
 

Plausible scenario for a generic violation of the weak cosmic censorship
conjecture in asymptotically flat four dimensions

Felicity C. Eperon,* Bogdan Ganchev ,† and Jorge E. Santos‡

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Wilberforce Road, Cambridge CB3 0WA, United Kingdom

(Received 9 December 2019; accepted 4 February 2020; published 28 February 2020)

We present a plausible counterexample to the weak cosmic censorship conjecture in the four-
dimensional Einstein-Scalar theory with asymptotically flat boundary conditions. Our setup stems from
the analysis of the massive Klein-Gordon equation on a fixed Kerr black hole background. In particular,
we construct the quasinormal spectrum numerically, and analytically in the WKB approximation, then go
on to compute its backreaction on the Kerr geometry. In the regime of parameters where the analytic and
numerical techniques overlap we find perfect agreement. We give strong evidence for the existence of a
nonlinear instability at late times.
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I. INTRODUCTION

Quantum gravity remains terra incognita, largely because
it is hard to access experimentally. One might wonder why,
since singularities are known to form under a variety of
circumstances [1]. However, general relativity stubbornly
conceals these regions of high curvature, where quantum
gravity is likely to play a leading role, by hiding them behind
an absolute event horizon. This phenomenon is observed for
such large classes of initial data that it was promoted to a
conjecture in [2]. This is the weak cosmic censorship
conjecture (WCCC), which forbids the formation of naked
singularities, i.e., singularities in causal contact with future
null infinity, starting from generic initial data.
Here we propose a four-dimensional asymptotically flat

counterexample to the WCCC motivated by the super-
radiant instability [3–12], afflicting massive scalar pertur-
bations around Kerr black holes (BHs) [13]—rotating, with
spherical topology and considered the most general BH
solutions of the vacuum Einstein equation [14].
The angular dependence of such perturbations around

Kerr is parametrized by two integers fm;lg∶m counts the
number of nodes in the azimuthal direction and l − jmj the
number of zeros in the polar direction. We show that for any
scalar field of mass μ and any nonzero value of the BH spin,
for sufficiently large values of l ¼ m, these perturbations
herald instabilities around the BH, extracting energy and
angular momentum. Furthermore, the time scales associ-
ated to these instabilities grow parametrically as e4l log l,
indicating that each of the lmodes decouples from the rest,
evolving independently.

As time progresses, modes with smaller values of l
stabilize one by one, forming scalar clouds around the BH,
similar to those in [15,16]. However, these BHs were
shown to be unstable to higher m-modes [17], giving rise
to the expectation of a cascade towards larger values of l.
This corresponds to a transfer of energy from lower
l-modes to higher ones, indicating an evolution towards
smaller scales—a phenomenon akin to turbulence in
nonrelativistic 3þ 1 fluids.
A possible stabilizing mechanism is the emission of

gravitational waves (GWs) by the scalar clouds [18,19].
Were they to dissipate energy faster than superradiance
creates them, the above scenario would not be possible.
We numerically compute the GW emission for fixed
gravitational coupling, Mμ, and spin parameter, J=M2,
as a function of l ¼ m and find that it leads to energy and
angular momentum dispersion that would not be able to
counter the efficiency of superradiance.
Our paper is organized as follows: first we present our

setup and provide analytic and numerical data for the
instability time scales at large l. We then compute,
numerically, the energy radiated towards future null infinity
in this process as well as the backreaction of the scalar
on one of the components of the Weyl tensor. We see that
modes with higher l radiate less, implying that energy is
accumulated at small scales more efficiently for larger
values of l. Finally we end with discussion of the results.

II. SETUP

We work with the Einstein-Hilbert action minimally
coupled to a real massive scalar field ψ ,

S ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−∇aψ∇aψ − μ2ψ2

�
; ð1Þ

*fce21@cam.ac.uk
†bvg25@cam.ac.uk
‡jss55@cam.ac.uk

PHYSICAL REVIEW D 101, 041502(R) (2020)
Rapid Communications

2470-0010=2020=101(4)=041502(6) 041502-1 © 2020 American Physical Society

https://orcid.org/0000-0001-7081-8156
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.041502&domain=pdf&date_stamp=2020-02-28
https://doi.org/10.1103/PhysRevD.101.041502
https://doi.org/10.1103/PhysRevD.101.041502
https://doi.org/10.1103/PhysRevD.101.041502
https://doi.org/10.1103/PhysRevD.101.041502


where μ is the scalar field mass, gab the spacetime metric
and R its Ricci scalar. The equations of motion are

Rab −
R
2
gab ¼ 8πGTab; ð2aÞ

where Rab is the Ricci tensor of gab,

□ψ ¼ μ2ψ ; ð2bÞ

and

Tab ¼ 2∇aψ∇bψ − gab∇cψ∇cψ − μ2ψ2gab: ð2cÞ

An important solution to these equations is the Kerr BH
[13], with ψ ¼ 0 and

ds2 ¼ −
Δ
Σ2

ðdt − a sin2θdϕÞ2 þ Σ2

�
dθ2 þ dr2

Δ

�

þ sin2θ
Σ2

½a dt − ðr2 þ a2Þdϕ�2; ð3Þ

where Δ¼ r2þa2−2Mr, Σ2 ¼ r2 þ a2cos2θ, ϕ ∈ ð0; 2πÞ
is a periodic coordinate and θ ∈ ð0; πÞ is a polar coordinate.
The BH event horizon is a null hypersurface with r ¼ rþ≡
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, angular velocity ΩK ¼ a=ða2 þ r2þÞ and

surface gravity κK ¼ ðr2þ − a2Þ=½2rþðr2þ þ a2Þ�. The con-
stant M is the BH mass, and a parametrizes its angular
momentum via J ¼ Ma. The absence of naked singularities
demands jaj ≤ M with the inequality being saturated at
extremality, when the Kerr BH event horizon becomes
degenerate with κK ¼ 0.
We study Eq. (2b) on a fixed Kerr background (3), which

is stationary and axisymmetric with respect to the Killing
fields ∂=∂t and ∂=∂ϕ, respectively. We consider perturba-
tions of the form,

ψðt; r; θ;ϕÞ ¼ e−iωtþimϕψ̂ωmðr; θÞ; ð4Þ

and assume that ψ̂ωmðr; θÞ is separable, ψ̂ωmðr; θÞ ¼
RωlmðrÞSωlmðθÞ, with the label l anticipating that the
separation constant will be parametrized by an integer l.
Not all solutions to Eq. (2b) are separable, but we are
interested in those composed of the sum (possibly infinite)
of such separable solutions. ω ∈ C is a complex frequency,
determined by imposing appropriate boundary conditions.
We are interested in finding unstable mode solutions for
which ImðωÞ > 0.
Inserting the ansatz (4) into Eq. (2b) yields a system

of two second order ordinary differential equations,
coupled via the separation constant Λ,

Δ½ΔRωlm;r�;r þ VðrÞRωlm ¼ 0; ð5aÞ

1

sin θ
½sin θSωlm;θ�;θ −

�
a2k2cos2θ þ m2

sin2θ
− Λ

�
Sωlm ¼ 0;

ð5bÞ

where

VðrÞ ¼ −k2r4 þ 2Mμ2r3 − ðΛþ a2k2Þr2
þ ð2MΛ − 4amMωþ 2Ma2ω2Þr − a2ðΛ −m2Þ;

ð5cÞ

with k≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p
. Finding unstable modes amounts to

finding the values of ω for which ψ has ingoing boundary
conditions at the event horizon (consistent with the equiv-
alence principle) and finite energy on a partial Cauchy
surface t ¼ const.
This problem can be tackled numerically (for any values

of the parameters) and analytically (in certain regions of
moduli space). We will first compute the modes using a
WKB expansion in m, which we detail next.

III. WKB EXPANSION AND NUMERICAL
VALIDATION

Our WKB expansion is valid for any spin parameter
jaj < M, and only assumes m to be large. For small values
of a and μ, it reproduces the results in [7,20] (up to a factor
of 2, see [21]). For large m, Eq. (5b) can be approximated
by the usual equation for spherical harmonics on a 2-sphere
so that Λ ¼ lðlþ 1Þ þOðl−1Þ and l; m are integers with
l ≥ 0, jmj ≤ l. In the following we set m ¼ l and take the
limit l ≫ 1.
To determine the large l limit at fixed μ and a, we

used the same method as in [22], which combines a
matched asymptotic and WKB type approach. We quote
the final result and leave the details to the Supplemental
Material [23],

ReðωMÞ ¼ μ̂

�
1 −

μ̂2

2l2

�
þOðl−3Þ; ð6aÞ

ImðωMÞ ¼ l−4l−9
2
þp

22lþ1−p ffiffiffi
π

p
p!

μ̂4lþ5 sinh

�
πðlΩK − μÞ

κK

�

× exp

�
−

2

κK

�
lΩK −

μ̂

rþ

�
arctan

�
ΩK

κK

�

− 2ð1 − lþ pÞ
�
× ½1þOðl−1Þ�; ð6bÞ

where μ̂≡ μM and p ∈ N0 is a radial overtone. First note
that if we set a ¼ 0, the argument of the sinh becomes
negative, and the instability disappears. Furthermore, its
onset sits precisely at the onset of superradiance, namely
lΩK ¼ ReðωÞ. More importantly for our purposes, in the
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limit l → þ∞, the growth rate of the instability scales as
e−4l log l, and no matter what the value of μ or a, one can
always find a value of l ¼ l⋆ ≡ ⌈μ=ΩK⌉ above which the
instability sets in. This shows that all Kerr black holes are
unstable to massive scalar field perturbations, irrespective
of their initial spin jJj < M2 and of the mass μ of the scalar
perturbation.
One can test the regime of validity of our approximation,

by comparing with data obtained by solving numerically,
without approximations, the full equations. To this end, we
perform a change of variables so that we only solve for
smooth functions in their integration domain. This neces-
sarily involves a choice of normalization, which we
describe next. For numerical aid we define

RωlmðrÞ ¼
�
1 −

rþ
r

�
−iω−mΩK

2κK
e−kr

�
rþ
r

�
γ

qrðrÞ; ð7aÞ

SωlmðθÞ ¼ sinmθqθðθÞ; ð7bÞ

with qrðrþÞ ¼ qθð0Þ ¼ 1 and γ ≡ 1þ 2Mk −Mμ2=k. We
now use the methods of [24] to solve for the eigenpair
(ω;Λ) using a Newton-Raphson routine [25].
As seen in Fig. 1, our numerical data agrees excellently

with (6b). Furthermore, one can measure deviations of our
WKB expression to the exact numerical result, and it agrees
with the error given in Eq. (6b).

IV. BACKREACTION

We want the GWs emitted by a scalar cloud around a
Kerr BH and its leading order backreaction on the geom-
etry. In the vector field case [26,27] it has been shown that
the system evolves adiabatically; the emergence of the
cloud due to superradiance, and the consecutive saturation
of the vector mode responsible, due to the spinning down
of the BH, proceed on a much faster time scale than the

dispersion of energy and angular momentum due to GW
emission from the cloud.
We proceed using nonlinear perturbation theory and

declare

ψ ¼
Xþ∞

i¼0

ψ ð2iþ1Þε2iþ1; and g ¼ gK þ
Xþ∞

i¼1

gð2iÞε2i; ð8Þ

where gK is given by the Kerr metric (3). We expand the
equations of motion (2) in a power series in ε. To first order
in ε we solve Eq. (2b) subject to a choice of initial data. For
the case at hand, we choose ψ to be given by the real part of
one of the unstable modes we have determined above.
These are labeled by a given value ofm. Furthermore, since
ImðωMÞ ≪ ReðωMÞ, we take ω to be purely real. We then
proceed to second order and attempt to compute the leading
order backreaction on the metric, gð2Þ, and its associated
curvature. The standard approach to the linearized Einstein
equation presents us with a daunting task; however,
Kerr BHs are algebraically special, allowing us to bypass
computing gð2Þ, and directly calculate certain gauge invari-
ant scalars built out of the Weyl tensor. These do not couple
amongst themselves, and we focus on the Newman-Penrose
scalar ψ4 since it also allows us to efficiently compute the
GWs emitted by the scalar cloud. ψ4 obeys the Teukolsky
equation [28–30],

½ðΔþ 3γ − γ̄ þ 4μþ μ̄ÞðDþ 4ϵ − ρÞ − 3ψ2

− ðδ̄þ 3αþ β̄ þ 4π − τ̄Þðδþ 4β − τÞ�ψ4 ¼ 4πT4; ð9Þ

whereby all quantities appearing in Eq. (9) are given in the
Supplemental Material [23]. The source term T4 is recon-
structed directly from Eq. (2c) and thus depends on ψ ð1Þ
and its gradient only.
The lhs of (9) can be separated into angular and radial

parts as in the vacuum case [28], allowing us to solve
for ψ4 as an infinite sum of separable solutions using
Green’s method.
From ψ4, Teukolsky [30] showed us how to compute the

rate of gravitational radiation at future null infinity,

d2Es

dtdΩ
¼ lim

r→∞

r2

4πω̂2
jψ4j2; ð10Þ

where ω̂ ¼ 2ω and dΩ is the induced volume on a unit
2-sphere.
We work with the scaled expression,

PE ¼ dEs

dt

�
M
Ms

�
2

; ð11Þ

where

FIG. 1. The superradiant modes of a massive scalar around Kerr
with Mμ ¼ 0.42 and J=M2 ¼ 0.99, as a function of m. The
dashed red curve shows the analytic expression (6b), and the blue
disks our exact numerical data.
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Ms ¼
Z þ∞

rþ

Z
π

0

Z
2π

0

ffiffiffiffiffiffi
−g

p
Tt

t dϕ dθ dr ð12Þ

is the total scalar field energy,—the energy of the perturbed
initial data. PE is independent of the scalar field amplitude
and measures the energy radiated per m mode in the initial
data. See the Supplemental Material [23] on how to
compute PE.
As a measure of curvature, we monitored the following

time independent quantity as a function of m∶

χ ≡max
r;θ

ðjψ4j2=M2
sÞ: ð13Þ

The radial and azimuthal location of the maximum of (13),
ðr; θÞ ¼ ðr⋆; θ⋆Þ, track the maximum of ½ψ ð1Þ�2.
Our results for the GW emission are shown in Fig. 2.

The radiated angular momenta in this process is
PJ ¼ m

ReðωMÞPE, in accordance with [30]. The fact that

both PE and PJ appear to decrease rapidly with increasing
m shows that the evolution occurs, to very good approxi-
mation, at fixed energy and angular momentum. This is
akin to the time evolution of the superradiance instability
with anti–de Sitter asymptotics [31,32], simulated recently
in [33], and shows hints of turbulent behavior.
The data in Fig. 2 is for a fixed value of the dimension-

less spin parameter a=M. However, during the aforemen-
tioned cascade the BH will be gradually spinning down;
hence the gravitational radiation for each value ofm should
ideally be computed by accounting for BH’s loss of energy
due to the superradiant modes active prior to the one under
consideration. Nevertheless, using the superradiant con-
dition ReðωÞ > mΩK , one sees that Δða=MÞ for successive
superradiant modes ∼l−1 as l → ∞, implying that in the
regime of interest the dimensionless spin will be approx-
imately constant and Fig. 2 represents accurately the
qualitative behavior.

In Fig. 3 we show the dependence of χ on the initial data,
here labeled by m. A WKB-type analysis reveals that the
leading behavior for χ is power law in 1=m,

χWKB ¼ μ̂10

m16π226

�
μ

rþ

�
6

: ð14Þ

One can consistently correct this approximation to next-to-
leading order (see the Supplemental Material [23]).
Note that PE is harder to compute numerically than χ,

hence why we have extended results for χ up to m ¼ 5.

V. GEDANKEN EXPERIMENT

We are now ready to present our possible counterexam-
ple toWCCCwith asymptotically flat boundary conditions.
Consider generic initial data for the Einstein-Scalar system.
These data are controlled by a large functional freedom
coming from the fact that we can choose the initial metric
on a constant time slice, as well as the extrinsic curvature
(so long as the Hamiltonian and momentum constraints are
satisfied). In addition, we can also control the initial profile
for the scalar field and its first time derivative on a constant
time slice. We are going to choose our initial data to be
close to that of the Kerr BH, so that deviations from the
Kerr metric only occur at order Oðψ2Þ. This condition can
be relaxed by considering initial data for the purely
gravitational sector that is small in some norm. This
essentially means that all the dynamics are being generated
by the scalar field.
For generic scalar field initial data, we expect the scalar

field profile to have some support on the unstable modes of
the preceding sections, i.e., to excite unstable modes. Since
all other modes decay with time [34], we expect the late
time evolution to be dominated by the leading unstable
modes and their backreaction. For each value of m there is
an infinite number of such modes labeled by l ≥ jmj.

FIG. 2. GW emission of energy and angular momentum, PE
and PJ respectively, for a single l ¼ m scalar cloud around Kerr
as a function of m. Same parameters as in Fig. 1.

FIG. 3. χ, a measure of the spacetime curvature, as a function of
l ¼ m. Same parameters as in Fig. 1. The black dashed curve
shows our leading order approximation, whereas the dotted red
line includes the next to leading order correction and the orange
circles are numerical data.
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However, all of these modes stop being unstable as soon as
the condition ReðωÞ > mΩK is no longer satisfied. The
dynamics of this change in angular momentum and energy
is entirely controlled by the l ¼ m modes, implying that,
after some suitably long time, the dynamics of the Einstein-
Scalar system can be well approximated by restricting our
attention to scalar profiles of the form,

ψðt;r;θ;ϕÞ¼Re

�Xþ∞

l¼0

ale−iωlþilϕRωlllðrÞSωlllðθÞ
�
; ð15Þ

and determining its leading order backreaction on the
spacetime curvature. The coefficients al are determined
by our choice of initial data: for finite Sobolev norm initial
data we expect al to exhibit polynomial behavior in 1=l,
whereas for C∞ initial data we expect the coefficients al to
decay faster than any polynomial in 1=l. Note that for real
analytic initial data one can show that al ≈ e−αl, for α > 0.
Given that each l mode evolves on an exponentially

different timescale, as shown by Eq. (6b), they effectively
decouple from each other, allowing us to study each term in
Eq. (15) and its backreaction on the metric separately.
Eventually, a given l ¼ l⋆ mode becomes stable, but the
system remains unstable to higher values of l > l⋆. This
cascading happens slowly, since the time scales for this
effect are exponentially large. One might worry that the
energy contained in these high l modes is radiated away as
time passes by, but we have seen in Fig. 2 that this is not the
case. In fact, the larger the value of l, the smaller its
radiative power is.
Finally, we have seen in Fig. 3 that χ decays as l−16. This

in turn implies that a mode with weigh al will depend on
l as a4ll

−16. The reason for this is simple: the Teukolsky
scalar ψ4 is sourced by ½ψ ð1Þ�2, and χ is related to jψ4j2,
which translates into the overall scaling mentioned above.
The curvatures are thus suppressed with time, and the
evolution continues until all of the angular momentum is
deposited into the scalar cloud, and the central black hole
becomes Schwarzschild. However, one can show [35] that
massive scalar field perturbations decay extremely slow
around Schwarschild black holes, with a dependence as
weak as 1= logðlog tÞ, for large t. This suggests that the
hypothetical end point is itself nonlinearly unstable
through a mechanism similar to the one reported in
[22,36,37]. On the other hand, this slow decay warrants
the question whether the gravitational radiation might not
just disperse the clouds, before any nonlinearities become
problematic. We cannot answer this in our analysis, as our
approximation for radiation emission breaks down at late
times. Therefore the outcome of our thought experiment

depends on which of the competing processes—the GW
emission or the nonlinear issues resulting from slower than
logarithmic decay—wins over. If it is the latter, then the
lack of a possible stationary end point leads us to conjecture
that the spirit, if not the letter, of weak cosmic censorship is
violated. Whether the curvature will be infinite in finite
time is a question that we cannot settle with our current
methods.
Note also that r⋆ðlÞ increases with l, posing a problem

from a numerical perspective: 1) the time scales involved
are enormous; 2) the cascading towards high l values
makes this problem dependent on high frequency modes
(as the simulation of turbulence in 3þ 1 nonrelativitic
fluids); and 3) the integration domain must extend to spatial
infinity to observe this effect.

VI. CONCLUSIONS

We have seen (Fig. 2) that the efficiency of superradiance
cannot be counteracted by GW emission, implying that the
system will continue advancing to higher values of m with
curvatures decreasing appropriately (as shown by Fig. 3)
until a configuration with a central Schwarzschild black
hole is reached. However, Schwarzschild is likely to be
nonlinearly unstable due to the very slow decay of
perturbations induced by massive scalar fields. Reaching
this troublesome regime, given that effects we cannot
account for in our analysis do not prevent this, will involve
time scales much longer than the age of our Universe, of
course, as one will have to go to large values of l ¼ m.
Nevertheless our scenario provides the first plausible
example of a system with asymptotically flat boundary
conditions, where WCCC is violated.
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