
 

Anomaly of a gauge theory under rescaling of the fields
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We determine the anomaly associated with an arbitrary scaling of the fields in a quantum gauge theory
without making use of the Fujikawa method. We show that this anomaly is dependent on the spin term
present in the action and at one loop can be directly extracted from the spin contribution to the one loop
effective action. Our results can be readily applied to any gauge theory, supersymmetric or not, and agree
with a previous determination for supersymmetric gauge theories based on the Fujikawa method.
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Quantum gauge field theories have an anomaly asso-
ciated with the scale transformation given by

θμμ ¼ βðgÞ
2g

FaμνFa
μν; ð1Þ

where Fa
μν is an Abelian gauge tensor, βðgÞ is the beta

function of the coupling constant g, and θμμ is the trace of
the symmetric energy-momentum tensor θμν.
The scale anomaly [1–6] (and references therein) mea-

sures the behavior of the gauge theory under the scale
transformation which includes the scaling of space-time
and also specific transformations for each field. It might be
useful to determine also the anomalous contribution to the
theory given by only the arbitrary scaling of the fields. Such
a scaling was used earlier for supersymmetric gauge
theories in [7] to connect the holomorphic and the canoni-
cal coupling constants. It turned out that such an endeavour
was by no means trivial. Here we will use a simple tractable
method that makes no reference to the Fujikawa method
employed usually. We will show that although our deriva-
tion refers to QCD, our results may be directly applied to
any gauge theory, supersymmetric or not, for which the one
loop contribution (or higher orders) to the effective action
is known.
Consider for illustration QCD based on the group SUðNÞ

and with Nf Dirac fermions in the fundamental represen-
tation of the gauge group. The partition function corre-
sponding to it is

Z ¼
Z

dAa
μdΨibdΨ̄jcdcedc̄f exp

�
−i

Z
d4xL

�
: ð2Þ

Here i, j are flavors indices and all the others are color
indices corresponding to the representation for each field.
As usual c and c̄ denote the ghosts.
We make the following change of variables of integration

in the partition function:

Aa
μðxÞ → Aa0

μ ðx0Þ ¼ Aa
μðxÞ − α½Aa

μðxÞ þ xρ∂ρAμðxÞ�;

ΨðxÞ → Ψ0ðx0Þ ¼ ΨðxÞ − α

�
3

2
ΨðxÞ þ xρ∂ρΨðxÞ

�
;

Ψ̄ → Ψ̄0ðx0Þ ¼ Ψ̄ðxÞ − α

�
3

2
Ψ̄ðxÞ þ xρ∂ρΨ̄ðxÞ

�
: ð3Þ

One can recognize in the transformation in Eq. (3) the
standard scale transformation of the fields. A similar
transformation may be associated with the ghosts or not.
Equation (3) introduces a Jacobian in the partition

function in Eq. (2):

JðAa
μÞ ¼ det

�
δAa

μðxÞ
δAb0

ρ ðx0Þ
�
;

J−1ðΨibÞ ¼ det

�
δΨibðxÞ
δΨ0

jcðx0Þ
�
;

J−1ðΨ̄ibÞ ¼ det

�
δΨ̄ibðxÞ
δΨ̄0

jcðx0Þ
�
: ð4Þ

Here we took into account the anticommuting nature of the
fermion fields.
Next we need to consider how the action transforms. For

that we write:
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Z
d4xLðAa

μðxÞ;ΨibðxÞ; Ψ̄jcðxÞÞ

¼
Z

d4x0LððAa
μðx0Þ;Ψibðx0Þ; Ψ̄jcðx0ÞÞ

¼
Z

d4x0LððA0a
μ ðx0Þ;Ψ0

ibðx0Þ; Ψ̄0
jcðx0ÞÞ

þ
Z

d4x0½LððAa
μðx0Þ;Ψibðx0Þ; Ψ̄jcðx0ÞÞ

− LððA0a
μ ðx0Þ;Ψ0

ibðx0Þ; Ψ̄0
jcðx0ÞÞ�: ð5Þ

Then the change in the action given by the big square
bracket in Eq. (5) corresponds to the contribution from the
Jacobians in Eq. (4). One can easily determine the quantity
in the square brackets as the integral in space time of

α½Tμ
μ − θμμ�; ð6Þ

where θμμ is the trace of the symmetric energy tensor and Tμ
μ

is the trace of the canonical energy-momentum tensor
according to

θμμ ¼ ∂μ

� ∂L
∂∂μΦi

δðΦiÞ
�
þ
� ∂L
∂∂μΦi

∂μΦi − 4L
�

¼ ∂μ

� ∂L
∂∂μΦi

δðΦiÞ
�
þ Tμ

μ: ð7Þ

Here Φi denote any generical field present in the action,
gauge, or fermion ones. Then a change due to only scaling
of the fields is given by

α½Tμ
μ − θμμ� ¼ α∂μ

� ∂L
∂∂μΦi

δðΦiÞ
�
: ð8Þ

The expression on the right-hand side of Eq. (8) looks
complicated and unhelpful. However in [8] a more ame-
nable version for a general gauge theory was introduced in
the form

Tμν − θμν ¼ −∂ρχ
μρν; ð9Þ

where

χμρν ¼ −2
∂Lg

∂Fa
μρ
Aaν: ð10Þ

Here Lg is the gauge invariant kinetic term for the gauge
fields.
Next we will determine the exact contribution of the

tensor in Eq. (10). We will work in the background gauge
field method where the gauge field becomes Aa

μ → Ba
μ þ Aa

μ

where Ba
μ is a background gauge field and Aa

μ becomes the
fluctuating field. The gauge kinetic part of the Lagrangian
in the background gauge field is [9]

−
1

4g2
½Ba

μν þDμAa
ν −DνAa

μ þ fabcAb
μAc

ν�2; ð11Þ

where Ba
μν is the gauge tensor for the background gauge

field. Since we do not scale the background gauge field we
need to consider the tensor χμρν pertaining only to the
fluctuating field. Then it may be written as

χμμρ ¼ −2
∂Lg

∂Faμρ ½Aaμ þ Baμ� þ 2
∂L

∂Baμρ ½Baμ�: ð12Þ

Here we consider the tensor for the full Lagrangian and
extracted the contribution from the background gauge field.
Equation (12) can be written further as

χμμρ ¼ 1

g2
Fa
μρ½Aaμ þ Baμ� − 1

g2
Fa
μρBaμ þ 2

∂Lm

∂Baμρ ½Baμ�

¼ 1

g2
Fa
μρAaμ þ 2

∂Lm

∂Baμρ ½Baμ�

¼ 1

g2
Ba
μρAaμ þ 1

g2
½DμAa

ρ −DρAa
μ�Aaμ

þ 1

g2
fabcAb

μAc
ρAaμ þ 2

∂Lm

∂Baμρ ½Baμ�: ð13Þ

In the background gauge field formalism the contribution
from the gauge and fermion terms at one loop to the
effective action are stemming from [9]

LA ¼ −
1

2g2
½Aa

μ½−ðD2Þacgμν − 2fabcBbμν�Ac
ν�

½det½iγμDμ�2�
Nf
2 ¼ ½det½−D2 þBb

ρσSρσtb��
Nf
2 ; ð14Þ

where in the last line we considered the integral of the
fermion quadratic term. One notices immediately that on
the right-hand side of Eq. (13) the first term must be
dropped as being linear in the fluctuating field and the third
term must also be dropped because it is trilinear so it will
bring contribution only at two loops. We are interested only
in the one loop result as the full contribution might contain
terms at any loop order (as opposed to the supersymmetric
QCD where we expect that the full contribution is only at
one loop). With regard to the contribution of the gauge
fluctuating fields we are left only with the second term and
the last term in the last line of Eq. (13). The second term
may be written as

1

g2
½DμAa

ρ −DρAa
μ�Aaμ

¼ 1

g2
½∂μAa

ρ þ fabcBb
μAc

ρ − ∂ρAa
μ − fabcBb

ρAa
μ�Aaμ

¼ 1

g2
½∂μAa

ρ − ∂ρAa
μ�Aaμ þ 1

g2
½fabcBb

μAc
ρ − fabcBb

ρAa
μ�Aaμ:

ð15Þ
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We introduce the result in the last line of Eq. (15) into
Eq. (9) to obtain

½Tμ
μ − θμμ�A ¼ −½∂ρχμμρ�A

¼ −∂ρ 1

g2
½∂μAa

ρ − ∂ρAa
μ�Aaμ

− ∂ρ 1

g2
½fabcBb

μAc
ρ − fabcBb

ρAc
μ�Aaμ: ð16Þ

The subscript A refers to the fluctuating gauge fields
contribution. The expression in the second line is a total
derivative which does not contain the background gauge
field so in the quantum approach will lead to zero. The
second term on the last line is zero by antisymmetry. The
first term on the last line may be calculated to lead to

αðxÞ½Tμ
μ − θμμ�A ¼ −αðxÞ½∂ρχμμρ�A

¼ ½∂ρðαðxÞ� 1
g2

½fabcBb
μAc

ρAaμ�: ð17Þ

Next we need to compute the contribution of the last term in
the background gauge field method at one loop. Before
doing that we need to calculate the similar contribution
from the fermion fields using Eq. (13) and the second line
in (14):

∂Lm

∂Baμρ ½Baμ� ¼ ∂
∂Baμρ ln½det½−D2 þ BbρσSρσtb��12Baμ

≈
1

2
ð−∂2Þ−1BaμSμρtb: ð18Þ

Note that contribution of the fermions is written schemati-
cally in terms of operators and we consider terms that might
contribute only at one loop. Moreover the estimate is made
for one single flavor of fermions. Then

αðxÞ½Tμ
μ − θμμ�f ¼ −αðxÞ½∂ρχμμρ�f

¼ ½∂ραðxÞ�ð−∂2Þ−1BaμSμρtb; ð19Þ

again written in terms of operators.
We observe that in both Eqs. (17) and (19) appear spin

contribution which at one loop may be associated only with
the spin term in Eq. (14). There is no need to compute
explicitly any of the integrals. In the background gauge
field method one knows that the contribution of the spin
operators comes from:

−
1

2
Tr½ð−∂2Þ−1ΔJð−∂2Þ−1ΔJ�; ð20Þ

where

ΔJ ¼ Bb
ρσJ ρσtb; ð21Þ

where J ρσ is the spin operator particular for each spin
representation. Contribution of these spin terms to the scale
anomaly [with the parameter αðxÞ of the effective
Lagrangian in the background gauge field method] can
be calculated as follows [9]:

−
1

2
Tr½ð−∂2Þ−1ΔJð−∂2Þ−1ΔJ� ¼ −

1

2
Tr½ð−∂2Þ−1x δðx − yÞΔJðyÞð−∂2Þ−1y δðy − xÞΔJðxÞ�

¼ −
1

2
Tr

Z
d4x

Z
d4y

Z
d4p
ð2πÞ4

Z
d4q
ð2πÞ4

Z
d4r
ð2πÞ4

Z
d4k
ð2πÞ4

×

�
1

p2
exp½ipðx − yÞ�ΔJðkÞ exp½iky�

1

q2
exp½iqðy − xÞ�ΔJðrÞ exp½irx�

�

¼ −
1

2
Tr

Z
d4p
ð2πÞ4

Z
d4q
ð2πÞ4

Z
d4r
ð2πÞ4

Z
d4k
ð2πÞ4 δðp − qþ rÞδð−pþ kþ qÞ

×

�
1

p2
exp½ipðx − yÞ�ΔJðkÞ exp½iky�

1

q2
exp½iqðy − xÞ�ΔJðrÞ exp½irx�

�

¼ −
1

2
Tr

�Z
d4k
ð2πÞ4

Z
d4q
ð2πÞ4

1

q2
1

ðqþ kÞ2 F
a
ρσðkÞFb

αβð−kÞtatbJ ρσJ αβ

�

¼ i
1

4

Z
d4k
ð2πÞ4 F

a
μνðkÞFaμνð−kÞ 4CðrÞCðjÞ

4π2
Γ
�
2 −

d
2

�
: ð22Þ

Here we worked in dimensional regularization scheme and CðjÞ is the result of summation over the spin structure operators
[CðjÞ ¼ 2 for the gauge fields and CðjÞ ¼ 1 for the Dirac fields]:

Tr½J ρσJ αβ� ¼ ðgραgσβ − gρβgσαÞCðjÞ: ð23Þ
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Moreover δabCðrÞ ¼ Tr½tatb� where ta are the generators of
the adjoint representation for the gauge fields [CðrÞ ¼ N]
and of the fundamental representation for the fermion fields
[CðrÞ ¼ 1

2
]. The contribution to the effective action must be

multiplied by the power of the quadratic operators in the
partition function as in Eq. (14). Finally the relevant result
for the spin contribution in the effective action is

−αðxÞ
�
8N
64π2

−
2Nf

64π2

�
Ba
μνBaμν; ð24Þ

where here the role of αðxÞ is played by lnðkÞ.
Then one can infer straightforwardly the corresponding

terms coming from Eqs. (17) and (19):

αðxÞ½Tμ
μ − θμμ� ¼ ∂ραðxÞBaμFaμρ2

�
8N
64π2

−
2Nf

64π2

�

¼ −αðxÞBaμρBa
μρ

�
8N
64π2

−
2Nf

64π2

�
; ð25Þ

where the contribution of gauge fields and fermions can be
distinguished easily. Here the factor of 2 in front of the
square bracket and the absence of the minus sign come
from the fact that the expansion of the operators is done
only in the first order.
We go back to Eq. (3) to find the exact scaling that

corresponds to the result in Eq. (25). One has

Aa0
μ ðx0ÞAa0

ν ðx0Þ ¼ Aa
μðxÞAa

νðxÞ − α½2 − ∂ρxρ�Aa
μðxÞAa

νðxÞ
¼ Aa

μðxÞAa
νðxÞ þ 2αAa

μðxÞAa
νðxÞ

Ψ̄0ðx0ÞΨ0ðx0Þ ¼ Ψ̄ðxÞΨðxÞ þ αΨ̄ðxÞΨðxÞ: ð26Þ

Here we took into account the Fujikawa approach where
the fields appear in pairs and the result is correct up to a
total derivative. Consequently the emergent scaling is −1
for the gauge fields and − 1

2
for the fermion fields. For the

same scaling for fermions as for the gauge fields we need to
multiply the fermion term in Eq. (25) by 2. Moreover since
the integration variables are in terms of prime fields we
need to multiply the full result by (−1) which would
correspond to a natural scaling of the fields by α. Then the
result of scaling by α of each field in the Lagrangian is

αBaμρBa
μρ

�
8N
64π2

−
4Nf

64π2

�
¼ α

1

4
BaμρBa

μρ

�
4N
8π2

−
2Nf

8π2

�
:

ð27Þ

In [7] the authors computed the contribution to the
supersymmetric QCD Lagrangian coming from the scaling
of the gauge fields by gc and from the scaling of the
matter fields by Zf where Zf is the renormalization
constant associated with the matter fields. Assuming
lnZf ¼ ln gc ¼ α the contribution reads

−
1

4
α

�
−

N
4π2

þ Nf

4π2

�
Wa

μνWaμν; ð28Þ

where Wa
μν is the supersymmetric gauge tensor that

includes gauge fields and gluinos.
Let us write the result that would correspond to the

supersymmetric Lagrangian in our approach. Because we
deal with spin structures the scalar fields should not bring
any contributions. Then in the result of Eq. (27) the gluons
and fermions would have exactly the same terms and we
need to add only the gluino contribution. Since the gluinos
are in the adjoint representations a factor of 2N should be
added (which includes the absence of the factor 1

2
and the

group constant N). Moreover because the gluinos are
Majorana fermions a factor of 1

2
must be considered.

Finally one obtains

1

4
αWaμρWa

μρ

�
4N
8π2

−
2N
8π2

−
2Nf

8π2

�

¼ −
1

4
α

�
−

N
4π2

þ Nf

4π2

�
Wa

μνWaμν; ð29Þ

a result which coincides exactly to that in Eq. (28).
One can apply the method introduced here to QCD in the

background gauge field method to obtain a trivial results or
to QCD in the regular renormalization method. However
the latter requires and deserves a detailed treatment in a
separate work due to the more complicated relation
between the renormalization constants.
In order to show the relevance of our works we will

consider QED. The renormalized QED Lagrangian is

L ¼
X
f

Z2Ψ̄fiγμ∂μΨf þ Z1e
X
f

Ψ̄ fγμAμΨf

−
1

4
Z3FμνFμν; ð30Þ

where e0Z2Z
1=2
3 ¼ eZ1 and the bare index corresponds to

the bare charge and the rest of the quantities are renor-
malized. Moreover for QED Z1 ¼ Z2. The sum is consid-
ered over fermion flavors f which are all assumed with the
same charge.
The beta function at two loops is

βðeÞ ¼ Nf

12π2
e3 þ Nf

64π4
e5; ð31Þ

whereas the renormalization constant Z2 at one loop has the
expression

Z1 ¼ Z2 ¼ 1 −
e2

8π2
1

ϵ
þ � � � ; ð32Þ

where d ¼ 4 − 2ϵ in dimensional renormalization scheme.
We make the change of variables in the partition function
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Ψf ¼ Z−1=2
2 Ψ0

f, Ψ̄f ¼ Z−1=2
3 Ψ0

f and Aμ ¼ Z−1=2
3 A0

μ (an ini-
tial scaling of the fields e0Aμ ¼ Aμ is implicitly assumed).
Then the effective action at one loop will be

−
1

4

�
1

e20
−

Nf

6π2
lnðkÞ − Nf ln½Z2�

1

4π2

�
FμνFμν: ð33Þ

Here we applied the result in Eq. (27) and took into
account the fact that the sign is opposite. Then in order to
establish the correct structure of the effective action one
should have

1

e20
−

Nf

6π2
lnðkÞ − Nf ln½Z2�

1

4π2
¼ 1

e2
: ð34Þ

We apply d
d ln k

M
to Eq. (34) and use Eq. (32) to obtain

−
1

6π2
Nf − Nf

e2

32π2
¼ −2

βðeÞ
e3

; ð35Þ

which evidently leads to the QED beta function at two
loops as in Eq. (31).
Our calculations showed undoubtedly that for any gauge

theory supersymmetric or not the anomaly associated with
an arbitrary scaling of the fields can be readily associated
and extracted at least at one loop from the spin dependent
contribution of the fields to the one loop effective action.
The method employed here and the results may have
important application in deciphering the properties of
any gauge theory.
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