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We define the “entropy of ignorance” which quantifies the entropy associated with ability to perform
only a partial set of measurement on a quantum system. For the parton model the entropy of ignorance is
equal to the Boltzmann entropy of a classical system of partons. We analyze a calculable model used for
describing low x gluons in Color Glass Condensate approach, which has similarities with the parton model
of QCD. In this model we calculate the entropy of ignorance in the particle number basis as well as the
entanglement entropy of the observable degrees of freedom. We find that the two are similar at high
momenta, but differ by a factor of order unity at low momenta. This holds for the Renyi as well as von
Neumann entropies. We conclude that the entanglement does not seem to play an important role in the
context of the parton model.
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I. INTRODUCTION

In recent years very interesting quantum information
theory1 connections have begun to be explored in the context
of high energy and nuclear physics. A set of ideas has been
floated which suggests a deep relation between the proper-
ties of scattering, such as spectrum of produced particles and
entanglement properties of hadronic wave function [2–13].
These ideas have found some tentative support in qualitative
comparative analysis of data in Ref. [14]. It is thus
interesting to elucidate to what extent this way of thinking
can be subjected to a more quantitative test.
In this paper, we make a step in this direction. In

particular, we ask if the relation suggested in Ref. [15]
between the entropy in the parton model and the entropy
of entanglement in a proton wave function exists in a
computable model of a hadronic wave function frequently

used in the Color Glass Condensate (CGC) calculations
(see Refs. [16–20] for reviews on CGC).
The authors of Ref. [15] considered the following ques-

tion. On one hand the proton as a quantum object is in a pure
state and is described by a completely coherent wave
function with zero entropy. On the other hand in high energy
experiments deep inelastic scattering (DIS)whenprobedbya
small external probe, it behaves like an incoherent ensemble
of (quasifree) partons. Such an ensemble carries a non-
vanishing “classical” entropy. Reference [15] suggested that
the origin of this entropy is entanglement between the
degrees of freedom one observes in DIS (partons in the
small spatial region of the proton) and the rest of the proton
wave function which are not measured in the final state and
therefore play the role of an “environment.”
According to this idea, the lack of coherence and large

entropy of the partonic density matrix which describes DIS
within the parton model approach is due to entanglement of
the observed partons with the unobserved proton degrees of
freedom. If one knew the proton wave function, one would
be able to calculate this density matrix by reducing it with
respect to the unobserved environment,

ρ̂PM ¼ Trunobs½jPihPj�; ð1Þ
where jPi is the proton wave function and the partial trace
is taken over the unobserved degrees of freedom (the nature
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of which is not important at the moment). The entropy of
the parton model is then identified with the von Neumann
entropy of the reduced density matrix according to

SPM ¼ −Tr½ρ̂PM ln ρ̂PM�: ð2Þ

This proposal in principle eliminates the tension between
the pure nature of the proton state and incoherent nature
of the parton model.
However a little thought shows that this is not the only

way to eliminate this tension. The point is that the set of
measurements that is described by the parton model is not
complete, in the sense that it does not provide exhaustive
information about the density matrix, even just about the
density matrix of the observed degrees of freedom. In DIS
the only quantity one measures is the average number of
particles

hNi ¼ Tr

�Z
d2k
ð2πÞ2 a

†ðkÞaðkÞρ̂PM
�
: ð3Þ

Here, we suppress the longitudinal momentum label x
in order to illustrate our point in the simplest setting.
Extending to transverse momentum distributions (TMD’s)
one probes the average particle density at a fixed trans-
verse momentum k ¼ ðk1; k2Þ: ha†ðkÞaðkÞi. Even consid-
ering more general measurements, such as those of
double parton distributions, and possibly multiparton
distributions one only probes the averages of the type
ha†ðk1Þaðk1Þ…a†ðknÞaðknÞi.
All of these observables are diagonal in the number

operator basis, and therefore in principle carry no infor-
mation about nondiagonal elements of the density
matrix in this basis. Thus there is an infinite number of
density matrices which are completely equivalent for the
limited purpose of describing the results of only these
measurements.
Interestingly, this lack of knowledge of the actual density

matrix of the system can be characterized by an entropy. We
will dub this entropy “the entropy of ignorance.” Consider
the situation in which one in principle can only measure a
defining set of observables fOig which is not complete,
i.e., does not include all coordinates and/or conjugate
momenta of the given quantum system. A density matrix
that reproduces the results of this set of measurements ρ̂ðαjÞ
is parametrized by some parameters αj, which loosely
speaking correspond to possible values of the observables
not included in the set fOig. To each such density matrix
one associates von Neumann entropy

SðαÞ ¼ −Tr½ρ̂ðαÞ ln ρ̂ðαÞ�: ð4Þ

We define the entropy of ignorance as the maximum of
SðαÞ with respect to variation of α

SI ¼ −Tr½ρ̂ðᾱÞ ln ρ̂ðᾱÞ�; ᾱ∶
∂
∂αj SðαÞjᾱ ¼ 0: ð5Þ

In Appendix A we give some examples of SI and its
dependence on the defining set of observables in a simple
quantum mechanical model.
In the case of the parton model the set fOig includes all

powers and products of the particle density operators
a†ðkÞaðkÞ. Thus only diagonal matrix elements of the
density matrix written in the Fock (particle number) basis
are determined by the defining the set of observables.
The parameters αj therefore parametrize the off diagonal
matrix elements of ρ̂ in the particle number basis. The
parameters ᾱ defining the entropy of ignorance correspond
to diagonal ρ̂. In order to prove this (see Refs. [1,21]
for details) consider ρ̂ðtÞ ¼ ð1 − tÞρ̂D þ tρ̂, where ρD is
obtained from ρ̂ by dropping the off-diagonal elements of
the density matrix. Owing to the normalization condition,
the variation of the entropy with respect to a parameter
reads

∂S
∂t ¼ −Tr

�∂ρ̂ðtÞ
∂t ln ρ̂ðtÞ

�
: ð6Þ

Therefore at t ¼ 0

∂S
∂t
����
t¼0

¼ −Tr½ðρ̂ − ρ̂DÞ ln ρ̂D� ¼ 0: ð7Þ

Then due to the concavity of the von Neumann entropy

∂2S
∂t2 ≤ 0; ð8Þ

one concludes that Sðρðt ¼ 1ÞÞ ≤ Sðρðt ¼ 0ÞÞ or in other
words

S ≤ SI: ð9Þ

Interestingly, since the matrix ρ̂ðᾱÞ is diagonal in the
particle basis, the entropy of ignorance is exactly equal to
the Boltzmann entropy of the classical ensemble of partons
with the probability distribution where probability to find
the system with n particles is equal to the corresponding
diagonal matrix element of ρ̂ðᾱÞ

SI ¼ SB ¼ −
X
n

pn lnpn; pn ¼ hnjρ̂jni: ð10Þ

Note that in this particular case, i.e., when the defining
set of observables is a complete set of operators diagonal
in a particular basis, the entropy of ignorance becomes
identical with the so-called diagonal entropy introduced
and studied in Refs. [22–24]. This quantity is defined
as SD ¼ −

P
i pi lnpi, where pi’s are diagonal matrix
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elements of the density matrix in a specific basis. In [22–24]
the authors where primarily concerned with understanding
of the nature of equilibration (thermalization) and thus
considered diagonal entropy in the energy basis. Our
physical motivation here is different; however, the formal
similarity of the two quantities is interesting and may be
useful to explore in the future.
An amusing case for the entropy of ignorance arises if we

consider a system in a pure state. In this case, the von
Neuman entropy is strictly zero; however, if we ignore the
off-diagonal elements of the density matrix and compute
the entropy of ignorance the result is nonzero. We will
consider this interesting situation in the context of our
model wave function below.
Since the classical parton model entropy is given by the

entropy of ignorance, this begs the question whether the
entanglement entropy in the sense of Ref. [15] plays any
role in the physics of parton model, or at the very least is not
too different from the entropy of ignorance. Our goal in this
paper is to compare the entanglement entropy and the
ignorance entropy in a computable model which has
been used in recent years in the context of high energy
scattering—the Color Glass Condensate model.
The outline of this paper is as follows. In Sec. II we

describe the CGC wave function. We point to certain
similarity between reducing the CGC density matrix over
the valence degrees of freedom and reducing the proton
density matrix with respect to the environment’ alluded to
earlier. In Sec. III we consider the Renyi entropy. We
calculate the Renyi entropy of entanglement and the Renyi
entropy of ignorance and compare the two. We find that the
contribution of very high transverse momentum modes to
the two entropies is the same to leading power in 1=k2, but
the contribution of modes with momentum equal to or
smaller than the saturation momentum differs by a factor of
order one. In Sec. IV we extend the discussion to the von
Neumann entropy. Here we find that the discrepancy
between the entanglement and ignorance entropies at high
momenta is somewhat more significant. For large k modes
the two are still equal, but the relative difference between
the two vanishes as a power of momentum enhanced by a
power of the logarithm. At low momentum, however, the
relative difference between the two von Neumann entropies
is the same as between the two Renyi entropies. In Sec. V
we consider the entropy of ignorance, but this time for a
fixed configuration of the valence color charge density.
We find that even for a fixed typical configuration of the
valence fields the ignorance entropy approximates well the
Boltzmann entropy of the partons, whereas the entangle-
ment entropy in this case is strictly zero. Finally we close
with a discussion in Sec. VI.

II. THE CGC WAVE FUNCTION

We now introduce the CGC wave function [25,26] that
we will use in our calculation.

The Color Glass Condensate describes scattering at high
energy. For an ultrarelativistic hadron, a large fraction of
momentum is carried by the valence quarks and gluons.
Due to their quantum nature, partons carrying a large
fraction of momentum radiate low energy gluons which
have a lifetime relatively short to that of the valence
charges. To put it in another way, the valence (“hard”)
partons can be treated as static sources of the soft gluons.
The wave function of the system of slowly evolving

valence charges and faster soft gluon degrees of freedom
has the form

jψi ¼ jsi ⊗ jvi; ð11Þ

where jvi is the state vector characterizing the valence
degrees of freedom and jsi is the vacuum of the soft fields
in the presence of the valence source. Despite appearances,
the state is not of a direct product form since the soft
vacuum depends on the valence degrees of freedom.
In the leading perturbative order the CGC soft vacuum

has the form

jsi ¼ Cj0i ð12Þ

with the coherent operator

C ¼ exp

�
2itr

Z
k
biðkÞϕa

i ðkÞ
�
; ð13Þ

where

ϕiðkÞ≡ aþi ðkÞ þ aið−kÞ; ð14Þ

the trace is over all colors, and the transverse vector is
denoted by k ¼ ðk1; k2Þ. We use the following notation:

Z
k
¼
Z

d2k
ð2πÞ2 : ð15Þ

The background field bia is determined by the valence color
charge density ρ via

biaðkÞ ¼ gρaðkÞ
iki
k2

þ ciaðkÞ: ð16Þ

The correction ciaðkÞ is suppressed by at least Oðρ2Þ at
small charge density, and wewill neglect it in the following.
It can be taken into account as a perturbation, but we
believe our results are stable to this particular correction.
Note also that ci is transverse, that is c · k ¼ 0. Therefore at
the leading order in ρðkÞ, only gluons with the longitudinal
polarization contribute to C and jsi.
The valence wave function jvi is customarily modeled

in the so-called McLerran-Venugopalan (MV) model as
[27,28]
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hρjvihvjρi ¼ N e
−
R
k

1

2μ2
ρaðkÞρ�aðkÞ; ð17Þ

where N is the normalization factor and the parameter μ2

determines the average color charge density in the valence
wave function. Note that Eq. (17) does not determine the
(possibly ρ-dependent) phase of jvi. This phase however
does not enter our calculation.
Consider the hadron density matrix:

ρ̂ ¼ jvi ⊗ jsihsj ⊗ hvj: ð18Þ

In the following we will integrate out the valence (slow)
degrees of freedom and derive the reduced density matrix
for the soft gluons. That is we compute the reduced density
matrix

ρ̂r ¼ Trρρ̂≡
Z

Dρhρjρ̂jρi ¼
Z

Dρhρjvijsihsjhvjρi: ð19Þ

We will then use this density matrix for calculating the
entanglement entropy of the soft gluons and compare it to
the entropy of ignorance.
We expect this model to be a meaningful proxy to study

the question discussed in the Introduction. One obvious
common element between our model calculation and the
real life parton model is the natural bipartitioning of the
degrees of freedom in the underlying wave function and
integrating over the environment. Physically though the
analogy goes a little further. In our model approach we will
be reducing the density matrix over the slow degrees of
freedom. The parton model in QCD has a similar meaning.
At large transverse momentum (Q2) the observed partons
correspond to the faster degrees of freedom. The unob-
served environment that has to be integrated out presum-
ably consists of lower transverse momentum modes (or in
coordinate space modes extending outside the spatial
region probed by the virtual photon) which have lower
frequency than the high transverse momentum partons, and
possibly confinement scale nonperturbative glue which
again naturally has much lower frequencies. Thus, although
the analogy may not be perfect, we believe that our toy
model captures some basic relevant physics and therefore
can teach us a meaningful lesson about the actual QCD
parton model.

III. DENSITY MATRIX IN NUMBER
REPRESENTATION AND THE RENYI ENTROPY

Using the MV model for the valence degrees of freedom,
the reduced density matrix is calculated as

ρ̂r ¼ N
Z

Dρe
−
R
k

1

2μ2
ρaðkÞρ�aðkÞCðρb;ϕi

bÞj0ih0jC†ðρc;ϕj
cÞ:

ð20Þ

The very same reduced density matrix was obtained, and
the von Neumann entropy was calculated in previous
papers of some of the authors [4,12,13]. The calculation
was performed in the field basis. Since the gluon number
basis plays a special role in our current discussion, we will
perform this calculation independently using this basis.
Here because of the particularity of Eq. (16) in the leading
order, we consider longitudinally and transversely polar-
ized gluons with corresponding annihilation operators

defined as akcðkÞ¼k ·acðkÞ=jkj and a⊥c ðkÞ¼ ϵijkia
j
cðkÞ=jkj.

We label the basis states as

Y
c

Y
λ

Y
k

jnλcðkÞ; mλ
cð−kÞi ¼

Y
c

Y
λ

Y
k

jNλ
cðkÞi; ð21Þ

where λ ¼ k;⊥ and c are the polarization and color
indices respectively. We have introduced for convenience
Ni

c ¼ nic þmi
c. The reason for introducing Eq. (21) is that

in our density matrix, a mode with momentum kmixes only
with the mode with momentum −k due to the fact that
ρ�aðkÞ ¼ ρað−kÞ. In addition the density matrix is transla-
tionally invariant, which has a consequence that ρ̂r is a
direct product of density matrices in a fixed transverse
momentum sector.
The continuum states are customarily normalized as

hnλcðkÞjnλcðk0Þi ¼ h0j ½a
λ
cðkÞ�nffiffiffiffiffi
n!

p ½aλ†c ðk0Þ�nffiffiffiffiffi
n!

p j0i ð22Þ

with the corresponding orthogonality relation

hkjk0i ¼ h0jaλcðkÞaλ
0†
c0 ðk0Þj0i ¼ ð2πÞ2δλλ0δcc0δ2ðk − k0Þ:

ð23Þ

For convenience we discretize momentum by putting the
system inside the spatial region of area S⊥ and granularity
Δ. Then

hkjk0i ¼ ð2πÞ2
Δ2

δλλ0δcc0δkk0 ð24Þ

with S⊥Δ2 ¼ ð2πÞ2. We also find it easier to work with the
states which have a unit norm, as this makes the inter-
pretation of diagonal matrix elements as probabilities
straightforward. We thus redefine the multigluon states as

Y
c

Y
λ

Y
k

jnλcðkÞ; mλ
cð−kÞi

¼
Y
c

Y
λ

Y
k

�½aλ†c ðkÞ Δ
2π�n

λ
cffiffiffiffiffiffiffi

nλc!
p 	�½aλ†c ð−kÞ Δ

2π�m
λ
cffiffiffiffiffiffiffiffi

mλ
c!

p 	
j0i ð25Þ

and use this normalization in the rest of the paper.
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A. Entropy of entanglement

From the structure of the density matrix it is obvious that it is a direct product over color. We thus consider the calculation
for a fixed color index c.
The action of the coherent operator on the soft gluon vacuum can be represented as

Cj0i ¼ e
i
R
k
bicðkÞ½aicþðkÞþaicð−kÞ�j0i ¼ e

i
R
k
bicðkÞaicþðkÞe

−1
2

R
k

g2

k2
jρcðkÞj2 j0i; ð26Þ

where we used Baker-Campbell-Hausdorff formula. We can then write ρ̂r as

ρ̂r ¼ N
Z Y

k

Y
a

dρaðkÞe−
Δ2

ð2πÞ2ð
1

2μ2
þg2

k2
ÞρaðkÞρ�aðkÞe

ibiaðkÞa†iaðkÞ Δ2

ð2πÞ2 j0ih0je−ib
�i
a ðkÞaiaðkÞ Δ2

ð2πÞ2

¼ N
Z Y

k≥0

Y
a

dρaðkÞdρað−kÞe−2
Δ2

ð2πÞ2ð
1

2μ2
þg2

k2
ÞρaðkÞρ�aðkÞe

i Δ2

ð2πÞ2ðb
i
aðkÞa†iaþb�ia ðkÞa†iað−kÞÞj0i

× h0je−i
Δ2

ð2πÞ2ðb
�i
a ðkÞaiaðkÞþbiaðkÞaiað−kÞÞ: ð27Þ

Consider the matrix element
Q

λhnλcðqÞ; mλ
cð−qÞjρ̂rðqÞjαλcðqÞ; βλcð−qÞi. Since all operators inside the exponential

commute with each other in Eq. (27), we have

hnkcðqÞ; mk
cð−qÞjei

Δ2

ð2πÞ2ðb
i
aðkÞa†iaþb�ia ðkÞa†iað−kÞÞj0i

¼ hnkcðqÞ; mk
cð−qÞj

Y
b

Y
t

X
nt;mt

ði Δ2

ð2πÞ2 b
t
bðqÞa†tbðqÞÞn

t

nt!

ði Δ2

ð2πÞ2 b
�t
b ðqÞa†tbð−qÞÞm

t

mt!
j0i

¼ hnkcðqÞ; mk
cð−qÞj

ði Δ2

ð2πÞ2 b
k
cðqÞa†kcðqÞÞ

nk

nk!

ði Δ2

ð2πÞ2 b
�k
c ðqÞa†kcð−qÞÞ

mk

mk!
j0i

¼ ðiÞnkþmk
�

Δ2

ð2πÞ2
	nkþmk

2 ðbkcðqÞÞnkffiffiffiffiffiffiffi
nk!

p ðb�kc ðqÞÞmkffiffiffiffiffiffiffiffi
mk!

p ¼ ð−1Þnk
�
g
q

	
nkþmk� Δ2

ð2πÞ2
	nkþmk

2 ½ρcðqÞ�nkffiffiffiffiffiffiffi
nk!

p ½ρcð−qÞ�mkffiffiffiffiffiffiffiffi
mk!

p ð28Þ

and the trivial

hn⊥c ðqÞ; m⊥
c jð−qÞjei

Δ2

ð2πÞ2ðb
i
aðkÞa†iaþb�ia ðkÞa†iað−kÞÞj0i ¼ δn⊥c ;0δm⊥

c ;0: ð29Þ

The latter indicates that the gluons with the transverse polarization contribute only to partonic vacuum; they are in the pure
state and thus do no contribute to entropy. We will thus consider only longitudinally polarized gluons. Integration with
respect to ρað�kÞ can now be carried out in Eq. (27). For the integral to yield a nonzero value it is required that

nk þ βk ¼ mk þ αk: ð30Þ

Thus the required matrix element is

hncðqÞ; mcð−qÞjρ̂rðqÞjαcðqÞ; βcð−qÞi ¼ N
�
2

Δ2

ð2πÞ2
�

1

2μ2
þ g2

q2

	�−n−β−1�g2
q2

Δ2

ð2πÞ2
	

nþβ ðnþ βÞ!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!m!α!β!

p δnþβ;mþα; ð31Þ

where we left out the polarization label, as only k contributes to the nontrivial part of the density matrix.
To calculate the Renyi entropy we need to find Trρ̂2r . This requires squaring the matrix element and summing with respect

to all possible n, m, α, β. Most efficiently this can be done by using an integral representation for the factorial ðnþ βÞ!:

ðnþ βÞ! ¼
Z

∞

0

dt1t
nþβ
1 e−t1 ð32Þ
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and for the Kronecker delta function

δðnþβÞ;ðmþαÞ ¼
1

2πi

I
C

dz
z
zðnþβ−m−αÞ; ð33Þ

where C is a unit circle. The normalization N is fixed by
requiring that Trρ̂r ¼ 1. This leads to

N ¼ 2
Δ2

ð2πÞ2
�

1

2μ2
þ g2

q2

	
ð1 − RÞ; ð34Þ

where

R ¼
�
1þ q2

2g2μ2

	−1
: ð35Þ

The final expression for the matrix element including the
normalization is

hncðqÞ; mcð−qÞjρ̂rðqÞjαcðqÞ; βcð−qÞi

¼ ð1 − RÞ ðnþ βÞ!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!m!α!β!

p
�
R
2

	
nþβ

δðnþβÞ;ðmþαÞ: ð36Þ

For the trace of the square of the density matrix we get

X
m;n;α;β

�Y
s

hncðqÞ; mcð−qÞjρ̂rðqÞjαcðqÞ; βcð−qÞi
	

2

¼ ð1 − RÞ2 1

2πi

I
dz
z

Z
dt1dt2e−t1−t2

×
X

m;n;α;β

1

n!m!α!β!

�
t1z−1

R
2

�
m
�
t2z

R
2

�
n

×

�
t1z−1

R
2

�
α
�
t2z

R
2

�
β

¼ ð1 − RÞ2
1 − R2

ð37Þ

and the final result for Trρ̂2rX
m;n;α;β

ðhncðqÞ; mcð−qÞjρ̂rðqÞjαcðqÞ; βcð−qÞiÞ2

¼ 1 − R
1þ R

¼ 1

1þ 4 g2μ2

q2

: ð38Þ

At small momentum this ratio goes to zero, and at large
momentum it approaches unity.
The Renyi entropy is thus

SR ¼ − ln Trρ̂2r ¼
1

2
ðN2

c − 1ÞS⊥
Z

d2q
ð2πÞ2 ln

�
1þ 4

g2μ2

q2

	
:

ð39Þ
The color factor arises since the density matrix is a product
of density matrices over the color index, while the area
factor appears due to taking the continuum limit in the sum
over momentum.

This coincides with the result obtained in Ref. [4]. In
number representation basis, we were thus able to repro-
duce the result of the previous calculations of the entan-
glement entropy which were performed in the field basis.

B. Entropy of ignorance

We now turn to the calculation of the entropy of
ignorance. To do that, as discussed above we replace ρ̂r
by only its diagonal part in the gluon number basis, ρ̂I .
Then diagonal matrix elements of the density matrix for

a given value of momentum q areY
c

hncðqÞ; mcð−qÞjρ̂IðqÞjncðqÞ; mcð−qÞi

¼ ð1 − RÞ ðnþmÞ!
n!m!

�
R
2

	
nþm

: ð40Þ

For trðρ2I Þ at fixed momentum and color index we
evaluate the following:

trðρ2I Þ ¼ ð1 − RÞ2
X
m;n

�ðnþmÞ!
n!m!

�
R
2

	
nþm
�
2

¼ ð1 − RÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2

p ;

ð41Þ

where the sum is computed in Appendix B.
The associated Renyi entropy is given by

SIR ¼ − ln Trρ2I ¼
1

2
ðN2

c − 1ÞS⊥
Z

d2q
ð2πÞ2 ln

×

"�
1þ 2

g2μ2

q2

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4g2μ2

q2

s #
: ð42Þ

The two expressions SR and SIR are clearly different.
They do coincide, however, in the limit of high transverse
momentum. Considering the contribution from high
momenta q2 ≫ g2μ2, we find

FIG. 1. Ratios of entropy densities at a given magnitude of the
transverse momentum q=gμ. SIðq2Þ is the von Neumann entropy
density of ignorance and SEðq2Þ is the corresponding entangle-
ment entropy density. The same for Renyi entropy densities.

DUAN, AKKAYA, KOVNER, and SKOKOV PHYS. REV. D 101, 036017 (2020)

036017-6



SIRðq2Þq2≫g2μ2 ≈
1

2
ðN2

c − 1ÞS⊥
4g2μ2

q2
≈ SRðq2Þq2≫g2μ2 :

ð43Þ
Thus the leading contribution of the high momentum
modes to the ignorance and entanglement entropies is
the same. The first subleading term is different

½SIRðq2Þ − SRðq2Þ�q2≫g2μ2 ≈ ðN2
c − 1ÞS⊥

�
g2μ2

q2

	
2

: ð44Þ

We will discuss this feature in the last section.
At momenta of order gμ and smaller, i.e., in the

saturation regime, the two entropies are substantially
different. The ratio between the two is plotted on Fig. 1.
At zero momentum the ratio depicted in Fig. 1 tends to 3=2,
since SRðq2 → 0Þ ∼ ln 1=q2 while SIRðq2 → 0Þ ∼ ln 1=q3.

IV. VON NEUMANN ENTROPY

Let us now study the behavior of the von Neumann
entropy.

A. Entropy of entanglement

The entanglement entropy in this model was calculated
in Ref. [4]. The complete final result (adjusting for a
different normalization of μ2 used in Ref. [4]) is

SE ¼ 1

2
ðN2

c − 1ÞS⊥
Z

d2q
ð2πÞ2

"
ln
�
g2μ2

q2

	
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

g2μ2

q2

s

× ln

�
1þ q2

2g2μ2
þ q2

2g2μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

g2μ2

q2

s 	#
: ð45Þ

B. Entropy of ignorance

The von Neumann entropy of ignorance for a single
momentum mode q is

SIðqÞ ¼ −
X
m;n

ρnm ln ρnm ð46Þ

with

ρnm ¼ hncðqÞ; mcð−qÞjρ̂IðqÞjncðqÞ; mcð−qÞi: ð47Þ
Supplementing the above by the integration with respect to
the transverse momentum, the formal expression is

SI ¼ −
1

2
ðN2

c − 1ÞS⊥

×
Z

d2q
ð2πÞ2

X
m;n

�
ð1 − RÞ ðmþ nÞ!

m!n!

�
R
2

	
mþn
�

× ln

�
ð1 − RÞ ðmþ nÞ!

m!n!

�
R
2

	
mþn
�
: ð48Þ

Unlike in the case of Renyi entropy we are unable to sum
the series analytically. Numerically this can however be
calculated; the resulting plot of the ratio of two entropies
appears in Fig. 1. We see that the differences for von
Neumann entropy are somewhat more pronounced.
Just like for the Renyi case, we can study analytically the

contribution of high momentum modes. For large q to the
subleading order we get

SIðqÞ ≃
ðN2

c − 1Þg2μ2S⊥
q2

�
ln

�
e

q2

g2μ2

	
þ g2μ2

q2
ln
e
2

�
ð49Þ

and

SEðqÞ≃
ðN2

c−1Þg2μ2S⊥
q2

�
ln

�
e

q2

g2μ2

	
−
g2μ2

q2
ln

�
e

q4

g4μ4

	�
:

ð50Þ

Obviously, the leading behavior of the two expressions is
the same. The subleading terms are different just like in
case of the Renyi entropy. The difference is again a
subleading power of 1=q2, but this time it is enhanced
by ln q2.
At small momentum we find numerically that the ratio

tends to 3=2 just like for the Renyi entropy.
This larger discrepancy for von Neumann entropy is

indeed demonstrated in Fig. 1.

V. FIXED COLOR CHARGE CONFIGURATION

So far we have compared the entanglement entropy with
the ignorance entropy of the reduced density matrix, which
was obtained by tracing over the valence degrees of
freedom. There is another instructive exercise we can do.
Let us consider the density matrix for soft modes at a fixed
configuration of the color charge density. Recall that the
valence charges are slow degrees of freedom, so that in any
scattering event at high energy the valence charge density is
fixed. So any given event essentially probes the hadronic
wave function at fixed color charge distribution ρaðqÞ. It is
thus interesting to see how the entanglement and ignorance
properties differ at fixed ρ.
As far as entanglement is concerned, the situation is

completely trivial. At fixed ρaðqÞ the soft modes are in a
pure state, as can be easily seen from

ρ̂ ¼ Cj0ih0jC† ð51Þ

with a unitary C, see Eq. (13). Thus entanglement entropy at
fixed ρ strictly vanishes.
The ignorance entropy on the other hand is not zero.

Indeed, for a fixed configuration, the diagonal matrix
element is
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Y
s

hncðqÞ; mcð−qÞjρ̂ðqÞjncðqÞ; mcð−qÞi

¼ 1

n!m!
e
−2 Δ2

ð2πÞ2
g2

q2
jρaðqÞj2

�
g2

q2
Δ2jρðqÞj4
ð2πÞ2

	mþn

: ð52Þ

Therefore the associated Renyi entropy is given by

SI ¼ − ln Trρ̂2 ¼ 1

2
S⊥
Z

d2q
ð2πÞ2

X
a

�
4
g2

q2
Δ2

ð2πÞ2 jρaðqÞj
2

− ln I20

�
2g2

q2
Δ2

ð2πÞ2 jρaðqÞj
2

	�
: ð53Þ

A typical configuration in the MVmodel has the magnitude
of order

Δ2

ð2πÞ2 jρaðqÞj
2 ∼ μ2: ð54Þ

We thus obtain

StypI ¼ − ln Trρ̂2 ¼ 1

2
ðN2

c − 1ÞS⊥

×
Z

d2q
ð2πÞ2

�
4
g2μ2

q2
− ln I20

�
2g2μ2

q2

	�
: ð55Þ

At hight momentum the integrand behaves as 4 g2μ2

q2 −

2ðg2μ2q2 Þ
2; compare this with the ignorance entropy 4 g2μ2

q2 −

6ðg2μ2q2 Þ
2 of the reduced density matrix.

That is if we fix a typical configuration of the color
charges ρaðqÞ, the ignorance entropy we obtain is very close
to the ignorance entropy of the reduced density matrix. On
the other hand the entanglement entropy crucially depends
on reducing the density matrix—it vanishes for a fixed
configuration of the color charges ρaðqÞ, but is nonzero for
ρ̂r. This is a clear indication that the ignorance entropy in
general is not related with entanglement.

VI. CONCLUSIONS

In this work, we have compared the entanglement
entropy SE with the entropy of ignorance SI in a comput-
able model. The entropy of ignorance, SI was defined as
entropy associated with the fact that only a limited number
of observables is available for measurement in a quantum
system. The model we have chosen has a number of
similarities with the parton model of QCD.
Our comparison shows that in general SE and SI can be

quite different. In the context of the parton model SI is
equal to the Boltzmann entropy of a classical ensemble of
noninteracting partons. We found for example, that for a
fixed configuration of the valence charges (analogous to
fixed configuration of low transverse momentum modes in
the hadron wave function) SE vanishes, while SI does not.

Moreover for a typical configuration SI is very similar to its
value for ensemble average.
There is however one striking feature of our result that

needs to be understood. We found that with the reduced
density matrix ρ̂r, for both Renyi and von Neumann the
differences between SI and SE disappear in the ultraviolet,
cf. Eqs. (43), (44), (49), (50). To get some insight into this
let us first ask which states contribute the most to the
entropy in the ultraviolet.
First we note that the eigenvalues ρi of ρ̂r at fixed small

momentum q2 ≪ g2μ2 have hierarchical structure, so that
ρ0 ¼ 1 − δ, δ ≪ 1, while ρn≥1 ≪ 1, and ρ1 ≫ ρ2 ≫
ρ3 ≫ …. Also, since ρ̂r is normalized, we have
δ ¼P∞

i¼1 ρi ≈ ρ1. Thus only ρ0 and ρ1 contribute to
entropy to leading order at small q2.
Consider the Renyi entropy first. Since at large transverse

momentum jqj, R ∼ 1=q2, it is obvious from Eqs. (36) and
(37) that the largest matrix element of ρ̂r is the one with
n ¼ β ¼ m ¼ α ¼ 0, as we alluded to in Sect. IV. The
Renyi entropy of ρ̂r is dominated completely by the
contribution of this matrix element. Since this element is
on the diagonal of ρ̂r, it of course also contributes the same
amount to the Renyi entropy of ignorance. This is the reason
why the UV leading behavior of SR and SIR is the same.
Note that this leading matrix element is the matrix

element in the vacuum state at a given value of momentum.
The equality of the leading contributions to SR and SIR in
the UV is thus a rather trivial effect, inasmuch as it does not
actually probe the distribution of partons in the density
matrix, but only the probability that no partons are present.
Asking about parton distribution is asking about subleading
corrections to entropy.
It is indeed easy to see that on the level of the first 1=q2

correction SR and SIR behave differently. The 1=q2 correc-
tions to SR in Eq. (37) originate from two types of matrix
elements. First, there are diagonal contributions with n ¼
α ¼ 1 or m ¼ β ¼ 1, and the rest of n, m, α, β vanishing.
These terms contribute to SR and SIR equally. Then there are
nondiagonal contributions to SR, which are banished from
SIR: these are contributions nondiagonal in the total particle
number, e.g., n ¼ m ¼ 1, α ¼ β ¼ 0 or α ¼ β ¼ 1,
n ¼ m ¼ 0. As it turns out the contributions of terms
diagonal and nondiagonal in the particle number are equal.
Thus the first corrections to the leading term reflect the
nondiagonal nature of ρ̂r versus diagonal ρ̂I and are
different for SR and SIR.
Now let us consider the von Neumann entropy. Here the

situation is somewhat different. The largest eigenvalue of ρ̂r
does not necessarily give the largest contribution to SE. For
a hierarchical density matrix like our ρ̂r, the von Neumann
entropy is

SE ¼ −ρ0 ln ρ0 −
X∞
i¼1

ρi ln ρi ≈ δ − δ ln δ ¼ δ ln
e
δ
; ð56Þ
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where the leading logarithmic contribution δ ln δ originates
from i ¼ 1 in Eq. (56) while the linear correction in δ is
from the “vacuum” matrix element i ¼ 0. The eigenvalue
ρ0 corresponds roughly speaking to a partonic vacuum
state, while ρ1 corresponds to a single parton with longi-

tudinal polarization, with ρ1 ¼ g2μ2

q2 (this correspondence is

only approximate, since as we know ρ̂r is not actually
diagonal in the particle number basis). Indeed Eq. (56) (up
to the overall factor that arises due to summation over
colors and integration over the transverse plane) coincides
with Eq. (50).
In this discussion ρ0 and ρ1 are the eigenvalues of ρ̂r.

The difference between these eigenvalues and the first two
diagonal matrix elements however is small. In particular,
since ρ02 ∼ δ2, we have ρ00 ¼ ρ0 þOðδ2Þ; ρ11 ¼ ρ1 þ
Oðδ2Þ. Therefore the contribution to the ignorance entropy
due to these terms is

SIðq2Þ ¼ SEðq2Þ þOðδ2 ln 1=δÞ ð57Þ

which is indeed born out by Eqs. (49) and (50).
We conclude that the identical UVasymptotics of SIðq2Þ

and SEðq2Þ are due to the small occupation numbers of
partons at large q2. Indeed, at intermediate and low
momenta where the occupation numbers per unit phase
space volume are of order unity the difference between the
two types of entropies becomes significant, at the order of
50%. We expect that the real parton model of QCD shares
these features. At very large momenta the entanglement and
ignorance lead to the same entropy, while at low Q2 the
resulting entropies should be different. This is likely to be
unrelated to any nontrivial dynamics of the environment
degrees of freedom, such as confinement but is just the
consequence of low occupation number of partons at high
momentum.
To summarize, our understanding is that the lack of

coherence and large entropy of the partonic density matrix
within the parton model approach must be due to “igno-
rance”, i.e., to our ability to measure only a restricted
number of observables, rather than to the entanglement of
the observed partons with the unobserved degrees of
freedom, as suggested in Ref. [15].
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APPENDIX A: ENTROPIES OF ENTANGLEMENT
AND IGNORANCE FOR A SIMPLE TWO

FERMION SYSTEM

As a simple example of calculation of the entropy of
ignorance consider two fermions, A and B, in the following
pure state:

jϕABi ¼
ffiffiffi
2

p

2
j0Ai ⊗ j0Bi þ

1

2
j1Ai ⊗ ðj0Bi þ j1BiÞ: ðA1Þ

Since this is a pure state, its von Neumann entropy
vanishes.
Let us calculate the standard entanglement entropy of a

single particle subsystem. After tracing out particles A or B,
the reduced density matrix in the particle representation
basis for subsystem A and B are

ρA ¼ 1

2

 
1

ffiffi
2

p
2ffiffi

2
p
2

1

!
; ðA2Þ

ρB ¼ 1

4

�
3 1

1 1

	
: ðA3Þ

The entanglement entropies for the subsystem A and its
complement are identical (as they should be)

SEðρAÞ ¼ SEðρBÞ ¼
3

2
ln 2þ 1ffiffiffi

2
p acoth

ffiffiffi
2

p
≈ 0.416496:

ðA4Þ

The ignorance entropy depends on the set of defining
operators fOig. Let us first take fOig as all operators
diagonal in the particle number basis. To calculate SI in this
case we should take the density matrix discarding the off-
diagonal matrix elements in the number basis, ρAB ¼
diagf1=2; 1=4; 0; 1=4g and

SIðρABÞ ¼ −
X
i

pi lnpi ¼
3

2
ln 2 ≈ 1.03972: ðA5Þ

Another simple quantity is the entropy of ignorance for
the reduced density matrix ρA. This time the measurable
quantities are operators diagonal in Fock space of fermion A.
The diagonal density matrix is obtained by dropping the off-
diagonal matrix elements of ρA: ρIA ¼ diagf1=2; 1=2g.

SIðρAÞ ¼ ln 2 ≈ 0.693147: ðA6Þ

Similarly, ρIB ¼ diagf3=4; 1=4g, and the corresponding
entropy of ignorance is

SIðρBÞ ¼ 2 ln 2 −
3

4
ln 3 ≈ 0.56233: ðA7Þ
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Note that as opposed to the corresponding entanglement
entropies, the two entropies of ignorance are not equal to
each other SIðρAÞ ≠ SIðρBÞ.

APPENDIX B: MODE SUM FOR
REYNI ENTROPY

Here we present the explicit form for the mode sum S:

S ¼
X
m;n

�ðmþ nÞ!
n!m!

�
R
2

	
mþn
�
2

: ðB1Þ

Using the integral representation of Γ-function for
½ðmþ nÞ!�2

½ðmþ nÞ!�2 ¼
Z

∞

0

dt1dt2e−t1−t2ðt1t2Þmþn ðB2Þ

allows us further to factorize the sums. After this factori-
zation, we get

S ¼
Z

∞

0

dt1dt2e−t1−t2
�X

m

1

ðm!Þ2
�
R
2

ffiffiffiffiffiffiffi
t1t2

p 	
2m
	

2

:

ðB3Þ

Each of these sums gives modified Bessel function I0:

S ¼
Z

∞

0

dt1dt2e−t1−t2I20ðR
ffiffiffiffiffiffiffi
t1t2

p Þ: ðB4Þ

One of this integrals can be analytically computed after the
change of variables x ¼ ffiffiffiffiffiffiffi

t1t2
p

S ¼ 2

Z
∞

0

dxx
Z

∞

0

dt1
t1

e−t1−
x2
t1 I20ðRxÞ

¼ 4

Z
∞

0

dxxK0ð2xÞI20ðRxÞ: ðB5Þ

The last equality is based on 10.32.10 from Ref. [29].
Finally, the integral over x can be done analytically; it is 0
for jRj ≥ 1 and

S ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2

p ðB6Þ

otherwise.
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