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We investigate how the coherent spreading of the center-of-mass wave function of a particle, such as an
atom, molecule or ion, affects the particle’s interaction with fields such as the electromagnetic field or a
phonon field, in view also of possible applications to emerging quantum technologies. To this end, we
develop a suitably generalized Unruh-DeWitt model for the interaction between a delocalizing first-
quantized particle and a second-quantized field. We study how the coherent spreading of the center-of-mass
wave function of the particle affects emission and absorption rates and we find, in particular, that in the case
of a supersonic coherent spreading in a medium, there should occur Cherenkov-like emissions, along with
the excitation of the particle.
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I. INTRODUCTION

In the light-matter interaction, the motion of a particle,
such as an atom, molecule or ion, influences the particle’s
emission and absorption properties through multiple
effects. These effects range from the Doppler effect, that
arises already in the nonrelativistic regime, and the effect
of Lorentz transformations on energy gaps at high veloc-
ities, to the Unruh effect that is expected to arise with
extremely accelerated motion. In situations where the
particle’s motion can be described by a classical probability
distribution, these effects can be calculated separately for
each possible state of motion, to then be added up
incoherently. Our aim here is to investigate the case when
the particle’s motion is quantum uncertain.
It is clear that there are differences between coherent and

incoherent or classical superpositions of motion because
quantum wave functions generically evolve differently
than classical probability distributions. In fact, as we will
discuss, differences can already occur between coherent
and incoherent superpositions of the free evolution of the
center of mass of a particle, i.e., between coherent or
incoherent free delocalization.
In practice, to study emission and absorption processes

for probability distributions of classical motion, it is
usually convenient to transform into the various possible
rest frames of the emitter or absorber, to then add up
the effects incoherently. This strategy is, however, not

straightforwardly applicable in the case of the coherent
superpositions of quantized motion.
To avoid the need to transform into quantum-uncertain

rest frames, we will, therefore, employ a technical tool,
previously used, e.g., in Refs. [1,2], that allows us to couple
quantum fields to first-quantized particles that possess
quantum-uncertain positions. Technically, we will work
with quantum fields that take position operators as their
argument, i.e., that are functions such as ϕ̂ðx̂Þ that are both
operator dependent and operator valued. Further, we will
work, for simplicity, in the nonrelativistic regime and we
will neglect all competing effects, such as higher-order
quantum-field-theoretic corrections.
We will begin by modeling the light-matter interaction

using a commonly employed idealization which focuses on
only two energy levels of the matter system and which
models the electromagnetic field as a scalar quantum field.
When small matter systems, such as atoms, molecules or
ions, are idealized as two-level qubit systems whose
classical center of mass follows a prescribed trajectory,
they are known as Unruh-DeWitt (UdW) detectors [3,4].
These detectors have proven to be a very useful tool for the
theoretical analysis of key processes such as the detection
of Hawking and Unruh photons [3,5–8] and, more recently,
entanglement harvesting [9–15] and quantum communica-
tion through quantum fields [16–18].
The conventional UdW detector model is, however,

limited to the regime in which the center of mass follows
a classical trajectory. We here generalize the UdW detector
model to include the quantum-mechanical description of its

*nadine.stritzelberger@cantab.net
†akempf@perimeterinstitute.ca

PHYSICAL REVIEW D 101, 036007 (2020)

2470-0010=2020=101(3)=036007(10) 036007-1 © 2020 American Physical Society

https://orcid.org/0000-0001-9548-7816
https://orcid.org/0000-0002-5809-9950
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.036007&domain=pdf&date_stamp=2020-02-14
https://doi.org/10.1103/PhysRevD.101.036007
https://doi.org/10.1103/PhysRevD.101.036007
https://doi.org/10.1103/PhysRevD.101.036007
https://doi.org/10.1103/PhysRevD.101.036007


center-of-mass degrees of freedom (d.o.f.). The dynamics
of the center-of-mass wave function of the detector then
effectively introduces an additional time dependence to the
light-matter interaction. This additional time dependence
arises already with the coherent spreading of the wave
function under free time evolution. Our aim is to investigate
the impact of this coherent delocalization on the light-
matter interaction.
We begin by showing that the spontaneous emission rate

of an excited atom, molecule or ion can depend on the rate
of its delocalization and on whether the delocalization is
entirely coherent or in part also incoherent. We then show
that a new phenomenon can arise in media, namely if parts
of the center-of-mass wave function coherently spread
faster than the maximum wave propagation speed in the
medium. In this case, the coherent delocalization of the
center of mass can trigger the excitation of the atom,
molecule or ion, along with the emission of Cherenkov-like
radiation. This leads to an effective friction and to
decoherence for the supersonic contributions to the
center-of-mass wave function, possibly also leading to a
Cherenkov-Zeno-like effect. These phenomena have the
potential, for example, to impact the quantum channel
capacities of light-matter interactions.

II. THE TRADITIONAL UDW DETECTOR MODEL
FOR THE LIGHT-MATTER INTERACTION

The traditional UdW detector model is a simplified
model for light-matter interactions in which the electro-
magnetic field is modeled as a scalar massless quantum
field. An atom, molecule or ion is then modeled as a first-
quantized two-level system with ground state jgi, excited
state jei and energy gap E. The center of mass of a
traditional UdW detector follows a prescribed classical
worldline x⃗ðtÞ, which here we will assume to be non-
relativistic. The total Hilbert space of the coupled system
factorizes, H ¼ Hinternal ⊗ Hfield. The interaction between
the UdW detector and the quantum field is usually modeled
as a linear coupling along the detector’s worldline. In the
Schrödinger picture, the interaction Hamiltonian takes the
simple form

Ĥint ¼ λμ̂ ⊗ ϕ̂ðx⃗Þ: ð1Þ

In the literature (see, e.g., Ref. [19]), the interaction
Hamiltonian is sometimes extended to include a classical
spatial smearing function to model the finite spatial extent
of the detector’s electronic orbits. Here we will not make
use of this technical tool. Instead, in Sec. VIII, we will
describe the electronic orbitals explicitly. In Eq. (1), λ
denotes the coupling strength, μ̂ is the monopole operator
of the detector,

μ̂ ¼ jeihgj þ H:c:; ð2Þ

and ϕ̂ is the scalar quantum field,

ϕ̂ðx⃗Þ ¼
Z

d3k

ð2πÞ3=2
ffiffiffiffiffi
c2

2k

r
½eik⃗ x⃗âk⃗ þ H:c:�: ð3Þ

The coupling of a monopole to a scalar field in Eq. (1)
is a simplified model for the coupling of a dipole to
the electromagnetic field of the type d̂ · Ê. For a discus-
sion of UdW-type interaction Hamiltonians, see, e.g.,
Refs. [8,19]. The free Hamiltonian of the UdW detector
and the scalar quantum field is given by

Ĥ0 ¼ Ejeihej þ
Z

d3k ckâ†
k⃗
âk⃗: ð4Þ

While c here stands for the speed of light in the vacuum,
we will later also consider media with lower wave propa-
gation speeds. The transition probability for the system to
evolve from an initial state jΨii at time ti to a final state
jΨfi at time tf, working in the interaction picture and
to first-order perturbation theory, is obtained from the
transition probability amplitude,

A ¼ −ihΨfje−iĤ0tf

Z
tf

ti

dtĤintðtÞjΨii: ð5Þ

Here, ĤintðtÞ denotes the interaction Hamiltonian in the
interaction picture,

ĤintðtÞ ¼ λμ̂ðtÞ ⊗ ϕ̂ðx⃗; tÞ; ð6Þ

where μ̂ðtÞ and ϕ̂ðtÞ are the monopole and field operators in
the interaction picture,

μ̂ðtÞ ¼ eiEtjeihgj þ H:c:; ð7Þ

ϕ̂ðx⃗; tÞ ¼
Z

d3k

ð2πÞ3=2
ffiffiffiffiffi
c2

2k

r
½e−icktþik⃗ x⃗âk⃗ þ H:c:�: ð8Þ

As an example, which we will later revisit, let us briefly
review the spontaneous emission rate for an initially excited
traditional UdW detector in the vacuum,

jΨii ¼ jei ⊗ j0i; ð9Þ

which is at rest, x⃗ðtÞ ¼ x⃗0. We first consider the transition
amplitude to a final state in which the detector is in its
ground state and a field quantum of momentum k⃗ has been
emitted,

jΨfi ¼ jgi ⊗ â†
k⃗
j0i: ð10Þ

We take the limits ti → −∞ and tf → ∞ in order to
eliminate switching effects. In order to avoid the divergence
in the total spontaneous emission probability which arises
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from time translation invariance (see, e.g., Ref. [8]),
we instead calculate the spontaneous emission rate, Rk.
Finally, to obtain the total spontaneous emission rate R
irrespective of the momentum k⃗ of the emitted field
quantum, we also trace over the Hilbert space of the
field d.o.f. The calculation is straightforward and here
we only state the result for later reference:

R ¼ λ2E: ð11Þ

In the following section, our aim is to generalize the
traditional UdW detector model in order to take into
account the effects that arise with the quantum delocaliza-
tion of the detector. We will also allow the UdW detectors
to couple to fields other than fundamental fields in the
vacuum. For example, the UdW detector may couple to
photons in dispersive media or to various fields of quasi-
particles or collective excitations, such as spin waves or
phonons in solids or in Bose-Einstein condensates. This
will allow us to consider scenarios where the UdW
detector’s real or virtual motion exceeds the speed of
propagation of the quantum field that it couples to and
we will find that new effects arise in this case.

III. GENERALIZING THE UdW DETECTOR
MODEL TO INCLUDE QUANTIZED

CENTER-OF-MASS DEGREES OF FREEDOM

We will now go beyond the conventional model for
UdW detectors, namely by dropping the simplifying
assumption that the center of mass of the UdW detector
follows a classical worldline. Instead, we will equip
the UdW detector with first-quantized center-of-mass
(CM) d.o.f. The total Hilbert space then factorizes as
H ¼ HCM ⊗ Hinternal ⊗ Hfield. We again model the inter-
action of the small quantum system and the quantum field
via the monopole operator coupling. However, the coupling
takes place at the center-of-mass position of the detector,
which is now described by the center-of-mass position
operator ˆx⃗. That is, the interaction Hamiltonian becomes
Ĥint ¼ λμ̂ ϕ̂ð ˆx⃗Þ. In order to make sense of the operator-
valued field taking the position operator as its argument, we
apply the spectral theorem, as described, e.g., in Refs. [1,2]:
an operator-valued function f̂ can take an operator Â as its
argument by expanding the operator in its eigenbasis and
evaluating the function on the operator’s eigenvalues,
f̂ðÂÞ ¼ R

dajaihaj ⊗ f̂ðaÞ. Here, we obtain

Ĥint ¼ λμ̂ ϕ̂ð ˆx⃗Þ ¼ λ

Z
d3xjx⃗ihx⃗j ⊗ μ̂ ⊗ ϕ̂ðx⃗Þ; ð12Þ

where jx⃗i are the position eigenstates and x⃗ are the position
eigenvalues of the center of mass of the UdW detector. The
free Hamiltonians of the UdW detector and the scalar
quantum field are given by

Ĥ0 ¼
ˆp⃗2

2M
þ Ejeihej þ

Z
d3k ckâ†

k⃗
âk⃗; ð13Þ

where ˆp⃗ denotes the center-of-mass momentum operator
and M is the mass of the UdW detector. The interaction
Hamiltonian, expressed in the interaction picture, then
becomes

ĤintðtÞ ¼ λ

Z
d3xjx⃗ðtÞihx⃗ðtÞj ⊗ μ̂ðtÞ ⊗ ϕ̂ðx⃗; tÞ; ð14Þ

with the projection operators jx⃗ðtÞihx⃗ðtÞj evolving in the
interaction picture according to

jx⃗ðtÞi ¼
Z

d3p

ð2πÞ3=2 e
−ip⃗ x⃗þitp⃗

2

2Mjp⃗i: ð15Þ

We are now ready to use Eq. (5) to calculate transition
probabilities for UdW detectors with a coherently delocal-
izing center of mass.

IV. SPONTANEOUS EMISSION WITH QUANTUM
DELOCALIZING CENTER OF MASS

We begin by investigating the spontaneous emission
rate of a UdW detector with quantized center-of-
mass d.o.f., in order to then compare the result to the
spontaneous emission rate for a traditional UdW detector
with a classical center of mass. Let us assume that the
center of mass of the particle is prepared in an initial state
jφ0i ¼

R
d3pφ0ðp⃗Þjp⃗i. The probability amplitude for the

system to evolve from an initial state jΨii ¼ jφ0i ⊗ jei ⊗
j0i to a final state jΨfi ¼ jp⃗0i ⊗ jgi ⊗ â†

k⃗
j0i becomes

A ¼ −
iλffiffiffiffiffiffiffiffi
2ck

p 1

ð2πÞ9=2 e
−itfðp⃗

02
2MþckÞ

Z
d3pφ0ðp⃗Þ

×
Z

d3xe−iðp⃗0−p⃗þk⃗Þx⃗
Z

tf

ti

dteitð
p⃗02−p⃗2
2M −EþckÞ þOðλ2Þ:

ð16Þ

Momentum conservation is automatically enforced, i.e., the
momentum of the emitted photon and the recoil momentum
of the detector are equal to the initial momentum of the
detector. Energy is conserved as well, provided1 that we
take the limits ti → −∞ and tf → ∞. In order to obtain the
total spontaneous emission rate R irrespective of the
momentum k⃗ of the emitted photon or the recoil momentum
p⃗0 of the detector, we trace over the final state of the field
and the external d.o.f. of the particle:

1Finite ti and tf would correspond to a sudden switching on
and off of the interaction by an external agent. As a consequence,
time translation invariance would be broken and energy would
not be conserved, since the agent could provide or extract energy
to or from the system.
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R ¼ λ2c2M
2

Z
d3pjφ0ðp⃗Þj2T ðpÞ: ð17Þ

Here, we defined

T ðpÞ ≔ 2 −
1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþMcÞ2 þ 2EM

q

þ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp −McÞ2 þ 2EM

q
; ð18Þ

with p ≔ jp⃗j. Since T does not depend on the initial center-
of-mass wave function, we may call it the template function
for the spontaneous emission rate.
Let us now assume that the center-of-mass momentum

distribution does not have significant amplitudes for large
momenta. This allows us to Taylor expand the template
function T around p ¼ 0, to obtain

R ¼ λ2c2MA
Z

d3pjφ0ðp⃗Þj2½1þ ðp=p0Þ2

þOððp=p0Þ4Þ�: ð19Þ
Here, we define the constants

A ≔ 1 −
�
1þ 2E

Mc2

�
−1=2

; ð20Þ

B ≔
E

c4M3

�
1þ 2E

Mc2

�
−5=2

; ð21Þ

p0 ≔
ffiffiffiffiffiffiffiffiffi
A=B

p
: ð22Þ

As is easily verified, in the regime where the energy gap is
small compared to the mass energy of the detector,
E ≪ Mc2, we have that p0 ≈Mc, i.e., the expansion in
Eq. (19) is then valid in the nonrelativistic regime.
For instance, let us consider an ion that is initially

localized in a quadratic potential of an ion trap [20–22].
After switching the ion trap off, the center-of-mass wave
function of the ion will coherently spread. If the ion was
prepared in an energy eigenstate of the trapping potential,
the initial center-of-mass wave functions would be a
Hermite function in three spatial dimensions. For example,
if the ground-state wave function of the center of mass is a
Gaussian wave packet of initial width L, centered around
x⃗ ¼ x⃗0,

jφ0i ¼
Z

d3xφ0ðx⃗; x⃗0Þjx⃗i; ð23Þ

φ0ðx⃗; x⃗0Þ ¼
�

2

πL2

�
3=4

e−
jx⃗−x⃗0 j2

L2 ; ð24Þ

we obtain that the spontaneous emission rate depends on L
through

R ¼ λ2c2MA½1þ 3ðL0=LÞ2 þOððL0=LÞ4Þ�: ð25Þ

This approximation is valid for all L ≫ L0, where L0 ≔
p−1
0 is effectively the Compton wavelength of the detector.

This result shows that the faster the delocalization process,
i.e., the sharper the initial localization, the more the
spontaneous emission rate is increased. If instead the ion
was prepared, for example, in the first excited eigenstate of
the trapping potential in each direction, described by the
product of the first (i.e., linear) Hermite polynomials and
the Gaussian,

jφ0i ¼
Z

d3x
8

L3
x1x2x3φ0ðx⃗; 0Þjx⃗i; ð26Þ

then the wave function also possesses more momentum,
and therefore spreads faster, and the spontaneous emission
rate is further increased:

R ¼ λ2c2MA½1þ 9ðL0=LÞ2 þOððL0=LÞ4Þ�: ð27Þ

V. RECOVERING THE TRADITIONAL UdW
MODEL IN THE LIMIT OF LARGE MASS AND
CORRESPONDINGLY SLOW DELOCALIZATION

Intuitively, the dynamical coherent delocalization of
matter affects processes such as spontaneous emission
because it introduces an effective time dependence into
the light-matter interaction. This suggests that in the limit
of large detector mass, when the center-of-mass wave
function coherently delocalizes more and more slowly,
the spontaneous emission rate of the UdW detector with a
classical center of mass could be recovered.
To verify this intuition, let us calculate the spontaneous

emission rate in the limit of large detector mass. We expand
the template function T for large detector mass M, i.e., for
Mc2 ≫ E and Mc ≫ p, to obtain to lowest order

T 0 ¼
2E
Mc2

: ð28Þ

Since the momentum probability distribution is normalized,
the integral in Eq. (17) can be carried out in the limit of
large detector mass, yielding the spontaneous emission rate

R0 ¼
λ2c2M

2

Z
d3pjφ0ðp⃗Þj2T 0 ¼ λ2E: ð29Þ

Comparing with Eq. (11), this means that for a detector
with a quantized center of mass whose momentum dis-
tribution is centered around zero, the spontaneous emission
rate in the infinite-mass limit indeed coincides with the
spontaneous emission rate for a traditional UdW detector
at rest. We therefore confirmed the intuition that it is not
the amount of delocalization of the center of mass, but
rather the dynamics of its delocalization that affects the
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spontaneous emission rate. We further conclude that the
traditional UdW detector model is a good approximation
only in the limit of large detector masses.

VI. INCOHERENT VERSUS COHERENT
DELOCALIZATION

The delocalization process of the center of mass can be
coherent or incoherent, depending on the purity of the
initial state. So far we assumed the center of mass of the
detector to be in a pure initial state jφ0i and we explicitly
calculated the spontaneous emission rate for a Gaussian
wave packet state. However, the center of mass of the
detector could also be in a superposition of several wave
packet states. For instance, the center of mass could initially
be in a coherent superposition, jφ0i ∼ jξi þ αjχi with a
phase α ∈ C, of two Gaussian wave packets centered
around x⃗ ¼ x⃗0 and x⃗ ¼ −x⃗0 respectively,

jξi ¼
Z

d3xφ0ðx⃗; x⃗0Þjx⃗i; ð30Þ

jχi ¼
Z

d3xφ0ðx⃗;−x⃗0Þjx⃗i: ð31Þ

Alternatively, the center of mass could initially be in a
superposition which is in part also incoherent. For instance,
the center of mass could be initially in the mixed state
ρ0 ¼ 1

2
ðjξihξj þ jχihχjÞ. The light-matter interaction indeed

distinguishes between coherent and incoherent delocaliza-
tion: due to translation invariance, the spontaneous emis-
sion rate for the partly incoherent superposition is the same
as the spontaneous emission rate for a single Gaussian
wave packet, as given by Eq. (25). For the coherent super-
position, however, we intuitively expect that the sponta-
neous emission rate could be affected by the interference
between the two wave packets, except of course in the
limits x0 → 0 and x0 → ∞, with x0 ≔ jx⃗0j, in which the
overlap of the two wave packets in position space is trivial.
Indeed, we find that this is the case: the spontaneous
emission rate for the coherent superposition,

R ¼ λ2c2MA½1þ 3ð1 − fðx0; αÞÞðL0=LÞ2 þOððL0=LÞ4Þ�;
ð32Þ

now depends both on the separation 2x0 and on the phase α
between the two interfering wave packets,

fðx0; αÞ ≔
4x20
3L2

2ℜðαÞe−2x20=L2

1þ jαj2 þ 2ℜðαÞe−2x20=L2 : ð33Þ

We notice that the incoherent and coherent cases match not
only in the limits x0 → 0 and x0 → ∞, but also for a purely
imaginary phase, ℜðαÞ ¼ 0, and whenever the two
superposed wave functions are orthogonal, since the
spontaneous emission rate only depends on the modulus
squared of the initial center-of-mass wave function.

VII. CAN THE DYNAMICS OF DELOCALIZATION
TRIGGER EXCITATION?

In this section, we investigate whether, in media, the
dynamics of the delocalization process of the center-of-
mass wave function of a UdW detector in its ground state is
able to trigger the excitation of the UdW detector, along
with the emission of a field quantum. Intuitively, the reason
for why such a process might happen is that virtual motion
in a medium, similar to real motion in a medium, could
incur a Cherenkov-like effect.
First, let us recall that a charged classical particle

traveling at a constant velocity through the Minkowski
vacuum will not spontaneously emit field quanta, since the
exact same physical situation is encountered in its rest
frame where it is clear that there is no energy available to
create field quanta. In a medium, however, boosts are
nontrivial and it is known that a charged classical particle
that travels on an inertial trajectory can emit quanta, namely
if it travels at a velocity faster than the propagation speed of
waves in the medium [23–25].
Important for our purposes here is that UdW detectors,

such as atoms, molecules and ions also necessarily carry a
monopole or dipole (or higher multipole) charge as they
couple to the field. This suggests to consider the possibility
of a Cherenkov-like effect for UdW detectors.
While the classical Cherenkov effect arises for classical

charges coupled to classical fields, a UdW detector couples
not merely to a classical field but to a field that is quantized.
Further, the UdW detector model allows us to investigate
the possible excitation of the quantized internal d.o.f. of
the UdW detector along with the emission of Cherenkov
radiation.
But also, and here we will focus on this new question, we

can ask whether merely virtualmotion, in particular, virtual
motion due to the dynamical coherent delocalization of the
quantized center of mass, can trigger the emission of field
quanta along with the excitation of the UdW detector. The
idea is that this Cherenkov-like effect could arise due to that
part of the center-of-mass wave function that corresponds
to coherent delocalization with velocities faster than the
propagation speed of waves in the medium.
To this end, let us consider a UdW detector in its ground

state, with quantized center of mass, coupled to a quantum
field in its ground state:

jΨii ¼ jφ0i ⊗ jgi ⊗ j0i: ð34Þ
We calculate the transition probability to a state in which
the detector is excited and a field quantum has been
emitted,

jΨfi ¼ jp⃗0i ⊗ jei ⊗ â†
k⃗
j0i: ð35Þ

Through a calculation similar to the derivation of the
spontaneous emission rate we discussed before, we now
obtain the excitation rate
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R ¼ λ2c2

2

Z
d3pjφ0ðp⃗Þj2T ðpÞ; ð36Þ

where we again obtain a template function:

T ðpÞ ≔
Z

∞

0

dk
Z

1

−1
dzkδ

�
−
pkz
M

þ k2

2M
þ Eþ ck

�

¼ 2M
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − cMÞ2 − 2EM

q
× Θðp −Mc −

ffiffiffiffiffiffiffiffiffiffi
2EM

p
Þ: ð37Þ

The Heaviside step function Θ in the template function
implies that a finite transition probability arises exclusively
from those parts of the initial center-of-mass momentum
distribution for which p ≥ Mcþ ffiffiffiffiffiffiffiffiffiffi

2EM
p

. This means that
the dynamics of center-of-mass delocalization, i.e., virtual
motion alone, can indeed trigger the excitation of the
detector and the emission of a field quantum. The condition
is that at least parts of the center-of-mass wave function
must spread faster than the critical velocity vcrit ≔ cþffiffiffiffiffiffiffiffiffiffiffiffiffi
2E=M

p
set by the maximum propagation speed, c, of

waves in the medium and also by the energy gap, E, of the
detector. We notice that, depending on the size of the
detector gap, the critical velocity can be significantly larger
than the wave propagation speed c in the medium.
The case of a charge without an internal d.o.f. is obtained

as the limiting case E → 0. In this limiting case, the
interaction Hamiltonian commutes with the then vanishing
free Hamiltonian of the internal d.o.f.
Regarding the terminology, we refer to the excitation and

radiation induced by a superluminal, or supersonic, coher-
ent spreading of the center-of-mass wave function as a
Cherenkov-like effect.
Concretely, for instance for an atom coupling to the

electromagnetic field in a medium, we expect that suffi-
ciently superluminal virtual center-of-mass velocities (i.e.,
velocities satisfying v ≥ vcrit) can lead to the excitation of
the atom and the emission of a photon. In the same way,
sufficiently supersonic center-of-mass virtual velocities of
an atom in a Bose-Einstein condensate should lead to the
excitation of the atom and the emission of a phonon. For
Bose-Einstein condensates [26] the sound propagation
speed can be as low as mm/s, i.e., atoms with virtual
velocities above this speed can still be well within the
nonrelativistic regime that we are working in here.
Generally, the Cherenkov-like effect leads to dissipative

friction for any coherent delocalization above the critical
velocity vcrit, (reminiscent of the Greisen-Zatsepin-Kuzmin
limit for the real motion of cosmic-ray protons [27,28]).
The Cherenkov-like effect, therefore, also represents a
source of decoherence for virtual motion above the critical
velocity. In practical applications of quantum technologies,
this could mean, for example, that if an atom or molecule in
a medium is to receive quantum information by absorbing a

photon or other field quantum entangled with an ancilla,
then that transfer of entanglement, i.e., of quantum infor-
mation, is vulnerable to decoherence. The vulnerability
arises from the Cherenkov-like effect if the absorption
process localizes the absorbing atom or molecule too
strongly, namely if, after the absorption, the center-of-mass
wave function contains significant components above the
critical velocity vcrit. We notice that vcrit can be manipulated
externally in as far as the energy gap of the UdW detector
can be manipulated externally, e.g., via the Zeeman or Stark
effect.

VIII. HARMONIC HYDROGEN ATOM COUPLING
TO ELECTROMAGNETIC FIELD

While the UdW detector model is a simplified model of
the light-matter interaction that allows one to efficiently
investigate aspects of emission and absorption processes
qualitatively, let us now generalize one of our results above
to a quantitative order-of-magnitude analysis. Namely, as
we saw in Sec. IV, the UdW detector model indicates that
the dynamics of the coherent delocalization of an atom’s
center of mass should impact the rate of spontaneous
emission. In order to estimate the order of magnitude of
the effect, it would not be reliable to continue to model the
atom’s internal d.o.f. as a simple qubit2 coupling to a scalar
field. Instead, let us calculate the spontaneous emission rate
for a hydrogen atom with a dynamically delocalizing center
of mass coupled to the electromagnetic field. We model
the electron and the proton in the hydrogen atom fully
quantum mechanically (with position operators ˆx⃗e and ˆx⃗p
and momentum operators ˆp⃗e and ˆp⃗p), which respectively
interact with the electromagnetic field via minimal
coupling.
The only simplification that we will use, to make the

calculation of the order-of-magnitude estimate easier, is to
replace the Coulomb potential by a harmonic potential that
is tuned such that the energy gap, ℏΩ, between the ground
and first excited states match that of the Coulomb potential.
In the temporal gauge, the Hamiltonian of this harmonic
hydrogen atom is

Ĥ ¼ ð ˆp⃗p − qp
ˆA⃗ð ˆx⃗pÞÞ

2

2mp
þ ð ˆp⃗e þ qe

ˆA⃗ð ˆx⃗eÞÞ
2

2me

þ
Z

d3k cℏk
X2
s¼1

âs†
k⃗
âs
k⃗
þ μΩ2

2
ð ˆx⃗p − ˆx⃗eÞ2; ð38Þ

where the electromagnetic field operators,

2The conventional UdW detector model (with a classical center
of mass) is routinely extended to account for the finite size of the
atom due to the electronic orbital wave functions by introducing
spatial smearing functions [19]. Here, for increased accuracy, we
instead quantize all d.o.f.
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ˆA⃗ðx⃗Þ ¼
Z

d3k

ð2πÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ϵ0ck

s X2
s¼1

ϵ⃗sðk⃗Þ½âsk⃗eik⃗ x⃗ þ H:c:�; ð39Þ

couple respectively to the position operators of the electron
and the proton. In order for the model to describe ions as
well, for now we allow for different charges of the electron
and core. Later, we will set qe ¼ qp ¼ 1.6 × 10−19 C for
the hydrogen atom. The interaction Hamiltonian reads

Ĥint ≔
qe ˆp⃗e

ˆA⃗ð ˆx⃗eÞ
2me

−
qp ˆp⃗p

ˆA⃗ð ˆx⃗pÞ
2mp

þ H:c:; ð40Þ

where here, in the dipole approximation, we neglected the
diamagnetic A2 terms, which are of second order in the
fine-structure constant. We now introduce relative and
center-of-mass position operators, ˆx⃗rel ≔ ˆx⃗e − ˆx⃗p and
ˆx⃗CM ≔ me

M
ˆx⃗e þ mp

M
ˆx⃗p, as well as their conjugate momentum

operators, ˆp⃗rel and ˆp⃗CM, where M is the total mass and μ is
the reduced mass of the atom. The total Hilbert space
factorizes as H ¼ HCM ⊗ Hrel ⊗ Hfield. In the new coor-
dinates, we obtain for the interaction Hamiltonian

Ĥint ¼
Z

d3x
Z

d3y ˆp⃗CMjx⃗ihx⃗j ⊗ jy⃗ihy⃗j

⊗
�
qe
2M

ˆA⃗

�
x⃗þ μ

me
y⃗

�
−

qp
2M

ˆA⃗

�
x⃗ −

μ

mp
y⃗

��

þ
Z

d3x
Z

d3yjx⃗ihx⃗j ⊗ ˆp⃗reljy⃗ihy⃗j

⊗
�
qe
2me

ˆA⃗

�
x⃗þ μ

me
y⃗

�
þ qp
2mp

ˆA⃗

�
x⃗ −

μ

mp
y⃗

��

þ H:c: ð41Þ
The free Hamiltonian of the atom and the electromagnetic
field becomes,

Ĥ0 ¼
ˆp⃗2
CM

2M
þ

ˆp⃗2
rel

2μ
þ
Z

d3k cℏk
X2
s¼1

âs†
k⃗
âs
k⃗
þ μΩ2

2
ˆx⃗2rel

ð42Þ
and it allows us to express the interaction Hamiltonian in
Eq. (41) in the interaction picture.
Let us now calculate the spontaneous emission rate for

an initially excited atom with a quantized center of mass,
coupled to the vacuum state of the electromagnetic field,

jΨii ¼ jφ0i ⊗ jei ⊗ j0i: ð43Þ
We assume that the three-dimensional harmonic oscillator
is in either one of its three first excited states:

jei ¼ jn1; n2; n3i ∈ fj1; 0; 0i; j0; 1; 0i; j0; 0; 1ig: ð44Þ

We first calculate the transition probability amplitude
for the initial state to evolve to the final state

jΨfi ¼ jp⃗0i ⊗ jgi ⊗ âs†
k⃗
j0i, in which the atom is in its

ground state, jgi ¼ j0; 0; 0i, and a photon of momentum k⃗
and spin s has been emitted. We obtain, working in the
interaction picture and to first order in perturbation theory

A ¼ −
i
ℏ
e−

i
ℏðp⃗

02
2Mþ3

2
ℏΩþℏckÞtfφ0ðp⃗0 þ k⃗Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ϵ0ck

s

× ϵ⃗sðk⃗Þ
1

ð2πÞ3=2
Z

tf

ti

dte
i
ℏð−2ℏp⃗

0 k⃗−ℏ2 k⃗2
2M −ℏΩþℏckÞt

×

�Z
d3yp⃗0ψgðy⃗Þψeðy⃗Þ

�
qe
M

e−i
μ
me
k⃗ y⃗ −

qp
M

ei
μ
mp

k⃗ y⃗
�

þ
Z

d3pp⃗ψ̃gðp⃗Þ
�
qe
me

ψ̃e

�
p⃗þ μℏ

me
k⃗

�

þ qp
mp

ψ̃e

�
p⃗ −

μℏ
mp

k⃗

���
þOðq2Þ: ð45Þ

Here, ψgðy⃗Þ, ψeðy⃗Þ, ψ̃gðp⃗Þ and ψ̃eðp⃗Þ are the ground-state
and first excited-state wave functions of the harmonic
oscillator in the position and momentum representations
respectively. We now average over the three first excited
states of the harmonic oscillator and trace over the recoil

momentum p⃗0 of the center of mass, as well as over the
momentum k⃗ and spin s of the emitted photon, so as to
obtain the spontaneous emission rate:

R ¼ μMΩ
2ϵ0cℏ

Z
d3pjφ0ðp⃗Þj2T ðpÞ: ð46Þ

Here, we defined the template function,

T ðpÞ ≔
Z

kþ

k−

dk
FðkÞ2
p

�
1þ k2p2

2Ω2ℏ2M2
−
GðkÞ2
2Ω2ℏ2

�
; ð47Þ

with

k� ≔ �p − cM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�p − cMÞ2 þ 2ΩℏM

q
; ð48Þ

FðkÞ ≔ qe
me

e−μk
2=ð4Ωℏm2

eÞ þ qp
mp

e−μk
2=ð4Ωℏm2

pÞ; ð49Þ

GðkÞ ≔ k2

2M
þ ck − ℏΩ: ð50Þ

We carry out the k integration in the template function T
and Taylor expand around p ¼ 0, to obtain

R ¼ μΩC
2ϵ0c

Z
d3pjφ0ðp⃗Þj2½1þ ðp=p0Þ2 þOððp=p0Þ4Þ�:

ð51Þ

Here, we defined the constants

C ≈ 1.66 × 1021 A2 s3 kg−2m−2; ð52Þ
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D ≈ 2.96 × 1064 A2 s5 kg−4m−4; ð53Þ

p0 ≔
ffiffiffiffiffiffiffiffiffiffi
C=D

p
≈ 2.37 × 10−22 kgm=s: ð54Þ

We note that the momentum p0 corresponds to a velocity
v0 ≈ 1.42 × 105 m=s. The expansion in Eq. (51) is,
therefore, valid in the nonrelativistic regime, namely for
all center-of-mass wave functions that possess signifi-
cant probability amplitudes only for velocities v ≪ v0.
Considering a Gaussian wave packet for the initial center-
of-mass wave function, the spontaneous emission rate
becomes a function of the initial width, L, of the
Gaussian wave packet:

R ¼ μΩC
2ϵ0c

½1þ 3ðL0=LÞ2 þOððL0=LÞ4Þ�: ð55Þ

Here, we defined L0 ≔ ℏ=p0 ≈ 2.80 × 10−12 m. The low-
est-order term, μΩC

2ϵ0c
≈ 6.86 × 108 s−1, which does not

depend on the initial center-of-mass wave function, is
indeed roughly the spontaneous emission rate of an excited
hydrogen atom (R ≈ 6.27 × 108 s−1; see, e.g., Ref. [29]).
This indicates that our description of the hydrogen atom as
an electron bound to a proton via a harmonic potential,
rather than a Coulomb potential, is a reasonably good
quantitative model for our purposes here, in the sense that it
yields the right orders of magnitude for the spontaneous
emission rate from the first excited states.
Let us now assume that the center of mass of the hydrogen

atom is initially coherently localized to some moderate
extent, for example, at the scale of the size of the hydrogen
atom, L ¼ 5.29 × 10−11 m. From Eq. (55), we obtain that
this should lead to an increase of the spontaneous emission
rate (compared to the spontaneous emission rate obtained for
a harmonic hydrogen atom with an initially completely
delocalized center of mass) of 0.84%. It is reasonable to
expect a similar-sized effect for the hydrogen atom with a
Coulomb potential. Let us also address the question of the
validity of the nonrelativistic approximation for the motion
of the center of mass in this scenario. Our choice for L above
implies an uncertainty in position of Δx ≈ 3.74 × 10−11 m,
which, via the uncertainty principle and given themass of the
hydrogen atom, corresponds to an uncertainty in velocity of
Δv ≈ 5.31 × 103 m=s, which is within the nonrelativistic
regime.

IX. CONCLUSIONS AND OUTLOOK

The formalism of UdW detectors provides a simplified
model of the light-matter interaction in which atoms,
molecules or ions are modeled as two-level first-quantized
systems (or qubits) with a classical center of mass that
possesses a prescribed trajectory. The UdW model has
proven to be useful for qualitative studies of a wide
range of important phenomena, from the Unruh and
Hawking effects to entanglement harvesting and quantum

communication through quantum fields. Here, we gener-
alized the UdW detector model to include the quantumness
of the center-of-mass d.o.f.
First, we found that the dynamics of the coherent

delocalization of the center of mass influences the emission
and absorption processes in the vacuum. This suggests that it
should be very interesting to generalize prior studies with
UdW detectors to include the quantumness of the center of
mass of the UdW detectors. For example, the ability of a pair
of UdW detectors to extract entanglement from the vacuum
is known to depend on the spatial extent of the detectors
[12–15]. It will be interesting, therefore, to also examine how
the quantum dynamics of the center-of-mass position
uncertainty of UdW detectors modulates their ability to
extract entanglement from the vacuum. These studies into
the entanglement of the vacuum state could then also relate
to holography; see, e.g., Refs. [9–11,30–34].
Second, we found the phenomenon that, in media, the

coherent delocalization of an atom, molecule or ion can
induce Cherenkov-like radiation, along with the excitation
of the particle. The phenomenon should occur when the
virtual motion of the center of mass possesses probability
amplitudes for velocities faster than vcrit ¼ cþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2E=M
p

,
where c is the maximum wave propagation speed of the
quantum field in the medium and where E and M are the
particle’s energy gap and mass respectively.
This new Cherenkov-like effect may be experimentally

observable, e.g., for an atom or molecule of a different
species in a Bose-Einstein condensate (BEC), if the particle
coherently delocalizes faster than the velocity vcrit that
arises from the propagation speed, c, of phonons in the
BEC and the energy gap, E. The sound propagation speed
can be as low as mm/ s for certain Bose-Einstein con-
densates [26]. For quantitatively accurate predictions, our
calculations should, of course, be refined by using realistic
dispersion relations in media, such as BECs.
Several interesting consequences arise from the fact that

the part of an atom, molecule or ion’s center-of-mass wave
function that coherently spreads faster than the critical
speed vcrit is prone to triggering the emission of the
Cherenkov-like radiation. One consequence is that a rapid
spread of the particle’s center-of-mass wave function can be
hindered by the energy loss (somewhat akin to evaporative
cooling) due to the emission of Cherenkov-like radiation.
On the other hand, it should be interesting to explore if

the new Cherenkov-like effect may also lead to a more
subtle Cherenkov-Zeno type of phenomenon in which it is
not the spread of the particle’s position wave function but
rather the spread of the particle’s momentum wave function
that is hindered: let us consider a scenario where the particle
or UdW detector is exposed to an external potential that
induces the coherent spreading of its momentum wave
function. For example, the particle could temporarily be in
an inverted harmonic oscillator potential (which is feasible
for trapped ions or atoms; see, e.g., Refs. [20–22]). In this
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case, as the UdW detector’s center-of-mass momentum
wave function tries to spread into large momenta, the
medium continually keeps “measuring” whether or not
among the coherent superpositions of states of motion of
the UdW detector there are speeds above the critical speed
vcrit, namely through the new Cherenkov-like effect. As a
consequence, in a Cherenkov-Zeno-like effect, the spread-
ing of the momentum wave function into these high
momenta should be slowed down.
It may also be possible to gain more intuition and insight

into the predicted Cherenkov-like effect by using the new
methods of quantum reference frames. To see this, let us
first consider the regular Cherenkov effect: while a charge
traveling with uniform speed below the wave propagation
speed, cm, in a medium will not radiate, the charge will
radiate in the form of a shock wave if its speed exceeds cm.
Indeed, in a medium we can consider formal Lorentz
transformations with c replaced by cm. A charge with a
worldline that is formally spacelike with respect to cm
would, after a suitable formal Lorentz transformation, be an
extended charge that couples to the field at a point in time,
and as such be bound to radiate. This explanation requires
performing a formal Lorentz transformation that is specific
to the speed of the worldline of the particle.
In our case here, however, the motion of the center of

mass is quantum and possesses a range of potential
velocities in coherent superposition. This means that to
extend our explanation above for the Cherenkov effect here
requires one to perform coordinate changes to quantum-
uncertain reference frames via quantum-uncertain Lorentz
transformations. A formalism of such quantum reference
frames and related techniques are being developed (see,
e.g., Refs. [35–40]) and it will be natural to try to apply
them to the Cherenkov-like effect here, that arises from
coherent time evolutions of the center of mass, including
coherent delocalization. The formalism of quantum refer-
ence frames may also be useful for taking into account
relativistic effects, since it should allow us, for example, to
hold the energy gap fixed in the detector’s rest frame, even
when the rest frame is quantum uncertain.

Finally, it should be very interesting to investigate the
role of the quantumness of the center-of-mass d.o.f. of
UdW detectors in the transmission of quantum information,
i.e., of entanglement, in the light-matter interaction. The
transfer of entanglement between traditional UdW detec-
tors via quantum fields has been studied in the field of
relativistic quantum information; see, e.g., Refs. [16–18].
The conventional UdW detector model is too crude,
however, to capture some essential features, such as the
quantum dynamics of recoil.
Let us consider, for example, the case of a photon that is

initially entangled with an ancilla and that is then absorbed
by an atom. By absorbing the photon, the atom acquires the
entanglement with the ancilla. The question arises to what
extent it is the atom’s center-of-mass d.o.f., and to what
extent it is the atom’s internal d.o.f. that become entangled
with the ancilla upon the absorption of the photon.
The answer will depend, on the one hand, on the amount

by which the photon was entangled with the ancilla via its
polarization and via its orbital d.o.f. respectively. On the
other hand, given the role of the recoil, the fraction of
entanglement acquired by the center-of-mass d.o.f. will
depend on the dynamics of the delocalization of the atom’s
center of mass. It should be very interesting, therefore, to
generalize our investigation here for the study of quantum
channels that arise with the light-matter interaction in
modern quantum technologies, such as in quantum com-
munication and quantum computing.
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