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Brownian thermal noise is a limiting factor for the sensitivity of many high precision metrology
applications, among other gravitational-wave detectors. The origin of Brownian noise can be traced down
to internal friction in the amorphous materials that are used for the high reflection coatings. To properly
characterize the internal friction in an amorphous material, one needs to consider separately the bulk and
shear losses. In most of previous works the two loss angles were considered equal, although without any
first principle motivation. In this work we present a method that can be used to extract the material bulk and
shear loss angles, based on current state-of-the-art coating ring-down measurement systems. We also show
that for titania-doped tantala, a material commonly used in gravitational-wave detector coatings, the
experimental data strongly favor a model with two different and distinct loss angles, over the simpler case
of one single loss angle.
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I. INTRODUCTION

High precision optical metrology relies on high finesse
and low loss optical resonant cavities, built with high
reflectivity dielectric mirrors. The ultimate limit to the
length stability of such cavities is often determined by
thermal motion of the cavity components. In many cases,
such as in interferometric gravitational-wave (GW) detec-
tors [1–4], the limit thermal noise comes from the
Brownian motion of the dielectric coatings deposited on
the mirrors [5], and composed of alternating layers of
amorphous oxides: silica and titania-doped tantala for the
advanced GW detectors [6]. The amplitude of Brownian
noise can be linked to the material internal friction by use of
the fluctuation-dissipation theorem [7,8]. In the simplest
possible approximation the energy lost per cycle due to
internal friction is modeled as a fraction of the total elastic
energy E stored in one of the resonator eigenmodes, using
one single number usually called the loss angle ϕ,

hΔEicycle ¼ ϕhEi: ð1Þ

If the surface of the mirror is probed with a Gaussian laser
beam with beam radius w, then in the simple approximation
described above the displacement noise due to Brownian
motion has a power spectral density [9] given by [10]

SðfÞ ¼ 4kBT
π2f

ð1þ νSÞð1 − 2νSÞ
YS

d
w
ϕC; ð2Þ

where f is the frequency, kB the Boltzmann’s constant, T
the temperature, YS and νS the Young’s modulus and
Poisson ratio of the mirror substrate, d the coating thick-
ness, and ϕC the coating average loss angle. In this model
the beam is assumed to be much larger than the film
thickness, and there is no distinction between energy lost in
the shear and bulk deformations of the mirror.
However, even for an amorphous material, the bulk and

shear moduli are not equal, and therefore by extension there
is no reason to assume that the bulk and shear loss angles
have the same value. The theory of room temperature loss
in amorphous materials [11,12] ascribes the energy loss
mechanism to the presence of two-level systems, effec-
tively described as double-well potentials with thermally
excited tunneling between the two minima. The material
mechanical loss is determined by the density of the two-
level systems, by the distribution of the potential wells and
barriers, and by the coupling of the two-level systems to the
macroscopic elastic strain. There is no reason to assume
that the two-level systems would couple in the same way to
bulk and shear strains. Lacking a theoretical or phenom-
enological reason to assume the contrary, in computing the
thermal noise due to the elastic energy loss in a multilayer
coating, one needs to take into account both shear and bulk
deformations and allow for the loss mechanisms to be
different. The resulting displacement noise depends on the*vajente@caltech.edu
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value of both bulk and shear loss angles in a way more
complex than what is shown in Eq. (2) [13]. In particular, it
is generally believed that the shear loss angle is more
relevant than the bulk loss angle, when the beam size is
comparable with the film thickness. Therefore, to have an
accurate estimate of the Brownian noise in an optical
system, it is important to have a reliable measurement of
both loss angles.
The most common technique to measure the loss

angle(s) of a thin film is to deposit it on a high quality
resonator, and measure the decay time τ of a subset of the
eigenmodes. This can be accomplished by exciting the
resonator and tracking the oscillation amplitude of each
mode over time,

AiðtÞ ¼ A0e−t=τi : ð3Þ

Some excess energy loss is always present for all modes,
due for example to contact at the suspension point or
substrate clamp. It is generally possible to find a suitable set
of eigenmodes for which recoil losses are negligible, and
are well decoupled from the environment. Typically those
modes allow probing of the material loss angle over a
sufficiently large range of frequencies. Measuring the decay
time of this set of eigenmodes allows probing of the value
and frequency dependency of the loss angles. For each
eigenmode at a frequency fi, the decay time τi is linked to
the coated resonator quality factor Qi and loss angle ϕi by
the following relations:

ϕi ¼
1

Qi
¼ 1

πfiτi
: ð4Þ

The loss angle ϕi of the coated resonator should not be
confused with the loss angle of the materials. It is related to
the total elastic energy loss per cycle, and we can therefore
divide it in two terms: a contribution coming from the

substrate ϕðsubÞ
i and a contribution coming from the thin

film ϕðfilmÞ
i . The contribution of each term to the total loss

angle is weighted by the amount of elastic energy that is
stored in the substrate and in the film, on average

ϕðcoatedÞ
i ¼ EðsubÞ

i ϕðsubÞ
i þ EðfilmÞ

i ϕðfilmÞ
i

EðsubÞ
i þ EðfilmÞ

i

¼ ð1 −DiÞϕðsubÞ
i þDiϕ

ðfilmÞ
i ; ð5Þ

where we have introduced the mode dependent dilution

factor Di ¼ EðfilmÞ
i =EðtotÞ

i . The substrate loss angle can be
measured before any film is deposited, and it is usually
assumed to remain unchanged by the deposition process.
Therefore the difference of loss angles as measured before
and after the film is deposited can be used to extract the loss

angle of the material composing the film. We define the
excess loss of the coated sample as

δϕi ¼ ϕðcoatedÞ
i − ð1 −DiÞϕðsubÞ

i ¼ Diϕ
ðfilmÞ
i : ð6Þ

The dilution factors Di can be computed using finite
element simulations of the resonators, knowing the elastic
properties of the material, or extracted directly from the
change in the eigenmode resonant frequencies [14]. Since
we are interested in measuring the bulk and shear loss
angles ϕB;i and ϕS;i, we need to modify the model in Eq. (6)
above as follows,

δϕi ¼ DB;iϕB;i þDS;iϕS;i; ð7Þ

where we defined the new bulk and shear dilution factors

as DB;i ¼ EðfilmÞ
B;i =EðtotÞ

i and DS;i ¼ EðfilmÞ
S;i =EðtotÞ

i , so that
Di ¼ DB;i þDS;i. Below we describe how the elastic
properties can be extracted from the modal frequencies
and then used to calculate the dilution factors using a finite
element model.
In this paper we describe how it is possible to analyze the

resonant mode decay times of a thin film deposited on a
silica disk-shaped substrate measured in a gentle nodal
suspension [15,16], and express the film properties in terms
of bulk and shear loss angle. In summary the analysis
proceeds in several steps. First of all, the elastic properties
of the film are extracted from the shift in the resonator
eigenmodes due to the addition of the film. This estimate is
carried out with a Bayesian inference analysis and includes
uncertainties that model the limited knowledge and pos-
sible evolution with heat treatment of the film density
and thickness. More details on this first step are included in
Sec. II. The posterior probability distribution of the elastic
properties is then used as prior probability distribution for
another Bayesian inference analysis, where the measured
excess losses introduced in Eq. (6) or (7) are estimated
based on a model of the material loss angle(s). In this way,
uncertainties in the material properties and possible corre-
lation between the model parameters are taken into account
in the posterior probability distribution of the loss angle.
More details are included in Sec. III.
Analysis of measurements in terms of bulk and shear

loss angles was done in the past for films on a cantilever
composed of alternating layers of silicon nitride and
silica [17], and for a titania-doped tantala film on a disk
suspended with a fiber [18].
We show the result of our analysis for a titania-doped

tantala film as an example, and discuss how the exper-
imental data favor a model with different bulk and shear
loss angle over a simpler model with equal loss angles. The
material studied here is comparable to what was considered
in [18], and we note that the results we obtain are
different from those obtained in the previous work.
More on this topic is included in Sec. III. Finally, in
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Sec. IV we discuss how the measured loss angles impact
the estimate of thermal noise for the Advanced LIGO
gravitational-wave detector.

II. MEASUREMENTS

The substrates used in this work consist of fused silica
disks, 75 mm in diameter and 1 mm thick, supported at the
center by a gentle nodal suspension [15,16]. All the disk
eigenmodes that have null deformation at the disk center
are accessible in this system, and have very low recoil
losses (QðsubÞ ≳ 108). The largest fraction of elastic energy
is stored in shear deformation, but depending on the mode
shape, in particular, on the number of radial nodes, there are
non-negligible amounts of energy in the bulk deformation,
allowing us to disentangle the two contributions.
The gentle nodal suspension allows simultaneous trac-

king of all modes, providing a measurement of both the
frequency and the decay time of each mode. All substrates
are characterized prior to coating, to measure the substrate

loss angles ϕðsubÞ
i and the frequency of each mode. A 270-

nm-thick film of titania-doped tantala (27% cation con-
centration of titania) was then deposited with ion beam
sputtering on one face of the substrates. The coated samples
were then measured again, to obtain a new set of mode
frequencies and decay times. The samples were then
subjected to a heat treatment (annealing), consisting of a
slow ramp up to a target temperature, hold for ten hours,
and then a slow ramp down to room temperature. The
samples measured for this work have been annealed at 500,
600, and 700°C. The film annealed at 700°C showed signs
of microcrystallization, and therefore the corresponding
results are not considered in this work. Ring downs were
measured after each heat treatment step, resulting in a set of
excess loss angles fδϕig for the as-deposited samples and
the annealed samples.
The film thickness t was measured with ellipsometry,

and the relative concentration of titania and tantala was
estimated from the measured refractive index and X-ray
photoelectron spectroscopy. The material density ρ was
estimated with a linear interpolation between the two oxide
component densities, weighted with the measured oxide
concentration.

The thin film changes the flexural rigidity of the disk,
resulting in a shift of all resonant mode frequencies. The
relative difference between the coated and uncoated disk
frequencies is roughly constant between 1 and 30 KHz, and
equal to about 300 ppm, with variation between modes of
the order of 10–30 ppm, related to the film Poisson ratio.
We used a finite element analysis (FEA) carried out in
COMSOL to find the values of the film material Young’s
modulus Y and Poisson ratio ν that best reproduce the
measured changes in resonant frequencies [6]. Instead of
using directly COMSOL in the fit procedure, we first
produced a random sampling of the film properties space
½Y; ν; t; ρ� and run a FEA for each point. We then fit a third
order polynomial function of Y, ν, t, and ρ to the simulated
frequency shifts, obtaining a fast semianalytical model that
is accurate within tens of mHz. Using this fast model, we
carried out a Bayesian inference analysis [19] to estimate
the probability distribution and the confidence intervals for
Y and ν. Table I summarizes all the measured parameters
of the thin films. The results are dependent on the thickness
and density of the film. The reader unfamiliar with
Bayesian inference analysis can refer for example to
[19–21] for an introduction. In Sec. III we also describe
the basics of Bayesian inference, focusing on the applica-
tion to the extraction of bulk and shear loss angles from the
measurements.
In this analysis we assumed that thickness and density

are constant, since we do not have yet a measurement
of how those film properties change with annealing. This
assumption is likely wrong, since changes of density,
thickness and refractive index have been observed for
other amorphous materials [6,22,23]. However, we note
that the estimate of Y and ν depends mostly on the product
of thickness and density, that is, the surface density of the
material. Therefore, even though density and thickness
could each vary, if the annealing does not cause any loss
of material from the film, we expect that the product of
density and thickness will remain constant and the
estimate of the Young’s modulus and Poisson ratio to
be correct. Nevertheless, in the analysis we accounted for
possible untracked changes by allowing a �5% uncer-
tainty in the measured values for both thickness and
density.

TABLE I. Measured and estimated parameters of the titania-doped tantala thin film studied in this work. The
thickness was measured on the as deposited samples, and the density estimated from the composition. The film
elastic properties come from fits to the resonant mode data, as explained in the text. The uncertainties in thickness
and density account for possible variations upon annealing, as explained in the main text.

As deposited Annealed 500°C Annealed 600°C

Young’s modulus Y [GPa] 118� 3 120� 3 128� 4
Poisson ratio ν 0.396� 0.016 0.407� 0.013 0.346� 0.019

Cation concentration 73% Ta, 27% Ti
Thickness t [nm] 268� 13
Density ρ [kg=m3] 6640� 300
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Two samples were coated with nominally equal materials
and deposition procedure. The two samples have been
measured separately, and the results collated together in all
computations.

III. LOSS ANGLE ANALYSIS

The main goal of this work is to determine which
material loss angle(s) model describes better the exper-
imental data points. For each set of measurements (as
deposited samples or annealed samples), we model the
excess loss angle assuming either equal or different bulk
and shear loss angles for the film material. For both model
choices, we allow for a frequency dependency of the loss
angles, in the form of a power law or a linear relationship,

ϕpower lawðf;ϕ1; αÞ ¼ ϕ1

�
f

1 kHz

�
α

ð8Þ

ϕlinearðf;ϕ1; mÞ ¼ ϕ1

�
1þm

f − 1 kHz
1 kHz

�
; ð9Þ

where ϕ1 is the loss angle at 1 kHz, α is the exponent of
the power law, and m is the slope of the linear relationship.
The excess loss angles measured experimentally are then
modeled either with one loss angle, or with different bulk
and shear loss angles,

δϕi ¼ Diϕxðfi;ϕ1; mÞ ð10Þ

δϕi ¼ DB;iϕxðfi;ϕ1;B; mBÞ þDS;iϕxðfi;ϕ1;S; mSÞ; ð11Þ

where x can refer either to the linear or the power law
relation, for a total of four different models that could
describe the data: single loss angle with linear frequency
dependency, single loss angle with power law frequency
dependency, bulk and shear loss angles with linear fre-
quency dependency, and bulk and shear loss angles with
power law frequency dependency. To quantitatively deter-
mine which one of those four models better fits the
measured data, we follow a Bayesian approach, which
provides us with the probability distribution of the param-
eters for each model, and also the relative probability of the
models, given the measured data set. In this section we
briefly outline the basics of the Bayesian approach, with
particular emphasis on its application to the problem at
hand. The reader unfamiliar with Bayesian inference
analysis should refer, for example, to [19–21] for a more
detailed description.
For each model, we want to compute the probability

distribution PðθjMj; δϕiÞ of the parameters θ (for exam-
ple, fϕ1; αg in the case of the single loss angle, power law
model) given the measured data fδϕig and assuming one of
the models, Mj, to be valid. This probability distribution

is usually called the posterior distribution of the model
parameters. To compute it, we use Bayes’ theorem [19],

PðθjMj; δϕiÞ ¼
PðδϕijMj; θÞ · PðθjMjÞ

PðδϕijMjÞ
; ð12Þ

where the term PðδϕijMj; θÞ describes the probability
(likelihood) of obtaining the measured data given the model
and a specific value of the parameters, and the term
PðθjMjÞ, usually called the prior probability distribution
of the parameters, encodes our knowledge of the possible
values of the parameters, given a specific model, before any
measurement is taken. Finally, the term at the denominator
PðδϕijMjÞ is the probability of obtaining the measured
data if the model is assumed, and allowing any value for the
parameter. This last term can be computed as a normali-
zation, by integrating the left-hand side of Eq. (12) over all
values of θ and requiring the result to be equal to 1, since it
is a probability distribution. This term plays a role in the
later selection of the most likely model.
In our case, the data consist of the measured excess loss

angle δϕi for both the samples measured, for each of the
accessible resonant mode frequencies, with the measure-
ment uncertainties. For any of the models, the data like-
lihood PðδϕijMj; θÞ is modeled as a normal distribution,
where each data point is an independent random variable
with variance given by the experimental uncertainties in the
measured quality factors. For each model, the parameter
set θ is composed of two parts. First, we allow the film
properties to vary within the uncertainties described in
Sec. II: the Young’s modulus and Poisson ratio have normal
probability distributions centered on the best fit of the
resonant mode frequency shifts, with variance given also by
the fit, as reported in Table I; the coating density and
thickness are also allowed to vary with a normal probability
distribution centered on the nominal value and with a
variance corresponding to a 5% uncertainty as explained in
Sec. II. Secondly, the prior distributions of the other model
parameters are assumed to be flat: the loss angle at 1 kHz
can vary in the range ϕ1 ∈ ½0; 3 × 10−3� for all models; for
the power law loss angle models the exponent can vary in
the range m ∈ ½−2; 2�, while for the linear models the slope
is restricted to values that exclude negative loss angles
m ∈ ½−0.033; 0.5�. As we see, the results are not very
sensitive to the choice for the allowed range of the
parameters, meaning that the measured data are increasing
our knowledge of the models, as expected.
There are many ways to use Eq. (12) to compute the

posterior distribution of the model parameters. The method
most commonly used, and also adopted for this work, is to
numerically sample the posterior distribution, or in other
words to compute a large set of points in the parameter
space, distributed in a way that follows the posterior
distribution. We carried out this sampling using a
Markov chain Monte Carlo (MCMC) algorithm
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implemented with the PYTHON package emcee [24]. The
results can then be used to numerically evaluate the
distribution of each parameter. Since the model parameter
space is high dimensional, it is impossible to represent
graphically the full distribution. We therefore plot the sets
of all joint distributions of pairs of parameters. The results
are shown in Fig. 1 for the two samples annealed at 500°C,
and considering the following two models: one single loss
angle with linear frequency dependency, or bulk and shear
different loss angles with linear frequency dependencies
(similar results are available for all annealing temperatures
and the power law models, but they are not shown here for
brevity). Each panel in the two corner plots show the joint
probability distribution for pairs of parameters, as well as
the probability distribution of each parameter, at the top of
each column. Each of the contour plots in Fig. 1 represents
the probability distribution of the two parameters, given
the data and assuming one of the models. All the other
parameters are allowed to take any value, a procedure often
referred to as marginalization. The one-dimensional histo-
grams show the probability distribution of each parameter,
marginalized over all the others. The dashed lines represent

the 90% confidence intervals and the median of the
posterior distributions. Those values can be taken as the
best estimates and uncertainties of the parameters, given
the data and assuming one specific model.
Once the posterior distribution of all model parameters is

so obtained, we can compute the distribution of the excess
loss angle for each resonant mode and compare the results
with the experimental measurements. This is done by using
each point in the parameter space obtained from the
MCMC sampler in the corresponding model to compute
the excess loss, and then producing a histogram of all
values. Figure 2 shows the results for both models
considered here as an example: single loss angle with
linear frequency dependency and different bulk shear loss
angles, again with linear frequency dependency (similar
results for all annealing temperatures and power law
frequency dependency are also available, but not shown
here for brevity). In those plots the distribution of the
excess loss angles is shown and compared with the
experimental results. In the case of the bulk and shear
loss angle model, both contributions are shown separately,
together with the sum. One can notice that most of the

FIG. 1. Posterior probability distributions of the parameters of two loss models (left, one loss angle with linear frequency dependency;
right, bulk and shear different loss angles with linear frequency dependency). The results shown here as an example correspond to the
measurements of titania-doped tantala films after annealing at 500°C. The posterior probability distributions have been marginalized
over the Young’s modulus, the Poisson ratio, the film thickness, and density.
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excess loss angle is due to the shear contribution, but there
is nevertheless a not negligible contribution coming from
the bulk losses.
The Bayesian approach we used to fit the model

parameters allows us to compute the probability of the
different models PðMjjδϕiÞ, given the measured data
points. Using Bayes’ theorem again, this can be written as

PðMjjδϕiÞ ¼
PðδϕijMjÞPðMjÞ

PðδϕiÞ
; ð13Þ

where PðMjÞ is the prior probability of the models, and
PðδϕijMjÞ is the likelihood of obtaining the measured data
points given the model. The latter can be computed from
the results of the MCMC sampler as explained above. The
term in the denominator acts as a normalization constant,
independent of the model. Therefore, assuming all models
are equally likely a priori, we can compute the logarithm of
the Bayesian odd ratio of any pair of models, given the data,

logOðM1;M2Þ ¼ log

�
PðM1jδϕiÞ
PðM2jδϕiÞ

�
: ð14Þ

A logarithm odd ratio greater than 0 means that the
measured data favor the model at the numerator M1,
while a value lower than 0 means that the model at the
denominator M2 is favored. We use the Bayesian odds

ratios to determine which model is favored by the data, since
this approach takes naturally into account the uncertainty in
the data points and in the estimated film mechanical
properties, as well as the different dimensionality of the
parameter space for each model. It also provides a quanti-
tative measurement of the “goodness of the fit” based on the
model complexity and measurement uncertainties.
Table II lists the logarithm of the odds ratio for pairs of

models. For all the annealing temperature, as well as for the
as-deposited film, the measured data strongly favor the
models with different bulk and shear loss angles. Among
those models, the linear frequency dependency is slightly
favored. Table III summarizes the estimated parameters for
this model. Figure 3 shows the results in graphical form. In
the same plot we compare the bulk and shear loss angles
with the estimate obtained using a single loss angle model,
as done in most of previous work.
Figure 4 compares our results for the as-deposited film

with those reported in Abernathy et al. [18], where a similar
analysis was performed. Our results are not consistent with
those reported in that work, showing opposite frequency
dependencies and different relative amplitude of the two
loss angles. We should note that the two films, although
both being made of about 20% titania-doped tantala, were
produced by different groups employing different coating
deposition chambers (in our case, films were grown by
reactive ion beam sputtering using the Laboratory Alloy

FIG. 2. Comparison of the measured and predicted excess loss angle (not the material loss angle) for the two samples, named
S1600603 and S1600604, and shown respectively in the top and bottom rows. The results shown here correspond to the samples
measured after annealing at 500 °C. The left column shows in grey the distribution of the excess loss angle for the single loss angle
model. The right column instead shows the distributions for the bulk and shear loss angle model: in green the bulk contribution, in
orange the shear contribution in grey the sum of the two. In both columns, the error bar data points represent the measured values. The
violin plots instead represent the distribution of the predicted values, given the result of the Bayesian analysis.
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and Nanolayer Systemmanufactured by 4Wave, Inc. [25] at
Colorado State University; in Abernathy’s case, an ion
beam sputtering system was used by the Commonwealth
Scientific and Industrial Research Organization [26]) and
therefore might have different properties. If we assume that
the two films have similar properties, the reason for the
discrepancy is not understood at the moment of writing.
However, we point out some key differences between the
measurement reported in Abernathy et al. [18] and our
results: the samples were suspended with different tech-
niques, which might induce systematic differences; we
measured and subtracted the contribution to the loss angle
of the uncoated substrate, while it is not clear how that was
treated in Abernathy’s work; in our work a larger number of
resonant modes was probed; in Abernathy’s work bulk and
shear loss angles are extracted from pairs of Q measure-
ment, assuming no frequency dependency between the two

modes in each pair but allowing for a frequency dependency
between pairs, while in our work we directly fit a frequency
dependent model to the experimental data; finally, in our
work we restricted the fit parameters to physically realizable
values, while in Abernathy’s the bulk loss angle is predicted
to have negative values for high frequencies.
In this analysis the film is assumed to have uniform

thickness and mechanical properties, and to cover the
entire substrate surface. The expected variation of the film
thickness over the surface is expected to be small. However,
variations of the film properties with position might
introduce mode-dependent systematic errors that have
not been considered in this study. Further work is needed
to quantify their effect on the bulk and shear loss angle
results.
In previous works [27], the mechanical quality factors

of uncoated silica disks were found to be dependent and

TABLE III. Parameters for the best fit to the data in terms of bulk and shear loss angles, with a linear dependency on frequency. The
values quoted are the median of the probability distribution of each parameter given the data, and the 90% confidence intervals.

Heat treatment Bulk loss at 1 kHz ϕ1;B [10−3] Bulk loss slope mB Shear loss at 1 kHz ϕ1;S [10−3] Shear loss slope mS

30 °C 0.19� 0.15 0.24� 0.19 0.72� 0.07 −0.005� 0.004
500 °C 0.20� 0.14 0.14� 0.20 0.37� 0.04 −0.003� 0.007
600 °C 0.31� 0.11 0.09� 0.07 0.26� 0.03 −0.012� 0.007

FIG. 3. Estimated loss angles as a function of frequency for the measured titania-doped tantala film, after each heat treatment step. In
each panel, blue and orange shows the best fit to bulk and shear loss angles, respectively, while the green dashed line corresponds to the
best fit to a single loss angle model.

TABLE II. Bayesian odd ratios of the models considered in this analysis. Every table entry shows the logarithm of the Bayesian ratio
of model 2 over model 1. Negative values mean that the data favor model 2. The bulk-shear angle, linear-frequency dependency is
favored for all annealing temperatures.

Model 1 Model 2 As deposited Annealed 500 °C Annealed 600 °C

Single angle, power law Bulk/shear linear −15.5 −6.2 −18.1
Single angle, linear Bulk/shear linear −7.4 −1.6 −10.1
Bulk/shear power law Bulk/shear linear −0.6 −0.2 −1.8
Single angle, power law Bulk/shear power law −14.9 −6.1 −16.3
Single angle, linear Bulk/shear power law −6.8 −1.4 −8.3
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limited by loss mechanisms at the unpolished edge, and
were also found to degrade over time. The silica disks used
in this work have an optical quality polished edge, and the
mechanical quality factors have been measured before
the film deposition, to ensure a correct subtraction of the
background due to the substrate. We also verified that the
polished edge ensures that there is no significant evolution
of the substrate quality factor over time. Therefore we are
confident that the effect described in [27] is not an issue in
our work.

IV. EFFECT ON THERMAL NOISE ESTIMATE

The standard computations used to estimate the contri-
bution of coating thermal noise in the advanced gravita-
tional-wave detectors [5] assume that both the low and high
index materials can be described with one single loss angle.
Direct thermal noise measurements have also been per-
formed [28] and the results expressed again in terms of
equal bulk and shear loss angles. Here we use the result of
our analysis, and compute the expected thermal noise for a
high reflectivity mirror similar to the design employed in
the Advanced LIGO detectors, using the inferred bulk and
shear loss angles. We use the model described in Hong
et al. [13] [in particular, starting from Eq. (94) therein],
where the properties of the component materials and the
geometry of the layers are used to predict the total thermal
noise. Possible effects due to the transition between layers
are not considered [6,29].
We consider a high reflection coating composed of 38

alternating layers of silica (low index material) and titania-
doped tantala (high index material), each with an optical
thickness of λ=4 where the laser wavelength λ in vacuum is
1064 nm, to obtain a nominal transmission of about 5 ppm
[30]. For the titania-doped tantala loss angle we use the
results reported in this work, for the film measured after
annealing at 500 °C. We compare two different cases: the
best fit to a single loss angle and the best fit with different

bulk and shear loss angles, as shown in Fig. 3. The
contribution of silica to thermal noise is small, but
nevertheless we included a frequency dependent model
obtained from another measurement we performed on silica
thin films annealed at 500°C. In this case the sensitivity of
our ring-down measurement was not enough to disentangle
bulk and shear loss angles: the experimental data are best
described by a single loss angle, linearly dependent on the
frequency, given by

ϕSiO2
ðfÞ ¼ ð0.035� 0.004Þ × 10−3·

×
�
1þ ð−0.006� 0.007Þ × 10−3

f − 1 kHz
1 kHz

�
:

Figure 5 shows the displacement noise due to the
Brownian noise of a single high reflectivity mirror. As a
reference, assuming the best fit to the data with a single loss
angle, we obtain a coating Brownian noise of ð7.0� 0.3Þ ×
10−21 m=

ffiffiffiffiffiffi
Hz

p
at 100 Hz. Using instead the best fit to the

data with different bulk and shear loss angles, we obtain
ð6.0� 1.1Þ × 10−21 m=

ffiffiffiffiffiffi
Hz

p
at 100 Hz. For comparison,

the direct thermal noise measurement reported in [28] can
be extrapolated to a level of ð7.5� 0.1Þ × 10−21 m=

ffiffiffiffiffiffi
Hz

p
at

100 Hz. Within the precision of our measurement, there is
no significant impact on the estimate of thermal noise for
and Advanced-LIGO-like high reflectivity coating.
It is worth noting that the knowledge of the separate bulk

and shear loss angles could allow an additional degree of
freedom to optimize the thermal noise of the coating, by
changing the thickness of the layers [13].

FIG. 4. Comparison of bulk and shear loss angles for the as
deposited titania-doped tantala, as obtained in this work and as
reported in Abernathy et al. [18].

FIG. 5. Brownian noise for a single high reflectivity mirror,
composed of alternating layers of silica and titania-doped tantala,
is described in the main text. The solid orange line shows the
displacement noise using the model where the bulk and shear loss
angles are equal, while the solid blue line corresponds to the
model where bulk and shear can assume different values. The
dashed and dotted curves show the bulk and shear contribution,
respectively.
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V. CONCLUSIONS

We showed that it is possible to estimate the bulk and
shear contribution to the loss angle of a thin film, using
measurements of the decay time of the resonant modes of a
coated silica disk, carried out in a gentle nodal suspension
system. As an example we analyzed a thin film of titania-
doped tantala, one of the materials used in the advanced
gravitational-wave interferometric detector mirrors. A
Bayesian analysis of the experimental data shows that a
model featuring different bulk and shear loss angle is
favored with respect to a simpler model with one single loss
angle (i.e., same loss angle for bulk and shear energies).
The change in loss angles with annealing is more evident in
the shear than in the bulk contribution. When the two
models are used to compute the expected thermal noise for
a high reflection mirror similar to those used in Advanced
LIGO, the difference is marginal and within error bars

when the measurements are extrapolated in the frequency
region between 10 and 1000 Hz.
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