2 − ðlþ 1ÞF lF �
ðlþ1Þ − lF lF �

ðl−1Þ�

¼ 4π
pout

pin

X∞
l¼0

½ð2lþ 1ÞjF lj2 − 2ðlþ 1ÞReðF lF �
ðlþ1ÞÞ�: ðA23Þ

We further write the scattering amplitude as a general complex number F l ≡ jF ljeiδl and insert it into (A23),

σT ¼ 4π
pout

pin

X∞
l¼0

ðlþ 1Þ½jF ðlþ1Þj2 þ jF lj2 − 2jF ðlþ1ÞjjF lj cosðδðlþ1Þ − δlÞ�: ðA24Þ

Equation (A24) has the benefit of being positive definite termwise such that the sum is monotonically increasing. This
property allows the sum to converge more quickly. The viscosity cross section is defined such that neither forward nor
backward scattering contributes to the cross section,

σV ≡ pout

pin

Z
dΩ
����X∞
l¼0

ð2lþ 1ÞPlðcos θÞF l

����2sin2θ: ðA25Þ

Following a procedure similar to the transfer cross section calculation and using identities (A18) and (A21), we can derive
the following identity:

Z
1

−1
dxPlðxÞP�

l0 ðxÞð1 − x2Þ ¼ 2

ð2lþ 1Þ
��

1 −
ðlþ 1Þ2

ð2lþ 1Þð2lþ 3Þ −
l2

ð2lþ 1Þð2l − 1Þ
�
δll0

−
ðlþ 1Þðlþ 2Þ
ð2lþ 3Þð2lþ 5Þ δðlþ2Þl0 −

lðl − 1Þ
ð2l − 1Þð2l − 3Þ δðl−2Þl0

�
: ðA26Þ
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The viscosity cross section is then

σV ¼ 4π
pout

pin

X∞
l¼0

��
ð2lþ 1Þ− ðlþ 1Þ2

ð2lþ 3Þ −
l2

ð2l − 1Þ
�
jF lj2 −

ðlþ 1Þðlþ 2Þ
ð2lþ 3Þ F lF �

ðlþ2Þ −
lðl − 1Þ
ð2l − 1ÞF lF �

ðl−2Þ

�

¼ 4π
pout

pin

X∞
l¼0

�
2ð2lþ 1Þðl2 þ l − 1Þ
ð2lþ 3Þð2l − 1Þ jF lj2 −

2ðlþ 2Þðlþ 1Þ
ð2lþ 3Þ ReðF lF �

ðlþ2ÞÞ
�
: ðA27Þ

Rewriting F l in polar form gives the final result,

σV ¼ 4π
pout

pin

X∞
l¼0

ðlþ 1Þðlþ 2Þ
ð2lþ 3Þ ½jF ðlþ2Þj2 þ jF lj2 − 2jF ðlþ2ÞjjF lj cosðδðlþ2Þ − δlÞ�; ðA28Þ

which is again termwise positive definite.
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