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We investigate the quantum channel consisting of two localized quantum systems that communicate
through a scalar quantum field. We choose a scalar field rather than a tensor or vector field, such as the
electromagnetic field, in order to isolate the situation where the qubits are carried by the field amplitudes
themselves rather than, for example, by encoding qubits in the polarization of photons. We find that suitable
protocols for this type of quantum channel require the careful navigation of several constraints, such as the
no-cloning principle, the strong Huygens principle and the tendency of short field-matter couplings to be
entanglement breaking. We nonperturbatively construct a protocol for such a quantum channel that
possesses maximal quantum capacity.
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I. INTRODUCTION

There exists much technology for sending information
through the electromagnetic field but the underlying theory
has traditionally been based on classical approximations of
the senders, the fields, the receivers and of the transmitted
information itself. Fundamentally, it is of course necessary
to develop a theory for the transmission of information
through fields that is fully quantized. This theory has been
partially developed, in particular, with advances in the
fields of quantum optics and relativistic quantum informa-
tion theory. For instance, the rotating wave approximation
has been used extensively in quantum optics to study the
light-matter coupling [1], but it has recently been shown
that in certain regimes such an approximation can lead to
violations of causality by observers attempting to commu-
nicate through a quantum field [2–6]. It has also been
studied how the Unruh-DeWitt (UDW) model [7] effec-
tively describes the interactions of first quantized systems
(such as atoms or qubits) with relativistic quantum fields,
and it has been successfully used to explore the inherently
relativistic aspects of coupling light to matter [8]. Recent
progress in quantum technologies such as quantum cryp-
tography, quantum computing and quantum sensing now
lends urgency to the task of developing a theory that treats
senders, fields, receivers and the transmitted information
fully quantum theoretically.
Several new phenomena that arise from the quantum

nature of senders, fields and receivers are already known.
For example, it is known that when there are multiple
emitters, then the overall radiation field that they emit can
be shaped not only by suitably choosing relative phases
among the emitters (as usual) but also by suitably

preentangling the emitters [9]. It is also known that, in
suitable circumstances, it is possible to transmit informa-
tion through the field without transmitting energy to the
receiver. Instead, there is an energetic expense for receiving
the signal which is borne by the receiver. This result can
be traced to the wave phenomenon [10] that the
strong Huygens principle (which states that massless
fields propagate only on but not in the light cone) can
be violated, namely in (1þ 1)- and in ð1þ 2nÞ-dimen-
sional Minkowski spacetimes, as well as in all spacetimes
of any dimensions if they possesses generic curvature.
All of the above results about the quantum channel from

a quantum sender via a quantum field to a quantum receiver
concern the transmission of information that is classical.
Concerning the transmission of actual quantum information
(which involves the transmission of preestablished entan-
glement with an ancilla), it is possible and often convenient
to encode qubits in spin degrees of freedom of the field,
such as the polarization of photons, see e.g., [11–17], which
can be used, for example, for the purposes of quantum key
distribution [18,19]. However, when the quantum informa-
tion is encoded in the polarization, interesting intricacies of
the propagation of quantum information through a quantum
field are bypassed, as the qubit simply “rides” on a carrier
photon.
Fundamentally, these intricacies are important, as quan-

tum information can also be encoded in the field amplitudes
themselves, irrespective of polarization, for example, even
in a scalar field. In this context, it is known, for example,
that if the interaction between the sender (or the receiver)
and the quantum field is chosen too short then the
interaction tends to become entanglement breaking [20].
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It is also known that the no-cloning theorem [21] imposes
strong restrictions on the quantum channel capacities
among emitters and receivers, see [22] for the case of
(1þ 1)-dimensions.
In the present paper, we will study the quantum channel

capacity of the quantum channel consisting of an emitting
quantum system that encodes the quantum information into
a scalar quantum field in (3þ 1)-dimensions, the propa-
gation and spread of the quantum information through the
quantum field, and finally the receipt and decoding of the
quantum information by an absorbing quantum system. We
will thereby be able to study the fundamental constraints
eluded to above, from the tendency for entanglement
breaking in short interactions, to the no-cloning principle
and the surprising implications of violations of the strong
Huygens principle. We will demonstrate how these con-
straints can be navigated, at least in principle, by con-
structing a protocol which does achieve maximal quantum
channel capacity.

II. SETUP

In this section we will introduce background knowledge
about the qubit-field interaction model we consider, and
review the notion of quantum channel capacity.

A. Unruh-DeWitt model

To study the ability of a pair of localized first-quantized
quantized systems, Alice and Bob, such as atoms or
molecules, to send and receive quantum information
through a quantum field, we will consider a setup [23]
which models the quantum system of the sender (as well as
that of the receiver) as a single qubit by considering only
two of its energy levels. In our setup, these qubits couple to
a scalar field rather than a vector or tensor field because we
are here interested not in encoding qubits in polarization
degrees of freedom but in the field amplitudes themselves.
The coupling between the sender (and receiver) system and
the quantum field is modeled as a standard Unruh-DeWitt
(UDW) interaction [7] which has been shown to produce
qualitatively the same predictions as the full electromag-
netic light-matter interaction in situations where the angular
momentum exchange between light and matter can be
ignored [8,24]. Crucially, in order to capture the new
phenomena that we are interested in here, we will not
make any of the simplifying assumptions that are often
used in quantum optics, such as the single-mode or rotating
wave approximation common in the Rabi, Glauber or
Jaynes-Cummings light-matter interaction models [1].
Concretely, we let Alice and Bob each locally couple

their two-level quantum system [which we will refer to as
an Unruh deWitt (UdW) detector] to a scalar quantum field
ϕ̂ðx; tÞ. We take the free Hamiltonian of qubit ν ∈ fA;Bg
to be Ĥν ¼ Ωνσ̂z, with Ων the energy gap and σ̂z the Pauli
z-operator. We denote the excited and ground states of Ĥν

as j�zi, with eigenvalues �Ων, respectively.
1 Meanwhile,

the field ϕ̂ðx; tÞ, and its conjugate momentum π̂ðx; tÞ, can
be conveniently expanded in plane wave modes as

ϕ̂ðx; tÞ ¼
Z

ddkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞdjkj

p ðâ†keiðjkjt−k·xÞ þ H:c:Þ; ð1Þ

π̂ðx; tÞ ¼
Z

ddkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞdjkj

p ðijkjâ†keiðjkjt−k·xÞ þ H:c:Þ; ð2Þ

where the creation and annihilation operators â†k and âk
satisfy the canonical commutation relations

½âk; âk0 � ¼ ½â†k; â†k0 � ¼ 0; ½âk; â†k0 � ¼ δðdÞðk − k0Þ: ð3Þ

Note that we are considering the field and the observers to
live in a flat spacetime of arbitrary spatial dimension d. We
will assume that before it interacts with the detectors, the
field is in its ground state j0i, defined by the condition
âkj0i ¼ 0 for all momenta k ∈ Rd.
We can describe the interaction between comoving

inertial detectors ν (where we use the label ν to denote
Alice and Bob’s detectors, ν ∈ fA;Bg) and the field by
specifying a local interaction Hamiltonian, ĤI;νðtÞ.
Working in the interaction picture of time evolution, we
will consider interaction Hamiltonians of the form

ĤI;νðtÞ ¼ λχðtÞm̂ðtÞ ⊗ ÔðtÞ: ð4Þ

Here λ is a coupling strength, χðtÞ is an explicitly time-
dependent switching function, and m̂ðtÞ and ÔðtÞ are qubit
and field observables which contain an implicit time
dependence coming from the fact that we are working in
the interaction picture. For instance if the qubit couples
through its σ̂x observable, then m̂ðtÞ is referred to as the
monopole-moment operator, and reads

m̂ðtÞ ¼ jþzih−zjeiΩνt þ j−zihþzje−iΩνt: ð5Þ

On the other hand, in order to ensure that the coupling
between the observer ν and the field is physical, the field
observable ÔðtÞ entering the interaction Hamiltonian must
be local in spacetime (restricted to the region where the
observer is located). To that end, for an observer coupling
to the field at time t, we will allow ÔðtÞ to be of the general
form

ÔðtÞ ¼ ϕ̂½F1�ðtÞ þ π̂½F2�ðtÞ; ð6Þ

1Throughout this paper we will use the notation j�si for the
eigenstates of σ̂s, s ∈ fx; y; zg, with eigenvalues of �1. We will
alternatively sometimes denote jþzi as jei and j−zi as jgi, when
we want to emphasize that these are the ground and excited states
of the free detector Hamiltonian.
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where for any field operator at a spacetime point L̂ðx; tÞ we
defined the smeared operator L̂½F�ðtÞ as

L̂½F�ðtÞ ≔
Z

ddxFðxÞL̂ðx; tÞ: ð7Þ

In order for ÔðtÞ in Eq. (6) to indeed be a local observable
for the observer in question, the smearing functions F1 and
F2 need to have support in the region of space at time t
where the observer is located. Note however that we do not
require the observer to couple with the exact same smearing
to the ϕ̂ and π̂ fields; from a physical perspective this is
analogous to an extended observer coupling his spatial
profile differently to the electric and magnetic fields, as is
actually the case in the light-matter interaction [1]. More
complicated (i.e., nonlinear) local field observables ÔðtÞ
could also be considered, although these can lead to
divergences that must be carefully dealt with (see, e.g.,
[25,26]).
Following the specification of a qubit-field interaction

Hamiltonian ĤI;νðtÞ as in Eq. (4), we can formally write
down the time-evolution unitary Û generated by this
Hamiltonian as

Û ¼ T exp

�
−i

Z
∞

−∞
dtĤI;νðtÞ

�
; ð8Þ

where the T denotes the time-ordering operation. For
general detector switching functions χðtÞ, the need for
time-ordering makes a closed-form evaluation of time-
evolved states impossible, instead allowing only for a
perturbative approach to the problem. Of course, such a
perturbative approach can only be taken when the coupling
λ between qubit and field is small with respect to the other
scales of the problem.
If instead a strong-coupling result is sought after, there

are various nonperturbative methods that can be used (see,
among others, [20,27–34]). In this study, to attain non-
perturbative results, we are going to consider the qubit
detector switching function to be χðtÞ ¼ P

n
i¼1 δðt − tiÞ

with ti < tiþ1, i.e., we require that the detector only
interacts with the field at discrete instants in time. Then
we can rewrite the time evolution unitary in Eq. (8) as
Û ¼ ÛnÛn−1…Û1, where Ûi is defined as

Ûi ¼ exp ½−iλm̂ðtiÞ ⊗ ÔðtiÞ�: ð9Þ

The derivation of this result is shown explicitly in
Appendix C of [20]. Notice that the time-ordering oper-
ation T appearing in Eq. (8) has served its purpose by
ensuring the unitaries Ûi act in order of increasing time, and
thereafter T no longer appears in the expression for Û.
Therefore an exact analytical expression for the time

evolved state of the detector-field system can be obtained,
as will be exemplified later on.
Although we will not make use of it in this paper, let us

briefly mention here another related technique which
allows for a nonperturbative study of relativistic light-
matter interactions. Namely, as studied in detail in
[27,28,35], instead of avoiding the issues with time-
ordering by requiring the qubit detectors to interact at
discrete moments in time, one can alternatively avoid this
issue by considering degenerate detectors. Namely, since
degenerate detectors have free Hamiltonians which are
proportional to the identity, their free time evolution is
trivial, and hence this allows one to bypass the difficulties
posed by the time ordering operation in a more indirect
manner. More concretely, as discussed in [36], by perform-
ing a Magnus expansion [37] of the evolution unitary Û
in Eq. (8) we find that in the case of a degenerate detector
this expansion contains only two nonvanishing terms, thus
allowing us to work nonperturbatively.
Now that we have an understanding of the Unruh-DeWitt

light-matter interaction model, which we will use to
describe the interactions of our observers Alice and Bob
to a quantum field, let us now formulate more concretely
the main problem of this paper.
Let us consider a tripartite quantum system composed of

two qubits (A and B) and a massless scalar field ϕ̂. We
assume that the field starts in its vacuum state j0i and that
qubit B is initially in some predefined state ρ̂B;0. Then, we
define a quantum channel Ξ from Alice to Bob as a map
which takes as input a state ρ̂A;0 on Alice’s Hilbert spaceHA

and outputs a state Ξ½ρ̂A;0� on Bob’s Hilbert space HB.
Concretely, we write this channel as

Ξ½ρ̂A;0� ≔ TrAϕ½ÛBÛAðρ̂A;0j0ih0jρ̂B;0ÞÛ†
AÛ

†
B�; ð10Þ

where Ûν is a unitary between qubit ν and the field. Note
that we are requiring qubit A to interact with the field prior
to qubit B. A circuit diagram of the channel Ξ is shown
in Fig. 1.
The problem which we are interested in can now be

formulated as follows: Suppose that qubit A has access to
the field in some region of spacetime centered at ðxA; tAÞ
and that qubit B couples to the field at some later time
tB > tA. We ask two questions:
(1) Can we construct local unitaries ÛA and ÛB such that

the channel Ξ is able to transmit quantum informa-
tion from A to B?

FIG. 1. Quantum channel Ξ from Alice to Bob via a quantum
field, which starts in its ground state j0i.
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(2) Is it possible for Ξ to transmit quantum information
perfectly? If so, where in space does qubit B have to
be located? In other words: where does the quantum
information that Alice puts into the field propagate?

Answering these two questions is the main aim of this
paper. However, before we can proceed with this, we must
clarify what is meant by a channel being able to transmit
quantum information. This is done in the following section.

B. Quantum channel capacity and coherent information

Suppose that we have a channel Ξ mapping the states of
some Hilbert spaceHA to the states of Hilbert spaceHB. In
order to quantify the amount of quantum information that
can be sent through the channel, we first need to define the
coherent information Icðρ̂A;0;ΞÞ associated with the chan-
nel Ξ and an input to the channel ρ̂A;0. To that end, we note
that it is always possible to introduce a Hilbert space HC

and a state jψi ∈ HC ⊗ HA such that ρ̂A;0 ¼ TrCjψihψ j;
i.e., such that jψi is the purification of ρ̂A;0. Then, we set

ρ̂CB ≔ ð1C ⊗ ΞÞðjψihψ jÞ; ð11Þ

and we define the coherent information Icðρ̂A;0;ΞÞ as [38]

Icðρ̂A;0;ΞÞ ≔ Sðρ̂BÞ − Sðρ̂CBÞ; ð12Þ

where ρ̂B ≔ Ξðρ̂A;0Þ and Sðρ̂Þ ≔ −Trρ̂ log2 ρ̂ is the von
Neumann entropy of the state ρ̂, in units of bits.
Although this definition of the coherent information is

somewhat involved, it offers a very intuitive physical
interpretation of its meaning. To see this, first note that
before we put it through the channel Ξ, the system A was
initially only entangled with the purifying system C. The
coherent information Icðρ̂A;0;ΞÞ then quantifies how much
of that entanglement between A and C is transferred to B
and C. We can see this directly from Eq. (12): the first term
Sðρ̂BÞ, being the entropy of system B, quantifies how
entangled B is with the rest of the universe (i.e., with C as
well as any additional “channel environment” implicit in
the definition of the channel Ξ), while the second term,
Sðρ̂CBÞ, is a measure of the entanglement of B and C
with the channel environment. Hence the difference
Icðρ̂A;0;ΞÞ ¼ Sðρ̂BÞ − Sðρ̂CBÞ quantifies, in a way analo-
gous to the classical mutual information [39], the amount of
correlations (in this case in the form of entanglement)
between B and C. In particular, as we prove in the
Appendix, Icðρ̂A;0;ΞÞ > 0 only if ρ̂CB is a nonseparable
state on HC ⊗ HB.
With the above definition of the coherent information,

we can now define themaximal coherent information of the
channel Ξ, denoted ImaxðΞÞ, as

ImaxðΞÞ ≔ max
ρ̂A;0

Icðρ̂A;0;ΞÞ; ð13Þ

where the maximization is taken over all inputs ρ̂A;0 to the
channel. Finally, the quantum channel capacityQðΞÞ of the
channel Ξ can be defined as [38]

QðΞÞ ¼ lim
n→∞

1

n
ImaxðΞ⊗nÞ: ð14Þ

Physically, the quantum channel capacity QðΞÞ can be
understood as a sort of “average per instance of the
channel” of the coherent information of n copies of the
channel. As such, it gives an idea of the amount of quantum
information that can be coherently transmitted by the
quantum channel, still taking into account that purposefully
using n copies of the channel can be better than n
independent uses [38]. Unfortunately however, while the
formula (14) provides an intuitive interpretation of the
quantum capacity as being the maximal coherent informa-
tion of many copies of the channel being allowed to work in
parallel, it is generally not possible to evaluate this limit and
obtain a closed form expression for QðΞÞ. Instead, it is
often only possible to compute lower bounds on QðΞÞ,
such as [40,41]

QðΞÞ ≥ ImaxðΞÞ ≥ Icðρ̂A;0;ΞÞ: ð15Þ

In particular, computing Icðρ̂A;0;ΞÞ is generally much more
straightforward than computing QðΞÞ. For this reason, in
what follows we will quantify the ability of the quantum
channels proposed to transmit quantum information by
computing its coherent information. Although this is only a
lower bound on the full channel capacity QðΞÞ, we will
show that, in our case, we can construct the channel Ξ so
that it has a coherent information arbitrarily close to 1 with
respect to the maximally mixed input state ρ̂A;0 ¼ 1

2
1A.

Since we will consider channels that take as input a single
qubit state, we also know that necessarilyQðΞÞ ≤ 1. Hence
we will show how to construct a channel transmitting
qubits through a quantum field with a quantum channel
capacity that is arbitrarily close to its maximal value. In
other words, we will construct a perfect, field-mediated
quantum channel.

III. CONSTRUCTING A PERFECT
QUANTUM CHANNEL

Let us now proceed to construct a quantum channel Ξ of
the form (10), which allows a (inertial) sender Alice to
transmit a qubit of information through a quantum field to
some future receiver Bob, who is relative rest with respect
to Alice. To that end, let us suppose that Alice is located in a
region of space characterized by the smearing function
FAðxÞ, and that she wishes to encode her message into the
field at time tA. Then we would like to answer the following
questions: Where in space should Bob be located at time
tB > tA, and what should the unitaries ÛA and ÛB be, in
order for Bob to recover the entirety of Alice’s message?
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Before we proceed to answering these questions, let us
remind ourselves that our ultimate goal is not just to
construct a free space quantum channel between two
observers; indeed, as discussed in the Introduction, free
space quantum channels have already been realized exper-
imentally over distances as large as 1000þ km, typically
in the context of establishing entangled pairs between
distant receivers for the purposes of implementing quantum
key distribution protocols [11–17]. Rather, our goal is to
understand, from a fundamental relativistic quantum infor-
mation perspective, exactly how quantum information is
encoded into, propagated through, and decoded out of, a
quantum field, and where this quantum information is
localized in spacetime. To that end, let us attempt to
construct the channel Ξ to be as simple as possible, so
that we may try to understand its essential features without
being distracted by the unessential ones.
With this additional requirement of simplicity for our

channel Ξ, let us attempt to generate the time-evolution
unitaries ÛA and ÛB defining the channel out of the
simplest possible type of interaction Hamiltonians: those
which couple the qubits A and B to the field only at discrete
instants in time. Conveniently, as discussed in Sec. II A, by
constructing our channel out of these simple couplings, we
have the additional advantage that our analysis will be fully
nonperturbative.
In fact, the ability to study our problem nonperturba-

tively is not merely a nice convenience that arises out of
using simple-generated interaction unitaries. More cru-
cially, as we will now prove, if we want the quantum
channel Ξ from Alice to Bob to be a perfect quantum
channel (i.e., to have a maximum possible quantum channel
capacity QðΞÞ ¼ 1), then it is necessary that the channel is
constructed out of nonperturbative couplings between
Alice and Bob’s qubits and the field.
The proof of this claim is rather trivial. Let us suppose

that the coupling between the qubits and field is quantified
by some coupling strength λ, and let us consider the
quantum channel capacity QðΞÞ as a power series in λ.
Clearly if λ ¼ 0, the qubits A and B do not couple to the
field, and hence we would have QðΞÞ ¼ 0. Hence we can
write

QðΞÞ ¼ 0þOðλÞ; ð16Þ

and thus we see that if the coupling λ is weak—in units set
by the other scales in the problem—then QðΞÞ would, at
best, only differ by a small amount (i.e., an amount much
less than one) from zero. Hence if we want to have
QðΞÞ ≈ 1, we must consider couplings λ in the nonpertur-
bative regime.

A. Simple-generated couplings

The simplest possible unitaries ÛA and ÛB coupling the
qubits A and B to the field are of the form

Ûν ¼ exp ðiλνm̂ν ⊗ ÔνÞ; ð17Þ

where we abbreviate m̂ν ≔ m̂ðtνÞ for the qubit observables
and Ôν ≔ ÔðtνÞ for the field observables. We will call
unitaries of this form “simple-generated” or “rank-1 uni-
taries” because they are the exponential of a simple
Schmidt rank-1 tensor product of qubit-field observables.
We claim that if either ÛA or ÛB are of the simple-generated
form, then the channel Ξ in Eq. (10) is not able to transmit
quantum information.
To prove this claim, let us first use our requirement that

qubit A interacts with the field before qubit B to decompose
the channel Ξ from A to B in Eq. (10) to read Ξ ¼ ΞB∘ΞA,
where ΞA is a channel from A to the field defined by

ΞAðρ̂AÞ ≔ TrA½ÛAðρ̂A ⊗ j0ih0jÞÛ†
A�; ð18Þ

while ΞB is a channel from the field to B defined by

ΞBðρ̂ϕÞ ≔ Trϕ½ÛBðρ̂ϕ ⊗ ρ̂B;0ÞÛ†
B�: ð19Þ

Next, we note that in Ref. [36] it was shown that unitaries of
the simple-generated form necessarily give rise to entan-
glement breaking channels, which are defined as follows:
Definition 1: A channel χ from states onHA to states on

HB is said to be entanglement breaking if for any state ρ̂AC
on HA ⊗ HC the state ðχ ⊗ 1CÞðρ̂ACÞ on HB ⊗ HC is
separable.
Thus we find that if Ûν is simply-generated, then Ξν is an

entanglement breaking channel. However, we previously
noted that the coherent information in Eq. (12) is greater
than zero only if entanglement can be transferred through
the channel. Hence, from the above definition of an
entanglement breaking channel, we find that if either ÛA

or ÛB are of the simple-generated form then the maximal
coherent information IcðΞÞ of the channel Ξ is zero.
Notice however, that this does not yet prove that the

quantum capacityQðΞÞ of the channel Ξ is itself zero, since
IcðΞÞ is only a lower bound onQðΞÞ. Let us now show that
it is indeed the case that QðΞÞ ¼ 0 if either ÛA or ÛB are
simply-generated unitaries.
The proof of this stronger claim starts with the expres-

sion Eq. (14) for the quantum channel capacity of Ξ in
terms of the maximal coherent information of Ξ⊗n for
large n. Using the fact that Ξ⊗n ¼ Ξ⊗n

B ∘Ξ⊗n
A we note that if

either of the Ξ⊗n
ν are entanglement breaking then Ξ⊗n will

have a maximal coherent information of zero (as discussed
above), and hence QðΞÞ ¼ 0. To that end, let us start by
proving that Ξ⊗n

A is entanglement breaking.
To prove that Ξ⊗n

A is entanglement breaking, we need to
show that for any Hilbert space HC, and any (potentially
entangled) state ρ̂C;An ∈ HC ⊗ H⊗n

A , the state ð1C ⊗
Ξ⊗n

A Þðρ̂C;AnÞ is a separable state on HC ⊗ H⊗n
ϕ . We thus

compute
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ð1C ⊗ Ξ⊗n
A Þðρ̂C;AnÞ

¼ TrAn ½ÛA1…ÛAnðρ̂C;An ⊗ ðj0ih0jÞ⊗nÞÛ†
An
…Û†

A1
�: ð20Þ

To proceed we note that we can express any qubit
observable m̂A as

m̂A ¼
X
s∈f�g

sP̂s; ð21Þ

where P̂� ≔ j�zih�zj are projectors onto the � eigen-
states of σ̂z. With this decomposition of m̂A, we can write
ÛA from Eq. (17) as

ÛA ¼
X
s∈f�g

P̂s ⊗ Ûs; ð22Þ

where Ûs ≔ expðisλÔAÞ. Note that when written in this
form, it is manifest that a rank-1 unitary ÛA can be viewed
as a controlled unitary, where the state jszi of the qubit
controls the unitary operation Ûs performed on the field.
Inserting Eq. (22) into Eq. (20) we obtain

ð1C ⊗ Ξ⊗n
A Þðρ̂C;AnÞ ð23Þ

¼
X
si;s0i

TrAn ½P̂s1…P̂snðρ̂C;An ⊗ Ûs1 j0ih0jÛ†
s0
1
⊗ …

⊗ Ûsn j0ih0jÛ†
s0n
ÞP̂s0n…P̂s0

1
�; ð24Þ

where the subindex i runs from 1 to n. Using the cyclicity
of the partial trace with respect to the system being traced
over, and the fact that P̂si P̂s0i

¼ P̂siδsis0i since P̂si are
projectors, Eq. (23) simplifies to

ð1C ⊗ Ξ⊗n
A Þðρ̂C;AnÞ

¼
X
si

TrAn ½P̂s1…P̂snðρ̂C;An ⊗ Ûs1 j0ih0jÛ†
s1 ⊗ …

⊗ Ûsn j0ih0jÛ†
snÞ�: ð25Þ

Finally, defining

pðs1;…; snÞ ≔ Tr½P̂s1…P̂sn ρ̂C;An �; ð26Þ

ρ̂Cðs1;…; snÞ ≔
1

pðs1;…; snÞ
TrAn ½P̂s1…P̂sn ρ̂C;An �; ð27Þ

ρ̂ϕnðs1;…; snÞ ≔ Ûs1 j0ih0jÛ†
s1…Ûsn j0ih0jÛ†

sn ; ð28Þ

where ρ̂Cðs1;…; snÞ is a density matrix on the Hilbert
space HC, ρ̂ϕnðs1;…; snÞ is a density matrix on H⊗n

ϕ , and
pðs1;…; snÞ ≥ 0 with

P
si pðs1;…; snÞ ¼ 1, we can write

ð1C ⊗ Ξ⊗n
A Þðρ̂C;AnÞ as

X
si

pðs1;…; snÞρ̂Cðs1;…; snÞ ⊗ ρ̂ϕnðs1;…; snÞ; ð29Þ

which is a manifestly separable state on HC ⊗ H⊗n
ϕ .

Hence the n-qubit channel Ξ⊗n
A is entanglement breaking

for all integers n > 0.
In an analogous fashion, we can prove that the channel

Ξ⊗n
B from the field to B is entanglement breaking, for all

integers n > 0. The only subtlety with this proof compared
to the one we just presented for Ξ⊗n

A , is that, because we are
now considering a channel from the field to a qubit, rather
than vice versa, we have to perform a spectral decom-
position of the field observable, rather than the qubit
observable. To perform this decomposition rigorously is
not trivial since the field observables acts on an uncount-
ably infinite dimensional Hilbert space. Nevertheless, since
the field observables are self-adjoint operators it is possible
to apply the spectral theorem to them, and hence obtain
such a spectral decomposition (see Appendix A of Ref. [36]
for full details of this calculation). In this manner, we can
show that a rank-1 unitary between a qubit and a field can
not only be written as a controlled unitary from the qubit to
the field, as in Eq. (22), but also as a controlled unitary from
the field to the qubit. In this way, the same argument that
was used above to show that Ξ⊗n

A is an entanglement
breaking channel can also be used to arrive at the same
conclusion for Ξ⊗n

B .
In conclusion we have shown that if either of the

unitaries ÛA or ÛB used to define the channel Ξ are of
the simple-generated form, then the quantum channel
capacity QðΞÞ is necessarily zero. In other words, sim-
ple-generated couplings between Alice and Bob’s qubits to
the field are too simple for the purposes of transmitting
quantum information through the field. Thus in order to
achieve quantum information transmission, we will need to
consider more complicated couplings.

B. Encoding a qubit into a field

In our attempt to construct a channel Ξ that allows a
spacetime emitter A to send a qubit through a quantum field
to a receiver B, we have come to the important conclusion
that such a channel is not possible if either of the observers
couple to the field through simple-generated unitaries
Ûν ¼ expðiλνm̂ν ⊗ ÔνÞ. The natural way to proceed with
constructing Ξ is to consider the next simplest types of
interaction unitaries Ûν, composed of two rank-1 unitaries
performed one after the other, i.e.,

Ûν ¼ exp ðiλν2m̂ν2 ⊗ Ôν2Þ exp ðiλν1m̂ν2 ⊗ Ôν1Þ; ð30Þ
where the λνi are coupling constants, the m̂νi are qubit
observables and the Ôνi are field observables. As we will
now show, we can indeed find unitaries of this form which
ensure that the quantum capacity of the channel Ξ is not
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only nonzero, but is in fact arbitrarily close to its theoreti-
cally maximal value of 1.
To understand this construction of the unitaries ÛA and

ÛB, it will be instructive to first consider a simple example
of a quantum channel that we know has perfect quantum
capacity. To that end, let us consider the setup in which
Alice and Bob would like to transmit a qubit of information
by encoding and decoding their message into and out of a
third qubit, F, rather than into and out of the quantum field.
In this case, we know that the channel shown in Fig. 2,
which simply swaps qubit A with F, and then F with B, is
clearly able to perfectly transfer qubit A to qubit B.
The key question thus becomes the following: Is it

possible to construct a channel analogous to the one in
Fig. 2 if we take the intermediary system to be a quantum
field ϕ̂ rather than a single qubit F? Indeed, our expectation
is that it should be possible, if only from the perspective
that we could exclusively couple the qubits to a two-
dimensional subspace of the field’s Hilbert space, which is
effectively equivalent to coupling to a third qubit F.
However there is one important distinction between this
field mediated channel and the qubit mediated channel in
Fig. 2. Namely, while in the latter case it makes sense to
construct the channel out of SWAP gates, it does not make
sense to talk about a SWAP gate between a qubit and a
field, since their Hilbert spaces have different dimensions
and are thus not isomorphic as vector spaces. In other
words, it is not possible to have a one-to-one identification
between the two basis states which span the qubit’s Hilbert
space with the infinitely many basis states spanning the
field’s Hilbert space—any such identification would nec-
essarily lose information about the field degrees of
freedom. To belabor this point we will call the gate which
encodes a qubit into a field an ENCODE gate, rather than a
SWAP gate, and similarly for the DECODE gate. Indeed
it should be possible to encode (and decode) the two-
dimensional Hilbert space of the qubit in the infinite
dimensional Hilbert space of the field. Thus the field-
mediated quantum channel which we are trying to construct
is shown in Fig. 3.
Our question therefore becomes the following: How can

an observer Alice, coupling to the field at time tA and with a
spatial extent given by the support of the smearing function
FAðxÞ, encode the state of her qubit into the field?
Let us suppose that Alice’s qubit is in some arbitrary

pure state c1jþzi þ c2j−zi and that the field is initially in
the vacuum state j0i. Consider the qubit-field unitary ÛA

given by

ÛA ¼ expðiσ̂xπ̂AÞ expðiσ̂zϕ̂AÞ; ð31Þ
where ϕ̂A and π̂A are smeared field observables defined as

ϕ̂A ≔ λϕ

Z
ddxFAðxÞϕ̂ðx; tAÞ; ð32Þ

π̂A ≔ λπ

Z
ddxFAðxÞπ̂ðx; tAÞ: ð33Þ

Note that the coupling constants have dimensions of ½λϕ� ¼
L

d−1
2 and ½λπ� ¼ L

dþ1
2 where d is the number of spatial

dimensions of spacetime. Also note that the unitary ÛA is
generated by the interaction Hamiltonian

ĤI;AðtÞ ¼ λϕδðt − t−A Þm̂z
AðtÞ ⊗

Z
ddxFAðxÞϕ̂ðx; tÞ

þ λπδðt − tþA Þm̂x
AðtÞ ⊗

Z
ddxFAðxÞπ̂ðx; tÞ; ð34Þ

where m̂z
AðtÞ is the σ̂z operator in the interaction picture [so

m̂z
AðtÞ ¼ σ̂z for all t since σ̂z is proportional to the detector’s

free Hamiltonian], m̂x
AðtÞ is the σ̂x operator in the inter-

action picture [i.e., it is the monopole moment operator
from Eq. (5)], and the times t�A ≈ tA are such that t−A is just
slightly less than tþA .

2

We now claim that the unitary ÛA in Eq. (31) effectively
encodes the state of the qubit in the state of the field, as long
as the following two conditions are satisfied:�

λϕ

Z
ddkjF̃AðkÞj2

�
2

≫
1

2

Z
ddkωkjF̃AðkÞj2; ð35Þ

γA ≔ λϕλπ

Z
ddkjF̃AðkÞj2 ¼

π

4
mod 2π: ð36Þ

Here and throughout the text we use the notation where
g̃ðkÞ denotes the Fourier transform of the function gðxÞ,
defined by

g̃ðkÞ ≔ 1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd

p
Z

ddxgðxÞeik·x: ð37Þ

This claim is straightforwardly proven by direct calcu-
lation. Acting on the initial state ðc1jþzi þ c2j−ziÞj0i with
the rightmost exponential in ÛA results in the state

c1jþzij þ αAi þ c2j−zij − αAi; ð38Þ
where j � αAi are coherent field states defined by3

j � αAi ≔ expð�iϕ̂AÞj0i: ð39Þ
It can be shown that the magnitude of the overlap between
the two coherent states j þ αAi and j − αAi is (see
Appendix A of [20])

FIG. 2. Perfect quantum channel from Alice to Bob via a third
qubit, F.

2Physically this amounts to saying that tþA ¼ t−A þ ϵ where
0 < ϵ ≪ Ω−1, with Ω being the free frequency of the detector.

3For a comprehensive overview of coherent states of a scalar
field and the notation used, see Refs. [20,42].
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jhþαAj − αAij ¼ exp

�
−ðλϕÞ2

Z
ddk
2ωk

jF̃AðkÞj2
�
: ð40Þ

Hence we see that if λϕ ≫ 1 in units of the characteristic
length scale set by FAðxÞ, then the field states j þ αAi and
j − αAi are almost orthogonal, and if jc1j ¼ jc2j ¼ 1=

ffiffiffi
2

p
the state in Eq. (39) is almost maximally entangled. In other
words, a stronger coupling between the qubit and the field
results in a more correlated (i.e., entangled) state of the two
systems.
The final step in evaluating the action of the unitary ÛA

on the initial state of the qubit-field system ðc1jþziþ
c2j−ziÞj0i is to apply the unitary expðiσ̂xπ̂AÞ to the
entangled state c1jþzij þ αAi þ c2j−zij − αAi. To perform
this calculation, let us first apply the field observable π̂A

to the coherent state j � αAi. To that end, using the Baker-
Campbell-Hausdorff lemma we can straightforwardly prove
the identity

expð�iπ̂AÞâk expð∓ iπ̂AÞ ¼ âk þ αAðkÞ1; ð41Þ
where the coherent amplitude ανðkÞ is defined as

ανðkÞ ¼
λϕνffiffiffiffiffiffiffiffi
2ωk

p F̃�
νðkÞeiωktν ; ð42Þ

and hence we find that

π̂Aj � αAi ¼ �γAj � αAi þ expð�iπ̂AÞπ̂Aj0i; ð43Þ
where γA is defined in Eq. (36). Hence we see that π̂Aj � αAi
is the sum of two terms, and in particular we find that if
γ2A ≫ h0jπ̂2Aj0i then

π̂Aj � αAi ≈�γAj � αAi: ð44Þ
In other words, if γ2A ≫ h0jπ̂2Aj0i—which is exactly equiv-
alent to the condition (35) whichwe are assuming to hold—
then the field coherent states j � αAi are very approxi-
mately eigenstates of the observable π̂A with eigenvalues
�γA. If additionally condition (36) is satisfied, then we find

ÛAðc1jþzi þ c2j−ziÞj0i
¼ expðiσ̂xπ̂AÞðc1jþzij þ αAi þ c2j−zij − αAiÞ

≈ c1 exp

�
þi

π

4
σ̂x

�
jþzij þ αAi

þ c2 exp

�
−i

π

4
σ̂x

�
j−zij − αAi

¼ jþyiðc1j þ αAi − ic2j − αAiÞ: ð45Þ
Note that in the second line we have used the identities
expðþi π

4
σ̂xÞjþzi ¼ jþyi and expð−i π

4
σ̂xÞjþzi ¼ −ij−yi,

which simply state that we can perform Bloch sphere
rotations of the eigenstates of σ̂z into the positive eigen-
value eigenstate jþyi of σ̂y by applying rotation unitaries

generated by σ̂x. Hence the unitary ÛA has succeeded in
encoding the orthogonal qubit superposition c1jþzi þ
c2j−zi into an (almost) orthogonal superposition of coher-
ent field states, c1j þ αAi − ic2j − αAi.
The results of this section can be summarized as follows.

An observer Alice coupling locally to a quantum field at a
time tA can effectively encode her qubit into the field by
implementing the unitary ÛA ¼ expðiσ̂xπ̂AÞ expðiσ̂zϕ̂AÞ,
as long as the conditions (35) and (36) are satisfied. For
instance, if Alice’s qubit starts in the equally weighted
superposition 1ffiffi

2
p ðjþzi þ j−ziÞ, then, as long as (35) is

satisfied, the rightmost exponential in ÛA will maximally
entangle Alice’s qubit with the field. Following this,
and assuming that (36) is satisfied, the leftmost exponential
in ÛA will then use the state of the field to perform a
controlled rotation in the Bloch sphere of the qubit, thus
leaving the field in an equally weighted, orthogonal super-
position of coherent states. In other words, the unitary ÛA

succeeds, through local operations, in encoding Alice’s
qubit into the field.

C. Decoding a qubit out of a field

Having understood how Alice can ENCODE her qubit
of information into the field, the final step in constructing
the field-mediated quantum channel from Alice to Bob,
as depicted in Fig. 3, is to construct the DECODE gate that
allows Bob to recover Alice’s message from the field.
The most straightforward way to proceed is to note that
the DECODE gate should simply be the inverse of the
ENCODE gate. Thus, since we know the unitary ÛA ¼
expðiσ̂xπ̂AÞ expðiσ̂zϕ̂AÞ implementing the encode gate,
we also know that the inverse unitary Û−1

A ¼ Û†
A ¼

expð−iσ̂zϕ̂AÞ expð−iσ̂xπ̂AÞ will implement the DECODE
gate. We can now simply set the unitary ÛB in Fig. 1,
which acts on detector B and the field, to be the unitary Û†

A

with the understanding that the qubit observables σ̂x and
σ̂z now act on the Hilbert space HB rather than HA.
Note however that there is a problem with this con-

struction of the decoding unitary ÛB. Namely, while we
have modified the qubit observables in ÛB from the ones in
Û†

A so that now they act on HB rather than HA, the field
observables ϕ̂A and π̂A appearing in ÛB are still defined at
the time tA (c.f. Eqs. (32) and (33) ). But in order for Bob to
implement ÛB at a later time tB, he needs to couple his qubit
to field observables defined at the time tB, not at tA.

FIG. 3. Perfect quantum channel from Alice to Bob via a
quantum field, ϕ̂.
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We will now solve this problem by proving a math-
ematical result which expresses the field observables ϕ̂A

and π̂A as observables at time tB. Fundamentally, this result
arises due to the fact that the field ϕ̂ðx; tÞ is by definition a
solution to the wave equation, which, being a hyperbolic
PDE, has a well defined initial value formulation that
allows solutions at time tA to be propagated to solutions at
time tB. More concretely, we note the following:
Theorem 1: Let ϕ̂ðx; tÞ be a free field in any spacetime

dimension with mode expansion given by Eq. (1). Let
π̂ðx; tÞ be the conjugate momentum field, and let FðxÞ be
any smearing function. Then

ϕ̂½F�ðtAÞ ¼ ϕ̂½F2�ðtBÞ þ π̂½F1�ðtBÞ; ð46Þ

π̂½F�ðtAÞ ¼ ϕ̂½F3�ðtBÞ þ π̂½F2�ðtBÞ; ð47Þ

where the FiðxÞ are related to FðxÞ via their Fourier
transforms as

F̃1ðkÞ ¼ F̃ðkÞsincðΔωkÞð−ΔÞ; ð48Þ

F̃2ðkÞ ¼ F̃ðkÞ cosðΔωkÞ; ð49Þ

F̃3ðkÞ ¼ F̃ðkÞ sinðΔωkÞωk; ð50Þ

and where Δ ≔ tB − tA.
Proof.—Wewill explicitly prove Eq. (46), while Eq. (47)

is proven analogously. Starting from the mode expansion
for ϕ̂ðx; tÞ given in Eq. (1) we get

ϕ̂½F�ðtAÞ¼
Z

ddxFðxÞ
Z

ddkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞdωk

p ðâke−iðωktA−k·xÞþH:c:Þ

¼
Z

ddkffiffiffiffiffiffiffiffi
2ωk

p ðF̃ðkÞâke−iωktA þH:c:Þ; ð51Þ

with F̃ðkÞ the Fourier transform of FðxÞ as defined in
Eq. (37). Then, using Δ ≔ tB − tA we obtain

ϕ̂½F�ðtAÞ ¼
Z

ddkffiffiffiffiffiffiffiffi
2ωk

p ðF̃ðkÞâkeiωkΔe−iωktB þ H:c:Þ

¼
Z

ddkffiffiffiffiffiffiffiffi
2ωk

p ðF̃ðkÞ½cosðωkΔÞ þ i sinðωkΔÞ�

× âke−iωktB þ H:c:Þ: ð52Þ

By introducing the Fourier transforms F̃1ðkÞ and F̃2ðkÞ as
defined in Eqs. (48) and (49), we can write ϕ̂½F�ðtAÞ as

Z
ddkffiffiffiffiffiffiffiffi
2ωk

p ðF̃2ðkÞâke−iωktB þH:c:Þ

þ
Z

ddkffiffiffiffiffiffiffiffi
2ωk

p ð−iωkF̃1ðkÞâke−iωktB þH:c:Þ

¼
Z

ddxF2ðxÞ
Z

ddkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞdωk

p ðâke−iðωktB−k·xÞ þH:c:Þ

þ
Z

ddxF1ðxÞ
Z

ddkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞdωk

p ð−iωkâke−iðωktB−k·xÞ þH:c:Þ

¼ ϕ̂½F2�ðtBÞþ π̂½F1�ðtBÞ; ð53Þ

which proves Eq. (46). ▪
With this mathematical result at hand, we can now write

the unitary ÛB in Fig. 1—which decodes Alice’s qubit out
of the field and onto Bob’s detector—in terms of field
observables at the time tB. Namely, the theorem allows us to
write the field observables ϕ̂A and π̂A defined in Eqs. (32)
and (33) as

ϕ̂A ¼ λϕϕ̂½FB2�ðtBÞ þ λϕπ̂½FB1�ðtBÞ;
π̂A ¼ λπϕ̂½FB3�ðtBÞ þ λππ̂½FB2�ðtBÞ; ð54Þ

where Bob’s smearing functions FBiðxÞ are defined in terms
of Alice’s smearing FA through their Fourier transforms,

F̃B1ðkÞ ¼ F̃AðkÞsincðΔωkÞð−ΔÞ; ð55Þ

F̃B2ðkÞ ¼ F̃AðkÞ cosðΔωkÞ; ð56Þ

F̃B3ðkÞ ¼ F̃AðkÞ sinðΔωkÞωk: ð57Þ

Hence the unitary ÛB, defined by

ÛB ¼ expð−iσ̂zϕ̂AÞ expð−iσ̂xπ̂AÞ ð58Þ

can now be alternatively defined in terms of field observ-
ables at time tB, namely

ÛB ¼ exp ½−iλϕσ̂zðϕ̂½FB2�ðtBÞ þ π̂½FB1�ðtBÞÞ�
× exp ½−iλπσ̂xðϕ̂½FB3�ðtBÞ þ π̂½FB2�ðtBÞÞ�: ð59Þ

In summary, we have succeeded in constructing the
quantum channel shown in Fig. 1, which allows Alice to
perfectly transmit a qubit through a quantum field to Bob.
The quantum channel consists of two steps:
(1) First, at time t ¼ tA, Alice encodes her qubit state in

a spatial region of the field characterized by FAðxÞ
by implementing the unitary ÛA given in Eq. (31).

(2) Then, at a later time t ¼ tB, Bob decodes the qubit
from the field by coupling with the unitary ÛB

given in Eq. (59). In order for Bob to be able to
implement this unitary, his detector must be
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smeared in a spatial region that contains the
supports of the functions FB1ðxÞ, FB2ðxÞ, and
FB3ðxÞ defined by Eqs. (55)–(57).

Additionally, in order for the channel to succeed, the
conditions (35) and (36) on the coupling strengths λϕ
and λπ must be satisfied. Physically, Eq. (35) is a strong-
coupling condition which ensures that Alice’s qubit first
gets maximally entangled with orthogonal coherent field
states, while Eq. (36) is a fine-tuning condition which
ensures that Alice’s qubit is then rotated by the right
amount in the Bloch sphere so that it gets completely
unentangled from the field. Together, these conditions
ensure that the encoding gate (and hence the decoding
gate, which is just the inverse encoding gate) are imple-
mented successfully. In particular we note that, as was
discussed above, a strong (i.e., nonperturbative) coupling of
detectors to the field is necessary in order for the field-
mediated quantum channel from Alice to Bob to have
maximal quantum channel capacity.
Despite our successes so far, there still remain two

pertinent issues that must be addressed before one can be
fully satisfied with our construction of a perfect, field-
mediated quantum channel from Alice to Bob. First, it
should be verified, without the use of any approximations
[such as the one in Eq. (44)], that our supposedly perfect
quantum channel Ξ indeed has a maximal quantum channel
capacity ofQðΞÞ ¼ 1. And second, the smearing functions
FBiðxÞ are defined in terms of their Fourier transforms, and
hence it is presently not clear where in space Bob needs to
be located in order to receive Alice’s quantum message,
which is crucial for our study. We will successively address
these two remaining issues in Secs. IV and V.

IV. NUMERICAL TEST OF THE PERFECT
QUANTUM CHANNEL

Let us verify that the channel Ξ which we constructed in
the previous section—shown in Fig. 1 with ÛA and ÛB

given by Eqs. (31) and (59)—can indeed perfectly transmit
quantum information from Alice to Bob. For convenience
we will assume that Bob’s initial state is jþyi, and that
Alice’s initial state (i.e., the input to the channel), is the
maximally mixed state, ρ̂A;0 ¼ 1

2
1. As discussed in Sec. II,

we will compute a lower bound on the quantum channel
capacity QðΞÞ by computing the coherent information
Icðρ̂A;0;ΞÞ of the channel Ξ and the input state ρ̂A;0.
Recall that to compute Icðρ̂A;0;ΞÞ, we must first purify

the input to the channel, i.e., the maximally mixed state
ρ̂A;0. To that end, we suppose that the initial state of Alice is
entangled with some third qubit C, and that the joint state of
C and Alice is given by the maximally entangled pure
state jψCAi ¼ 1ffiffi

2
p ðj−zijþzi þ jþzij−ziÞCA.

Next, in order to compute Icðρ̂A;0;ΞÞ, we must evaluate
the state

ρ̂CB ≔ ð1C ⊗ ΞÞðjψCAihψCAjÞ; ð60Þ

on HC ⊗ HB. Following this we can easily compute the
coherent information through Eq. (12), i.e., as Icðρ̂A;0;ΞÞ ≔
Sðρ̂BÞ − Sðρ̂CBÞ. Writing Ξ in terms of the unitaries ÛA and
ÛB, we obtain

ρ̂CB¼TrAϕ½Û†
BÛ

†
AðjψCAihψCAj⊗ j0ih0j⊗ jþyihþyjÞÛ†

AÛ
†
B�:

ð61Þ

The simplest way to proceed with the computation of
this density matrix is to decompose the unitaries ÛA and ÛB

into products of controlled unitaries from the qubits A
and B onto the field. Namely, for ÛA we write

ÛA ¼ expðiσ̂xπ̂AÞ expðiσ̂zϕ̂AÞ
¼

X
x;z∈f�g

P̂xP̂z ⊗ eixπ̂Aeizϕ̂A ; ð62Þ

where P̂x and P̂z are the projectors onto the eigenstates of
σ̂x and σ̂z (note that to simplify notation we are using the
dummy summation index x or z on the P̂ to denote what
operator the projector is associated with). Written in this
form we see that the action of ÛA is to unitarily evolve the
field state with a unitary that is dependent on the outcome
of a σ̂z measurement of the qubit A, and then to do the same
thing for a σ̂x measurement. In other words ÛA is a product
of two controlled unitaries, from A to the field.
We can perform the same kind of decomposition for the

unitary ÛB by starting with the expression Eq. (59).
However, it is more convenient to write ÛB in the way it
was initially defined, i.e., as Û−1

A ¼ Û†
A with the under-

standing that the qubit observables are now observables on
HB rather thanHA. Hence, from Eq. (62) we directly obtain

ÛB ¼
X

x;z∈f�g
P̂zP̂x ⊗ e−izϕ̂Ae−ixπ̂A ; ð63Þ

where the self-adjoint projectors P̂x and P̂z are associated
with the Pauli operators σ̂x and σ̂z on HB.
Substituting Eqs. (62) and (63) for ÛA and ÛB into

Eq. (61) for ρ̂CB, and writing jψCAi ¼ 1ffiffi
2

p
P

j j − jzijjzi
with j ∈ f�g, we get

ρ̂CB ¼ 1

2

X
j;k;xi;zi

h0je−iz1ϕ̂Ae−ix1π̂Aeix2π̂Aeiz2ϕ̂A

× e−iz3ϕ̂Ae−ix3π̂Aeix4π̂Aeiz4ϕ̂A j0i
× hkzjP̂z1P̂x1P̂x4P̂z4 jjziAj − jziCh−kzj
⊗ P̂z3P̂x3 jþyiBhþyjP̂x2P̂z2 ; ð64Þ
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where xi stands for x1, x2, x3, x4, and similarly for zi, and
where all of the summation variables run over the set
fþ1;−1g, such that there are 210 terms in the entire sum.
This expression can straightforwardly be evaluated by a
computer as long as we can first simplify the field
expectation value h0j…j0i. In order to do so, let us first
redefine the summation indices by x1 ↦ −x1; z1 ↦ −z1;
x3 ↦ −x3 and z3 ↦ −z3, such that the expression for ρ̂CB
reads

ρ̂CB ¼ 1

2

X
j;k;xi;zi

h0jeiz1ϕ̂Aeix1π̂Aeix2π̂Aeiz2ϕ̂A

× eiz3ϕ̂Aeix3π̂Aeix4π̂Aeiz4ϕ̂A j0i
× hkzjP̂−z1P̂−x1P̂x4P̂z4 jjziAj − jziCh−kzj
⊗ P̂−z3P̂−x3 jþyiBhþyjP̂x2P̂z2 : ð65Þ

Using the Baker-Campbell-Hausdorff formula we can
write [43]

eiziϕ̂Aeixiπ̂A ¼ exiziCeiÔi ; ð66Þ

where Ôi ≔ xiπ̂A þ ziϕ̂A, and C is defined by

C ≔ −
1

2
h½ϕ̂A; π̂A�i ¼ −

iλϕλπ
2

Z
ddkjF̃AðkÞj2; ð67Þ

where we note that the commutator in (67) is proportional
to the identity and thus its expectation value is state
independent. Then, ρ̂CB can be written as

ρ̂CB ¼ 1

2

X
j;k;xi;zi

ex1z1Ce−x2z2Cex3z3Ce−x4z4C

× h0jeiÔ1eiÔ2eiÔ3eiÔ4 j0i
× hkzjP̂−z1P̂−x1P̂x4P̂z4 jjziAj − jziCh−kzj
⊗ P̂−z3P̂−x3 jþyiBhþyjP̂x2P̂z2 : ð68Þ

To further simplify this expression for ρ̂CB let us make
use of the identity

h0j
Yn
l¼1

eiÔj j0i ¼
Yn
l<m

e−Wlm

Yn
l¼1

e−
1
2
Wll ; ð69Þ

where Wlm ≔ h0jÔlÔmj0i. This identity holds for any
operators Ôj which are linear in the field creation and
annihilation operators, and it can straightforwardly be
proven using Wick’s theorem [44].4 Then ρ̂CB becomes

ρ̂CB ¼ 1

2

X
j;k;xi;zi

ex1z1C1e−x2z2C2ex3z3C3e−x4z4C4

×
Y4
l<m

e−Wlm

Y4
l¼1

e−
1
2
Wll

× hkzjP̂−z1P̂−x1P̂x4P̂z4 jjziAj − jziCh−kzj
⊗ P̂−z3P̂−x3 jþyiBhþyjP̂x2P̂z2 ; ð70Þ

and Wlm evaluates to

Wlm ¼
Z

ddk
2jkj jF̃AðkÞj2ðzlλϕ − ijkjxlλπÞ

× ðzmλϕ − ijkjxmλπÞ: ð71Þ

Hence we now see that if we specify the coupling constants
λϕ and λπ , as well as the smearing function F̂AðxÞ, we can
straightforwardly compute C and Wlm (at least numeri-
cally), and hence obtain a (numerical) result for the density
matrix ρ̂CB.

A. Gaussian detector smearing

In order to numerically compute the coherent informa-
tion of our quantum channel, let us now particularize
our discussion to (3þ 1)-dimensions, and let us set the
smearing function of Alice’s detector to be a Gaussian of
width σ, i.e.,

FAðxÞ ¼
1

ð ffiffiffi
π

p
σÞ3 exp

�
−
jxj2
σ2

�
; ð72Þ

which has a Fourier transform that is given by

F̃AðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p exp

�
−
1

4
jkj2σ2

�
: ð73Þ

Then, the conditions (35) and (36) on the coupling
strengths λϕ and λπ , which we require in order to have
a perfect quantum channel, simplify to

λϕ ≫ σ; and ð74Þ

λϕλπffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
σ3

¼ π

4
mod 2π: ð75Þ

In particular, recalling that the strong-coupling condition
(35) is a requirement in order for Alice’s qubit to become
maximally entangled with the field, we find that this is
only possible if the coupling strength λϕ of the detector is
much larger than its size. Finally, using Eqs. (67) and (71),
we can also readily obtain simple analytical expressions
for C and Wlm, namely

4In fact, an analogous version of this identity holds not only for
the field vacuum state j0i, but also for any Gaussian state [45].
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C ¼ −iλϕλπ
2

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
σ3

; ð76Þ

Wlm ¼ 1

8π2σ4
½4xlxmλ2π þ 2zlzmσ2λ2ϕ

þ i
ffiffiffiffiffiffi
2π

p
σλϕλπðxmzl − xlzmÞ�: ð77Þ

We now have all of the necessary components to compute
ρ̂CB via Eq. (70), and hence to compute the coherent
information Icðρ̂A;0;ΞÞ of the channel Ξ and the input
state ρ̂A;0.
In Fig. 4 we plot Icðρ̂A;0;ΞÞ versus λϕ=σ, and we find,

as expected that for λϕ=σ → ∞, the coherent information
Icðρ̂A;0;ΞÞ approaches its maximum value of 1.
Additionally, since we know that the quantum channel
capacity QðΞÞ is lower bounded by Icðρ̂A;0;ΞÞ, and since
we also know that QðΞÞ ≤ 1 (i.e., a single use of the
channel can transmit at most one qubit), we thus conclude
that in the limit λϕ=σ → ∞, the quantum channel capacity
QðΞÞ approaches its maximum value of 1. In other words,
we have verified, without the use of any approximations,
that the field-mediated quantum channel from Alice to
Bob is indeed a perfect quantum channel if the conditions
(35) and (36) are satisfied.

V. WHERE DOES THE QUANTUM
INFORMATION PROPAGATE?

While we have mathematically verified that the quantum
channel Ξ from Alice to Bob is a perfect quantum channel,
we still have some work to do in order to understand the
physics of quantum information propagation through a
relativistic quantum field. In particular, we have yet to
discuss where in space Bob needs to be located at time tB

in order to receive Alice’s message, which she encoded in
the field at an earlier time tA. Let us now attempt to better
understand this issue.
Recall from Theorem 1 that if Alice couples to the field

at time tA with a spatial smearing FAðxÞ, then in order
for Bob to perfectly recover Alice’s message at a time tB
he needs to be able to couple his detector to the field ϕ̂
and the conjugate field π̂ with three different smearing
functions FBiðxÞ, which are related to FAðxÞ via their
Fourier transforms,

F̃B1ðkÞ ¼ F̃AðkÞsincðΔωkÞð−ΔÞ; ð78Þ

F̃B2ðkÞ ¼ F̃AðkÞ cosðΔωkÞ; ð79Þ

F̃B3ðkÞ ¼ F̃AðkÞ sinðΔωkÞωk; ð80Þ

where Δ ≔ tB − tA. Also recall that this result is valid in a
flat spacetime of any dimension, and for any field mass.
However, because the inverse Fourier transform is differ-
ent in different spacetime dimensions, we expect the
coordinate space functions FBiðxÞ to have significantly
different forms in different spacetimes. To see that this is
indeed the case, let us now consider the (3þ 1) and
(2þ 1) dimensional cases, both with a massless field. We
will find that quantum information propagates very differ-
ently through the relativistic field in these two spacetimes,
and that the violations of strong Huygens principle [10]
play a fundamental role in the localization of quantum
information encoded in quantum fields.

A. (3 + 1)-dimensions

In (3þ 1)-dimensions we are fortunate enough that we
can obtain very simple and intuitive expressions for Bob’s
smearing functions FBiðxÞ, which are related to Alice’s
smearing function FAðxÞ via their Fourier transforms via
Eqs. (78)–(80).
To obtain these expressions for FBiðxÞ, let us first recall

the d-dimensional convolution theorem [46], which states
that for two functions f; g ∈ L1ðRdÞ,

F−1½F ½f�F ½g��ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd

p ðf � gÞðxÞ

≔
1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd

p
Z

ddx0fðx0Þgðx − x0Þ;

ð81Þ

where F denotes the d-dimensional Fourier transform
defined by Eq. (37), F−1 denotes the inverse Fourier
transform, and ðf � gÞðxÞ is the convolution product
between fðxÞ and gðxÞ.
Applying the convolution theorem to Eqs. (78)–(80), we

obtain
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FIG. 4. Plot of maxf0; Icðρ̂A;0;ΞÞg versus the ratio of the
coupling strength λϕ to the size of Alice’s detector, σ. Here ρ̂A;0 ¼
1
2
1 is the maximally mixed input state to the channel Ξ. Notice

that for λϕ ≫ σ, the coherent information approaches its maxi-
mum possible value of 1, thus confirming that in this limit Ξ is a
perfect quantum channel.
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FB1ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd

p
Z

ddx0FAðx0Þ

× F−1½−ΔsincðΔjkjÞ�ðx − x0Þ; ð82Þ

FB2ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd

p
Z

ddx0FAðx0Þ

× F−1½cosðΔjkjÞ�ðx − x0Þ; ð83Þ

FB3ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd

p
Z

ddx0FAðx0Þ

× F−1½jkj sinðΔjkjÞ�ðx − x0Þ; ð84Þ

where we note that ωk ¼ jkj since we are setting the field
mass m equal to zero. Note that the above expressions are
valid for any spatial dimension d of the flat spacetime. In
order to proceed to calculate FBiðxÞ via Eqs. (82)–(84), we
must compute the inverse Fourier transforms of the
functions −ΔsincðΔjkjÞ; cosðΔjkjÞ, and jkj sinðΔjkjÞ.
Let us now particularize to d ¼ 3, in which case

obtaining explicit (distributional) expressions for these
inverse Fourier transforms is possible. Namely we find

F−1
d¼3½−ΔsincðΔjkjÞ�ðxÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

q
δðr − ΔÞ

4πr
; ð85Þ

F−1
d¼3½cosðΔjkjÞ�ðxÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

q
δ0ðr − ΔÞ

4πr
; ð86Þ

F−1
d¼3½jkj sinðΔjkjÞ�ðxÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

q
δ00ðr − ΔÞ

4πr
; ð87Þ

with r ≔ jxj and where we are explicitly indicating that
these are 3-dimensional inverse Fourier transforms. Here,
δ0ðxÞ and δ00ðxÞ denote the first and second derivatives of
the delta function. It is easiest to verify these results by
taking the Fourier transform of the right-hand sides and
checking that we get the expected answer. For example, let
us verify Eq. (86) in this way. We find

F d¼3

�
−

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

q
δ0ðr − ΔÞ

4πr

�
ðkÞ

¼ −
Z

d3x
δ0ðr − ΔÞ

4πr
e−ik·x

¼ −4π
Z

∞

0

drr2
δ0ðr − ΔÞ

4πr
sinðrjkjÞ
rjkj ;

¼ −
1

jkj
Z

∞

0

drδ0ðr − ΔÞ sinðrjkjÞ ð88Þ

¼ cosðΔjkjÞ; ð89Þ

which proves Eq. (86). Equations (85) and (87) can be
proven analogously.

Substituting Eqs. (85)–(87) into Eqs. (82)–(84), we find
that in (3þ 1)-dimensions Bob’s smearing functions
FBiðxÞ are given in terms of Alice’s smearing FAðxÞ as

FB1ðxÞ ¼ −
Z

ddx0FAðx0Þ
δðjx − x0j − ΔÞ

4πjx − x0j ; ð90Þ

FB2ðxÞ ¼ −
Z

ddx0FAðx0Þ
δ0ðjx − x0j − ΔÞ

4πjx − x0j ; ð91Þ

FB3ðxÞ ¼ −
Z

ddx0FAðx0Þ
δ00ðjx − x0j − ΔÞ

4πjx − x0j : ð92Þ

Hence, since the δ, δ0 and δ00 functions above only have
support if jx − x0j ¼ Δ, we find that in (3þ 1)-dimensions
Bob’s smearing functions FBiðxÞ on the time-slice t ¼ tB ¼
tA þ Δ only have support if they are in lightlike separation
from Alice’s smearing FAðxÞ on the time-slice t ¼ tA.
Therefore, in order for Bob to fully receive Alice’s quantum
message (QðΞÞ → 1Þ through our field-mediated quantum
channel in (3þ 1)-dimensions, he needs to be able to
couple his detector on the entirety of Alice’s lightcone.
In other words, quantum information in (3þ 1)-dimensions
propagates through a massless field precisely at the speed
of light. While this result may be intuitive, we will see that
it is actually a peculiarity of odd-spatial dimensions flat
spacetime (e.g., 3þ 1 dimensional Minkowski space) and
will not be true in general.
To conclude this section, let us illustrate the above result

by considering a particular smearing FAðxÞ for Alice,
namely the Gaussian function considered in Sec. IVA,

FAðxÞ ¼
1

ð ffiffiffi
π

p
σÞ3 exp

�
−
jxj2
σ2

�
: ð93Þ

We plot FAðxÞ and the resulting smearing functions FBiðxÞ
for Bob’s detector in Fig. 5. Notice that, as expected, at time
tB ¼ tA þ Δ Bob needs to couple to the field only near
jxj ¼ Δ (i.e., on Alice’s lightcone) in order to be able to
fully recover her quantum message.
The main result of this section—i.e., that Bob needs to be

lightlike separated from Alice in (3þ 1)-dimensions in
order to receive her quantum message—is fundamentally
related to the strong Huygens principle, which we recall
from our discussion in the introduction holds in (3þ 1)-
dimensional flat spacetime. Namely, recall that the strong
Huygens principle states that the massless field’s radiation
Green’s function (and hence the expectation of the field
commutator in the quantum case) only has support between
lightlike separated events [10], and hence communication
between observers via this quantum field is only possible
if they are in null separation. While the implications of
this fact have previously been studied in great detail for
classical communication protocols [47–51], the work
presented here is the first time that the effects of the strong
Huygens principle have been studied in the context of
quantum communication.
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B. (2 + 1)-dimensions

0.01w?>Let us now attempt to repeat the analysis of the
previous section, but this time in (2þ 1)-dimensional
Minkowski space. We expect to find significant differences
to the (3þ 1)-dimensional case, due to the violations of the
strong Huygens principle that occur in the former but not
the latter spacetime.
Recall that the key expressions directly relating Bob’s

smearing functions FBiðxÞ to Alice’s smearing function
FAðxÞ are Eqs. (82)–(84). As in the (3þ 1)-dimensional
case, in order to gain insight into the propagation of quantum
information from these equations, we must first compute
the Fourier transforms of the functions −ΔsincðΔjkjÞ,
cosðΔjkjÞ, and jkj sinðΔjkjÞ. Unfortunately however, we
are only aware of a closed form expression for the first of
these Fourier transforms, which reads

F−1
d¼2½−ΔsincðΔjkjÞ�ðxÞ ¼

� 1

Δ
ffiffiffiffiffiffiffiffiffiffi
Δ2−r2

p r < Δ;

0 r ≥ Δ;
ð94Þ

and where once again r ≔ jxj. Nevertheless, from this
equation alone we can see an interesting feature of the

propagation of quantum information in (2þ 1)-dimensions.
Namely, unlike the 3D Fourier transforms given by
Eqs. (85)–(87), which only had support for r ¼ Δ, the
2D Fourier transform of sincðΔjkjÞ has support inside the
light cone, i.e. for r < Δ. Hence, after inserting this Fourier
transfrom into Eq. (82), we find that in (2þ 1)-dimensions
the first of Bob’s smearing functions, FB1ðxÞ, is given by

FB1ðxÞ ¼
1

2π

Z
BΔðxÞ

d2x0
FAðx0Þ

Δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − jx − x0j2

p ; ð95Þ

where BΔðxÞ is the ball of radius Δ centered at x. Thus we
see that FB1ðxÞ has support even if jx − x0j < Δ, and hence
we conclude that if Bob wants to receive all possible
quantum information from Alice in (2þ 1)-dimensions,
then he needs to have access not only to Alice’s lightcone,
but also to the interior of the lightcone. In other words,
quantum information in (2þ 1)-dimensions propagates
slower than light via a massless field. This is in agreement
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FIG. 5. (3þ 1)-dimensions. Top: location at which Alice
couples to the massless field at time tA, given by Eq. (93), with
σ ¼ 1 and where r ¼ jxj is measured in units of σ. Bottom: Bob’s
smearing functions, which dictate where in space Bob needs to
couple to the field at time tB ¼ tA þ Δ in order to receive Alice’s
message (we set Δ ¼ 10).
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FIG. 6. (2þ 1)-dimensions. Top: location at which Alice
couples to the massless field at time tA, given by Eq. (96), with
σ ¼ 1 and where r ¼ jxj is measured in units of σ. Bottom: Bob’s
smearing functions, which dictate where in space Bob needs to
couple to the field at time tB ¼ tA þ Δ in order to receive Alice’s
message (we set Δ ¼ 10). Note that all three of Bob’s smearing
functions have support inside of the light cone, i.e. they are only
polynomially, rather than exponentially, suppressed for r ≪ Δ.
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with the violations of the strong Huygens principle that occur
in (2þ 1)-dimensional Minkowski spacetime.
While we have come to this conclusion just by focusing

on the smearing function FB1ðxÞ—since it is the only one
out of the FBiðxÞ for which we could obtain an integral
expression of the form (95) with a closed-form integrand—
let us, for the sake of completeness, now verify numerically
that the smearing functions FB2ðxÞ and FB3ðxÞ also have
support inside of the light cone, i.e. for r < Δ. Analogous
to the (3þ 1)-dimensional case, let us suppose that Alice’s
smearing function FAðxÞ is given by the Gaussian

FAðxÞ ¼
1

ð ffiffiffi
π

p
σÞ2 exp

�
−
jxj2
σ2

�
: ð96Þ

Then, in Fig. 6 we indeed find that all three that Bob’s
smearing functions FBiðxÞ have support for r < Δ, and
hence, as already stated above, we conclude that in order to
recover Alice’s quantum message in (2þ 1)-dimensional
flat spacetime, Bob must couple to the massless field inside
of Alice’s future light cone.

VI. BROADCASTING QUANTUM INFORMATION

In the previous section we have obtained a better under-
standing of how quantum information propagates through a
quantum field by answering the question: Where in space
does Bob need to be located if he wants to receive the
quantum message that Alice broadcast through the quantum
field? Indeed, we found that the answer depends on the
spacetime in which Alice and Bob are located. For instance,
in (3þ 1)-dimensional Minkowski spacetime, Bob needs to
be smeared across Alice’s entire light cone, while in the
(2þ 1)-dimensional case he also needs to cover the interior
of the light cone. In particular, note that in both spacetimes
Alice’s message is broadcast isotropically in all spatial
directions, which is, of course, simply a consequence of
the fact that Alice’s coupling to the field was fully isotropic.
Let us now consider the relevant case of (3þ 1)-

dimensional Minkowski spacetime. Then, although we
are fortunate that in this case Bob does not need to cover
the interior of Alice’s light cone in order to receive her full
signal, from a practical perspective it is still very restrictive
to require that Bob covers the surface of the lightcone itself
(i.e. without the interior), as we found is required in order
for him to receive the entirety of Alice’s quantum message.
A natural question then arises: Is Alice able to transmit

quantum information to Bob if he only covers a part of her
light cone? This question is relevant, for instance, if Alice
wants to broadcast her information to multiple disjoint
receivers, each located in a different spatial direction
relative to Alice. In fact, this question was partially
answered in Ref. [22], where the authors showed that, in
a flat spacetime of any dimension, it is not possible for
Alice to send any amount of quantum information to

multiple identical Bobs.5 In this section we will attempt
to circumvent this result by considering nonidentical Bobs.
More concretely, let us consider the setup shown in

Fig. 7, in which two Bobs are trying to recover the message
which Alice broadcast into the field. Both Bobs are
spherically symmetric, with Bob B1 covering the region
of space given by r < r0, and Bob B2 covering the region
r > r0. We consider this setup both for its computational
simplicity (owing to the fact that spherical symmetry is
preserved), as well as the fact that the Bobs in this setup are
not identical, thus allowing us to potentially overcome the
limitations imposed upon identical Bobs [22], as discussed
above. Despite the simplicity of the setup however, it will
nevertheless provide us with interesting insights into the
broadcasting of quantum information through a relativistic
quantum field.
To proceed, let us start by setting the initial state for both

Bobs B1 and B2 to be jþyi, and Alice’s initial state to be the
maximally mixed state, ρ̂A;0 ¼ 1

2
1. We set the smearing

FAðxÞ of Alice’s detector to be a Gaussian of width σ, given
by Eq. (93). Then, as we saw in Sec. IV, if Bob wants to
recover the entirety of Alice’s message, he needs to be
able to couple to the field (and its conjugate momentum)
via three different smearing functions, FBiðxÞ, given by
Eqs. (90)–(92). Namely,

FB1ðxÞ ¼ −
Z

ddx0FAðx − x0Þ δðjx
0j − ΔÞ

4πjx0j ; ð97Þ

FB2ðxÞ ¼ −
Z

ddx0FAðx − x0Þ δ
0ðjx0j − ΔÞ
4πjx0j ; ð98Þ

FIG. 7. (3þ 1)-dimensional quantum information broadcasting
setup considered in this section: Alice attempts to send quantum
information to two spherically symmetric Bobs, B1 and B2,
separated by the radius r ¼ r0.

5Of course, from the no-cloning theorem [21] it is clear that
Alice cannot perfectly send quantum information to multiple
identical Bobs, since this would amount to her quantum state
being cloned. The importance of the result in [22] is that it
showed this to be true for any amount of quantum information, no
matter how small.
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FB3ðxÞ ¼ −
Z

ddx0FAðx − x0Þ δ
00ðjx0j − ΔÞ
4πjx0j : ð99Þ

This is the ideal case however, where Bob has access to the
entirety of Alice’s lightcone. We now want to consider the
less-than-ideal case of two Bobs, B1 and B2, that only have
access to spatial regions r < r0 and r > r0, respectively.
Hence, let us set the smearing functions for Bob B1 to be

Fð1Þ
B1 ðxÞ ¼ −

Z
ddx0FAðx − x0Þ δðjx

0j − ΔÞ
4πjx0j Θðr0 − jx0jÞ;

ð100Þ

Fð1Þ
B2 ðxÞ ¼ −

Z
ddx0FAðx − x0Þ δ

0ðjx0j − ΔÞ
4πjx0j Θðr0 − jx0jÞ;

ð101Þ

Fð1Þ
B3 ðxÞ ¼ −

Z
ddx0FAðx − x0Þ δ

00ðjx0j − ΔÞ
4πjx0j Θðr0 − jx0jÞ;

ð102Þ

where the subscript (1) indicates Bob B1, and the Θ
functions ensure that these smearings are only nonzero
in the ball r < r0 centered on Alice. Similarly, for Bob B2

we set the smearings to be

Fð2Þ
B1 ðxÞ ¼ −

Z
ddx0FAðx − x0Þ δðjx

0j − ΔÞ
4πjx0j Θðjx0j − r0Þ;

ð103Þ

Fð2Þ
B2 ðxÞ ¼ −

Z
ddx0FAðx − x0Þ δ

0ðjx0j − ΔÞ
4πjx0j Θðjx0j − r0Þ;

ð104Þ

Fð2Þ
B3 ðxÞ ¼ −

Z
ddx0FAðx − x0Þ δ

00ðjx0j − ΔÞ
4πjx0j Θðjx0j − r0Þ;

ð105Þ

which only have support in the spatial region r > r0.
Additionally, we will keep the condition λϕλπ=

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
σ3 ¼

π=4 relating the coupling constants λϕ and λπ to the size of
the detector σ, which we recall was necessary in order for
Alice to be able to perfectly transmit her quantummessage to
(a single) Bob.
Having specified the initial quantum states as well as the

smearing functions of Alice and both Bobs, we can now
proceed to numerically compute the density matrices ρ̂CB1

and ρ̂CB2
associated with each Bob, as given by Eq. (70).

Then, via Eq. (12), we can compute the coherent informa-
tion associated with the channel from Alice to Bob B1,

and similarly for Bob B2. The results are shown in Fig. 8 for
two choices of parameters: λϕ=σ ¼ 10 and λϕ=σ ¼ 1000.
There are a few interesting points to note regarding

Fig. 8. First, notice that for small enough r0, Alice can send
quantum information to Bob B2 (but not B1). This makes
sense, since, as can be seen in Fig. 7, a small enough value
of r0 means that BobB2 has access to the entire lightcone of
Alice, and thus he can recover the full quantum message
[which, in (3þ 1)-dimensions propagates on the lightcone].
Similarly, for large enough r0 Alice can send quantum
information to Bob B1, but not B2.
However, for either of the parameter ratios λϕ=σ, it is not

possible for Alice to simultaneously broadcast her quantum
message to both Bobs, regardless of the value we take for
the radius r0 which defines the separation of B1 and B2.
In fact we numerically verified that there is no possible
value of ratio λϕ=σ which allows Alice to simultaneously
broadcast coherent information to both Bobs. This there-
fore extends the no-quantum-broadcasting result proven in
Ref. [22] for identical detectors to the case of spherically
symmetric, nonidentical detectors, and it therefore gives
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FIG. 8. Coherent information versus r0 (the radial separation
between Bob B1 and B2) with λϕ ¼ 10 (top) and λϕ ¼ 1000

(bottom). We set σ ¼ 1 for both plots. Notice that for both
choices of parameters, and for any choice of r0, it is not possible
for Alice to simultaneously send coherent information to both
Bobs.
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supporting evidence to the conjecture that it is not possible
to send quantum information through a quantum field to
multiple disjoint detectors, identical or not.
Another interesting feature to note in Fig. 8 is the effect

that increasing the ratio λϕ=σ from 10 to 1000 has on the
coherent information Icðρ̂A;0;ΞÞ that Alice can transmit to
the two Bobs. Namely, we see that for the smaller value of
λϕ=σ Alice can transmit coherent information to both Bobs
for a larger range of values of r0, but for either Bob
Icðρ̂A;0;ΞÞ never exceeds 0.6. On the other hand, if the
coupling strength λϕ is increased relative to σ, then there is
a smaller range of r0 values for which either Bob can
receive coherent information, but in the best case scenario
(large r0 in the case of Bob B1 and small r0 in the case of
Bob B2) the Bobs can receive the maximum value of
coherent information, Icðρ̂A;0;ΞÞ ¼ 1. In other words, there
is a “rich-get-richer, poor-get-poorer” type of trade-off
associated with increasing the ratio λϕ=σ: large Bobs will
be able to receive more quantum information, at the
expense of smaller Bobs not being able to receive any.
We can understand this trade-off on physical grounds, as

follows. First of all, we know from our discussion in
Sec. III that in order for Alice to perfectly transmit her
quantum information to a single Bob the strong coupling
condition (35) must be satisfied, which in (3þ 1)-
dimensions is given by Eq. (74): λϕ ≫ σ. Hence it is not
surprising that if the ratio λϕ=σ is increased, then a large
Bob B1 or B2—who would approximate the single, ideal
Bob considered in the previous sections—would be able to
receive more coherent information from Alice.
Furthermore, it also makes intuitive sense that a larger

coupling λϕ would make it more difficult for smaller, less-
than-ideal Bobs to receive quantum information from Alice.
To understand this, first recall from Sec. III the physics of

our perfect quantum channel from Alice to Bob. The first
step to the quantum channel consists of Alice encoding her
qubit into coherent states of the field, which, for larger
values of λϕ are increasingly more and more orthogonal to
one another. Then, Bob attempts to recover the message by
performing the DECODE gate between his qubit and the
field, as shown schematically in Fig. 1. The DECODE gate,
defined as the inverse to the ENCODE gate, first entangles
Bob’s qubit with the coherent field states, and then attempts
to disentangle the field so that Alice’s qubit state is
coherently transmitted to Bob. However, in order for this
final disentangling step to be performed successfully, Bob
must have access to the entire quantum message sent out by
Alice—i.e. Bob must have access to the entirety of Alice’s
lightcone in (3þ 1)-dimensional flat spacetime.
However, in this section we are manifestly considering

the scenario where a less-than-ideal Bob (B1 or B2) does
not have access to the entirety of Alice’s lightcone, and
hence in his decoding process he will not be able to
completely disentangle his qubit from the field. Hence,
following the decoding procedure the field carries partial

knowledge of Bob’s state, i.e. Alice’s state, which she
hoped to transmit to Bob. In other words, a portion of
Alice’s message will remain in the field, and hence, by a
no-cloning type of intuition, the full message cannot get
transmitted to this Bob. Now recall that the amount of
overlap between the coherent field components appearing
in the entangled state (38) determines how much Bob
remains entangled with the field. This amount of overlap is
in turn determined by the coupling intensity. Hence, a
larger value of the coupling λϕ, which ensures greater
orthogonality between the coherent field states, requires
Bob to cover a larger portion of Alice’s light cone in order
to receive her quantum message.
As a final note, it can be argued that some optical

quantum channels are implemented not from a fundamental
light-matter isotropic coupling, but rather with highly
directional light sources. Indeed, our results show that if
Alice instead wanted to send her quantum message to a
single Bob localized in some specified solid angle Ω < 4π
relative to her, it would be much more prudent for her to
change the way in which she couples to the field, so that it
is not isotropic, but rather so that she only couples to those
field modes with wavevectors pointing in Bob’s direction
(e.g., using mirrors to collimate the signal). In this way the
quantum information that Alice encodes in the field would
only travel towards Bob and not in all directions, and Bob
would be able to recover more of the quantum message,
rather than only a small fraction. One would yet expect
timelike leakage of the information in this case in space-
times where strong Huygens is violated, but we leave the
study of such nonisotropic couplings for a future work.

VII. SUMMARY AND CONCLUSIONS

We studied how a relativistic quantum field can be used
to transmit quantum information between spacetime
observers Alice and Bob, who couple to the field via
particle detectors.
When it comes to quantum communication through a field

(e.g., the electromagnetic field) one may expect that quan-
tum information can be transferred from an atom to the field
and from the field to another atom as long as the trans-
mission is light-like. However, we showed that this naive
assumption is not true, and that the question of “where does
the quantum information go” in time and space, when it is
encoded into a quantum field from an atomic system, is
nontrivial.
Namely, we have shown that in spacetime, the quantum

information that is originally contained in a particle
detector (e.g., a qubit encoded in an atomic system) is
transmitted following a linear coupling between the detec-
tor and a quantum field. We also have shown that the
quantum information localization and propagation through
the field via the usual light-matter coupling displays
unintuitive features. Furthermore, we have quantified—
by means of the quantum channel capacity between
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Alice and Bob—how the localization and spatial profile of
Bob affects his ability to recover the quantum information
left in the field by Alice.
Concretely, we began by constructing a perfect field-

mediated quantum channel from Alice to Bob, i.e., one for
which the quantum channel capacity is the theoretically
maximum value. The channel can be implemented by Alice
first coupling to the field via a local unitary ÛA, which
serves to encode Alice’s qubit into the field, followed by
Bob coupling to the field via a local unitary ÛB, which
decodes the qubit from the field and onto Bob’s detector.
The unitaries ÛA and ÛB defining our quantum channel

are each generated by interaction Hamiltonians that couple
Alice and Bob’s detectors to the field only at discrete instants
in time, and hence allow for a nonperturbative approach to
the problem of time-evolution. Indeed, such a nonperturba-
tive approach is necessary, since, as we showed, the field-
mediated quantum channel from Alice to Bob can only be
a perfect quantum channel if the observers are strongly
(i.e. nonperturbatively) coupled to the field.
In particular, the unitaries ÛA and ÛB in our construction,

each take the form of a product of two simple-generated
(i.e. rank-1 generated) unitaries. We showed that these are
the simplest possible unitaries leading to a quantum
channel with a nonzero quantum capacity. That is, if either
ÛA or ÛB consists of a single rank-1 unitary, then the
channel from Alice to Bob necessarily has zero quantum
capacity. In this sense, the channel which we construct is
the simplest possible field-mediated quantum channel from
Alice to Bob with a nonzero quantum capacity.
Following our mathematical construction of the simplest

possible perfect quantum channel (which upper-bounds the
performance of any other possible channel), we used it to
better understand how quantum information propagates
through a relativistic quantum field. In particular, we asked
the following question: If Alice encodes a quantum message
into a quantum field at time tA by coupling to the field in a
spatial region characterized by the smearing function FAðxÞ,
then where in space does Bob have to be located at time
tB > tA in order to fully receive Alice’s message?
We answered this question by showing that if Bob wants

to guarantee that he fully receives Alice’s quantum mes-
sage, then he must have access to the region of space
containing the supports of a set of smearing functions
FBiðxÞ, for i ∈ f1; 2; 3g. These smearing functions are
defined in terms of Alice’s smearing FAðxÞ and the time
difference Δ ¼ tB − tA, and they completely characterize
the flow of quantum information through a Klein-Gordon
field of arbitrary mass m in a flat spacetime of arbitrary
dimension.
To better understand this general result, we then

considered the particular cases of quantum information
propagation through massless fields in (2þ 1)- and (3þ 1)-
dimensional flat spacetimes. In (3þ 1)-dimensions we
found that Bob can fully recover Alice’s quantum message

if he has access to her future light cone, which allowed us to
conclude that in this spacetime quantum information prop-
agates at the speed of light through the massless field. On the
other hand, in the (2þ 1)-dimensional case we found that
Bob additionally must have access to the full interior of
Alice’s lightcone in order to recover the entire message.
Hence, in (2þ 1)-dimensional flat spacetime quantum
information propagates subluminally through a massless
field, despite the fact that the field quanta travel at the speed
of light.
While this latter result may at first seem surprising, it

can be understood by studying the validity of the strong
Huygens principle. Indeed, as is well known, the strong
Huygens principle does not hold in most spacetimes—
including even dimensional Minkowski spaces—and in
principle, information can propagate slower than light in
these spacetimes [10]. While this has previously been
extensively investigated for classical information trans-
mission [47,48,50,51], our work presented here is, to our
knowledge, the first study of the effects of strong Huygens
violations on quantum information transmission.
Having understood where in space an ideal Bob needs to

be located in order to perfectly receive the quantum
message that Alice sends through the field, we considered
the less-than-ideal situation where Bob only covers a part of
the spacetime region in which Alice’s message lives. This
situation is interesting from the perspective of quantum
information broadcasting, a setup in which Alice hopes to
simultaneously transmit at least a part of her quantum
message to multiple disjoint Bobs. While the no-cloning
theorem [21] precludes a perfect transmission of quantum
information to multiple receivers, there appears, a priori,
no reason to suspect that at least a small amount of quantum
information could not be recovered by each of the Bobs.
However, as was shown in Ref. [22], it is in fact

impossible for Alice to broadcast any amount of quantum
information to multiple identical Bobs, a result that was
proven for any spacetime dimension by noting that the
quantum channel from Alice to any such Bob is what is
called antidegradable [52]. Nevertheless this still leaves open
the possibility for broadcasting quantum information to
multiple, nonidentical, disjoint Bobs, which we proceeded
to study.
More concretely, we considered the case of two spheri-

cally symmetric Bobs, B1 and B2, covering the regions of
(3þ 1)-dimensional space given by jxj < r0 and jxj ≥ r0
(with r0 some fixed radius), attempting to recover the
quantum information sent out via a massless quantum field
by an emitter Alice located at x ¼ 0. (The setup is depicted
in Fig. 7.) We found that, regardless of the choice of setup
parameters—such as the separation radius r0 and the field
coupling strength λϕ of the detectors to the quantum field—
it is not possible for Alice to simultaneously broadcast a
nonzero amount of coherent information (a lower bound on
the quantum channel capacity) to both Bobs. This gives
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support to the conjecture that it is not possible for Alice to
broadcast quantum information to multiple disjoint Bobs,
identical or not.
It should be emphasized that the strong localization

requirements imposed on Bob who wants to recover the
entirety of Alice’s message are strongly related to the
assumption that the coupling of Alice to the field is isotropic.
In other words, if Alice couples isotropically to the field, it is
fully expected that her quantum message will propagate
symmetrically in all spatial directions away from the point of
emission, and from the prior studies of classical communi-
cation through quantum fields [47–49,51], it is perhaps not
even surprising that Alice’s quantum message also prop-
agates in the interior of her light cone in strong Huygens
violating spacetimes. However, there is a crucial finding that
the present work brings to light which is a vital distinction
between the propagation of classical and quantum informa-
tion through a quantum field. Unlike in the classical case, a
receiver Bob who wants to receive Alice’s entire quantum
message must couple to the field in the entire spacetime
region in which the message is located. Hence, while a
classical information receiving Bob will find it beneficial
that Alice’s message is so delocalized in space, since he can
fully recover its content by coupling to any region of
spacetime containing the message (even, perhaps, a region
in timelike separation from Alice), a quantum information
receiving Bob will find this same feature to be a hindrance,
since the recovery of the quantum message requires him to
have access to the entire region of spacetime containing the
message. Of course, Alice could ameliorate this issue for
the latter Bob by imposing a directionality in her coupling to
the field, so that the her message propagates preferentially
towards the intended receiver, but she would still not be able
to prevent the leakage of her message inside the timelike
area of her future light cone, which is solely a consequence
of strong Huygens violations in certain spacetimes and is
out of Alice’s control.
Our study of quantum information broadcasting also led

to an interesting result relating the coupling strength λϕ of
Alice and Bob’s detectors to the quantum field and the
minimum size that a given Bob must be in order to receive at
least a part of Alice’s quantummessage. Namely, we showed
that there is a “rich-get-richer, poor-get-poorer” type of
trade-off associated with increasing the coupling strength λϕ,
whereby very large Bobs are able to receive more quantum
information fromAlice, at the cost of smaller Bobs not being
able to receive any.
Physically, this trade-off arises due to the fact that an

increased coupling λϕ ensures that Alice’s qubit is stored
more coherently in the field, and hence a receiver Bob who
has access to the entire portion of the field containing the
qubit can better recover the qubit using his own detector.
The downside of such a highly coherent encoding of
Alice’s qubit into the field however, is that if Bob is not
able to fully access the region of the field containing the

qubit, then a significant portion of Alice’s message will
remain in the field after Bob attempts to recover it. And
since the no-cloning theorem makes it impossible for
Alice’s state to be simultaneously encoded in both the
field and Bob’s detector, we can thus understand intuitively
why a spatially limited Bob would struggle to receive
quantum information from Alice if λϕ is large.
Finally, let us mention that it should be very interesting

to generalize the present results, for example, to the case of
multiple senders and multiple receivers. There, generaliz-
ing the study in [9] from classical to quantum information,
it should be possible to show that not only the classical
channel capacity but also the quantum channel capacity can
be modulated and enhanced by beam shaping by suitably
pre-entangling the emitters.
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APPENDIX: SOME TECHNICAL QUANTUM
INFORMATION RESULTS

Here we some more technical quantum information
theory results, which we make use of throughout the main
text.
Definition 2: Let ρ̂CB be a state on HC ⊗ HB. The

conditional quantum entropy SðCjBÞρ̂CB is defined as

SðCjBÞρ̂CB ≔ Sðρ̂CBÞ − Sðρ̂BÞ; ðA1Þ

where Sð·Þ denotes the von Neumann entropy and ρ̂B ≔
TrCρ̂CB.
Note that, with this definition, the coherent information

Icðρ̂A;0;ΞÞ of a quantum channel Ξ from A to B and the
input state ρ̂A;0, as defined by Eq. (12), can be written as

Icðρ̂A;0;ΞÞ ¼ −SðCjBÞρ̂CB ; ðA2Þ

where, recall, ρ̂CB is the output of the channel 1C ⊗ Ξ
acting on a purification of ρ̂A;0.
Lemma 1: The function taking the input ρ̂CB and

producing the output SðCjBÞρ̂CB is a concave function, i.e.

SðCjBÞλρ̂1þð1−λÞρ̂2 ≥ λSðCjBÞρ̂1 þ ð1 − λÞSðCjBÞρ̂2 ; ðA3Þ

for any 0 ≤ λ ≤ 1 and states ρ̂1 and ρ̂2 on HC ⊗ HB.
Proof.—The proof presented here is inspired by the

sketch of the proof in [53]. We start by considering the state
ρ̂CBE on HC ⊗ HB ⊗ HE defined by
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ρ̂CBE ≔ λρ̂1 ⊗ j0ih0j þ ð1 − λÞρ̂2 ⊗ j0ih0j; ðA4Þ

where fj0i; j1ig forms an orthonormal basis of the aux-
iliary qubit space HE. Then, the strong subadditivity of the
von Neumann entropy reads [54]

Sðρ̂CBEÞ þ Sðρ̂BÞ ≤ Sðρ̂CBÞ þ Sðρ̂BEÞ; ðA5Þ

where ρ̂B≔TrCEρ̂CBE, ρ̂CB ≔ TrEρ̂CBE and ρ̂BE ≔ TrCρ̂CBE.
Then, noting that ρ̂CB ¼ λρ̂1 þ ð1 − λÞρ̂2 and making use
of the definition (A1) for SðCjBÞρ̂CB we find

SðCjBÞλρ̂1þð1−λÞρ̂2 ≥ Sðρ̂CBEÞ − Sðρ̂BEÞ: ðA6Þ

Let us now evaluate Sðρ̂CBEÞ. We obtain

Sðρ̂CBEÞ ≔ −Trρ̂CBElog2ρ̂CBE
¼ −Trρ̂CBEðlog2ðλρ̂1Þ ⊗ j0ih0j þ log2ðð1 − λÞρ̂2Þ ⊗ j1ih1jÞ
¼ −Trðλρ̂1log2ðλρ̂1Þ ⊗ j0ih0j þ ð1 − λÞρ̂2log2ðð1 − λÞρ̂2 ⊗ j1ih1jÞ
¼ −Trλρ̂1log2ðλρ̂1Þ − Trð1 − λÞρ̂2log2ðð1 − λÞρ̂2Þ
¼ Sðλρ̂1Þ þ Sðð1 − λÞρ̂2Þ: ðA7Þ

By an analogous calculation we find

Sðρ̂BEÞ ¼ SðλTrCρ̂1Þ þ Sðð1 − λÞTrCρ̂2Þ: ðA8Þ
Then, combining Eqs. (A6)–(A8) we obtain

SðCjBÞλρ̂1þð1−λÞρ̂2 ≥ Sðλρ̂1Þ þ Sðð1 − λÞρ̂2Þ − SðλTrCρ̂1Þ
− Sðð1 − λÞTrCρ̂2Þ: ðA9Þ

Using the identity Sðλρ̂Þ ¼ λ log2 λþ λSðρ̂Þ, which is
straightforwardly proven by working in the eigenbasis of
ρ̂, the above expression simplifies to

SðCjBÞλρ̂1þð1−λÞρ̂2 ≥ λ½Sðρ̂1Þ − SðTrCρ̂1Þ�
þ ð1 − λÞ½Sðρ̂2Þ − SðTrCρ̂2Þ�: ðA10Þ

Finally, using the definition (A1) for the conditional entropy
SðCjBÞρ̂ we find
SðCjBÞλρ̂1þð1−λÞρ̂2 ≥ λSðCjBÞρ̂1 þ ð1 − λÞSðCjBÞρ̂2 ; ðA11Þ
which completes the proof. ▪
We can now prove a useful result regarding the coherent

information Icðρ̂A;0;ΞÞ.

Lemma 2: Let Ξ be a quantum channel from states on
HA to states onHB, let ρ̂A;0 be a state onHA, and let ρ̂CB be
the output of the channel 1C ⊗ Ξ applied on the purification
of ρ̂A;0. Then, Icðρ̂A;0;ΞÞ ≤ 0 if ρ̂CB is separable.
Proof.—Assume ρ̂CB is separable. Then, it is possible to

find pure states jbii ∈ HB and jcii ∈ HC along with real
numbers pi > 0 such that

ρ̂CB ¼
X
i

pijciihcij ⊗ jbiihbij: ðA12Þ

From Eq. (A2) we have Icðρ̂A;0;ΞÞ ¼ −SðCjBÞρ̂CB and
hence from Lemma 1 we find

−Icðρ̂A;0;ΞÞ ≥
X
i

piSðCjBÞjcibiihcibij; ðA13Þ

where jcibii ≔ jcii ⊗ jbii are pure, separable states on
HC ⊗ HB. Since SðjcibiiÞ ¼ SðjbiiÞ ¼ 0 we see from
Eq. (A1) that SðCjBÞjcibiihcibij ¼ 0, and hence Eq. (A13)
reads

−Icðρ̂A;0;ΞÞ ≥ 0; ðA14Þ
which completes the proof. ▪
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