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We present an analytic method to compute the one-loop magnetic correction to the gluon polarization
tensor starting from the Landau-level representation of the quark propagator in the presence of an external
magnetic field. We show that the general expression contains the vacuum contribution that can be isolated
from the zero-field limit for finite gluon momentum. The general tensor structure for the gluon polarization
also contains two spurious terms that do not satisfy the transversality properties. However, we also show
that the coefficients of these structures vanish and thus do not contribute to the polarization tensor, as
expected. In order to check the validity of the expressions we study the strong and weak field limits and
show that in the former, the well-established result is reproduced. The findings can be used to study the
conditions for gluons to equilibrate with the magnetic field produced during the early stages of a relativistic

heavy-ion collision.
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I. INTRODUCTION

The production of hot and dense strongly interacting
matter in heavy-ion reactions at high energies constitutes a
driving force for the formulation of novel approaches to
study QCD subject to extreme conditions. For semicentral
collisions, these conditions include the presence of strong,
albeit short-lived, magnetic fields. Many theoretical efforts
concentrate on describing these conditions considering that
the temperature is the largest of the energy scales [1-4].
However, it has also been realized that the imprints of these
strong fields [5,6], if any, should be searched for studying
probes produced during the very early stages of the
collision, where the system is not yet equilibrated and
the largest of the energy scales is instead the magnetic field
itself. Possible imprints include an enhanced prompt
photon production and/or the chiral magnetic effect [7—12].
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The early stages of a heavy-ion reaction are also charac-
terized by the presence of a large number of low momentum
gluons which are thought to give rise to the saturation
phenomenon described by the Glasma [13]. When a mag-
netic field is present, gluon dynamics can also be affected.
A deeper understanding of gluon properties within a
magnetized medium is crucial for describing the evolution
of observables coming from these early stages.

The gluon dispersive properties in a magnetized medium
are encoded in the gluon polarization tensor IT**. In a
perturbative approach, deviations from its vacuum properties
come from the coupling of the magnetic field to virtual
quarks. The quark propagator can be represented in terms of a
sum over Landau levels. When the field is strong, calcu-
lations often resort to the approximation where these quarks
occupy the lowest Landau level (LLL), which simplifies
considerably the treatment [14—16]. Nevertheless, when the
field is not as intense, it is important to perform a sum over
Landau levels to capture effects that may be missing from
expressions restricted to the LLL, in particular, the emer-
gence of tensor polarization structures other than the parallel
one that makes up the full polarization tensor. These kinds of
calculations have been performed at one-loop level for the
photon polarization tensor [17] in the context of the vacuum
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birefringence in strong magnetic fields, where the authors
resort to a numerical treatment for the infinite sum over
Landau levels. However, in order to gain a deeper insight, an
analytical approach for the infinite sum over Landau levels is
desirable.

In this work, we undertake such task and present an
analytic method to perform the sum over all Landau levels
for the coefficients of the tensor structure that make up the
gluon polarization tensor in the presence of a magnetic field
of arbitrary intensity. The vacuum contribution is obtained in
the limit when B — 0. We show that by this procedure one
obtains the usual fermion contribution to the vacuum
polarization tensor, together with a second term that is
shown to vanish, given the properties of its coefficient under
scaling transformations. Applying the same argument to the
full, magnetic field-dependent polarization tensor, it is
possible to isolate the physical tensor structures and their
coefficients, thus getting rid of spurious terms. We then
proceed to carefully subtract the vacuum pieces to remove
ultraviolet divergences. The procedure ensures that the
remaining, magnetic field-dependent contributions are
finite. In order to test the validity of the expressions thus
obtained, we study the weak and strong magnetic field
limits. The work is organized as follows: In Sec. II, we write
the one-loop expression for the gluon polarization tensor in
the presence of a constant external magnetic field. We chose
the tensor basis to express the polarization tensor and outline
the calculation to carry out the product of fermion propa-
gators and the corresponding sums over Landau levels. We
show that after the sum is made, there appear two spurious,
nontransverse terms. These are shown to vanish, as in the
vacuum case, from the properties of their coefficients under
scaling transformations. In Sec. III we study the strong and
in Sec. IV the weak field limits and show that the obtained
expressions coincide with well-known results. We summa-
rize and discuss our results in Sec. V and leave for the
appendixes the calculation details.

II. GLUON POLARIZATION TENSOR

We start from the one-loop contribution to the gluon
polarization tensor, which is depicted in Fig. 1 and is given
explicitly by

_— 1 d*k . . . .
i, = —2/ 2n)° Tr{zgtby”lS(")(k)lgtay”lS<’")(q)}
+C.C., (1)

where C.C. refers to the charge conjugate contribution, that
is, the contribution where the flow of charge within the loop
is in the opposite direction. The factor 1/2 accounts for the
symmetry factor, which in the presence of the external
magnetic field comes about given that the two contributing
diagrams, with the opposite flow of charge, are not
equivalent. Also g is the strong coupling. S(k) is the quark
propagator and ¢, are the generators of the color group in

FIG. 1.
tensor.

One-loop diagram representing the gluon polarization

the fundamental representation. The fermion propagator

in the presence of a magnetic field B = B2 can be written in
terms of a sum over Landau levels as [18,19]

o n Dn(QfBip)

(—1) :
; pﬁ—m%—2n|qu|

iS(p) = je~P1/|asB|

(2)

where m; and g, are the quark mass and electric charge,
respectively, and

o201
D,(qsB,p) =2(p +my)O"L, 4B

2p%
20+ mpo-i, (225
I f 1 |qu|

2p%
4y, L} L. 3
+ ﬂL n—1 (|qu|> ( )

In Eq. (3), L%(x) are the generalized Laguerre polynomials,
with the index n labeling the nth Landau level, and

1
O =2 [1 4 iy'y*sign(q,B)] )

Also, we follow the convention whereby the square of the
four-momentum p*, expressed in terms of the square of its
parallel and perpendicular (with respect to the magnetic
field direction) components, is given by

pPP=pi-pi=Wwi-ri)-pi+tpr). (5

Computing Egs. (1) and (2), after performing the sum over
all Landau levels, the gluon polarization tensor can be
written in terms of four tensor structures, given by

4

iH””:_égz/dzxfo(xl,xz)Zféw(xl’xﬁv (6)

i=1

where on the right-hand side, we have omitted a factor &,
coming from using the relation Tr(s¢*) = §,,/2, and
correspondingly, for notation simplicity, removed the color
indices on the left-hand side. Here (x;,x,) € (0, 00) are
Schwinger parameters, with d’x = dx,dx, and
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X1X2
X1 +X2

folx1,x) =exp

Ji(x1,x2) = |qyB| coth [|g,B|(x; + x)] K

15 (x1.x2) = |qB|

\‘ZfB|

Bxy,x0) = .
Sy ) = S Psinn?[ g, Bl +%7)

fgy(xlvx2> =

lasB|? K
(x1 + x;)sinh?(|g ¢B|(x; + x,)]

tanh(|gB|x;)tanh(|q,B|x,) p3

22 _ rb1x B1x; 1
Pi= i ””} o { tanh(|g, B[x,) +tanh(|g;Blx2) ¢, B]) (72)

2

X1X2 2 ny v 2x1%
— Y, 7b
(xl +x2)3 pH +xl _|_x >dl (xl +x2)3 pHpH ( )

cosh{|gBl(x; —x)] [ xix, ) my 1 ] v
Smh[|‘]fB|(x1 +x)] [(x) +x)° %)+ x, (x1 + xp)? + (7¢)

[xy sinh(2|g/B|x,) + x, sinh(2|qu|x1)](p"“pi + Pﬁpi)» (7d)

tanh(|g,B|x,) tanh(|g,B|x,)

2 tanh(|gB|x,) tanh(|q B|x,)

pi)ﬁ”
|qB|[tanh(|g;B|x,) + tanh(|q;B|x;)]

_di”

For calculation details, see Appendix A.

A. Tensor basis

The gluon polarization tensor should be represented by a
symmetric tensor under the exchange of its Lorentz indices.
It can be constructed out of the external products of the
independent vectors describing the propagation of a gluon
with momentum p* in the presence of a magnetic field
whose direction is specified by a four-vector »*, in addition
to the metric tensor ¢*. Without loss of generality, we can
choose a reference frame where the magnetic field points
along the Z axis. Due to the presence of this Lorentz
invariance-breaking vector, it is convenient to split the
metric itself into parallel and perpendicular (with respect to
the magnetic field direction) components, that is

gv =g +d°. (8)
where
g’l‘l” = diag(1,0,0,-1), 9)
and
¢ = diag(0,—1,-1,0). (10)

We thus see that the most general symmetric tensor can be
constructed out of combinations of the four possible
independent tensors

prpt,  bMBY, prbt 4 ptbt, gt (11)
However, notice that in QCD, IT* must satisfy the gener-
alized Ward-Takahashi identity namely, the transversality
condition

p”p”]- (7e)

|lq;B|[tanh(|g B|x;) + tanh(|gB|x,)] "+

[
pup I = 0. (12)

Therefore, since Eq. (12) implies a relation between the
coefficients of the tensors to express I1*”, only three trans-
verse tensors turn out to be independent. To visualize this, let
us suppose that [T** can be written as

" = aA* + bB* + cC* + dDH . (13)
Gauge invariance, Eq. (12), implies

pup W = a(p,p,A*) + b(p,p,B")
+ c(pup,C*) +d(p,p,D") =0.  (14)

Equation (14) means that only three out of the four factors
(a, b, c,d) are independent. Therefore, the tensor structure
that multiplies the factor chosen as not independent can be
distributed among the rest of the structures to result in only
three of them being needed to span the whole tensor IT". A
convenient basis to express the polarization tensor is such
that the independent tensors are chosen each to be trans-
verse, in such a way that Eq. (12) be satisfied already as

p I = 0. (15)
This choice has the advantage that the basis can be used to

express the polarization tensor either in QCD or in QED. In
the present work, we chose the orthonormal basis

H v

v v PP

- =
Pl =g~ (16)

I

P
r])/ll/:‘dil./+ - , (17)

P
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p'p*
p2

Ph — g —

v v

- ’H' - P (18)
Such choice comes from the factorization of the metric into
transverse and parallel structures induced by the presence of
the vector b* representing the direction of the magnetic field.
To show this, we can choose b* = (0,b) = (0,0,0,1).
Introducing the space-vector a = (1/2)(—y,x,0) such
that b = V x a, we observe that by choosing the vector
potential as A = Ba, and from the definition F*¥ = OFAY —
d"AF we get

0 0 0 0

0 2 - 0
papﬂF“"Fﬂ” _ B P3 P12P2 (19)

0 —-pip> P1 0

0 0 0 0

Also, from Eq. (17)

0 0 0 0
v 0 —P% pip2 0O
pIPY = 5 : (20)
0 pipp -p7 O
0 0 0 0
therefore
B*pI P = —papsF*F", (21)

which shows that the choice of b* impacts directly the
factorization of the metric into transverse and parallel
structures.

On the other hand, notice that when Eqgs. (16)—(18) are
chosen as the basis to span 1", the condition of Eq. (15)
does not reduce the number of independent tensor struc-
tures from three to two, given that the tensor structures are
already transverse.

Therefore, we can use this basis (see also Ref. [20]) to
express Egs. (7) (see Appendix B) as

. i v v v v v
lH””Z—ggz/dzxfo(xuxzﬂn(xhxz)Pﬂ I (x1.x00) P + o (1. 00) PG + A (x1.00) )" + As (x1.x0) g (22)

where

2x1x; coth [|g,B|(x; + x;)]

xy sinh(2|q;B|x,) + x, sinh(2|qB|x;)

2

= la;B [ (x1 + x2)° P

X1 Slnh(2|qu|x2) + X7 Slnh(2|qu|x1)

P 4 : (23)

2(x; + x;)?sinh*[|q/B|(x; + x,)]

_ 2 Slnh(|qu|x1) Slnh(|qu|x2)

2 2

M, —|g,B
L= lay l[ 2(x; + xp)?sinh?[|q/B|(x; + x,)]

I = |qB|

xy sinh(2|g,B|x;) + x, sinh(2|q/Blx;)

Dy 1 (24)

]

(x1 + xp)sinh’[|g B|(x; + x5)]

x sinh(2|g,B|x;) + x; sinh(2|q/B|x;)

2(x; + xp)?sinh?[|q/B|(x; + x,)]

(25)

’

coth [|g,B|(x; + x;)]

Ay = |qsB
b T 4 P

tanh(|g,B|x,) tanh(|g,B|x,)

2 2 _ 2
(X1 n X2)3 (mf(xl + xZ) X1X2p”)

2

B
|61f | « <1

(x1 + x;)sinh?(|g B[ (x; + x,)]
cosh [|g/B|(x; — x;)]

A, = |q,B
=10 e i layBICx, + %)
xy sinh(2|g/B|x,) + x; sinh(2|q/B|x,)

and

- |q¢B|[tanh(|g,B|x,) + tanh(|g,B|x,)] +

(26)

7))

1o pf 4 (v +2) + mi () +x2)7]

, , sinh(|g;Blx;) sinh(|q,B|x,)

2(x; + x;)%sinh?[|qB|(x; + x,)]

Notice that, contrary to expectations, Eq. (22) contains also
terms proportional to the tensors g"“” and ¢|". In order to
show that IT*¥ is made out only of combinations of
transverse tensors, we need to prove that the coefficients

P - 27
1 ey + x)sin® g, Bl (x, + x2) @7)

7]
[

A, and A, vanish. This is shown in Appendix C. For the
time being, let us only emphasize that, had we simply
projected out Eq. (6) onto the basis given by Eqgs. (23)—(25),
the spurious terms would have induced nonphysical
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contributions that, given their complexity, could obscure the
numerical evaluation of the physical coefficients [17,21,23].
This comes about since, formally, a simple projection would
give rise to the tensor coefficients

ﬁH = HMD,PI‘TD = HH + Alv (288.)
M, =1,PY =1, +A,, (28b)

and
fly = I, P2 =TI, — };lAl 4+ i La,,  (28¢)

where I, IT, and I, are given by Eqgs. (23)-(25) and A}, A,
are given by Egs. (26) and (27), showing that such projection
contains spurious terms.

B. Vacuum polarization tensor

As one can expect, the gluon polarization tensor contains
divergences which come from the vacuum contribution. In
order to proceed to isolate these contributions we notice
that two possible vacua can be defined:

(1) a vacuum where p# = 0 and B = 0, corresponding
to a situation where particles and magnetic field
appear simultaneously, and

(2) a vacuum with B =0 and p* # 0, representing a
situation where the external field is turned on with
preexisting gluons with four-momentum p*.

The first choice is ambiguous, given that the energy
scales associated with the magnetic field and the transverse
¢B|, and
thus, p2 and B cannot be set to zero simultaneously.
Therefore, we chose to extract the vacuum working in the
situation described by the second case. The vacuum
contribution is thus given by

i1 (p,

q¢B|—=0)

i X1Xp
__@gz/dzx exp [mpz—m%(xl +x2)]

2x1x 2( p”ﬁ”)
X |[———p* ¢~
[(Xl +x,)* P’
1
| () Fx)mE—— 2+1> ”] 29
o (erm= 2 g )
Notice that Eq. (29) contains a term that does not simply
vanish under contraction with p,, namely, the term propor-
tional to ¢*”. In order to show that the coefficient of this
term vanishes, we follow the argument in Ref. [22]. We
introduce the scaling transformation for the Schwinger
parameters in such a way that x; — Az;, where 4 is a real
parameter. Under this transformation, the coefficient of the

term proportional to ¢*¥ becomes

d’z 2122 1
I=/12/7<m2z +7p) - ——=— 2+—)
Pz + 2)° (21 +22) utnl A
X exp [/1< 12, _mf(zl+z2)>:| (30)
21t 2

It is easy to show that the integral Z can also be written as

0 d2Z A2 p2 2 (
—)— > M 7 ZI+ZZ)). 31
8’1//1(21 +2,)° ‘ G

If we now scale back z; — x;/A we observe that the integral
becomes A-independent and thus its derivative with respect
to A vanishes, namely

6 dzx XX 2 2
o [ e T =g (32
m/m+m‘ 2 (32)

Z:

I:

Therefore, the vacuum polarization tensor becomes

i (p, quBl - 0)

- 29 /aaxexp LCI +x2p —mz(xl +x2)]
u

<ng PP ) (33)
p

Notice that Eq. (33) can also be written as

2X1.X'2
X b
(X1 +x2)

i (p, - 0)
i
_QQZ/Jerxp[ P p —mf(x1+x2)]
2X].X'2 2
————p*(Py + P+ P), 34
X(x1+x2)4p(0+ TP (34)

where P4’ 73”” and P! are given by Egs. (16)—(18).

A similar argument is valid for a nonvanishing magnetic
field. This means that the coefficients A; and A,, in
Egs. (26) and (27), respectively, do not contribute to
I1", since they vanish. The systematic evaluation of these
terms is shown in Appendix C. Thus, the full polarization
tensor with the desired physical properties is given by

. i
lH”U__WQQ/dZXfo(xl,xz)
T
X I (g, 200) P+ T (g, 00 P 4T (x4, 02) Py .
(35)

where II, II, and II, are given by Eqs. (23)-(25),
respectively.

To cancel the vacuum piece, we subtract from Eq. (35)
the contribution from Eq. (33). Therefore, the finite,
magnetic field-dependent part of the gluon polarization
tensor is explicitly given by
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— ilgsB| , d’x XXy 5, tanh(|g,B|x,) tanh(|g/B|x;)  p3
T TR 2°%P P mitn+x)| exp | —o i p tanh(|q B B
T (X1 +x) X+ X anh(|g,B|x;) + tanh(|g,B|x,) |q,B]|

y { {2)61)62 coth [|g,B|(x; + x,)] P2 - xy sinh(2[q,B|x,)
(x1 +x7) I sinh?[|g,B|(x) + x,)]

le - ﬁ(xl s Xz)] Pﬁy

xy sinh(2|g¢B|x;) 5 2(xy 4 x,) sinh(|g,B|x,) sinh(|gB|x,) , = »
sinh®[|q,B|(x; + x,)] sinh’[|q,B|(x; + x,)]
xy sinh(2|g,Blx;) -
— H , 7)“” , 36
T o )| (30
where
- 2p? tanh(|qB|x,) tanh(|g B 2
H(x,,xg) _ <P XX ex ( (|Qf |x1) (|Qf x2) Py XX P2¢>7 (37)
lg/B| (x; + x,) tanh(|g,Bl|x,) + tanh(|g,B|x,) |q;B| x| +x;

and we have used the symmetry of the integral under the exchange x; <> x,. In order to check the validity of the above
expression, we proceed to study its limits in the strong and weak magnetic field cases.

III. STRONG FIELD LIMIT

In order to study the strong field limit, let us first introduce the dimensionless variables

2
4 lg,B|
_ .2 > _ P _ 4y
Vi = mfxl‘, p”,l =W, B:m—jzc (383)
and the new variables s and y related to y; and y, by
yi=s(l=y),  y»=sy (38b)

so that Eq. (35) becomes

ig*m7 _ cosh(Bs) — cosh [Bs(2y — 1)] p_i}

| oo
= ——— 1—y)p2—1
! 82 A dy A dsexp [s(y(1 = y)pj —1)]exp [ > sinh(By) 3

o

(1 —y)sinh(2Bsy) , cosh(Bs)—cosh[Bs(2y —1)] , | . , (1—=y)Bsinh(2Bsy) ,
- . (39
* { sinh?(Bs) ol sinh®(Bs) PLIPLF sinh?(Bs) PPo (39)
Note that in the strong field limit
Bcoth(Bs) ~ B,
Bsinh (2Bsy) 0
2 sinh?(Bs) '
cosh(Bs) —cosh [Bs(2y —1)] 1 (40)
2 sinh(Bs) 2B
which hold for all s and 0 < y < 1. Therefore
- igzmﬁ-[)’pﬁ s ! e 2 i
i =-——5—e v ; dyy(1-y) | dsexp [s(y(1 = y)pj — DIP". (41)
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—Re [1(s?)] N
—Im [I (pﬁ)] ,I ==

S~ N W
~
~

I (v})

——
-
-

~2f -~ Re[I () + 1 ()]

= [1 (o) + I (o})]

—-10-8 -6 -4 -2 0 2
P

|
o

FIG. 2. Real and imaginary parts of the function 7 (pH)
defined in Eq. (42). Notice the discontinuity at the threshold value
p| =4 or equivalently at pH = 4m/ The result including the

spurious contribution of I, (pﬁ) from Eq. (43) is also plotted for
comparison.

For the kinematical region such that y(1 — )p” <1, the
integration over s can be performed, yielding

222
i = 19 me e—pi/ZB ld y(l —_)7) phv
2 Y0 =y = p2 |
4z 0 (I-y) —P

ig*m7B
4n?

_pl/zsl(P” )P (42)

which coincides with the result obtained in Refs. [14—16]
where the gluon polarization tensor is computed by con-
sidering only the contribution from the LLL.

Figure 2 shows the real and imaginary parts of (pﬁ)
compared with the result obtained when the contribution of
A\, according to Eq. (26) is considered. From Eq. (28a) the
spurious term contributes with

ig me
4n?

i = B (R) + L PIP, (43)

where

From Fig. 2 a discontinuity at the threshold value pﬁ =4
or equivalently at pﬁ = 4mj can be identified. As the figure
indicates, the spurious contribution generates an unphysical
threshold at pﬁ = 0, which cannot be identified with a
fermion-pair creation. Notice also that Eq. (36) implies the
existence of an infinite sequence of momentum thresholds

when the external gluon momentum becomes resonant with
twice the quark/antiquark magnetic mass, whose square is
defined as mfy . = mj} + 2n|q,B|. The threshold corre-
sponds to the value of the longitudinal momentum squared
for the creation of a quark-antiquark pair, each particle
having a magnetic mass corresponding to the given
Landau level.

These thresholds can be obtained from our calculation by
concentrating on the conditions where the hyperbolic
functions become divergent. For these purposes let us
examine the term proportional to coth(Bs) in Eq. (39)

1 ©
:/ dy/ dsy(1 —y)Bcoth(Bs)
0 0

xexp [s(y(1 = y)pj = 1)]

cosh(Bs) — cosh [Bs(2y — 1)] p%
- —. 45
%P { 2 sinh(Bs) B (45)
Notice that if B> 1
cosh(Bs) —cosh [Bs(2y —1)] p3
th -
Beoth(Bs)exp { 2sinh(Bs) B
14+ e—ZBs 1= e—ZBs + e—ZBs(y—l) + e—ZBsy
=B .25 28 i
1- o€ 2B(1—e™*%)
1+e—25s
Using that
1_ o255 Z e, (47)
we can write
1 + 6—28\ Zon S
— _2Bs—1+22 2B (48)
so that, the dominant term in Eq. (45) is given by
1 o )
K= B/ dy/ dsy(1 —y){exp [s((1 =y)pi = 1)]
+ZZexp (1=y)pf —2nB - 1)]}
B
(PH) + SBJ(PH) (49)

/’H

where I(x) is defined in Eq. (42) and
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o arctan(ﬁ)
/) __Z 42nB+1) -] (30)

In this way, the resonant behavior of the thresholds is
explicit: the gluon polarization tensor has divergences

when its momentum reaches the value pH = 4m<Bn> 7

where n labels each of the Landau levels. In other words,
the creation of quark-antiquark pairs is allowed when the
gluon momentum is large enough to generate not only
the inertial mass of the pair but rather the magnetic mass,
induced by the magnetized medium. Figure 3 shows
several thresholds of the function J (pﬁ) in a broad range

of p” for a maximum value of n, ny,,, = 100. The same

argument is valid for all terms in Eq. (39) given that its
dominant contribution is given by a power of the series
in Eq. (47).

IV. WEAK FIELD LIMIT

Let us study the case where the field satisfies the
hierarchy of energy scales |eB| < m}. We call this the
|

i = g mf

6| —Re[7 ()]
I |
—100 —50 0 50 100
2
ol
FIG. 3. Real and imaginary parts of the function J (pﬁ) defined

in Eq. (50) for B = 1.5 and added up to n,,, = 100. Notice the
emergence of different resonant thresholds when the quark
magnetic mass includes consecutive Landau levels.

weak field limit. For this purpose, we can perform a power
series of Eq. (39) around B = 0 to obtain

ds{Fy (I-y) 2+2sy(;—y)

[sy?(1=y)?pLp? +2(1 =)ol + pz]Bz} P

+ [ y(ls_ Y2 2sy(13— D21 =207 + (14 )0k - (1= 32)ok + yzﬂzlf”z] P
+ [Zy(ls_ y)p2 + Zsy(;_y) PPsy* (1 =y)*p +2y* - 1]5‘2} 7”6”} exp [s(y(1 —y)p* = 1)], (51)

where the vacuum contribution of Eq. (34) can be identified as

i (p2, B — 0)

12m2
g f/ dy/ dsexp s

1=yt =) 2D iy (s2)

Subtracting this contribution, we are left with the 5-dependent part. The integrations over s and y can be performed

analytically, so that

22132
T, = =I5 1 (2P L (PP + Ty ()P (53)
WeakB — 6712 \p L olp (U
where
g1 0+ =60 o Ll +2)=12, (0 =DVE=p o Vi
Il 4-p° (4—p2)3/2( 2)5/2 1L m( )/2 P1 (4_/)2)/)2 rmpe
(p* =10)(p*> =3)p7 | 6p]

4= p_jJr ﬂl+1 34

= 1 [( 10+ (p*>—6)p? p2+3(p2 2)\/(4=p?)p? 52 pz(p2+2)—12p2+12+(p2—6)p2>arctan( \/;2>
) 2)5/2 i (4—p2)p4 1 m(pz)S/z I \/4——/)2(/)2)3/2 /4—,02

(4=p*)(p
-3)pt 3 3]

_(pP=10)(p 32 P (p*-3)

(4-=p*)p’

4-p*  pt 207 Pt 4—p2(p?)32

(55)
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X 1
fl, = 12
0 4—p2[(

4 —p?

10+ (p* = 6)p° 2ol (P2 =6)p* (" =2)\/(4 —pz)pz> arctan( vV )
(=P PP T A= ) S ele 4=
_ =100 =3)p1 L, (07 =3)V (4 =p7)p’
p* VA= p¥ ()2
N A A 00 uv /
The coefficients HH, IT, and II, consist of real and Iml‘[ﬂV(a)) =__7P / " Mdﬂ)/ ,
o 0~

imaginary parts. The imaginary parts can be obtained from
the corresponding real parts from the Kramers-Kronig

relations. With the notation @ = p,, we have

80
60

l’ - = Re [IAIH + Al]
4
/  —=Im [lﬁl“JrA]]

o

4 6

(©)

—Re[l:[\

—Im [lﬁ[l]

—10

- = Re [ﬁLJrAQ}

—=Im [lﬁh + /12]

4 6 8 10

10
(e)

-10

,’ R p2 pZ
s — = Re [I[) — —éAl + 7!142
[ p

N 2 o
—= Im |II, — %Al + 7!142
P p

FIG. 4. Real and imaginary parts of the coefficients IAIH N 1 and ﬁo from Eqgs. (54)—(56) as functions of p? for fixed values of /)ﬁ and p
For comparison, these coefficients are also plotted including he spurious contributions from A; and A,, given by Egs. (28a)—(28c
Notice that for the chosen kinematical range for p?, the threshold appears at p?> = 4 or equivalently at p? = 4m?, whereas the spurious

) 10 15

o

terms contain unphysical thresholds at p* = 0.

where P is the principal value. Examples of these coef-
ficients as functions of pﬁ, for various values of p3 are

10 ol R
(b) ¥ = Te ]
5 P — I |11
P
HE|
R P
I 0 ey
H
I
YA
_ 2 _ H
g =1 LT efiyeal
~10 -= Im |:l:[H+A1:|
0 2 4 6 8
7
10
(d)
5
I, 0
_ 2 _
o A=t e+ a)
10 - Im[fhﬁ—/lz}
0 2 6 8 10
2
10 : -
() — Re [ fL]
5 — Im {HO]
i i
i :
pa II i
fly Ofmmmmm=ss e
0 : f’"“
1 i el 2ia Py
5 --R,[IIU Ay
pﬁ =T —=Im lﬁll)f%Alﬁ»ZfEAz]
—10 H
-5 0 5 10 15
e
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shown in Fig. 4. For comparison, these coefficients are also
plotted including he spurious contributions from A; and A,
given by Eqgs. (28a)—(28c). Notice the appearance of
unphysical thresholds at p> = 0 as well as large deviations
from the correct functional behavior of the coefficients of
the tensor structures.

V. RESULTS, DISCUSSION
AND CONCLUSIONS

The results of this work can be used to study
birefringence of the gluon polarization in a magnetized
medium. Recall that birefringence is the optical property
exhibited by a material whose refractive index depends
on the polarization and propagation direction of light. In
solid-state, crystals with noncubic lattice symmetry
show birefringence, with calcite being a typical and
historical example. The simplest type of birefringence
corresponds to the so-called uniaxial type, where a
single direction governs the optical anysotropy while
all the other directions orthogonal to it are optically
equivalent. Thus, rotations of the crystal with respect to
this axis leave the optical response invariant. On the
other hand, a material that is otherwise optically iso-
tropic can manifest birefringence under the presence of
external agents, such as strain and, more importantly, an
external magnetic field. This last case is often called
Faraday effect [24]. An analogous situation is studied in
the context of high-energy physics, particularly in QED
under the presence of static magnetic or electric fields,
where the index of refraction depends on the photon
polarization state.

Despite the absence of an underlying discrete symmetry
as in crystalline materials, the presence of these static fields
is often sufficient to induce optical birefringence under
certain conditions, which in this context is called vacuum
birefringence. This effect has been extensively studied
theoretically [17,25]. Moreover, recent experimental evi-
dence for this phenomenon has been provided from
astronomical observations of neutron stars, where intense
magnetic fields are present [26].

In QED, the microscopic mechanism behind the effect
are the vacuum fluctuations due to the spontaneous
emergence of virtual electron-positron pairs that act as
dipoles, in analogy with dielectric crystals. In the absence
of external fields, Lorentz invariance ensures an isotropic
optical response. However, when a static electric or
magnetic field is present, Lorentz invariance is broken
and an anisotropic optical response is triggered. In par-
ticular, when a magnetic field is responsible for the effect,
the virtual fermion pair exists in general in a combination of
Landau levels.

In this work, we show that vacuum birefringence arises
also for gluons in QCD, where the virtual fermion-anti-
fermion pairs correspond to quark-antiquark pairs that play
the same role as electron-positron pairs in QED. Just as in

QED, the QCD version of the phenomenon necessarily
implies the existence of an infinite sequence of momentum
thresholds, that correspond to the condition where the
external gluon momentum is resonant with the magnetic
mass of a pair occupying a given Landau level, which are
successively occupied by the pair of virtual quarks par-
ticipating in the process.

We have presented a method to compute the one-loop
magnetic correction to the gluon polarization tensor
starting from the Landau-level representation of the
quark propagator in the presence of an external magnetic
field. With suitable transformations, we have shown that
this representation can be converted into the expression
for the one-loop polarization tensor equivalent to the one
obtained starting from Schwinger’s proper time repre-
sentation of the quark propagators. We have shown that
the general expression contains the vacuum contribution
that can be isolated from the zero-field limit for finite
gluon momentum. This can be achieved only when the
whole sum over levels is performed. Therefore, calcu-
lations that resort to partial sums over Landau levels run
the risk to mask the vacuum contributions and distort the
result. An important observation is that, the general
tensor structure for the gluon polarization contains two
spurious terms that do not satisfy the transversality
properties. We have shown that, in analogy with the
case in vacuum, these terms have vanishing coefficients
and thus do not contribute to the polarization tensor, as
expected. Nevertheless, strictly speaking, this result
requires that the ie term in the quark propagators is
not taken to zero, for otherwise the integrals representing
the coefficients of the spurious terms are not oscillatory
and the areas above and below the x; axis cannot cancel.
However, as it is customary, this term is only kept
implicit in the calculation and is only brought back,
for instance, when computing the real and imaginary
parts of the final result. Thus, if the coefficients of the
spurious terms are not shown to vanish and care is not
taken when computing the coefficients upon projection
onto the chosen basis, these can give contributions that
are not correct, as we have shown. In order to check the
validity of the expressions thus found, we have shown
that the strong field limit obtained from our approach
reproduces a well-established result. The results of this
work can be used to study the conditions for gluons to
equilibrate with a magnetized medium, for example
during the early stages of a relativistic heavy-ion colli-
sion. This is work in progress and it will be reported
elsewhere.
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APPENDIX A: DERIVATION OF EQS. (7)

Let us begin from the general expression of the gluon
polarization tensor of Eq. (1):

1
2

v

d*k ) .
iy, = /WTr{lgtby”lS(")(k)lgtay”lS J(g)}+C.C.

(A1)

The trace in the above expression involves two
fermion propagator factors, each given by Egs. (2) and
(3). This product produces nine terms, that are explicitly
given by

" FAT O L R N e e ) [Zﬂ'ZZZ?L]
# = —¢? Z / Texp |- -
oo (27) |qsB| (ki —m% —2n|qB||[(k — p)j — m} — 2m|qB|]
x Tr{y* (K +m;) O~y (¥ — ¢ +m;)O"} + C.C., (A2)
n+m k— i
t = z‘x’: / &k 7EXp |— K+ (k- p)i] (-0 Lo(qu‘>L% [Z(ngf }
? o= g8 [kj — m} = 2n|qB|][(k = p)j — m} — 2m|q;B|]
X Tr{y”(kH + mf)O_y”(kH - ﬂH + mf)(9+} +C.C., (A3)
ntm 2(k—p)?
= -2¢4% i /—d4k exp {_ ki + (k_p)i:| (=0 L0<q ‘)Ll [ (\quf }
’ ) (@) /Bl ] [k —m3 = 2nlq;Bl|[(k = p)} = m} —2mlq,B|
x Tr{y*(§ +ms)O~y*(fL — ¥.)} +C.C., (A4)
et 22 2(k—p)2
por S ok - B+ (k- p)i] 0L () Lo ﬂq,Zf ]
¢ n=1l.m=0 (27 |qu| [k2 _mf 2”|61fB|H( )H _mf 2m|qu|]
X Tr{y”(kH + mf)Oﬂ/"(kH -7+ mf)(’)‘} + C.C,, (A5)
n+m k—
= — g io: / ak P {—kzl + (k_p)i:| (=DmL, 1(\‘1f3\)L0 [ (\‘Ifg\) }
: ey ) Qa)t |9/B| (ki — m7 —2n|qB|)[(k = p)j — m} — 2m|q;B|]
X Tr{y”(k“ + mf)OJr]/”(kH - ﬂH + mf)OJr} + C.C., (Aﬁ)
et 212 2(k—p)2
S / &'k { 2+ (k- p)i] (02 () e [
’ nfe larBl | [k — m3 —2n|q;B|[(k = p)} = m} — 2mlq,B]
x Tr{y" (§) + m_f)(’)*?/"(h -/} +CC., (A7)
n+m 2ki 2(k= i
— 2 io: d*k exp {_ K+ (k- P)i} (=)L, (\qu\)LO [ (\quf }
’ n=T.m=0 2 )4 |‘1fB‘ [kz - mf 2”|QfB|H( )H - mf 2m|quH
x Tr{y" ¥ or" (K — ) +m;)O~} + C.C., (A8)
et 242 2(k—p)2
" =24 i / ak p {— K+ (k= P)ZL] (=1L (W)Lg"‘l[ (|qu|) }
’ ey (2m)t 9B (ki = m3 —2n|qB||[(k = p)} — m} = 2m|qB|]
x Te{y kv (K — ¢ +ms)O*} +C.C., (A9)
K3+ (k—p) (_1)n+mL}z—1(;f_.a) rln—l[2<|];;—§|)l}

t;w_4gz i /d4k XD |:_ i:|
’ n=1,m=1 (2 >4 [kz

’4fB| I

m}—2n|qB|][(k— p)f—m}—2m|qB|

Tr{y"¥.r* (K. —pL)} +C.C.

(A10)
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In order to perform the sum over Landau levels, we write the denominators introducing Schwinger parameters such that

1 00
— :/ e dx. (A11)
y 0
We start with the expression given by Eq. (A2)
Y d*k kK + (k—p)? i _
"= _92/(23)4 exp {_W] Te{y* (K + mp)O~7" (k) = #) +mp)O7}
e 2(k=p)?
s (1" L)Ly
o [ki = mi —2nlqBl][(k = p)j — m} — 2m|q;B|]
KA+ k=p)]0 s . .
=-g | d’x p {—T} Tr{y" (K + mp)O~7"(f) — P + mp) O}
x e kp)x+plky)x Z LY (s)r LY, (s,) + C.C. (A12)
n,m=0
h 2(k - p)?
where 5y = 7(| ;])L (Al3e)
q
alk)) = & —m?. (A13a) !
Blky) = (ky — pH)z _ m]% (A13b) By gsing .the generating function of the Laguerre poly-
nomials, given by
rp=—e2larBli =12, (A13c)
- 1
2 nLh(s) = —— - , Al4
I (A13d) ; ’ — P ( - s) (A14)
and we find
|
= _92/ d’x / d'k exp _M Uk )x1+B(ky)x
1 (1 +e—2\qf3\xl)(1 +e—2|qu|x2) (277)4 |qu|
2k> 2(k—p)3 5 _
X exp {n(xl) |qfl§|] exp {n(x2)|qf3|l Te{y* () + mp)O~v* (K — ) + m;)O”} + C.C. (A15)
|
where we have defined 4Tr{y* (K —|—mf)y’|"(k” —§+my)O"}+C.C.
1 =4Te{y" (K +mp )y (K — ¢ +my)}
n(x)=—— (A16) ”
earBlv 4 1° =16[(k; - py +m§- )g” + 2k |k k”pH Hpﬁ}.
Now, for the trace computation, note that (A18)
M\ (’)<i>] _ (Al17a) Putting all together
Ty (xy,x0) T (%1, %)
v _ 4.2 1\A1s A2 1 1542 2]
(’)(i)y”(’)(i) = O(i)}’ﬁ, (A17b) t!ll = —4g /(1 T e—2|q‘/B|x1)(1 + e—Z\q/B\xz) d-x, (Alg)

and therefore

with
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k. [ K+ (k= p)? 2k3 2(k = p)?
A :/ ex —;] ex {nx —l]ex {nx 4L] A20
I bl I R Rl v Rl e vy (A20)
and
Y ﬂ alky)x, lf(kH)xZ[(k . 2 k2)d”/ WFY — K pv — kY M] (AZ])
O N | Py My = RG2S R = KPR

The transverse integral Z; is performed by making the shift

1 —2n(x,)
k|, = , A22
T A ) -] 42
which turns the integral into a simple Gaussian form. It is straightforward to prove that

B tanh(|q,B|x;) tanh(|qB|x 2

T, = 7T2 |q/B| exp |- (lg;Blx1) (lgsBlx2) pi ‘ (A23)
(27)* tanh (|g;B|x) + tanh (|g;B]x;) tanh(|g¢B|x;) + tanh(|g;B|x,) |q;B|
For the parallel integral 74, the appropriate shift is
X

| = k“ - 2 P (A24)

X1 +.X2

and by performing a rotation to Euclidean space, the integral becomes of a Gaussian form in the variable /% = [5 + 15, and
thus

2

XX XX m Y 2x1x
12 plz—m}(x1+x2)H(< 12y g”) 712317”17@ (A25)

jyv _ 17 exp |: _
b (2n)? X+ x; X +x)0 N x4+ x, (x1 + x2)

Collecting terms

L 167:29

 ex {_ tanh(|g;B|x;) tanh(|g,B|x,) Pi}K it BN m} ) v 26 p,lpv}
tanh(|g,B|x;) 4 tanh(|qB|x,) [q/B[] | \(x; + %) "1~ x; +x )71 () 4+ x0)3 17

M ilq;B| 2/ 2 elarBllxi+x:) [ X1Xp

= X— ex 2 _mi(x; +x ]
sinh [|q,B[(x; + x,)] x| + X P = mylx +x2)

(A26)

Note that the term 75~ of Eq. (A6) has the same tensor structure as #”. By means of the variable shifts m’ = m — 1 and
n' = n — 1, which produce a factor e~2/4rBI(1+%2)_this gives rise at the same set of transverse and parallel integrals as for the
case of #|". Therefore, we can write

ilg+B —lqsBl(x1+x2)
t/Sw _ _ |qf 2| gz/ Z.X . e ex |: X1Xp
167 sinh [|q¢B|(x; + x,)] X1 + X,

2=+ )|

tanh(|q/B|x;) tanh(|g,Blx;) p? X1Xp ) m;, y 2% 4, AT
xexp [l S - 3pf+ | TPl (AZ7)
anh(|g/B|x,) + tanh(|g/B|x,) |q;B| (x1 +x2) Xy + X (x) +x2)
Adding up these two terms, we get
i|qu| / X1X2
== d*xcoth[|q B 2 _ m?
1 s 82 92 X Co HQJ |(x1+x2)]exp X1+x2p” mf(x1+x2)
ox [_ tanh(|g;B|x,) tanh(|g;Blx;)  p3 ] [( LB m} > v 2%, ,,}
tanh(|q,B|x;) + tanh(|q B|x,) |q/B|] | \(x; +%,)3 "1 " x; +x )71 (x) 4+ 25)3 717
i v
= —@gz/dzxfo(xhxz)fﬁl (x1,2x2). (A28)

036016-13



AYALA, CASTANO-YEPES, LOEWE, and MUNOZ PHYS. REV. D 101, 036016 (2020)

For the term 7" of Eq. (A3) the trace involved is computed by using Eq. (A17a) and the relation
OB prOF) = OEH (A29)
so that
Tre{yy () + mp)r (K — p +my)} + C.C. = 4(k| - py = kj +m7)g. (A30)
These results imply that after introducing the Schwinger parametrization, the integration over the transverse momentum

gives the same results as those in Eq. (A23). Moreover, in order to apply Eq. (A14) it is necessary to perform the shift
m' = m — 1. That shift implies extracting a factor —e~29/8l2 from the sum, thus

go il [ e 48
(2r)* (1 + e2larBl) (1 4 e~2larBl) tanh (| B|x; ) + tanh (|g,B|x,)
{_ tanh(|q;B|x,) tanh(|g/Blx,) p]
tanh(|g,B|x,) + tanh(|q,B|x,) |q,B]

]/ &k (ky - py =k + mpem il iRy (A31)

The parallel integration is carried out with the help of the momentum shift of Eq. (A24) which in Euclidean space gives

) 4in*|q B 2/dz e~2laBlx; lq,B]
= x

2 (2r)? (1 + e2lasBlx1) (1 4 ¢~2lasBl2) tanh (| B|x, ) + tanh (|g,B|x,)

X1X, tanh(|g,B|x,) tanh(|g;B|x,) p7

tanh(|qB|x;) + tanh(|q;B|x;) |q;B]|

X exp { pﬁ — m(x; + xz)] exp {

X1+X2

2
XX o, nmy 1 v
. A32
) [(xl+xz)3p”+x1+x2+(xl+xz)2}‘di (A32)

From the fact that the term #," has the same tensor structure of 7, it is easy to show that both expressions are related to each
other after the exchange x; <> x,, so that

4in®|q,B| e~2laBlxi ix
M= f 2/ 2 172 2 _m2
4 _(271)2 (1 + 2By (1 + e-z\qu\xz)eXP x +x2pu m(x1 + x2)

< ex [_ tanh(|q,B]x,) tanh(|gB|x,) PiH LB m} L 1
tanh(|g,B|x;) + tanh(|gB|xy) |q/B|] [(x; + )3 "1 " xp +xp (%) + x2)?

} q0. (A33)
and therefore, after manipulating the exponential, we get

Y Y ilq/B cosh[|g/B|(x; — x X1x
t;24 +ZZ — _ |q.f |gg/d2x qu |( 2 1)}€Xp |:x 142 Pﬁ—mjzc(xrf'xz)]

87> sinh [[g,B|(x; + x;)] 1T X
e {_ tanh(|q;B|x,) tanh(|g/Blx,) p7 ] [ L B i n 1 ]g;w
tanh(|g,Bx;) + tanh(|q;B|x,) [qBl] [(x; +x2)° 71w+ (6 +x)2] 7
i v
= —@92/d2xfo(x1,x2)f’2' (x1,x2). (A34)
For the term 1’3‘”, the trace is computed with the help of Egs. (Al7a), (A17b) and (A29)
Tr{y" (k) +my)Oy* (kL — P1)} + C.C. = Ak (k. — p%) + ki (K — L)) (A35)

After introducing Schwinger’s parametrization and using the generating function for the Laguerre polynomials (with the
shift m" = m — 1), we obtain
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e~2layBlx, palky)x; ,plk))x 2 RY)
B R
) 1+ 2@‘2“”3"“1)(1 + 2e2larBlxi)2 lq/B]
2(k—p)?
xcexp | () 2K exp () 2EZPIL] o — poy 1 re et — ). (A36)
|fB| a8 | [

The change of variable in Eq. (A22) leads to the result

92/d2 /d4 e 2B (T2 () x,) + T2 (x1.7%2)] [_ tanh(|q,B|x, ) tanh(|g,B|x,) pi] (A37)
+2e—2\q,B\x,)(1 +2€—2\q,B|xl) tanh(|qu|x1) —|—tanh(|qu|x2) |C]fB| )
where
= /Jzkea(“xl ePtk)x / quLe‘”‘ﬁk"“ l¢", + (6= 1)p4]. (A38)
with
tanh(|g B + tanh(|g /B
. anh(|q,B|x,) + tanh(|q, |x2)’ (A39a)
|QfB|
and
tanh(|g B
o= anh(|qB|x,) (A39D)

tanh(|gB|x,) + tanh(|q;B|x;)

The perpendicular integration has a simple Gaussian form for which the linear term in ¢, integrates to zero, yielding

-1
Ty —”(an )pi / P hje i P b gt (A40)

The shift of variable in Eq. (A24) also implies a Gaussian integration (in Euclidean space), where the linear terms in / vanish
after integration. In this way

2(6—1 in*|q B|x tanh(|g,B|x;) p| p4
z—gzx:” (0 ) X 2pHpJ_ p|: p” m%(x1+x2):| — |qf | 22 f |1 &L . (A41)
no (x+x) (x1 +x,)* [tanh(|g,B|x;) +tanh(|g,B|x,)]
Putting together these results
_ilgsB x,el4rBx ginh(|g ,B|x
o — ilqr |:T /d2 2 — (lg¢Blx;) XX 2 —m%(xl +x)
(27) (x1 + xp)7sinh?[|q /B (x; + x,)] x; +x, -
tanh(|qB|x,) tanh(|q/B|x,)  p3
X ex [— L L —| (P[P + pip). (Ad2)
tanh(|g,B|x;) + tanh(|g,B|x,) |q,B|

The structure #;” is obtained from #;” after the shift n’ = n — 1 which means introducing a factor —e~2l9/5%1 | thus
i|g/B|x x,e” 198 sinh(|q B|x
o l|qs |4 /d2 2 - (lg7Blx1) exp{ X1 X pz—m%(x1+x2)]
(27) (x1 + xp)*sinh?[[q/B|(x| + x,)] X1+ X2 ‘

conp[- b bo1). 1}
tanh(|q/B|x,) + tanh(|q/B|x,) |qB|

[t + ), (A43)

and therefore
ilg/B X, cosh B|x,) sinh(|q;B|x
t/;u_’_tgu:_ |qf2 |gz/d2x 2 (|;]f |21) (|qf | 1) |: X1X2
\ 87 (x1 + xp)?sinh?[|qB| (x| + x,)] Xp + X

y {_ tanh(|g,B|x,) tanh(|g;Blx;)  p3
tanh(|g,B|x,) + tanh(|g,B|x) [¢,B]

=i+ )

[t + (Ad4)
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Coming now to the terms #” and 75", we notice that they share a common tensor form. Starting from 7", the expression for
74" is obtained by replacing x; — x, and p — —p. Moreover, 7 is obtained from #" by performing the shift m’ = m — 1
which amounts to introducing a factor —e~214/8l2, Implementing these observations, we get

B =

ilgsB| , [ , xjcosh(|g;B|x,)sinh(|q;B|x;) X1,
o2 9 X 2t
87 (x1 + x2)?sinh?[|q B (x| + x,)] X+ x;
e {_ tanh(|g,B|x,) tanh(|g/B|x;)  p3
tanh(|qB|x;) + tanh(|q,B|x,) |q,B]

=i+ )

] (PP + PP, (A45)

then

lquBl / dzx X1X
Y 2 2 _ 2
s T =m0 | st Bl n ) [ P )

y [_ tanh(|g,B|x;)tanh(|q,Blx;) p?
tanh(|q,B|x;) +tanh(|g,B|x,) |q/B]

[ sinn (2 Bla) + xssinh 2l B )+ 1 )
i v
= —@gz/dzxfo<x1,X2)f’3l (x1,x7). (A46)

Finally, the trace in the term #° is given by

Te{y Kir (KL — p1)} = 4l(ko - po + kD) g™ + 2K k5 — (phLky + pr k). (A47)

After introducing the Schwinger parametrization and performing the sum together with the shift in Eq. (A22), we get

Y 2, d’x tanh(|q/B|x;) tanh(|gBlx,) p?
ty = - 79 2 2 Xp |~
(27) cosh”(|g,B|x;)cosh*(|qB|x,) tanh(|qB|x;) + tanh(|q;B|x;) |q;B]|
* / Pl el / g, e (q) + ol — )p)g™ +24 ¢4 +20(c— Dptpl).  (Ad8)

where we have ignored linear terms in ¢ | and the variables 77 and o are defined in Egs. (A39). In Euclidean space, by means
of the change of variable given in Eq. (A24), the parallel integral is easily performed, yielding

w2 92/ x exp [ p2 — m2(x) + x,)]
(2x)* (x1 4+ x2) cosh2(|qu|x1)cosh2(|qu|x2) xp 4 x| !
tanh(|g,B|x;) tanh(|g/B|x;) p7 |, 0
X exp |— T (x1.x2), (A49)
tanh(|g,B|x,) + tanh(|g,B|x,) |q,B|
where
= / d*qe™](q} +o(c - 1)p}) g™ + 24/ q" + 20(c — 1)p* P, . (A50)

The last integral has a simple Gaussian form and it is straightforward to compute it, yielding

Ho_
Jy =

nlq,B [( __tanh(|g;B|x,) tanh(|g,B|x;) p1 ) .
[tanh(|gB|x) + tanh(|g¢B|x,)]? |q/B|[tanh(|g/B|x,) + tanh(|q/B|x,)]

g 2tanh(|qu\x1)tanh(|qu|x2) s (AS1)
*|qsB|[tanh(|g;B|x;) + tanh(|q,Blx,)] "+
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Putting all of this together, we get

3 i|61f3|2/ d’x K _ tanh(|g;Blx,) tanh(|g;B|x,) p ) y
8 (x1 + x;)sinh?[eB(x; + x,)] |q/B|[tanh(|q/B|x,) + tanh(|qB|x,)]

w =

g 2tanh(|q/B|x,) tanh(|qB|x,) p”p”}
* |ayB|[tanh(|qBx,) + tanh(|g,Bx;)] "7+

5_8%:292/dQXfO(xl’xz)fZU(xl,xz)- (A52)

APPENDIX B: TENSOR MANIPULATION OF EQS. (7)

In order to bring to light the tensor structure of Eq. (22), the terms f{" (x;. x5), f5 (x1. x,) and f%"(x1, x,) in Egs. (7) have
been factorized in a convenient way, so as to avoid the projection procedure which can lead to nonphysical contributions.

The tensor f4"(x;,x,) remains unchanged and the manipulation is made by direct inspection.

For f1¥(xy,2,):

2
XX m 2x1Xx
"(x1,%x,) = |qsB|coth[|q,B 1722 f v_ =Yy
S (x1,x2) |q‘f | H‘If |(xl+x2)}[<(x1+x2)3p+x1—|—x2 I (x1+x2)3pHpH

2
X1X2 2 mf v 2xle 2 v 2 v u

= |g,B| coth B [t S S — _ v
|Qf | co HQf |(xl+x2)}[<(xl+x2)3p+x1+x2>dl +(x1+x2)3 (p“ I pHgﬁ p||p||>

coth [[q,B|(x; + x5)] v v
= lqsB| (x{ ) 221202 p P + (m7(x1 +22)% = x1x2p7) g ]- (B1)
For f4" (x1,x,):
v _ |qB| . . Uy v H
(1) = e sinb(2lq Blxy) + x sinb(2lq Bl J(ppt, + ik, (B2)

2(xy + x;)?sinh?[|qB|(x; + x)]

Notice that

prpY = (P = P(ph — P = Ppj + PPt — (Pt + PiplL). (B3)
therefore,
(PP + pip'D) = pipl + Plpt = p'p¥ = pipY + PPt - 't + PP - PP
p'p*
v v
=p’ (g”” —7> + PP+ PPt = (P = P9 + d1)
p'p* v v v
N G S B RV T
pp*
v v v v v v v v
=p’ (9"” —r | —7”1> + PP+ PP = p P+ I = pidt + iy
= p*Py = PP + piPY = pid + plg)” (B4)

Thus,

|q¢B|[x sinh(2[q;B|x;) + x; sinh(2|qB|x;)]
HY X1, X)) = — i 273}41/_ 2fpﬂv+ 273#1/_ 2 V+ 2 pv . B5
3 (X1, x2) 2(x1 + x,)? sinh? [|g¢B|(x) + x,)] (P*Py —r1 | TP L PHQ}i PLQ}\T ). (B5)

Finally, for f4"(x;, x,), given that
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Pt =rip + pidt = pidt = piPY - pidl, (B6)
we have
Py xy) = \qu|2 [( B tanh(|g,B|x,) tanh(|g,B|x,) p2>g"”
e (xy + x;)sinh?[|g ;B[ (x; + x,)] |q¢B|[tanh(|q;B|x;) + tanh(|q,B|x,)] "+

_ 2tanh(|qu|x1) tanh(|qu|x2) p” p” :|
|q;B|[tanh(|g;B|x;) + tanh(|q,Bx,)] "+
_ lqBJ? [( 3 tanh(|g,B|x;) tanh(|g;B|x,) p2>g"”
(x1 + xp)sinh?(|g B|(x; + x,)] |q¢B|[tanh(|q,B|x;) + tanh(|q,B|x,)] "+
e 2tanh(|gB|x;) tanh(|q,B]x,) v 2tanh(|g;B|x;) tanh(|q,B]x,)
*lqsB|[tanh(]q,Bl|x;) + tanh(|g,B|x,)] " =  [q B|[tanh(|g;B|x;) + tanh(|g B|x,)]

_di”

A e

By collecting the common terms of the structures Pﬁ”, P’f and P,", we find the coefficients of Egs. (23)—(27).

APPENDIX C: ELIMINATION OF SPURIOUS TENSORS

In order to eliminate the spurious contributions, we follow the procedure discussed in Ref. [22]. First, let us scale the x
parameters, such that x; — Az;, with (4, z;) € R. Therefore, the integral that involves the coefficient A; is

tanh(A|q,B|z;) tanh(A|qB|z;) p?
7 :/12/41'2 ex [ﬂ( A% o a0 4 )] ex [— S / L
4 she ol [ e pla+2) P tanh(2|qB|z,) + tanh(2|¢,B|z,) |¢/B|

{coth [AlgsB|(z1 + 22)] zy sinh(2|g/B|z;) + z, sinh(24]q,Blz;)
/1(Z1 + Zz>3 Z/I(Zl + Zz)zsinhz[ﬂlquBKZl + Zz)] =

4 |q /B <] 3 tanh(4|q;B|z,) tanh(4|q;B|z>) 2 ) }
Mz1 + z2)sinh?[Aq,B|(z) + 22)] |q/B|[tanh(2[q;B|z;) + tanh(A|q,B|z,)] ) |’

(m(z1 + 22)* = 21220]) +

which can be written as

0

= —A— < 2122
A — coth |4 B + exp (A 2 _ 2 ):|
Ty, 5‘/1/ (z1 +22)2 [lqsB|(z) + z2)] exp [ <Z1 - pj| my(z) + 22)

e {_ tanh(4|q,B|z,) tanh(4|q,B|z,) Pi}
tanh(A|g;B|z;) + tanh(4|q,B|z,) |q;B|]’

(€2)

Scaling back Az; — x;, we obtain

X1Xp _ tanh(|q,B|x;)tanh(|q;B|x,) p%
tanh(|g,B|x,) +tanh(|q,B|x,) |q,B|]’

(C3)

0 d*x
Lo, =—4 /ﬁCOthHQfBle‘sz)]eXP[

iy 2 _ 2
oA X1 +X2) X1 +X2PH mf(xl +XZ):| Xp |:

and thus, the derivative is applied to a function independent of A. Therefore 7, = 0.

The implementation of the same argument for Z 4, is more involved, given that the function is not a trivial combination of
coefficients for pﬁ and p3 . After the A-scaling, the integral is

IA —ﬂz/LzI(ﬂZ],ﬂz), (C4)
’ Mz +22)

where
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I(ﬂzl,ﬂzz) :fO(/lzlleZ) 7

(z1 + 2z2) sinh(4|q¢B|z;) sinh(A]q,B|z,) ,
N 3 pL ’ (CS)
sinh®[4|q/B|(z + 22)]

cosh W%BKZz - 21)] ( 2122
sinh [A|q/B|(z) + 22)] \z1 + 22
_ 21 8inh(24|g,B|z5) + 2 sinh(24[gBlz)

2sin?[1]¢B](z; + 22)] i

1
pj+mi(z + 22) + >

so that by expanding in a Taylor series around 4 = 0 it is possible to find that

B 1 2|q;B|*(z1 +22)* (23 —4z120 + 23) +3(21 2207 — 2 (21 +22)%)?
|q¢B|(z1 +22)4 6q,Bl(z1 +2,)°
/12
b [(Bp*2 2 -3m?p2z2 (2 + 22) +m* (2 +20)) (21 +20)2m?
6l Bl(zs w2y o AR TR Pt a)eta ta) T o)
—2122(p°2223 = 2|q B (21 +22)*(P* (21 —22)* = P2 21 22))]
13
+
1080|q]fB|(Z1+Z2)
= 60|qB* (21 +22)*(p*2120 —m* (21 + 22)*) (m? (21 + 22)* (23 = 42122+ 23)
+2122(p* (32 — 4212, 4+ 323) —6p3 2122) )| + O(A%), (Co)

A

/I(/lZl,ﬂZQ)dﬂ =

s[45(p* 2120 = m? (21 + 22)%)* +8lq B (21 + 22)* (2} + 42z, = 242125 +42123 + 23)

where the desired scaling properties are recovered and hold for all orders in A. This means that it is possible

to write

/ I(/IZl N /1Z2)d/1 =

thus

1

0
Uz d2) =5 {‘ 2Bl )

and therefore, Z,, = 0.

lg/B|(z) + 22)A

+ h(/lzl,/lzz)] = % [

1
+ h(Azy.22,), (C7)

1

_——|—hx , X :0, C8
lgB|(x) + x2) (o1 %2) (C8)

The above argument is valid for all values of A. Consequently, the result can be taken as general.
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