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Signal extraction out of background noise is a common challenge in high-precision physics experiments,
where the measurement output is often a continuous data stream. To improve the signal-to-noise ratio of the
detection, witness sensors are often used to independently measure background noises and subtract them
from the main signal. If the noise coupling is linear and stationary, optimal techniques already exist and are
routinely implemented in many experiments. However, when the noise coupling is nonstationary, linear
techniques often fail or are suboptimal. Inspired by the properties of the background noise in gravitational
wave detectors, this work develops a novel algorithm to efficiently characterize and remove nonstationary
noise couplings, provided there exist witnesses of the noise source and of the modulation. In this work, the
algorithm is described in its most general formulation, and its efficiency is demonstrated with examples
from the data of the Advanced LIGO gravitational-wave observatory, where we could obtain an
improvement of the detector gravitational-wave reach without introducing any bias on the source

parameter estimation.
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I. INTRODUCTION

High-precision measurements in physics rely on the
ability to separate interesting signals from background
noise. In many modern experiments, the instrument output
is a continuous stream of data, and signal processing
techniques have been developed to characterize and remove
noise from data streams. In the simplest possible case, the
disturbance can be modeled as an additive noise having
constant statistical properties (for example, power spectral
density) over time. This is the case of stationary noise:
most signal detection techniques have been developed
under this assumption and are optimal when the noise is
stationary and Gaussian. Additionally, if the noise can be
probed by additional witness sensors, which are known to
be insensitive to the targeted signal, there exist many
techniques to efficiently subtract the noise from the main
signal, thus improving the detection chances. In the linear
and stationary noise coupling case, the optimal strategy is
the Wiener filter [1].

In real world physical systems, however, the noise is
rarely stationary: the statistical properties can vary over
time during the measurement. When this is the case, the
signal detection algorithms that were optimal for stationary
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noise become suboptimal and might even be fooled by
noise transients. The noise can still be sampled by auxiliary
witness sensors, but the coupling from those witnesses to
the main signal might be nonlinear or nonstationary. In this
case, noise cancellation techniques such as the Wiener filter
are not optimal or might fail altogether.

The distinction between a nonlinear and a nonstationary
noise coupling is simply a matter of timescales or frequen-
cies. Consider, for example, two auxiliary signals x(¢) and
y() that couple into the main detector output d(¢) as the
product d(t) = x(z) - y(¢). If both signals contain signifi-
cant power in the frequency range of interest for the
measurement being performed, then the noise coupling
manifests itself as nonlinear, since there is never any linear
relationship between the individual noise witnesses and the
detector output. However, if one of the two signals x has
power only at very low frequencies, then for periods of
time shorter than the typical timescales that characterize the
variation of x, the coupling of y to d is linear and
approximately constant. In this case, we would consider
the noise coupling to be linear, but modulated in time. A
possible approach to the subtraction of this nonstationary
noise coupling is to use adaptive filtering techniques [2].
Instead, this work develops a more efficient solution, which
is applicable when the noise coupling modulation is sensed
by any number of witness channels, i.e., when the source of
the modulation is measurable.
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The work presented here is of general applicability to
signal processing, although inspired by work on gravita-
tional wave interferometric detectors [3-6]. The now
numerous detections of gravitational wave (GW) signals
from the coalescence of binary systems [7] have opened the
era of GW astronomy. The detection rate and the accuracy
of the astrophysical inference about the source parameters
and populations are strongly dependent on the detector
sensitivity. Ideally, the sensitivity of a GW detector is
limited by fundamental noise sources, such as quantum
noise [8], thermal noise [9], or gravity gradient noises [10].
Real world instruments [3—6] are rarely limited only by
fundamental noises, but rather by other, technical noises
[11] that are a consequence, for example, of the feedback
control systems needed to maintain the correct operating
point, or of unmodeled dynamical behavior of the appa-
ratus. While fundamental noises are expected to be sta-
tionary, i.e., to have constant statistical properties over time,
there is no reason to assume the same to be true for
technical noises. Similarly, the coupling of noise sources
from auxiliary degrees of freedom (d.o.f.) can contain
nonlinear terms beside the usually dominant linear con-
tributions. In this case, the detector noise might look
stationary on timescales longer than the nonlinear dynam-
ics timescale, but its statistics can be highly non-Gaussian.

The presence of nonstationary noise can be problematic
in different ways. First of all, fluctuations of the detector
noise over short timescales (of the order of a second) can
mimic transient GW signals and contaminate the data [12].
Furthermore, many detection pipelines [13,14] use matched
filtering [15], which is optimal only when the background
noise is Gaussian and stationary. The estimation of the
significance of GW candidates can therefore suffer from the
presence of noise that deviates from this assumption.

The main result of this work is an algorithm that can be
used to characterize nonstationary noise couplings from
multiple witness signals, and to subtract in the time domain
the noise from a target signal, extending well-known
techniques already used in the linear and stationary case
[1,16,17]. This algorithm is able to model noise coupling
modulations that are sensed by slowly varying witness
sensors, using an efficient parametrization that allows a
time domain subtraction, free of unstable filters and over-
fitting problems. This algorithm can also be applied to
linear and stationary couplings, providing means to imple-
ment parametric and stable noise subtraction: this is
therefore a viable approach to solve the problem of fitting
and implementing time-domain infinite impulse response
(ITR) Wiener filters [18].

The rest of this article is organized as follows. Section 11
describes nonlinear and nonstationary noise couplings
and lays the basis for the mathematical description of
the algorithm, which is then described in Sec. III. In
Sec. IV, as an example application, the algorithm is applied
to the Advanced LIGO GW detectors. It is worth noting

that the nonstationary noise subtraction of the 60 Hz power
line (described in Sec. IV B) has already been implemented
successfully in the Advanced LIGO detectors during the
third observation run O3. Finally, Sec. V describes exten-
sions and additional applications of this algorithm, and
Sec. VI concludes with final remarks and discussion.

II. NONLINEAR AND NONSTATIONARY
NOISE COUPLINGS

From this point on we will discuss nonstationary noise
couplings by considering the example of a gravitational
wave detector output 4(¢), but the discussion presented here
is valid in general for any physical measurement system
that provides a continuous data stream as an output. The
detector output is the sum of real GW signals Agw(7) and
background noise, and the latter can be subdivided into
diverse contributions: fundamental noises eg(#) that cannot
be measured or subtracted (such as quantum noise or
thermal noise); noises ¢ (¢) that couple with a linear and
time-stationary transfer function from auxiliary d.o.f. and
that can therefore be measured and subtracted; noises
ent () that couple from auxiliary d.o.f. or channels in a
nonlinear or non-time-stationary way; finally there can be
unknown noise sources &ey(f) whose origin is not yet
understood and that cannot be measured in any other
available channel.

In this section we focus on the case of nonlinear or
nonstationary noise couplings. Linear and stationary noise
couplings will emerge as a special case of this treatment.
We assume that the noise source can be monitored by a set
of witness signals w;(#) with i = 1, ..., N. We then model
the detector output £(#) as the sum of an uncorrelated and
untrackable noise background eg(z) and the nonlinear
contribution related to the witness signals:

h(t) = eg(1) + Flwi (z < 1), ecowy(z < 1) (1)

In this expression we already included two assumptions:
causality, meaning that the contribution at time ¢ can
depend only on the witness values in the past; time
invariance, expressed by the requirement that the functional
form F[] does not contain any explicit dependency on 7,
meaning that all the time variation of the noise is encoded
in the witness signals (we shall see in Sec. V how this
requirement can be relaxed). We are given the detector
output A(7) and the witness sensors w;(7), and the task to
find a suitable representation of the functional F so that we
can optimally subtract the excess noise from (). While in
the case of linear coupling there are simple and efficient
ways to parametrize the functional F, such as a frequency-
or time-domain Wiener filter [1], such general parametri-
zation does not exist in the nonlinear case.

One possible solution to the parametrization problem is
to use deep neural networks (DNN) [19], which have been
proven to perform as universal function approximators,
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provided they are composed of layers with a large number
of neurons [20]. This approach was initially applied to the
Advanced LIGO data, without satisfactory results, and is
described in Sec. A. The main drawback of using a DNN is
its high complexity, which in turn causes a long training
time, suboptimal performances, and difficulty in interpret-
ing the results [21].

The approach used in this work is inspired by common
machine learning algorithms, but one of its key features is a
large reduction of the model complexity (fewer parame-
ters), achieved by adopting a model of the nonlinear or
nonstationary noise coupling. The model is potentially not
as general as a DNN, but in all the cases we considered in
the context of GW detection, it outperformed the DNN
approach, due to the ease of training and interpretability of
the results.

III. NONSTATIONARY PARAMETRIZED
SUBTRACTION

The most common form of nonlinear coupling found in
GW detectors consist of one “fast” noise source n(z) that
couples to the detector output through a linear transfer
function, which is, however, “slowly” changing over time,
and this change can be tracked by additional “slow” witness
signals w;(#). The distinction between fast and slow will be
precisely explained below. In brief it refers to the frequency
content of the signals: the noise is relevant for the detector
sensitivity at high frequencies (above 10 Hz), while the
typical coupling modulation happens at lower frequencies
(below 1 Hz). In this case, it is possible to describe the
nonlinear coupling with a truncated series expansion,
where the different timescales can be separated. Each term
in the series can then be parametrized in an efficient way
and a numerical optimization algorithm used to minimize
the impact of the noise in the target signal. This section
explains this algorithm in detail.

The most general nonlinear coupling, described in
Eq. (1), can be expanded in a Volterra series [22],
subdividing the nonlinear terms in increasing polynomial
orders. Restricting to the second order we can write

exL(t) = Flwi(z <1),...,wy(z < 1)]
N +oo
- IJZ=1 /[) alJ(Tl»Tz) wi(t— Tl)Wj(l —1,)d7d7,

where q; ; are the second order Volterra kernels. It is useful
to write the frequency domain equivalent of the expression
above, by defining the Fourier transform of the kernels as

oo . .
aij(wl , a)z) = // a; (Tl , Tz)etwl‘tl elwz‘rzd»[ld»[z. (3)
-0

If we now substitute the inverse of this expression into the
Volterra series, we find

//ﬂo w3 — @) — )

j(@2)dwydar. (4)

En(@3)
i,j=1

X alj(wl9a)2) (a)l)

where the tilde denotes the Fourier transform of a signal.
This frequency-domain expression makes it clear that the
quadratic term mixes the two input signal frequencies into
the sum frequency in the target signal w; = @ + w,. To
simplify this expression we make a few important assump-
tions, splitting the set of all noise witnesses {w;} into two
classes: one fast noise witness n(z) and a set of slow
modulation witnesses x;. The first assumption is that the
frequencies at which the noise source 7i(w;) is relevant for
the detector output is much higher than the typical
frequencies where the modulation witness signals ¥;(w,)
are concentrated. Typically, for a GW detector, the noise
frequency of interest @, is in the 10 to 1000 Hz range, while
the modulation signals are concentrated at frequencies @,
below 1 Hz, so the assumption w; > w, is reasonable in
the cases under consideration. This allows us to ignore the
dependency of the Volterra kernels on the lower frequency
w, and write &;;(@,, ®,) ~ &;;(®;). By transforming back
to the time domain we find the expression below for the
nonstationary noise coupling

+oo
€NL

where each n;(z) is the time-domain product of the noise
source with one of the modulation witness signals
ni(t) = n(t)x;(¢). At this point we can include in the
sum above the stationary and linear term, by simply
defining ny(¢#) = n(r) and extending the sum to i =0.
The separation of frequencies allow Eq. (5) to describe the
nonstationarity as a linear combination of several contri-
butions, each one the time domain product of the noise
source with one of the modulations, and each one allowed
to couple to the detector output with a different linear and
stationary transfer function «;(7).

In this framework, the nonstationary noise coupling has
been reduced to a linear coupling problem. We can solve it
directly in the frequency domain with an approach that
closely follows the optimal a-causal Wiener filter [1]. The
residual after noise subtraction is defined as r(¢) = h(t)—
e (1) — enp(1). For each frequency w the optimal value of
the coupling coefficients &;(®) can be obtained by equating
to zero the gradient of the power spectral density (PSD) of
the residual S[r, r](w) with respect to each «;(w),

(1 —1)dr, (5)

OSlr. r|(w)

0= ~Paw) = Hi — Za*P,k, (6)

042003-3



G. VAJENTE et al.

PHYS. REV. D 101, 042003 (2020)

where the star denotes complex conjugation and we
define the vector and matrices of cross spectral densities
as follows:

Hi(@) = S[n;, hj(), (7)

Pij(@) = S[n;, njl(@). (8)

Equation (6) can be solved directly for each frequency to
obtain, in matrix notation,

a(w) = P~ (o)H (o). ©)

Equation (9) provides a direct solution to the problem of
finding the optimal «;, in the sense of making the power
spectral density of the residual as small as possible,
independently for each frequency. It can be implemented
in efficient ways using linear algebra numerical packages
and fast Fourier transforms. However, this direct frequency-
domain approach has several drawbacks: it is not possible to
force the coupling coefficients a; to be causal or stable in the
Laplace sense [23] (all poles on the left half s-plane).
Although it is still possible to perform the noise subtraction
in the frequency domain, having nonphysical coefficients
(i.e., noncausal) can be troublesome, since past and future
are mixed in the result. Moreover, each frequency is treated
separately, meaning that the number of free parameters in the
solution can be very large, often resulting in overfitting and
oversubtraction.

To overcome the problems stated above, we can express
each a;(w) in a suitable form that uses a reduced number of
parameters. A first choice could be to write each «; as a
rational function of order M in the Laplace variable s. This
would largely reduce the number of parameters and smooth
the solutions. Overfitting would be largely reduced, but
there would be no guarantee that the solutions were
physically realizable in the time domain, i.e., stable. To
work around this problem, we use the partial fraction
expansion [24]

M b 2M )
1 1 pl
ak(s)—z+:c+ E . (10)

loas

The requirement that the time-domain version of each
transfer function must be real implies that the poles s; and
their residuals must either be real or come in complex
conjugate pairs. If we collect each complex conjugate pole
pair in a second order stage (s; being the ith complex pole
and p; the corresponding complex residual) and do the
same with pairs of real poles (assuming without loss of
generality that there are an even number of them, where s, ;
and s; , are a pair of poles with corresponding residuals p;
and p;,), we obtain

ZR[p s—ZRUJ i]

7C+Z sils + |si?

+Z le+ﬁzz) = (Pi1Sia +pinsiy) (11)
S _( 11+S12)s+slls12 ,

i

where R [x] denotes the real part of x. The first sum runs over
all complex pole pairs, and the second sum runs over all real
pole pairs. The stability requirement can be expressed in
terms of the pole position in the Laplace plane as R[s;] < 0
for all complex and real poles. By inspecting the form of the
coefficients of the second order stages in Eq. (11), we can
show that the stability requirements correspond to forcing
the denominator to have strictly positive zeroth and first
order coefficients. Therefore, each coupling coefficient is
parametrized as

+b
kl kO() (12)

2
i=1 S +akls+ak0

subject to the requirements that a,ﬁ’i > ( for all 7, j, and k.

This parametrization solves all the problems previously
mentioned concerning the frequency-domain direct solu-
tion: it drastically reduces the number of parameters,
avoiding overfitting, and it ensures that the coupling
coefficients «a; are realizable in the time domain, being
causal and stable. The parametrization now mixes all
frequencies, and therefore it is not possible to solve the
optimization problem for each frequency independently.
Instead, we need to define a scalar cost function.
Considering the frequency band @; < @ < wy of interest
for the noise subtraction, one option would be to define a
cost function based on the integral of the residual PSD over
that range. However, power spectral densities often have
values ranging over many orders of magnitude, so this cost
function could be heavily skewed toward the frequencies at
which there is more signal or noise. We therefore add a
frequency dependent weight function W(w) in the PSD
integral. One choice that proved to be very effective in all
practical applications is to set this weight function to the
inverse of the power spectral density of the detector output
W(w) = S[h, k]~ (). In this way the cost function takes
equally into account any relative improvement on the noise,
with respect to the original values. In summary, we define
the cost function as

c) = [0 j’”%dm, (13)

where @ = {6,,} is shorthand for the set of all the coupling
coefficient parameters, i.e., a, b, and ¢ in Eq. (12).
Borrowing a technique commonly used in the training of
deep neural networks, we can search for the minimum of
the cost function by gradient descent. The gradient can be
computed in closed form using the chain rule
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AS[r, r|(w) Oay(w)
ooy (w) 06,

oC oy 1
5. ST (@) do- - (14)

L

The first partial derivative inside the integral is given by
Eq. (6), while the second derivative is not zero only when
the index k corresponds to the only «a; that contains the
parameter 6,,, and can be computed in closed form with
simple algebra from the parametrization of each a; given
in Eq. (12).

To enforce the stability requirements, instead of carrying
out a constrained optimization, we perform the following
reparametrization a,’; — expa;; so that positivity is
ensured without the need for hard constraints. This repar-
ametrization also helps compress the coefficient dynamic
range. With an efficient way to compute the cost function
and the gradient, we can apply a gradient descent algorithm
or any modification of it. By experimentation we found that
the ADAM algorithm [25], very popular for DNN training,
performs very well with our optimization problem. Once
the optimizer has converged to a good solution, the
parameters can easily be converted back to the coefficients
of Laplace domain transfer functions, or to the filter taps
needed to implement a time domain IIR filter [26,27].

Different parametrizations of the coupling coefficients
ai(s) are possible. For example, by using a scaled sigmoid,
it is possible to bound the maximum and minimum
frequencies allowed for the poles. The gradient with
respect to the new parameters can still be computed in a
closed form. Otherwise, we could arrange the coefficients
in the denominator so that not only stability is enforced
but also both the frequency and the damping factor of all
the poles are bounded, so to avoid introducing narrow
resonances. Finally, we note that the a; coefficients could
be parametrized directly in the z-domain [27] used to
describe discrete-time signals, so that we do not need to
convert the Laplace-domain transfer function coefficients
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to time-domain, since the result of the algorithm will
directly be the IIR filter taps.

One drawback of our approach is that the optimization
problem is no longer linear in the parameters, and therefore
there is no direct, closed-form solution. This, and the use of
a gradient-based optimization algorithm, means that there
is no guarantee of converging to the global optimal
solution. In practice, the parametrization described above
in Eq. (12) ensured a fast convergence in all cases studied,
with performance in line with the optimal frequency-
domain solution (provided there was no overfitting in
the latter).

IV. APPLICATIONS TO GW DETECTOR NOISE

In this section, we shall consider two examples of
applications of the algorithm, inspired by nonstationary
noise couplings found in gravitational-wave detectors, with
particular emphasis on the Advanced LIGO detectors
[3,11]. In both cases described here, the noise witnessed
by an auxiliary sensor or control loop was modulated by
residual angular motions of the interferometer mirrors and
laser beam.

A. Signal recycling cavity length noise

In the first example the noise source is linked to the
longitudinal control system needed to keep the interfer-
ometer at its most sensitive working condition, using
feedback controls that maintain all resonant cavities at
the operating point [28]. Those feedback control loops can
introduce noise in the interferometer auxiliary d.o.f., due to
their sensing or actuation limitations [11]. This excess
displacement noise can couple to the GW strain signal. One
important example, shown in the left panel of Fig. 1, is
related to the signal recycling cavity length (SRCL) control
[29]. Experimental evidence shows that displacement noise

Mains line
10-21
Modulation sidebands

I
&7
7 N
N R
= £710-22
£ T
g & Ay
]

10-23

57 58 59 60 61 62 63
Frequency [Hz]

Two examples of nonstationary noise couplings. The left panel shows a time-frequency spectrogram of the Hanford LIGO

detector main output: in (a) during a quiet time of detector operation, in (b) during a period of time when random noise was purposely
added to the signal recycling cavity length control. Despite the added noise being stationary over time, the effect on the detector output,
between 20 and 300 Hz, changes on a timescale of the order of seconds, meaning that the noise couplings are nonstationary. The right
panel shows an amplitude spectral density of the LIGO Hanford detector output around the 60 Hz power line. There are symmetrical
sidebands around the main frequency, evidence that the coupling of the electromagnetic noise at 60 Hz is modulated over time.
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in this d.o.f. couples to the GW strain signal in a nonsta-
tionary way. The spectrogram in Fig. 1 shows the detector
strain while the SRCL noise was deliberately increased to
enhance the effect. The noise amplitude modulation is due
to the residual angular motion of the interferometer mirrors
around their nominal positions. There is also a linear and
constant coupling coefficient, but this is partially compen-
sated online by using a feed-forward technique [30].

In this case, the noise source witness sensor n(¢) is the
digital output of the feedback loop, sampled at a frequency
of 16384 Hz. The target signal 4 is the main detector
output, which is in units of calibrated strain and sampled at
16384 Hz. Random noise was added to the SRCL control
loop, to make sure that the effect dominated over the
background detector output by 1 to 2 orders of magnitude.
As shown in Fig. 1, the resulting detector output shows
modulated noise. The coupling modulations x; are wit-
nessed by the residual motion of the interferometer angular
d.o.f., measured by the input signals to the angular feed-
back control systems [31], sampled at 16 Hz. Each mirror is
controlled in orientation both around the vertical axis (yaw)
and around the horizontal axis perpendicular to the laser
beam (pitch). Instead of controlling each mirror separately,
their motions are combined in physical d.o.f. [31,32] that
are closely related to the laser resonance conditions in the
interferometer.

The modulated signals were constructed as explained in
the previous section, and each of the coupling coefficients
a; was parametrized as the sum of 30 second-order stages,
as in Eq. (12). The optimization problem consisted in the
minimization of the residual signal power between 10 and
400 Hz, weighted by the inverse of the initial power
spectral density, as in Eq. (13). The optimization was
carried out using analytical forms for the gradient, imple-
mented in PYTHON and accelerated using code deployed to
GPU with TENSORFLOW [33]. The optimization process
took an approximate time of 10 min on a Nvidia Titan GPU
[34], using 600 s of training data. A similar amount of data
has been set aside to test the subtraction performance and is
not used for parameter training.

Figure 2 shows the results. The algorithm output,
obtained in terms of second-order stages, was converted
to IIR filters subsequently implemented in the time domain.
The result was then used to compute the power spectral
densities shown in the figure. In the top panel, the detector
sensitivity during the noise injection is compared with a
reference quiet time. If only the residual linear stationary
term is subtracted, for example using a Wiener filter, the
noise level is reduced by less than a factor of 10 at all
frequencies. The subtraction can be improved significantly
at all frequencies by using the output of the nonstationary
algorithm described here. The residual is not at the level of
the quiet reference, meaning that the set of witness signals
is not enough to capture the entirety of the modulation. The
bottom panel of Fig. 2 shows the magnitude and phase of
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FIG. 2. Performance of the nonstationary noise algorithm
applied to the coupling of signal recycling cavity length noise.
The top panel shows the amplitude spectral density of the detector
main output: the orange curve is a reference sensitivity when
there was no noise injection, while the blue curve is the detector
sensitivity during the noise injection and without any subtraction
applied. If only the linear and stationary coupling is estimated and
subtracted, the result is the green curve. By using the algorithm
described here, a nonstationary subtraction gives the red curve,
which largely improves upon the linear subtraction. The best
nonstationary subtraction cannot remove all of the noise cou-
plings: the reason being that the residual coupling modulation is
not witnessed by the set of signals used in this work. The bottom
panel shows the first few most important contributions to the
modulated transfer functions a; as produced by the algorithm.
The largest term is the stationary transfer function, while the
others are labeled with reference to the angular motion of the
modulation source. For reference, DHARD is a combination of
the arm cavity mirrors, moving in a differential way in the two
interferometer arms [35]; SRC1 and PRCI1 denote, respectively,
the signal and power recycling cavity angular d.o.f. [32]; MICH
denotes the motion of the beam splitter mirror [32].

the first few coupling coefficients ¢, ranked by the amount
of subtraction they provide. The largest contribution is the
stationary term, but the first nonstationary contributions are
following less than 1 order of magnitude below. The results
show also that each modulation channel can couple to the
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FIG. 3. Application of the nonstationary noise subtraction to

the 60 Hz main power line at the Advanced LIGO Hanford
detector. This figure compares the original detector output (blue
line) to what can be obtained by simply performing a linear and
stationary subtraction of a witness channel (orange line), and to
the improved subtraction obtained when allowing for coupling
modulation (red line). The stationary subtraction matches the
nonstationary one only at the 60 Hz line frequency and has no
effect at all at other frequencies.

detector output with a different transfer function, meaning
that the physical coupling path is likely different. The
results also show that this algorithm is capable of capturing
complex and diverse frequency dependencies for each
coupling path.

The algorithm described provided a clear indication of
the sources of the nonstationarity, and this information
could be used to improve the detector angular stability and
thus reduce the problem at the root. As a result, during
normal operations of the LIGO detectors, the SRCL control
is not a source of noise that limits the sensitivity, and
therefore there was no need to implement the nonstationary
subtraction online.

B. Power line

In the second example the noise source is electromag-
netic in nature and due to the 60 Hz line generated by the
main power supplies. Despite many mitigation efforts,
electromagnetic fields at 60 Hz couple to the detector
output through many paths [36]. The linear and stationary
coupling is dominant, as can be seen in the right panel of
Fig. 1. However, the line is surrounded by symmetric
sidebands that arise because the coupling is modulated by
slow (<2 Hz) angular motions of the interferometer beam
and mirrors, similar to the SRCL noise case. This is another
example of nonlinear or nonstationary couplings. As shown
in Fig. 3, a simple linear subtraction is effective at reducing
the main line by orders of magnitude (using a sensor that
witnesses the power line), but leaves the sidebands
untouched. This limits the detector sensitivity on a wider
frequency band. This effect is significant in the Advanced
LIGO Hanford detector, used in the example discussed

here, and present to a lower extent in the Advanced LIGO
Livingston detector.

The algorithm described in Sec. III has been applied to
this problem, restricting the computation of the cost
function to a narrow frequency band that includes the
main line and sidebands (50 Hz < f < 70 Hz). The noise
witness sensor is a direct monitor of the power supply
(largely dominated by the single-frequency 60 Hz line and
its harmonics). The modulation witness sensors are the
same angular motion signals used in the SRCL case. Since
we are subtracting noise in a narrow band around 60 Hz, we
did not expect to need complicated transfer functions, so we
restricted the coupling coefficients @; to be modeled by
only a constant plus one second-order stage,

bk,ls + bkA,O
S2 + ak.ls + ak’() ’

(15)

a(s) =cp +

allowing us enough freedom to adjust the coupling phase
and gain near 60 Hz. The result is shown in Fig. 3: the
modulated noise subtraction removes the main 60 Hz to
the same level as the linear subtraction and also reduces all
the sidebands by a factor of at least 2, down to a level
compatible with the surrounding background noise.

C. Effect on astrophysical range and
source parameter estimation

As discussed above, the signal recycling cavity noise did
not limit the detector sensitivity during the last period of
operation. On the other hand, the nonstationary subtraction
of the 60 Hz line and sidebands was effective at improving
the astrophysical sensitivity of the Advanced LIGO detec-
tors during the first six months of the O3 observation run.
One way to quantify the improvement is to compute the
range of the detector: the sky-averaged distance at which a
compact binary coalescence can be detected with a signal-
to-noise ratio of 8 [37]. Figure 4 shows that the 60 Hz
subtraction has a significant impact on the detector range
for high mass binary black hole systems, increasing the
detector range for systems with a total mass of 70 M4 by
25 Mpc and the observable volume by 11%.

It is important to check that the nonstationary subtraction
does not affect the interferometer response to GW signals
and calibration. For this purpose, we applied sinusoidal
forces to the interferometer test masses (focusing on a
frequency range around 60 Hz), using the photon calibrator
[38,39], and thus generating a differential length change in
the two interferometer arms that mimics the effect of a GW.
We then checked that the amplitude and phase of the
calibrated detector output matched the expectation, and that
the nonstationary subtraction did not affect the results,
within the measurement uncertainties.

Another important check is that the nonstationary
cleaning does not corrupt astrophysical signals in the data.
To corroborate this, we inject simulated binary black hole
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FIG. 4. The top plot shows the sky-averaged range for binary
system coalescence as a function of the total mass of the two
objects. The nonstationary subtraction of the 60 Hz line and
sidebands results in an improvement in the range. The range
increase is small for binary neutron stars, from 104.6 to
105.5 Mpc, since the signal for those systems sweep through
the 60 Hz region quickly. The improvement is more significant
for large mass binary black holes, where more signal is
accumulated around 60 Hz. For a total mass of 70 M, the range
increases from 729.3 to 754.6 Mpc. The bottom plot shows the
increase in observable volume as a function of the total
system mass.

signals into linearly cleaned strain data and then apply the
additional nonstationary subtraction. For data with and
without the nonstationary subtraction, we recover the signal
properties using LALInference, LIGO and Virgo’s standard
Bayesian parameter estimation infrastructure [40]. We
carry out injections at two times during which contamina-
tion from the 60 Hz line was noticeable in the linearly
cleaned data from LIGO Hanford (GPS times 1244006580
and 1243309096), similar to Fig. 3. For each of those times,
we inject signals with all combinations of three total mass
values (M = m; + m, = 200,275,350 M) and two mass
ratios (¢ = m,/m; = 0.5, 1), and always without spin in
either component (a; = a, = 0). The masses are chosen so
that the final cycles of the GW signal have significant
frequency content in the vicinity of 60 Hz. We additionally
study a signal with M =70 M, and g =1 at GPS time
1244006580, meant to roughly correspond to the peak of
the sensitive-volume improvement in Fig. 4. Each injection
is carried out with o]ptimal network signal-to-noise ratios
(SNR) of 15 and 30, and into a three-detector network of

lComputed using the data where the 60 Hz line was subtracted
linearly.

32/
314
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FIG. 5. Joint posterior probability density on the total mass

M = m, + m, (x-axis) and chirp mass M = (m;m,)> M~/
(y-axis), for the M = 70 M and g = 1 injection with SNR 30, at
GPS time 1244006580, recovered using a Welch-average esti-
mate of the noise PSD. Colors correspond to the nonstationary
cleaning of the data (orange line) and to the stationary cleaning of
the data (blue line). The main panel shows the 2D probability
density, with solid contours containing 90% of the probability
mass. The secondary panels above and to the right show the
corresponding 1D marginalized distributions for M and M,
respectively, with colored dashed lines representing symmetric
90%-credible intervals. The true values are marked by a crosshair
and gray dotted lines.

two Advanced LIGO detectors and the Advanced Virgo
detector. For this analysis we applied the nonstationary
noise subtraction only to the Advanced LIGO Hanford
detector data, since the effect on the Livingston detector
was negligible. In all cases, the injections are produced
using the numerical-relativity surrogate waveforms
NRSur7dq2 [41], and recovered with the spin-precessing
waveform approximants IMRPhenomPv2 [42], which is stan-
dard in LIGO-Virgo analyses. For control purposes, PSDs
are estimated through both a simple Welch average [43] and
a Bayesian model using BayesLine [44].

Our results indicate that the nonstationary subtraction
does not adversely impact parameter estimation and, there-
fore, does not corrupt astrophysical signals in the data. The
lack of discernible improvement after the nonstationary
cleaning is expected given that, in this case, only the
Hanford detector data was affected, and the Livingston
detector was the most sensitive in the network at that time.
As an example of this, Fig. 5 shows the recovered posterior
distributions of the system’s total mass M (x-axis) and chirp
mass M = (m;m,)>>M~'/> (y-axis), for the M = 70 M
and g =1 injection at GPS time 1244006580. The result
for the two cleaning techniques (linear and nonstationary)
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are not significantly different. However, the nonstationary
step improves the recovered matched-filter SNR by a factor
consistent with the range improvement displayed in Fig. 4.
This seems to be the case for all recovered parameters and
for all of the injections in our set.

V. EXTENSIONS AND OTHER APPLICATIONS

The algorithm presented here was inspired by the non-
stationary noise couplings found in gravitational wave
detectors, where a noise source with power in the tens
to hundreds hertz (Hz) region can limit the detector
sensitivity, and be modulated by slower (below a few
Hz) residual motions. However, the parametrized approach
to the noise subtraction can be extended to any other
application when there is a noise coupling which is
modulated. It can also be extended to the case of quadratic
or higher order couplings, even when there is no clear
separation of the signal frequency support. This is possible
by choosing a set of noise witness sensors w;, constructing
the set of all quadratic (or higher order) combinations n;; =
w;w; and using them in Eq. (5).

The parametrization described above for the coupling
coefficients turns out to be quite versatile and robust. Even
when considering only linear and stationary noise cou-
plings, the algorithm described here is able to match the
performance of the frequency-domain Wiener filter. It is
therefore a viable approach to a stable and causal Wiener
filter that can be implemented in the time domain using IIR
filters. The advantage over the classical finite impulse
response (FIR) Wiener filter [1] is the significant reduction
in the number of parameters, the lower computational cost
of the time domain implementation, and the absence of
overfitting problems. The main drawback is again that there
is no closed form solution, and the parameters must be
found by a gradient-descent-based optimization, with no
guarantee of optimality.

In the treatment of nonstationary noise described above,
we assumed that the change in the couplings could be
completely captured by a set of modulation witness signals.
This might not always be the case. The set of witness
signals might be incomplete, resulting in some residual
modulation at the same timescale as those that are modeled
and removed. This was the case in the residual noise
coupling for the SRCL noise, as shown in Fig. 2. Another
possibility is that the set of modulation signals is sufficient
to describe the nonstationarity for a short period of time,
still longer than the modulations witnessed by the signals,
but the coupling coefficients a; vary on a timescale which
is slower than the typical content of the witness channels. In
this case we would need to slowly adjust the parameters of
the noise subtraction. In Eq. (6) we expressed the gradient
of the cost function with respect to the parameters in a form
that is numerically efficient to find the optimal parameters,
since the cross spectral densities need to be computed only
once at the beginning of the training. However, if the noise

couplings change over time, it is more convenient to rewrite
the gradient in the following form:
95, (@)

(@) S[r, ng] (16)
that can be obtained with straightforward manipulations of
Eq. (6). The gradient can be computed by accumulating the
(varying) cross spectral densities of the current subtraction
residual with all the modulation signals. This gradient can
then be applied to the minimization of a running cost
function as in Eq. (14), with an approach similar, for
example, to the least mean squared (LMS) algorithm [45].

VI. CONCLUSIONS

We presented a novel algorithm to characterize and
subtract nonstationary noises from the output signals of
physical detectors, which can be applied to all cases when
one or more fast noise sources are coupling to the main
detector output via modulated transfer functions. Provided
there is access to suitable witness sensors that track both the
noise and the modulations, we show how a parametrized,
stable, and time-domain noise cancellation can be imple-
mented. This extends the well-known noise cancellation
techniques based on feed-forward and Wiener filters, and
allows for a real-time implementation of nonstationary
noise subtraction.

We show how this technique can be applied successfully
to the output of GW detectors, with examples from the
Advanced LIGO observatory. The implementation of non-
stationary noise subtraction allows us to improve the
detector sensitivity, because the average power spectral
density of the noise is reduced below what is attainable with
simple linear noise cancellations, and also because the
residual is more stationary and therefore better suited to
searches for GW triggers. We also show that the nonsta-
tionary noise subtraction can improve the sky-averaged
detectable range and does not introduce any bias in the
astrophysical parameters estimated for simulated GW
events that contain a significant amount of signal power
around 60 Hz.

Finally, we note that the technique described here is of
general interest and can be applied in all cases where
nonstationary noise couplings are present in any detector. It
is also possible to limit the scope of the algorithm to the
linear and stationary case, providing a new approach to the
optimization and implementation of efficient Wiener filters.
In both the stationary and the nonstationary cases, it is also
possible to convert this algorithm into an adaptive system,
where the noise cancellation parameters vary slowly to
cope with changes in the noise couplings.
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APPENDIX: DEEP LEARNING-BASED
SUBTRACTION

Neural networks are not a new idea [46] but have
gained momentum in the recent years with the applica-
tion of DNN [19] to many machine learning problems.
Ideally, a neural network is capable of approximating
any nonlinear function of its inputs, provided it includes
a large enough number of basic units or neurons [20].
Therefore a DNN seems to be a suitable starting point
for a parametrization of the nonlinear coupling function
introduced in Eq. (1). Since the noise subtraction
problem deals with processing and reconstructing time
series, it is important that the DNN includes some
memory of the past inputs. For this reason our attention
focused on recurrent neural networks (RNN) [47].
Despite the intrinsic nonlinearity of each layer, a
DNN is not particularly suitable to learn efficiently
multiplications of its inputs. Since this is an important
operation for most of the noise subtraction schemes we
are considering, we added an ad hoc quadratic layer: the
n inputs to the layer are multiplied pairwise to obtain n>
new signals; together with the input, those n? 4 n signals
are then passed through a fully connected layer to reduce
the dimensionality to m < n? 4+ n. This additional layer,
preceded or followed by additional recurrent layers,
largely improve the learning speed of a DNN.

We applied a DNN to the problem of subtracting the
signal recycling noise described in Sec. IV. The architecture
consists of three layers of gated recurrent units (GRU) [48]
with 64, 32, and 16 neurons each. The input to the recurrent
layers consists of both the fast noise witness (signal
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FIG. 6. Noise subtraction obtained with a deep neural network,
to be compared with the nonstationary noise subtraction obtained
with the algorithm described in Sec. III and shown also in Fig. 2.

recycling longitudinal servo output) and the up-sampled
modulation witnesses (angular signals). The output of the
three recurrent layers is then fed to the quadratic layer
described above, and then to three fully connected layers
with 16, 16, and 8 units with ReLU activation [49]. The
final signal is obtained by linearly combining the outputs of
the last layer. The network has about 9000 parameters that
are trained using a standard ADAM algorithm on the mean
square error of the output with respect to the desired signal
(the detector strain). The cost function was actually
computed in the frequency domain, by integrating the
residual between 10 and 400 Hz [similar to what is
explained in Sec. Il and Eq. (13)]. The network was
implemented in PyTorch and trained using 600 s of data on
the same Nvidia GPU used for the main results described in
this paper. The training required about 10 h. The best
subtraction obtained with this network is shown in Fig. 6,
compared with the output from the nonstationary noise
subtraction algorithm described in this paper. The perfor-
mance of the network is clearly better than a simple linear
and stationary subtraction, but falls short of what is
achievable with the nonstationary subtraction algorithm
described in this work. Additionally, it is extremely
difficult, if not impossible, to extract useful information
from the trained network, such as what signals are the worst
offenders for the nonstationarity of the couplings. It is in
other words not possible to produce the equivalent of the
bottom panel of Fig. 2, therefore missing crucial informa-
tion that could be used to solve the modulation problem at
the root.
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