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For direct detection of sub-MeV dark matter, a promising strategy is to search for individual phonon
excitations in a crystal. We perform an analytic calculation of the rate for light dark matter
(keV < mDM < MeV) to produce two acoustic phonons through scattering in cubic crystals such as
GaAs, Ge, Si, and diamond. The multiphonon rate is always smaller than the rate to produce a single optical
phonon, whenever the latter is kinematically accessible. In Si and diamond, there is a dark matter mass
range for which multiphonon production can be the most promising process, depending on the
experimental threshold.
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I. INTRODUCTION

A. Motivation

The quest to directly detect dark matter (DM) in a
laboratory experiment has, in recent years, significantly
diversified [1]; both theoretical and experimental develop-
ments have driven the search beyond the WIMP paradigm.
A steady decrease in energy thresholds has enabled
sensitivity to particle-like dark matter with a mass well
below that of a typical WIMP, with masses as low as 1 MeV
currently being probed. Next-generation detectors aim to
push down to the lower limit of particle-like dark matter,
probing the keV–MeV mass range. The energy scales for
excitations created in current and proposed detectors
coincide with the energy scales typical of many-body
excitations in condensed matter or atomic systems. For
DM heavier than ≳1 MeV, electronic excitations in atoms
or semiconductors with energy gaps in the ∼eV range are
well suited, if the DM couples to electrons [2–9]. For light
DM with nucleon couplings, on the other hand, one can
utilize chemical bond breaking [10], nuclear deexcitations
[11], crystal defects [12,13], or soft nuclear recoils, where
the latter in particular require very low thresholds [14–20].
For DM lighter than 1 MeV, vibrational modes in crystals
[9,21–23], molecular systems [24,25], or superfluid helium
[26–29] naturally have energy spectra in the required

1–100 meV range. Possible alternative detection strategies
in this mass range are electronic systems with ultralow band
gaps [30–34], magnon excitations [35], and avalanche
gains in molecular magnets [36].
On the theoretical side, it is necessary to understand dark

matter interactions with vibrational modes rather than with
individual nuclei, so as to reliably estimate sensitivity and,
in the event of any signal, extract dark matter properties.
The reason is that for DM lighter than ∼1 MeV, its de
Broglie wavelength exceeds the interparticle spacing in
typical materials, and it becomes necessary to transition to a
different effective theory by integrating out the nuclei and
electron clouds. One can therefore expect new and inter-
esting features in these interactions, as they are subject to
different kinematics and symmetry principles than those
which govern the interactions in conventional dark matter
experiments.
In this work, we focus on theoretical calculations for DM

to excite vibrational modes (phonons) in crystals. In a
crystal with a nontrivial primitive cell, phonons can be
characterized as either acoustic or optical. The acoustic
phonons are the Nambu-Goldstone modes associated with
the breaking of translation symmetry by the crystal lattice;
they must, at low energies, obey a linear dispersion relation.
This feature in particular poses an experimental challenge
for the detection of DM with mass below ∼100 keV: the
momentum transfer in this regime is comparatively low,
and the linear dispersion relation of the acoustic branch
with typical slope ∼10−5 implies a very low energy transfer
(∼1 meV). The optical phonons, on the other hand, are
gapped and have ≳10 meV of energy at arbitrarily low
momentum transfer. This makes them experimentally much
more attractive.
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There are also important theoretical differences between
acoustic and optical phonons, as their couplings to DM
depend very strongly on the DM model [21,22,37].
Concretely, if the DM has a coupling proportional to
electric charge, there is a dipole interaction with the optical
branches, while the coupling to the acoustic branches is
strongly suppressed. If instead the DM has a coupling
proportional to the atomic mass, the coupling to the optical
branches is strongly suppressed. At the same time,
detecting single acoustic phonons is expected to be
extremely challenging experimentally. This motivates the
study of processes where multiple phonons are produced,
which can have larger energy transfer. This was studied
already in the context of superfluid helium [26–29], where
the sound speed is particularly low, and multiphonons were
found to extend the reach for sub-MeV DM.
The purpose of this paper is to compute multiphonon

processes for cubic crystals such as Ge, Si, GaAs, and
diamond in the isotropic approximation. Such materials are
either already being used or considered for direct detection
experiments, and it was found previously that the isotropic
limit matches the numerical result well for single-phonon
excitations in GaAs [22]. More complicated, strongly
anisotropic crystals, such as sapphire, are left for future
work. We focus on DM that couples proportionally to the
atomic mass number of the target nuclei, as it is in this
scenario that multiphonon corrections are the most impor-
tant. We focus on two acoustic phonons in the final state,
for which there is a well-known effective theory, and we
briefly comment on multiphonon excitations with optical
phonons.

B. Summary of results

The main object we are computing is the structure factor
Sðq;ωÞ, which parametrizes the scattering rate of an
external probe to the crystal for a momentum transfer q
and energy transfer ω (see Sec. II for a precise definition).
There are two distinct contributions to Sðq;ωÞ from the
production of two phonons, represented by the diagrams in
Fig. 1. The left-hand diagram relies on a contact interaction
between the DM and two phonons, which originates from
the matching between the low-energy effective phonon
theory and the UV theory of nuclei and electrons. There are

analogous operators with three, four, or more phonons, for
which each additional phonon comes with a factor of
q=

ffiffiffiffiffiffiffiffiffiffi
mNω

p
, with mN being the nucleus mass. For

mDM < 1 MeV, q=
ffiffiffiffiffiffiffiffiffiffi
mNω

p
is a good expansion parameter,

rendering the ≥ 3 phonon contributions negligible. For
higher DM masses, the breakdown of this expansion
signals the transition to the regular nuclear recoil regime.
A resummation procedure is needed in this transition
regime, which we do not attempt in this paper.
The right-hand diagram in Fig. 1 only relies on the DM

coupling to a single phonon, and is therefore lower order in
q=

ffiffiffiffiffiffiffiffiffiffi
mNω

p
. This process instead occurs via an off-shell

phonon and the phonon self-interactions, which arise from
the anharmonicity of the crystal potential. We will see in
Sec. III that in the low-momentum regime, the self-
interactions of acoustic phonons are governed by multiple
dimensionful parameters that are related to the elastic
constants of the crystal. The sense in which the self-
interactions are “small” can be most easily seen from the
fact that the typical width of the longitudinal acoustic
phonon, Γ, is very small compared to its energy1; in other
words, Γ=ω ≪ 1.
In the mDM ≪ 1 MeV regime, it is instructive to further

expand Sðq;ωÞ in the low-q limit, as this allows for a
qualitative comparison between different channels and
materials. The resulting scaling is represented schemati-
cally in Table I. For a single acoustic mode in the final state,
Sðq;ωÞ scales linearly with q and is by far the most
favorable in terms of rate, but it requires a very low
threshold. For both the single optical mode2 and the
two-phonon contact interaction, Sðq;ωÞ scales as ∼q4,
while for the anharmonic contribution it scales more
favorably as ∼q2. However, the latter requires an insertion
of the phonon self-interaction, which also provides a
suppression. Quantitatively, we find that the rates of both
two-phonon contributions are smaller than the rate for the

FIG. 1. Diagrams representing the contact (left) and anharmonic (right) contributions to the DM scattering rate into two phonons
(dashed lines).

1Note this is different from superfluid He, where the phonon-
roton self-interactions are much larger, but where the phonon
decay is kinematically forbidden for part of the dispersion curve.

2The single optical mode scales as q4 for dark matter that
couples proportional to mass [37], which is the situation
considered here; otherwise, it scales as q2.
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single optical mode, whenever the latter is kinematically
accessible. Finally, it is interesting to compare crystals with
superfluid helium, where the rate scales as ∼q4. (See
Sec. V B.) The phonon self-couplings in helium are,
however, much stronger than in most crystals, and the
reach ends up being competitive with or better than the
cubic crystals we considered. Our final, quantitative results
are shown in Fig. 4.
The paper is structured in the following way: In Sec. II,

we first give general expressions for the crystal structure
factors that determine the rate into one and two phonons
(which could be evaluated with numerical phonon eigenm-
odes and couplings in full generality, without the following
approximations); we further present formulas for the case
of scattering in the long-wavelength limit, relevant for light
dark matter. In Sec. III, we introduce the isotropic approxi-
mation and detail the elasticity theory used to determine the
necessary sound speeds and anharmonic parameters for the
acoustic phonons. In Sec. IV, we present sensitivity curves
for various crystals and compare rates for single- and two-
acoustic-phonon final states. We provide an estimate of
rates for two-phonon final states with one or two optical
phonons in Sec. V, finding that they are subdominant to the
single optical channel. We also briefly comment on the
qualitative differences with superfluid helium. Section VI
concludes with a short discussion. We include three
Appendixes which detail more lengthy aspects of the
calculations, where we aim for our results to be self-
contained within this paper, and reproducible.

II. SCATTERING FORMALISM

The scattering rate for an incident DM particle to excite
phonons in a crystal is given by the dynamic structure
factor, or simply the structure factor. In this section, we
establish our notation and provide a derivation of the
structure factors for single- and two-phonon excitations.
In both cases, we obtain approximate formulas for the
structure factors when the final states consist of long-
wavelength acoustic phonons. In this limit, the acoustic
modes have nearly linear dispersion, and the structure

factor can be expressed in terms of bulk properties such as
sound speeds, target density, and so on.
We begin with the most general form of the potential

seen by an incident DM particle of mass mDM:

VðrÞ ¼
XN×n

J¼1

bJFðrJ − rÞ → ṼðqÞ ¼ F̃ðqÞ
XN×n

J¼1

bJeiq·rJ ; ð1Þ

where the index J sums over all scattering centers (ions)
with crystal position coordinate rJ, bJ is a factor that
depends on the DM coupling with atom J, and the tilde
indicates the Fourier-transformed function. Note that we
assume from the start a crystal lattice containing N
primitive unit cells and n ions per unit cell. Boldface
symbols indicate 3-vectors in position or momentum space,
while nonboldface symbols indicate scalar quantities
(e.g., q≡ jqj).
Two specific cases of Eq. (1) are of particular interest: a

contact interaction between DM and nuclei for which
F̃ðqÞ ¼ 1, and scattering via a massless mediator with
F̃ðqÞ ∝ 1=q2. The DM wavelength is always much larger
than the radii of the nuclei, so we set the nuclear form
factors to 1 everywhere. We also assume a coupling
proportional to atomic mass number, AJ. We then have
bJ ¼ 2πbnAJ=mDM, where bn is the DM-nucleon scatter-
ing length and σn ≡ 4πb2n is the DM-nucleon scattering
cross section.
Pulling out the overall factor of 2πbnF̃ðqÞ=mDM, we

focus on characterizing the expectation value of the sum
over scattering centers and define a dynamical structure
factor given by

Sðq;ωÞ≡ 1

N

X
f

����XN×n

J¼1

AJhΦfjeiq·rJ j0i
����2δðEf − ωÞ; ð2Þ

where ω and q are the energy and momentum transferred
from the DM to the crystal, respectively. hΦfj represents the
collection of final states, indexed by f and having energy
Ef. We have assumed that the system is in its ground state
j0i before the collision; this is an excellent approximation,

TABLE I. Leading scaling of the structure factor Sðq;ωÞ in the low-q (low-mDM) limit for different channels, and
required approximate thresholds to observe them. It is assumed that the DM couples proportionally to the mass of
the atoms. The # indicates that this channel vanishes in the limit where the (material-dependent) phonon self-
couplings are taken to zero.

Channel Low-q scaling Typical threshold needed References

Single acoustic phonon q 1 meV [21–23]
Single optical phonon q4 25 meV [21–23,37]
Multiphonon (contact) q4 5–10 meV This work
Multiphonon (anharmonic) #q2 5–10 meV This work
Multiphonon (helium) #q4 1 meVa [26–29]

aA superfluid He detector benefits from a natural, exothermic evaporation-absorption process, such that the
effective threshold of the sensor itself may be ∼10 meV [18].

MULTIPHONON EXCITATIONS FROM DARK MATTER … PHYS. REV. D 101, 036006 (2020)

036006-3



since any dark matter experiment relying on phonons
would necessarily be operating at very low temperatures,
with negligibly small numbers of thermal phonons present.
Each term then represents a scattering probability to excite
a given final state. The differential cross section is more-
over closely related to the structure factor; for example,
taking the isotropic limit for a material,

d2σ
dqdω

¼ q
2v2m2

DM
σnjF̃ðqÞj2Sðq;ωÞ; ð3Þ

where v is the initial DM speed in the lab frame.
To evaluate Eq. (2) for final states with a specific number

of phonons, we must expand the position vectors rJ in
terms of equilibrium positions and displacement vectors.
For a crystal with repeating primitive cells, the sum over
atoms J can be broken up into a sum over the lattice vectors
for the primitive cells, indexed by l, and the atoms in the
primitive cell, indexed by d. The position operator can then
be written as rJ ¼ lþ r0d þ ul;d, where r0d is the equilib-
rium location of atom d relative to the origin of the
primitive cell, and ul;d is the displacement of that atom
relative to its equilibrium position.
We quantize the displacement vector in the harmonic

approximation, following the convention in Ref. [22], here
adapted to the Schrödinger picture operator:

ul;d ¼
X3n
ν

X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Nmdων;k

s

× ðeν;d;kâν;keik·ðlþr0dÞ þ e�ν;d;kâ
†
ν;ke

−ik·ðlþr0dÞÞ; ð4Þ

where there are 3n phonon branches, indexed by ν, for a
primitive cell containing n atoms. Here md is the mass of
atom d, â†ν;k and âν;k are the creation and annihilation
operators for the phonons, ων;k is the energy of phonon
branch ν at momentum k, and eν;d;k is the phonon
eigenvector (normalized within a unit cell) for atom d.
Using Eq. (4), the structure factor can then be

expressed as

Sðq;ωÞ ¼ 1

N

X
f

����Xn
d

Ade−Wdð0ÞMf;q;d

����2δðEf − ωÞ; ð5Þ

where Wdð0Þ is the zero-temperature Debye-Waller factor
for atom d, and Mf;q;d is the matrix element associated
with final state f,

Mf;q;d≡
X
l

eiq·ðlþr0dÞ

×

�
Φf

����exp
�
i
X
k;ν

q ·e�ν;d;kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nmdων;k

p â†ν;ke
−ik·ðlþr0dÞ

�����0
�
:

ð6Þ

This expression represents the matrix element for scattering
into the crystal final state labeled by f, at leading order in
ṼðqÞ; however, it is not yet practical for concrete calcu-
lations. As explained in the Introduction, q=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mdων;k

p
< 1

for the DM mass range of interest, which means we can
consistently expand the exponential factor. This amounts to
an expansion in the number of phonons coupling to the
DM, where the quadratic (two-phonon) contribution is
represented by the left-hand diagram in Fig. 1. Once crystal
anharmonicity is included, we also expand in the phonon
self-interactions. The leading contribution in terms of the
phonon self-couplings is shown in the right-hand diagram
in Fig. 1. In summary, the calculation amounts to a double
expansion in the momentum transfer q and the phonon self-
couplings.

A. Single-phonon structure factor

For the final state consisting of a single phonon with
polarization ν and momentum k, the leading result for the
matrix element is

Mð1−phÞ
f;q;d ¼

X
G

δG;q−k
i

ffiffiffiffi
N

p
q · e�ν;d;qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdων;q

p eiðq−kÞ·r
0
d ; ð7Þ

where G are the reciprocal lattice vectors, which satisfyP
l e

il·ðq−kÞ ¼ N
P

G δG;q−k, with the Kronecker-δ enforc-
ing momentum conservation in the crystal. Here we also
use that phonon observables such as ων;q are invariant
under q → qþG. While there can be anharmonic correc-
tions to the above matrix element, they are negligible in the
low-q limit.
Summing over all possible single-phonon final states,

this gives a structure factor identical to the result in
Ref. [22]. For sub-MeV DM scattering, where q is typically
well within the first Brillouin zone, it is a good approxi-
mation to neglect the sum over G as well as the Debye-
Waller factors. Then the result simplifies to

Sð1−phÞðq;ωÞ ¼
X
ν

1

2ων;q

����Xn
d

Adffiffiffiffiffiffi
md

p q · e�ν;d;q

����2δðω−ων;qÞ:

ð8Þ
In the long-wavelength (low-q) limit, we can moreover

approximate the acoustic modes as having real eigenvectors
with magnitudes given by jeν;d;qj ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md=ð

Pn
d0 md0 Þ

p
and

with polarization vector independent of d. It is therefore
convenient to introduce “long-wavelength polarization
vectors” with unit length by defining the (real) vector

eν;q ≡
e�ν;d;q
jeν;d;qj

: ð9Þ

The difference between the two objects should be clear
from the presence or absence of the index d labeling atoms
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in the primitive unit cell. We can then simplify sums
over atoms—for example, by making the replacementP

d Ad=
ffiffiffiffiffiffi
md

p
e�ν;d;q → eν;q

P
d
AdffiffiffiffiffiffiffiffiffiffiffiffiP
d
md

p → eν;q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðPd AdÞ=mp

p
.

In the last step, we have made the approximation that the
bound atom masses are given by md ≈ Admp, with mp

being the proton mass.
As can be seen from Eq. (7), transverse polarizations

cannot contribute to the single-phonon rate. Considering
the one-phonon structure factor for longitudinal acoustic
(LA) phonons, we can take eν;q ¼ q=jqj with the result

Sð1−ph;LAÞðq;ωÞ ≈ ðPdAdÞq2
2mpωLA;q

δðω − ωLA;qÞ: ð10Þ

The LA dispersion in the long-wavelength limit is linear
with a slope given by the sound speed associated with the
LA mode, cLAðqÞ, which in general can depend on the
phonon propagation direction. Note that the factor of

P
d Ad will drop out in the expression of the rate per unit

target mass, so that the rate to excite a single acoustic
phonon depends only on the sound speed.3

B. Two-phonon structure factor

For the case with two phonons in the final state, there are
two pieces which contribute to the matrix element: a
contact term from expanding the exponential in Eq. (6)
to second order, and a piece resulting from anharmonic
phonon interactions in the material. We define δH as the
leading-order anharmonic phonon interaction Hamiltonian;
its precise definition we defer to Sec. III A. At leading
order, the two-phonon matrix element is then

Mð2−phÞ
f;q;d ¼ MðcontÞ

f;q;d þMðanhÞ
f;q;d; ð11Þ

with

MðcontÞ
f;q;d ¼

X
l

−
1

2
hν1;k1; ν2;k2j

�X
ν;k

q · e�ν;d;kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nmdων;k

p â†ν;ke
−ik·ðlþr0dÞ

�
2

j0ieiq·ðlþr0dÞ

¼ s1;2
X
G

−
ðq · e�ν1;d;k1

Þðq · e�ν2;d;k2
Þ

2md
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ων1;k1

ων2;k2

p eiðq−k1−k2Þ·r0dδG;q−k1−k2
; ð12Þ

MðanhÞ
f;q;d ¼

X
ν;k

Mð1−phÞ
jν;ki;q;dhν1;k1; ν2;k2jδHjν;ki

ων1;k1
þ ων2;k2

− ων;k þ iΓν;k=2

¼ i
X
G;k;ν

ffiffiffiffi
N

p
q · e�ν;d;kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdων;k

p hν1;k1; ν2;k2jδHjν;ki
ων1;k1

þ ων2;k2
− ων;k þ iΓν;k=2

eiðq−kÞ·r
0
dδG;q−k; ð13Þ

where the factor s1;2 ≡ ðδν1;ν2δk1;k2
þ 1Þ−1=2 accounts for

Bose statistics. The contributions in Eqs. (12) and (13) are
shown diagrammatically in Fig. 1, and we refer to them as
the contact term and the anharmonic term, respectively.
Anharmonic phonon interactions also lead to a nonzero
phonon width, Γν;k. This has been resummed in the phonon
propagator in Eq. (13) and becomes relevant when the
intermediate phonon goes on shell. Details regarding the
derivation of the above matrix elements are given in
Appendix A.
In the long-wavelength limit, we can again consider only

the G ¼ 0 contribution to the matrix elements and drop the
Debye-Waller factors. It will then be convenient to express
the three-phonon matrix element as

hν1;k1; ν2;k2jδHjν;qi

¼ V

ð2ðPdmdÞNÞ3=2
M̃ðq;ki; νiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ων;qων1;k1

ων2;k2

p δq;k1þk2
; ð14Þ

where V is the volume of the crystal. As we show in
Sec. III A, in the long-wavelength limit M̃ðq;ki; νiÞ is a
function only of the momenta, long-wavelength polariza-
tion tensors, and elastic constants of the material. In
addition, eigenvectors are real in this limit, such that the
matrix element M̃ðq;ki; νiÞ is real as well. The two terms
in Eq. (12) therefore do not interfere to leading order in the
small-q expansion, when neglecting terms higher order in
Γν;k. Using the long-wavelength polarization vectors
defined in Eq. (9), the two-phonon structure factor can
be simplified to

Sðq;ωÞ ¼ SðcontÞðq;ωÞ þ SðanhÞðq;ωÞ; ð15Þ
3For the fiducial rate for an experiment with a real-life

threshold, a high sound speed is likely more advantageous.
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SðcontÞðq;ωÞ ¼ 1

8

P
dAd

mpρ

X
ν1;ν2

Z
d3k1

ð2πÞ3
jðq · eν1;k1

Þðq · eν2;q−k1
Þj2

ων1;k1
ων2;q−k1

× δðω − ων1;k1
− ων2;q−k1

Þ; ð16Þ

SðanhÞðq;ωÞ ¼ 1

16

P
dAd

mpρ
3

X
ν1;ν2

Z
d3k1

ð2πÞ3
���� q
ωLA;q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ων1;k1

ων2;q−k1

p M̃ðq;ki; νiÞ
ω − ωLA;q þ iΓLA;q=2

����2
× δðω − ων1;k1

− ων2;q−k1
Þ; ð17Þ

where we take the continuum limit by substituting
P

k1
→

V
R d3k1

ð2πÞ3 :ρ ¼ Nmp
P

d Ad=V is the mass density of the

material. Similar to the single-phonon structure factor, the
overall factor of

P
d Ad will drop out in the expression of

the rate per unit target mass, so that the rate to excite two
phonons depends only on bulk properties such as sound
speeds, density, and elastic constants.

III. EVALUATION OF STRUCTURE FACTORS

In this section, we provide explicit results and analytic
formulas for the two contributions to the two-phonon
structure factor, Eqs. (16) and (17). Even in the long-
wavelength limit, the dispersions and anharmonic cou-
plings are in general direction dependent, substantially
complicating the calculations. For cubic crystals, the
isotropic limit is, however, known to be in excellent
agreement with the general result for scattering to single
phonons [22]. In this work, we will therefore restrict
ourselves to cubic crystals such as GaAs, Ge, Si, and
diamond, and approximate them as isotropic. We leave a
fully general calculation of the multiphonon rate with
density functional theory (DFT) for future work, but we
do not expect that accounting for anisotropy would
qualitatively change our conclusions.
In the isotropic limit, both transverse acoustic polar-

izations are degenerate, and the dispersion relations are
simply ωLA;q ¼ cLAq and ωTA;q ¼ cTAq, with cLA and cTA
being the average sound speeds associated with the
longitudinal acoustic (LA) and transverse acoustic (TA)
modes, respectively. The structure factor for scattering to a
single acoustic phonon then simplifies to

Sð1−ph;LAÞðq;ωÞ ≈ ðPdAdÞq
2mpcLA

δðω − cLAqÞ: ð18Þ

For the multiphonon contribution, a description of the
phonon self-interactions is needed, and this is where the
isotropic approximation is most advantageous: as we will
see in Sec. III A, the effective Hamiltonian is relatively
simple in the isotropic and long-wavelength limit, contain-
ing five independent operators (this number grows to nine if
instead cubic symmetry is assumed). The coefficients of
these operators can moreover be extracted from the elastic

properties of the material. Each coefficient maps directly to
a linear combination of the second-order elastic constants
(related to the bulk modulus and Young’s modulus) and
third-order elastic constants; these quantities can either be
measured or computed with ab initio methods.

A. Anharmonic term

To compute the anharmonic contribution, we use a low-
momentum effective description of the phonon self-inter-
actions. As for any effective theory, we first constrain the
form of the Hamiltonian using the symmetries of the theory
and subsequently fix the Wilson coefficients from mea-
sured observables, or by matching to the full UV theory. It
is hereby convenient to introduce a “long-wavelength
displacement operator,” in analogy to the long-wavelength
polarization tensors defined in Eq. (9). Replacing the
polarization tensors with their long-wavelength versions
and averaging over the atoms in a unit cell, we can define

uðrÞ≡X3
ν

X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2NðPdmdÞων;k

s

× ðeν;kâν;keik·r þ e�ν;kâ
†
ν;ke

−ik·rÞ; ð19Þ

where now we only sum over acoustic polarizations ν, and
we have replaced the individual atomic position vectors
lþ r0d with the continuous position vector r. Once again,
the long-wavelength displacement operators u can be
distinguished from their more general counterparts ul;d

by the index labels.
Assuming isotropy, there are only five independent

operators to third order in the effective Hamiltonian
[38,39]:

δH ¼
Z

d3r
1

2
ðβ þ λÞuiiujkujk þ ðγ þ μÞuijukiukj

þ α

3!
uiiujjukk þ

β

2
uiiujkukj þ

γ

3
uijujkuki; ð20Þ

with uij ≡ ∂iuj and the i, j running over the three spatial
coordinates. Repeated indices are summed over. The
coefficients α, β, γ, λ, and μ can be determined from the
measured or calculated elastic constants of the crystal.
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In particular, the parameters μ and λ are the Lamé
parameters of the crystal and related to the bulk and
Young’s moduli. The parameters α, β, and γ can be
calculated from the third-order elastic constants, as
described in Appendix B. All five parameters have units

of pressure and are reported in units of gigapascals (GPa) in
Table II for the crystals we consider.
Using Eqs. (19) and (20), the anharmonic three-phonon

matrix element can be written in the form of Eq. (14), where
the function M̃ is given by

M̃ ¼ ðβ þ λÞ½ðq · eÞðk1 · k2Þðe1 · e2Þ þ ðk1 · e1Þðq · k2Þðe · e2Þ þ ðk2 · e2Þðk1 · qÞðe1 · eÞ�
þ ðγ þ μÞ½ðq · k1Þ½ðk2 · e1Þðe2 · eÞ þ ðk2 · eÞðe2 · e1Þ�
þ ðk2 · k1Þ½ðq · e1Þðe2 · eÞ þ ðq · e2Þðe · e1Þ�
þ ðq · k2Þ½ðk1 · e2Þðe1 · eÞ þ ðk1 · eÞðe1 · e2Þ��
þ αðq · eÞðk1 · e1Þðk2 · e2Þ
þ β½ðk1 · e1Þðq · e2Þðk2 · eÞ þ ðq · eÞðk1 · e2Þðk2 · e1Þ þ ðk2 · e2Þðq · e1Þðk1 · eÞ�
þ γ½ðq · e1Þðk1 · e2Þðk2 · eÞ þ ðq · e2Þðk1 · eÞðk2 · e1Þ�; ð21Þ

and we introduce the shorthand notation e ¼ eν;q,
e1 ¼ eν1;k1

, etc. From Eq. (13), it follows that only the
longitudinal polarization of the off-shell, intermediate
phonon contributes. Depending on the polarizations of
the outgoing phonons, different terms in Eq. (21) contrib-
ute. Concretely, there are four distinct combinations for
which the matrix element is nonzero:

(i) LA-LA.
(ii) TA-TA with both phonons polarized in the plane

spanned by the momenta.
(iii) TA-TA with both phonons polarized orthogonal to

the plane spanned by the momenta.
(iv) LA-TA with the TA phonon polarized in the plane

spanned by the momenta.
In the isotropic limit, the structure factor in Eq. (17)

reduces to

SðanhÞðq;ωÞ ¼ 1

16

P
dAd

ρ3c2LAmp½ðω − cLAqÞ2 þ Γ2
LA;q=4�

×
X
ν1;ν2

Z
d3k1

ð2πÞ3
jM̃j2

cν1cν2k1jq − k1j
× δðω − k1cν1 − jq − k1jcν2Þ: ð22Þ

The anharmonic matrix element given in Eq. (21) can also
be used to compute ΓLA;q, which we provide explicitly in
Sec. I of Appendix C.
The phase-space integrals above can be evaluated

analytically. Given that the different polarizations in the
final states do not interfere, we can separately evaluate all
four channels:

SðanhÞLALAðq;ωÞ ¼
P

dAdq2ω4

64π2c9LAmpρ
3½ðω − cLAqÞ2 þ Γ2

LA;q=4�
gðanhÞLALA

�
qcLA
ω

	
θðω − cLAqÞ; ð23Þ

SðanhÞTATAoutðq;ωÞ ¼
P

dAdq2ω4

64π2c9TAmpρ
3½ðω − cLAqÞ2 þ Γ2

LA;q=4�
gðanhÞLALAout

�
qcTA
ω

	
θðω − cTAqÞ; ð24Þ

SðanhÞTATAinðq;ωÞ ¼
P

dAdq2ω4

64π2c9TAmpρ
3½ðω − cLAqÞ2 þ Γ2

LA;q=4�
gðanhÞLALAin

�
qcTA
ω

	
θðω − cTAqÞ; ð25Þ

TABLE II. For a number of cubic crystals, we give the calculated elasticity parameters in the isotropic approximation, the average
sound speed for the LA and TA modes, and mass density. (See Appendix B for details.)

μ (GPa) λ (GPa) α (GPa) β (GPa) γ (GPa) cLA ðkm=sÞ cTA ðkm=sÞ ρ ðg=cm3Þ
Si 61 53 −306 −10 −86 8.7 5.1 2.33
GaAs 51 45 −190 −47 −80 5.2 3.1 5.32
Ge 56 38 −124 −64 −72 5.3 3.2 5.32
Diamond 521 86 −178 −365 −1006 18. 12.2 3.51
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SðanhÞLATAðq;ωÞ ¼
P

dAdq2ω4

64π2c9TAmpρ
3½ðω − cLAqÞ2 þ Γ2

LA;q=4�
gðanhÞLATA

�
qcTA
ω

	
θðω − cTAqÞ; ð26Þ

where the TATAin and TATAout subscripts refer to TA-TA channels with polarizations in and orthogonal to the plane
spanned by the phonon momenta. θðxÞ is the Heaviside function. The gðanhÞðxÞ functions all approach a constant in the
x → 0 limit, specifically

gðanhÞLALAðxÞ ≈
1

240
ð15α2 þ 10αð10β þ 8γ þ 5λþ 6μÞ þ 188β2 þ 4βð88γ þ 47λþ 66μÞ

þ 192γ2 þ 176γλþ 288γμþ 47λ2 þ 132λμþ 108μ2Þ þOðx2Þ; ð27Þ

gðanhÞTATAoutðxÞ ≈
1

240δ2
ð15β2 þ 10βð2γ þ 3λþ 2μÞ þ 12γ2 þ 4γð5λþ 6μÞ

þ 15λ2 þ 20λμþ 12μ2Þ þOðx2Þ; ð28Þ

gðanhÞTATAinðxÞ ≈
1

16δ2
ðβ þ 2γ þ λþ 2μÞ2 þOðx2Þ; ð29Þ

gðanhÞLATAðxÞ ≈
8

15δ3ðδþ 1Þ5 ð2β þ 4γ þ λþ 3μÞ2 þOðx2Þ; ð30Þ

where we define δ≡ cLA=cTA. The Oðq2Þ scaling of this contribution, as advertised in the Introduction, is therefore
manifest in Eqs. (23)–(26). For our numerical results, we use the full, unexpanded expressions, as given in Sec. I of
Appendix C.

B. Contact term

With the definition of the long-wavelength polarization tensors in Eq. (9), the structure factor for the contact term in
Eq. (16) reduces to

SðcontÞðq;ωÞ ¼ 1

4

P
dAd

mpρ

X
ν1;ν2

Z
d3k1

ð2πÞ3
jðq · eν1;k1

Þðq · eν2;q−k1
Þj2

cν1cν2k1jq − k1j
δðω − k1cν1 − jq − k1jcν2Þ; ð31Þ

which can also be evaluated analytically. Concretely, there are three final-state polarization configurations (LA-LA, TA-TA
and LA-TA) which can contribute, where the TA modes must be polarized in the plane spanned by the momenta:

SðcontÞLALAðq;ωÞ ¼
ðPdAdÞ

64π2c3LAmpρ
q4gðcontÞLALA

�
cLAq
ω

	
θðω − cLAqÞ; ð32Þ

SðcontÞTATAðq;ωÞ ¼
ðPdAdÞ

64π2c3TAmpρ
q4gðcontÞTATA

�
cTAq
ω

	
θðω − cTAqÞ; ð33Þ

SðcontÞLATAðq;ωÞ ¼
ðPdAdÞ

64π2cLAcTAðcLA þ cTAÞmpρ
q4gðcontÞLATA

�
cTAq
ω

	
θðω − cTAqÞ; ð34Þ

with

gðcontÞLALAðxÞ ≈
2

5
−
16

21
x2 þ 16

15
x4 þOðx6Þ; ð35Þ

gðcontÞTATAðxÞ ≈
16

15
−
64

35
x2 þ 64

105
x4 þOðx6Þ; ð36Þ

gðcontÞLATAðxÞ ≈
16

15
þ 16

105
ð12δ2 þ 17δþ 5Þx2 − 16

105
ð7δ3 þ 11δ2 þ 4δÞx4 þOðx6Þ; ð37Þ
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where we again use δ ¼ cLA
cTA

. Note that the expansion in

Eq. (37) assumes x ≪ 1
δ. The exact expressions for gðcontÞLALA,

gðcontÞTATA, and g
ðcontÞ
LATA are used for all our numerical results (see

Sec. II of Appendix C). Note that the Oðq4Þ scaling
discussed in the Introduction is manifest in Eqs. (32)–(34).

C. Numerical comparison

The left-hand panel of Fig. 2 shows the different
contributions to Sðq;ωÞ for the example of GaAs, where
we sum the different TATA contributions. We show the full
kinematic range, where the most striking feature is the
resonance at x ¼ 1=δ for the anharmonic contributions,
indicating that the intermediate LA phonon goes on shell.
Whenever the resonance is kinematically accessible, it
dominates the rate to the extent that the off-shell multi-
phonon contribution is completely negligible. The LALA
channel also cuts off for x > 1=δ, since in this regime it is
not possible to simultaneously conserve energy and
momentum. Except for the region near the resonance, all
contributions scale as ω4 with respect to our 10 meV
reference value. The inset zooms in on the low-momentum
region and shows the ∼q2 and ∼q4 scaling of the anhar-
monic and contact contributions, respectively.

The long-wavelength approximation necessarily breaks
down at momenta approaching the edge of the Brillouin
zone for two reasons: the dispersion relations of the acous-
tic phonons cease to be linear, and the description of the
phonon self-couplings in terms of the elasticity parameters
(Sec. III A) starts to break down. We show the dispersions in
the right-hand panel of Fig. 2 for the example of GaAs,
where the full dispersion relations [40] are compared with
those in the long-wavelength, isotropic approximation. To
ensure that the calculation is not extrapolated beyond its
regime of validity, we impose a maximummomentum cutoff
of qcut ¼ 0.7 keV for GaAs and Ge, qcut ¼ 0.8 keV for Si,
and qcut ¼ 1.2 keV for diamond. This corresponds roughly
to qcut ≈ qBZ=3, where qBZ ≡ 2π=a is the approximate
boundary of the first Brillouin zone and a is the lattice
spacing. The cut is indicated by the light gray shading in
Fig. 2, and below this value the dispersions of the acoustic
phonons in all four materials is close to linear. We also
enforce this momentum cut on the final-state phonons by
imposing an upper bound on the total deposited energy of
ωcut ¼ ðc1 þ c2Þqcut, where c1;2 stand for the sound speeds
of the final-state phonons under consideration, e.g., for the
LATA channel c1 ¼ cLA and c2 ¼ cTA, etc. The resulting
values are summarized in Table III.

FIG. 2. Left: Structure factors at ω ¼ 10 meV for each of the anharmonic and contact channels, evaluated numerically for GaAs with
the parameters listed in Table II. The inset shows the low-momentum regime on a log-log scale. Right: Dispersion relations for GaAs
obtained with DFT methods [40], in two example directions around the origin of the Brillouin zone, indicated by “Γ.” (Γ in this context
is not to be confused with the phonon width.) The dashed lines indicate the long-wavelength, isotropic approximation, and the light and
dark gray regions show q > qcut and q > 2qcut respectively.

TABLE III. Upper bounds on q and ω used in the calculations, to ensure the validity of the long-wavelength
approximation. qcut is roughly 2π=3a with a the lattice spacing, and the energy cuts are calculated by imposing the
momentum cut on the final-state phonons. We also consider cuts that are twice the values shown here.

a (Å) qcut (keV) ωcut;TATA (meV) ωcut;LATA (meV) ωcut;LALA (meV)

Si 5.47 0.8 26 35 44
GaAs 5.65 0.7 15 20 25
Ge 5.66 0.7 16 21 26
Diamond 3.57 1.2 94 117 139
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Due to the relatively low sound speeds in GaAs and Ge,
the phase space is substantially restricted by these con-
sistency conditions. In this sense, our calculations should
be viewed as a conservative estimate. The choice of qcut is
to some degree arbitrary, and therefore we also compute
each rate with a qcut that is twice the values reported in
Tab. III. This provides a measure of the sensitivity of our
results to qcut. We expect that the long-wavelength formulas
overestimate the structure factor when extrapolated beyond
their regime of validity because of the strong growth in q
and ω, and because the isotropic linear dispersions over-
estimate the mode energies at large momenta. In this sense,
we anticipate that the true answer is bracketed by the two
cutoff choices. Numerically, we find that integrating fully
out to the edge of the Brillouin zone does not change the
rates appreciably in comparison to our upper choice
of 2qcut ∼ 2qBZ=3.

IV. RESULTS

Folding in the DM velocity distribution, the total rate per
unit exposure is given by

R ¼ σnP
dAdmp

ρχ
mDM

Z
d3vifðviÞ

Z
ωþ

ω−

dω

×
Z

qþ

q−

dq
q

2pimDM
jF̃ðqÞj2Sðq;ωÞ; ð38Þ

where F̃ðqÞ indicates a form factor whose functional form
is determined by the properties of the particle mediating the
DM-nucleon scattering process. The most common, limit-
ing cases are F̃ðqÞ ¼ 1 if the mediator is heavier than the
DM, and F̃ðqÞ ¼ v20m

2
DM=q

2 for a mediator which can be
treated as massless in the scattering process. In addition, ω−
is the energy threshold of the experiment, and

q− ≡ jpi − pfj; qþ ≡Min½pi þ pf; qcut�;

and ωþ ≡Min

�
v2i mDM

2
;ωcut

�
; ð39Þ

where pi ≡mDMvi and pf ≡mDM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2i − 2ω=mDM

p
are the

magnitudes of the initial and final DM momenta, respec-
tively. The cuts involving qcut and ωcut ensure that the
integral is not evaluated in a regime where the long-
wavelength approximation is invalid, as discussed in
Sec. III C. For the DM velocity distribution fðviÞ, we
use the standard truncated Maxwellian distribution in the
Earth’s frame:

fðvÞ ¼ 1

N0

exp

�
−
ðv þ veÞ2

v20

�
Θðvesc − jv þ vejÞ; ð40Þ

N0 ¼ π3=2v30

�
erf

�
vesc
v0

	
− 2

vesc
v0

exp

�
−
v2esc
v20

	�
; ð41Þ

and we take v0 ¼ 220 km=s, vesc ¼ 500 km=s, and the
Earth’s average velocity to be ve ¼ 240 km=s.
Figure 3 shows the differential scattering rate as a

function of the deposited energy, assuming a massless
mediator. All curves are cut off when the momenta of the
final-state phonons are outside the first Brillouin zone. The
dotted vertical lines indicate values of ωcut, above which we
expect that the long-wavelength approximation starts to
break down. Integrating the rate beyond ωcut to the edge
of the Brillouin zone is likely to overshoot the true answer.
For the mDM ¼ 10 keV benchmark (left-hand panel), the
single-phonon resonance occurs for ω < 1 meV, while its
enormous contribution to the scattering rate is visible for
ω < 5 meV for the 50 keV benchmark (right-hand panel).

FIG. 3. The differential rate for the different channels in GaAs. The dotted lines indicate the ω cuts for each respective channel from
Table III; the dashed lines show the cuts if we extrapolate the long-wavelength approximation all the way to the edge of the Brillouin
zone, and the spectra in this case should be understood as upper bounds on the true rate. The right-hand panel demonstrates the single-
phonon resonance at small values of ω.
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The anharmonic terms always dominate over the con-
tact terms.
Figure 4 shows the cross sections needed to obtain three

events with a kg-year exposure, again assuming a massless
mediator.4 The most striking feature in Fig. 4 is the
enormous enhancement of the reach once the single
acoustic phonon becomes accessible. In this regime,
integrating the multiphonon structure factor matches onto
the single-phonon scattering rate (see Appendix A), and we
can simply use the single-phonon structure factor. For a
given experimental threshold ω−, the mass m�

DM at which
the single-phonon resonance appears may be analytically

derived by requiring that the maximum momentum transfer
supplied by the DM is sufficient to create an on-shell LA
phonon above the threshold, or in other words:
2m�

DMðvesc þ veÞ ≈ ω−=cLA or

m�
DM ≈

1

2

ω−

cLA

1

ðvesc þ veÞ
: ð42Þ

Using the sound speed for GaAs and a 1 meV threshold as
an example, the single-phonon resonance will appear at
m�

DM ≈ 12 keV, as can be seen in Fig. 4. The very high
sound speed of diamond then explains why this material
maintains sensitivity to the single acoustic mode for most of
the mass range, even for a threshold as high as ∼10 meV.
(See Ref. [20] for a detailed study of diamond as a dark
matter detector.)
No backgrounds or experimental efficiencies have been

included in Fig. 4, which is meant to both illustrate the most

FIG. 4. Minimum accessible cross sections for different crystals, channels, and thresholds, assuming three events with a kg-year
exposure. All curves are computed in the isotropic and long-wavelength approximations. The shaded bands indicate multiphonon rates
computed with the cuts in Table III (upper edge) and twice those values (lower edge). The curves for the single optical channel are
computed with the approximation in Sec. VA. For comparison, we show the multiphonon reach in superfluid helium with the same
exposure and a threshold of 1 meV [27]. The dotted line in the upper-right corner indicates roughly where the DM would lose a
significant fraction of its initial kinetic energy within 1 km in the Earth’s crust. The gray shading formDM < 10 keV indicates the region
where stellar cooling and warm dark matter limits likely apply.

4The massive mediator scenario is disfavored by BBN bounds,
while the massless mediator case is in tension with stellar cooling
constraints and DM self-interactions [31,41,42]. The latter are
relaxed if the particle in question is a subcomponent of the full
DM abundance.
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optimistic reach possible, as well as the relative importance
of the various channels, rather than provide an accurate
projection of the absolute reach. The single optical phonon
channel is computed using an analytic approximation given
in Sec. VA, with the (dispersionless) optical mode energy
given in the figure labels. We see that the multiphonon
channel is always subleading to the single optical, except at
low mDM for Si and diamond. The reason is that the
longitudinal optical mode in both these materials is
relatively high energy, 60 meV and 140 meV, respectively,
and is not kinematically accessible in the low-mDM region.
For comparison, multiphonon production in superfluid
helium is also shown in Fig. 4; in an idealized setting
where all experimental effects aside from the threshold are
neglected, it always outperforms both the single optical and
multiphonon modes in crystals.
The shaded bands in Fig. 4 indicate the estimated

uncertainty from taking the long-wavelength approxima-
tion, by displaying the calculated rates using two choices
for the momentum cutoff, as explained in Sec. III C.
Concretely, the upper edge of the band corresponds to
the values reported in Table III, whereas the lower curves
assume twice these values. This source of uncertainty is
negligible once the single-LA channel is accessible, as this
contribution is peaked at low ω (see right-hand panel of
Fig. 3), and moreover, it does not rely on the validity of
Eq. (20). The size of the band is larger in GaAs and Ge
because of the lower sound speeds and ωcut (Table III).
This source of uncertainty is also more severe as the
experimental threshold is increased, since this reduces
the available phase space in Fig. 3, which leads to greater
dependence on ωcut. For a 10 meV threshold, the lower
value of ωcut severely restricts the phase space for the
TATA channel, especially for GaAs and Ge. Meanwhile,
for diamond, ωcut has no effect on the rate, since it is
always larger than the initial DM kinetic energy when
mDM < m�

DM. We therefore expect the long-wavelength
limit be an excellent approximation in this case.
Other sources of uncertainty are the values for the

elasticity parameters, as to the best of our knowledge they
have not yet all been measured at ultralow temperatures. As
explained in Appendix B, we instead rely on ab initio
calculations of these parameters, which in some cases carry
Oð1Þ uncertainties. This propagates to an Oð1Þ uncertainty
on the overall multiphonon rate, regardless of the DM
mass. In addition, we expect corrections to the isotropic
approximation once the detailed crystal structure is
accounted for. These uncertainties are not included in
the band in Fig. 4. Given the current experimental
unknowns, we consider the uncertainties acceptable at this
stage, especially given that multiphonon processes typi-
cally have a much lower rate than the single optical mode.
To conclude, we briefly comment on stellar cooling

constraints, warm dark matter bounds, and the material
overburden. For millicharged particles with mass≲10 keV,

there are strong constraints from the cooling of white
dwarfs, red giants, and horizontal branch stars [43,44]. To
our knowledge, the analogous computation has not yet
been performed for light DM with a coupling to nuclei, but
we expect that similar constraints should apply for
mDM ≲ 10 keV. In this mass range, the DM is also
generally considered as warm, and there are constraints
from structure formation, although these are alleviated if
this candidate does not provide the entire DM abundance.
The likely existence of both bounds is suggested by the
gray shading in Fig. 4. Finally, for sufficiently large σn, the
DM is likely to scatter in the Earth’s crust before reaching
an underground detector. To determine roughly where this
occurs, we estimated the mean free path for DM scattering
off phonons in a crystalline silicon crust where the DM
loses at least 1% of its typical initial kinetic energy. (While
this is an idealized model, a similar result is obtained if we
model DM interactions in the crust as nuclear recoils off
free silicon atoms.) The dotted line in Fig. 4 indicates where
the mean free path is 1 km. Numerically, we find this to be
where σn ≳ 5 × 10−28 cm2 × ðMeV=mDMÞ.

V. OTHER CHANNELS

A. Multiphonons involving optical branches

As discussed in the Introduction, the rate for scattering
that excites a single optical phonon is suppressed when
the DM coupling is proportional to the mass of the atom.
Nevertheless, as seen in the previous section, processes
involving optical phonons are still important, particularly
for higher experimental thresholds. In this section, we
briefly review the single longitudinal optical (LO) phonon
calculation, before discussing two-phonon processes
involving optical phonons.
To obtain an estimate of the rate to excite a single LO

phonon, we use an approximation for the eigenmode in a
cubic lattice with diamond or zinc blende structure, valid at
low q:

eLO;1;q ≈
ffiffiffiffiffi
A2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ A2

p ; eLO;2;q ≈ −
ffiffiffiffiffi
A1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1 þ A2

p e−iq·r2 ;

ð43Þ
where r2 ¼ ða=4; a=4; a=4Þ is the position of the second
atom in the primitive cell and a is the lattice constant. Note
that without the phase factor, the structure factor would be
exactly zero; we have included it to account for the
subleading behavior [37]. Using Eq. (8) and averaging
over angles such that ðq · r2Þ2 ≈ q2a2=16, we obtain

SLOðq;ωÞ ¼
q4a2

32ωLO

A1A2

mpðA1 þ A2Þ
δðω − ωLOÞ; ð44Þ

where we have approximated the LO phonon’s dispersion
relation as flat, ωLOðqÞ ¼ ωLO. This approximation
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reproduces the full numerical result for the DM reach in
GaAs (see Ref. [22]) to within an Oð1Þ factor.
There are two kinds of two-phonon processes involving

optical phonons to consider: optical-acoustic, and optical-
optical. We begin with the former, since they are the most
relevant for light DM. Optical-acoustic scattering also has
both contact and anharmonic contributions. For all of the
materials we consider, there is a suppression of the contact
contribution at low q when DM couples proportionally to
atomic mass. This can be seen from the expressions for the
structure factor and matrix element in Eqs. (5) and (12).
When q ¼ 0, momentum conservation requires k1 ¼ −k2,
and the sum over the unit cell in Eq. (5) vanishes due to the
orthogonality of the eigenvectors. Using the low-q approxi-
mation for the LO eigenvector [Eq. (43)], one can explicitly
see that the leading term in the small-q expansion of the
structure factor vanishes; the contact term then scales as q6

and is negligibly small. Note that this result does not hold
for general lattices, since with more complicated unit cells
there can be mixed longitudinal-transverse optical modes
which may only be orthogonal to the acoustic modes after
also contracting the Lorentz indices of the eigenvectors.
The anharmonic contribution is more difficult to reliably

calculate. It could be obtained from a first-principles
calculation of the anharmonic corrections to the lattice
potential using density functional theory; however, this
goes beyond the scope of the present paper. Here, we adopt
a simpler method in order to obtain an estimate of the size
of this contribution. We follow an approach that has been
used in the literature to calculate the lifetime of LO
phonons and describe the anharmonic three-phonon inter-
actions via the Hamiltonian [45],

δH ¼ 1

3!

γG
c̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2NmpðA1 þ A2Þ

s

×
X
ν;ν0;ν00

X
k;k0;k00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωνων0ων00

p
δkþk0þk00

× ða†ν;k − aν;kÞða†ν0;k0 − aν0;k0 Þða†ν00;k00 − aν00;k00 Þ; ð45Þ

where γG ≈ 1 is the mode-averaged Grüneisen constant and
c̄ is the average of the LA and TA sound speeds. The above
Hamiltonian can be obtained starting from Eqs. (19)–(21)
and then averaging over phonon modes and angles (see
Ref. [45]). Since this model treats the lattice as an isotropic
continuum, it does not actually contain optical modes;
nevertheless, Eq. (45) has been used in the calculation of
optical phonon lifetimes (e.g., Refs. [46,47]).
The dominant anharmonic contribution is that mediated

by an off-shell LA phonon, since the LO-mediated process
has the same suppression as single optical scattering. Using
the Hamiltonian (45) in Eq. (13), we obtain the structure
factors,

SðanhÞLOLAðq;ωÞ ¼
γ2G
8π2

ωLOðA1 þ A2Þ
c̄2c3LAρmp

q2ðω − ωLOÞ3
ðω − cLAqÞ2

× θðω − ωLOÞ; ð46Þ

SðanhÞLOTAðq;ωÞ ¼
γ2G
4π2

ωLOðA1 þ A2Þ
c̄2c3TAρmp

q2ðω − ωLOÞ3
ðω − cLAqÞ2

× θðω − ωLOÞ; ð47Þ

where we have again assumed a flat dispersion relation
for the optical mode. The expressions for the TO-LA and
TO-TA processes can be obtained by the substitution
ωLO → ωTO and multiplying by a factor of 2. Integrating
the structure factor to obtain the total rate, we find that, for
all the materials we consider, the LO-LA scattering rate is
1–2 orders of magnitude smaller than the single optical rate,
depending on the qcut used for the acoustic phonons. The
LO-LA process becomes further suppressed relative to
the single optical with increasing DM mass. The LO-TA
process is enhanced by the smaller TA sound speed, but is
still suppressed compared to the single optical. A similar
conclusion holds for optical-acoustic scattering involving
TO phonons, although these processes could be relevant in
a narrow range of DM masses that are above the threshold
to excite a TO phonon but below the LO threshold. While
Eqs. (46) and (47) should only be considered as an estimate
of the two-phonon optical-acoustic rate, we do not expect a
detailed DFT calculation to change the qualitative con-
clusion that it is subleading compared to single optical
scattering.
Next, we briefly discuss scattering into two optical

phonons. This process only becomes kinematically acces-
sible for heavier DM masses due to the higher energy
threshold to excite two optical phonons. Unlike optical-
acoustic scattering, there is no additional suppression of the
contact contribution for DM that couples proportional to
atomic mass. The LO-LO structure factor is then propor-
tional to q4=ðmpωLOÞ2. On the other hand, the single-
optical structure factor scales as q4a2μ=ðm2

pωLOÞ, where μ
is the reduced mass of the primitive cell. The two-optical-
phonon contact contribution is then expected to be signifi-
cantly smaller than the single-optical. The anharmonic
contribution is again challenging to reliably estimate;
however, based on our above estimate for optical-acoustic
scattering, where it was found to be subleading, we do not
expect it to give a significant contribution. In summary,
two-phonon scattering processes involving optical phonons
are expected to give only a subleading contribution to the
total scattering rate.

B. Multiphonons in superfluid helium

Given that our results qualitatively differ from similar
calculations in superfluid helium, it is worthwhile to
compare the symmetries of both systems in a bit more
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detail. Crystals spontaneously break both translation and
rotation invariance, but since the rotation operators are
linearly dependent on the translation operators, there are
only three, rather than six, Goldstone modes [48]. These
are the one LA and two TA modes we have encountered
throughout our discussion. Since translations are broken
spontaneously, all amplitudes must vanish in the limit
where one of the external (spatial) momenta goes to zero.
This symmetry principle explains the form of the amplitude
in Eq. (21) and its scaling in the low-q limit. Schematically,
the matrix element for three acoustic phonons in a crystal is
therefore always of the form

jMcrysj2 ∼ jðq · eÞðk1 · e1Þðk2 · e2Þ þ permutationsj2 ∼ q2:

ð48Þ

Superfluid helium, on the other hand, does not break
translation and rotation invariance, though the Bose-
Einstein condensate breaks boost invariance as well as a
linear combination of the time translation and particle
number operators. All four broken operators are linearly
dependent, such that there only exists a single Goldstone
mode [48], which is the phonon-roton branch. In more
mundane terms, phonons in superfluid helium do not have
polarization tensors, which further restricts the form of the
amplitude compared to Eq. (48). The Ward identity
associated with the Uð1Þ particle number symmetry more-
over enforces that the amplitude vanishes in the q → 0 limit
[49]. Bose symmetry on the final-state momenta then
implies that in the low-q limit, the amplitude must be
proportional to

jMHej2 ∼ jq · k1 þ q · k2j2 ∼ q4; ð49Þ

where the second ∼ follows from momentum conservation
(q ¼ k1 þ k2). The key point here is that the Oðq2Þ
contribution is absent, unlike in Eq. (48) for crystals.
This behavior is a direct consequence of the broken
Uð1Þ symmetry and therefore a feature of the superfluid
nature of the system. In concrete calculations, it manifests
itself as a delicate cancellation between seemingly unre-
lated terms in the amplitude. This cancellation has been
observed in a modern effective field theory treatment
[28,29], as well as in an older, quantum hydrodynamic
treatment (see Appendix A of Ref. [27]). In the latter case,
the cancellation only occurs if the interacting ground state
of the theory is accounted for. Despite this suppression
factor, the multiphonon rate in helium exceeds that in the
crystals we considered (see Fig. 4), due to the stronger
phonon self-couplings in helium.

VI. CONCLUSIONS AND OUTLOOK

In this work, we evaluated the rate for the production
of two acoustic phonons in crystals from the scattering of

sub-MeV DM. We considered cubic crystals such as
GaAs, Ge, Si, and diamond and worked in the isotropic
and long-wavelength approximations. In addition, we
focused on DM which couples proportionally to atomic
mass, since in this case the rate for single optical
phonon excitations is suppressed and multiphonon
production is most relevant. However, for all four
crystals, we found that the multiphonon rate is smaller
than the single optical phonon rate whenever the optical
mode is kinematically accessible. Similarly, the rate to
excite a single acoustic phonon dominates whenever that
mode is kinematically accessible. In diamond and Si,
there is, however, a range of DM masses between
10 keV and 100 keV for which the multiphonon process
could be the only detectable channel, depending on the
experimental threshold. We have also estimated the
multiphonon rate with optical phonons and expect it
to be subleading. In idealized experimental conditions,
the multiphonon rate in superfluid helium exceeds that
in all the crystals we have considered, despite the less
favorable scaling of the structure factor in a low-
momentum expansion.
For GaAs and Ge, our approach here in taking the long-

wavelength approximation has a limited regime of validity,
leading to appreciable uncertainties in the scattering rate.
A more precise evaluation with density functional theory
methods would be desirable for these materials. Such a
DFT treatment would also allow one to study anisotropic
materials such as sapphire, which are expected to exhibit a
sizable daily modulation in the multiphonon signal.
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APPENDIX A: DERIVATION OF
SCATTERING RATES

In this Appendix, we show how the matrix elements in
Sec. II are derived using time-dependent perturbation
theory, including a resummation of the phonon width.
We begin by rewriting the Hamiltonian as

H ¼ p2
DM

2mDM
þ
X
ν;k

�
ων;k −

i
2
Γν;k

	
a†ν;kaν;k þH0; ðA1Þ

with

H0 ¼ VðrÞ þ δH þ
X
ν;k

i
2
Γν;ka

†
ν;kaν;k; ðA2Þ

where V and δH are given in Eqs. (1) and (20), respectively,
and we have introduced the phonon width, Γν;k ∼OðδH2Þ.
In the following, H0 will be treated as a perturbation.
Introducing the phonon width in this way is purely a
reorganization of the perturbation series, as the full
Hamiltonian remains independent of Γν;k. This approach
is similar to the complex mass scheme in QFT [50] and
allows for a systematic inclusion of the width at higher
perturbative orders, although it is not strictly necessary
here, since we consider only the leading corrections
from δH.
Using the above Hamiltonian, we calculate the dark

matter scattering rate using time-dependent perturbation
theory. We assume that the system is initially described by
the H0 ¼ 0 Hamiltonian at t0 → −∞, and we adiabatically
turn on the perturbation by replacingH0 → eϵtH0, where we
eventually take the limit ϵ → 0. Specifically, we take the
initial state to be jpi; 0i, where pi is the dark matter
momentum and the phonons are in the ground state.

1. Single phonon

For scattering into a single phonon, the anharmonic
correction is negligible, and it is sufficient to consider only
the leading-order contribution. The transition probability to
scatter and be in the state jpf; ν;ki at some time t is

jhpf; ν;kjUðt;−∞Þjpi; 0ij2

¼ jhpf; ν;kjVðrÞjpi; 0ij2
ðων;k − ωÞ2 þ ðΓν;k=2þ ϵÞ2 e

2ϵt; ðA3Þ

where Uðt;−∞Þ is the time evolution operator in the
Schrödinger picture, and jpf; ν;ki is an eigenstate of the
H0 ¼ 0 Hamiltonian. For scattering into stable final states
(Γν;k ¼ 0), the transition rate is just Fermi’s Golden Rule:

wi→f ≡ lim
ϵ→0

d
dt

jhpf; ν;kjUðt;−∞Þjpi; 0ij2

¼ 2πδðων;k − ωÞjhpf; ν;kjVðrÞjpi; 0ij2: ðA4Þ

Substituting in Eqs. (1) and (4), this becomes

wi→f ¼ 2πδðων;k − ωÞ
�

2πbn
mDMV

	
2

jF̃ðqÞj2

×

����Xn
d

Ade−Wdð0ÞMð1−phÞ
jν;ki;q;d

����2; ðA5Þ

where Mð1−phÞ is defined in Eq. (7), and V is a volume
factor from the normalization of the DM momentum
eigenstates. The transition rate is directly related to the
structure factor in Eq. (5) up to overall factors.
Note that for unstable final states (Γν;k ≠ 0), wi→f

vanishes. In this case, the transition probability in
Eq. (A3) does not grow with time (it is constant when
ϵ → 0), since due to the exponential decay of the state only
the last Δt ∼ Γ−1

ν;k contributes significantly.

2. Two phonon

Next, consider scattering into the two-phonon state
jpf; ν1;k1; ν2;k2i (with Γν1;k1

¼ Γν2;k2
¼ 0). In this case,

anharmonic effects enter at second (mixed) order in
perturbation theory and can have a significant impact on
the scattering rate. The transition rate is

wi→f ¼ 2πδðων1;k1
þων2;k2

−ωÞ

×

����hpf;ν1;k1;ν2;k2jVðrÞjpi; 0i

þ
X
ν;k

hpf;ν;kjVðrÞjpi; 0ihν1;k1;ν2;k2jδHjν;ki
ω−ων;k þ iΓν;k=2

����2
ðA6Þ

¼ 2πδðων1;k1
þ ων2;k2

− ωÞ
�

2πbn
mDMV

	
2

jF̃ðqÞj2

×

����Xn
d

Ade−Wdð0ÞðMðcontÞ
jν1;k1;ν2;k2i;q;d þMðanhÞ

jν1;k1;ν2;k2i;q;dÞ
����2:

ðA7Þ

The contact and anharmonic contributions are shown
diagrammatically in Fig. 1, with the matrix elements
given in Eqs. (12) and (13), and the δH matrix element
discussed in Sec. III A. In the narrow-width limit
(Γν;k=ων;k → 0), and neglecting the interference terms,
the anharmonic contribution reduces to the single-phonon
rate times the branching ratio to jν1;k1; ν2;k2i. Similarly,
while Eq. (A6) is strictly only valid for scattering into stable
final states, the narrow-width approximation applied to
multiphonon scattering justifies its use for final states with
nonzero width.
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APPENDIX B: ELASTICITY THEORY

1. The three-phonon Hamiltonian

In this Appendix, we briefly review how the leading
anharmonic correction to the phonon Hamiltonian can be
written in terms of the elasticity parameters, following
Refs. [38,51]. In elasticity theory, the measure of the size of
an infinitesimal deformation of an object is

dx2 − da2 ¼
�∂xk
∂ai dai

	�∂xk
∂aj daj

	
− daidaj

¼ 2ηijdaidaj; ðB1Þ
with x and a being the coordinates of a piece of the
deformed and undeformed material, respectively. We
defined the Green–Saint-Venant strain tensor

ηij ≡ 1

2

�∂xk
∂ai

∂xk
∂aj − δij

	
; ðB2Þ

which measures how a material responds under stress.
Since xi ¼ ui þ ai by definition, we can use

∂xi
∂aj ¼

∂ui
∂aj þ δij ðB3Þ

to rewrite the strain tensor as

ηij ¼
1

2

�∂uj
∂ai þ

∂ui
∂aj þ

∂uk
∂ai

∂uk
∂aj

	
ðB4Þ

¼ 1

2
ðuij þ uji þ ukiukjÞ; ðB5Þ

with uij ≡ ∂iuj. Note that ηij is manifestly symmetric.
The generalization of Hooke’s law is [51]

σij ¼ Cijklηkl; ðB6Þ
with Cijkl the elastic constants and σij the stress tensor.
This relation can be written in Hamiltonian form

H ¼ 1

2
Cijklηijηkl − σijηij; ðB7Þ

where the stress tensor σij acts as a source for the ηij.
Equation (B6) is then just the equation of motion of ηij
given by this Hamiltonian. Dropping the source term, the
Hamiltonian in Eq. (B7) can be further generalized to
include the cubic response

H ¼ 1

2
Cijklηijηkl þ

1

3!
Cijklmnηijηklηmn; ðB8Þ

where the Cijklmn are the third-order elasticity constants.
Cijkl is invariant under i ↔ j, k ↔ l, and ðijÞ ↔ ðklÞ,
Cijklmn is invariant under i ↔ j, k ↔ l, m ↔ n, and the
permutations of the ðijÞ, ðklÞ, and ðmnÞ pairs. In the most

general case, Cijkl and Cijklmn have therefore 21 and 56
independent components, respectively.
In the isotropic limit, both tensors simplify substantially:

Cijkl has only two independent second-order elastic con-
stants, the Lamé parameters μ and λ, which can be related
directly to the shear modulus and Young’s modulus. The
Cijklmn has three independent components, parametrized
by the third-order elastic constants, α, β, and γ. Concretely,
we can write

CðisoÞ
ijkl ¼ λδijδkl þ μðδikδjl þ δilδjkÞ; ðB9Þ

CðisoÞ
ijklmn ¼ αδijδklδmn þ β½δijðδkmδln þ δknδlmÞ

þ δklðδimδjn þ δinδjmÞ þ δmnðδikδjl þ δilδjkÞ�
þ γ½δnjðδikδlm þ δilδkmÞ
þ δniðδjkδlm þ δjlδkmÞ þ δmjðδikδln þ δilδknÞ
þ δmiðδjkδln þ δjlδknÞ�; ðB10Þ

where the δij, etc., are Kronecker-δ symbols. Inserting
Eqs. (B5), (B9), and (B10) back into Eq. (B8) gives the
Hamiltonian in Eq. (20).

2. The isotropic approximation

The cubic crystals we consider in this work are not
completely isotropic but instead are only invariant under
permutations of the x, y, and z axes and parity trans-
formations such as x → −x, etc. The latter imply that all

components of CðcubÞ
ijkl and CðcubÞ

ijklmn for which a value of an
index occurs an odd number of times must vanish (e.g.,

CðcubÞ
1222 ¼ 0, etc.). One can show that imposing these

symmetries reduces the general elasticity tensors to three
independent second-order elastic constants, and six inde-
pendent third-order elastic constants. In order to express the
five isotropic elasticity parameters μ, λ, α, β, and γ in terms
of these nine measured elasticity parameters for the cubic
crystals of interest, an averaging procedure is needed.
Given that a 6-tensor such as CðcubÞ

ijklmn can be rather
unwieldy, much of the literature has chosen to adhere to the
Voigt convention, where each pair of double indices ðijÞ,
ðklÞ, and ðmnÞ is replaced with a single index running from
1 to 6 through the mapping

η11 → η1; η22 → η2; η33 → η3;

η23 →
1

2
η4; η13 →

1

2
η5; η12 →

1

2
η6: ðB11Þ

This maps CðcubÞ
ijkl and CðcubÞ

ijklmn to a 2-tensor (cðcubÞij ) and a

3-tensor (cðcubÞijk ), respectively, where we have used lower-
case c for components of the elasticity tensors in Voigt
notation. The independent elasticity parameters for a cubic
crystal, as typically reported in the literature, are c11, c12,
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and c44 for the second-order elastic tensor and c111, c112,
c123, c144, c166, and c456 for the third-order elastic tensor,

5

where we have dropped the (cub) superscript going for-
ward. All other components either vanish or can be
obtained by applying one of the symmetries listed above.
An explicit representation of cij and cijk can be found in,
e.g., Ref. [52].
To obtain the elasticity parameters in the isotropic

approximation, an averaging procedure must be performed,
introducing a certain degree of arbitrariness. We follow the
prescription in Ref. [39] and define the quantities

f2 ¼
X
i;j;k;l

ðCðcubÞ
ijkl − CðisoÞ

ijkl Þ2; ðB12Þ

f3 ¼
X

i;j;k;l;m;n

ðCðcubÞ
ijklmn − CðisoÞ

ijklmnÞ2; ðB13Þ

which provide a measure of the deviation of the isotropic
approximation from the cubic case. Minimizing both f2
and f3 leads to the definitions

μ≡ 1

5
ðc11 − c12 þ 3c44Þ; ðB14Þ

λ≡ 1

5
ðc11 þ 4c12 − 2c44Þ; ðB15Þ

α≡ 1

35
ðc111 þ 18c112 þ 16c123 − 30c144 − 12c166

þ 16c456Þ; ðB16Þ

β≡ 1

35
ðc111 þ 4c112 − 5c123 þ 19c144 þ 2c166 − 12c456Þ;

ðB17Þ

γ ≡ 1

35
ðc111 − 3c112 þ 2c123 − 9c144 þ 9c166 þ 9c456Þ;

ðB18Þ
in agreement with Ref. [39]. In the isotropic approximation,
the averaged sound speeds of the acoustic phonon modes
may also be expressed in terms of λ, μ, and the mass density
ρ as

cLA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 2μ

ρ

s
and cTA ¼

ffiffiffi
μ

ρ

r
: ðB19Þ

Both measurements and ab initio calculations of the
third-order elastic constants are considered rather challeng-
ing, and no complete set of experimental results is currently
available at close-to-zero temperature. The temperature
dependence is mild between room temperature and liquid

nitrogen temperature, but it can be large for lower temper-
atures. For instance, for Ge, the combination of c123 þ
6c144 þ 8c456 shows a Oð100%Þ variation between 77 K
and 3 K and even changes sign [53]. Similarly, the
discrepancy between experiment and theory for diamond
is also large for c123, c144, and c456 [54], presumably due to
this temperature dependence. We therefore choose to use
the values calculated with density functional theory meth-
ods, which are inherently at zero temperature. The values
that were used to compute the parameters in Table II are
listed in Table IV.

APPENDIX C: EXACT EXPRESSIONS FOR
LONG-WAVELENGTH STRUCTURE FACTORS

1. Anharmonic contributions

All expressions below are valid on the domain
0 < x < 1, as specified by the Heaviside functions in
Eqs. (23)–(26). We further defined δ≡ cLA=cTA. The full
expression for the phase space integral for the LA-LA
contribution in Eq. (23) of Sec. III A is then

gðanhÞLALAðxÞ≡ ð2β þ 4γ þ λþ 3μÞ2 ðx
2 − 1Þ3
2x5

× ðx6 þ 3x4 þ 7x2 þ 5Þ
�
tanh−1ðxÞ − x3

3
− x

	
þ a10x10 þ a8x8 þ a6x6 þ a4x4 þ a2x2 þ a0;

ðC1Þ
with

a10 ≡ 1

6
ð2β þ 4γ þ λþ 3μÞ2; ðC2Þ

a8 ≡ 1

2
ð2β þ 4γ þ λþ 3μÞ2; ðC3Þ

a6 ≡ −
1

3
ð2β þ 4γ þ λþ 3μÞ2; ðC4Þ

TABLE IV. Elasticity parameters at T ¼ 0 K, in units of GPa.

Sia GaAsb Gec Diamondd

c11 153 126 129.86 1051
c12 65 55 47.39 125
c44 73 61 65.73 560
c111 −698 −600 −708 −7611
c112 −451 −401 −346 −1637
c123 −112 −94 −26 604
c144 74 10 −10 −199
c166 −253 −305 −279 −2799
c456 −57 −43 −40 −1148

aReference [52] (DFT calculation).
bReference [55] (DFT calculation).
cReference [56] (DFT calculation).
dReference [54] (DFT calculation, measurement).

5In certain references, c155 is reported instead of c166; for cubic
symmetry, c155 ¼ c166.
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a4 ≡ 1

240
ð3α2 þ 2αð106β þ 200γ þ 53λþ 150μÞ þ 332β2 þ 4βð120γ þ 83λþ 90μÞ

− 320γ2 þ 240γλ − 480γμþ 83λ2 þ 180λμ − 180μ2Þ; ðC5Þ

a2 ≡ −
1

120
ð5α2 þ 2αð54β þ 88γ þ 27λþ 66μÞ þ 516β2 þ 12βð136γ þ 43λþ 102μÞ

þ 1280γ2 þ 816γλþ 1920γμþ 129λ2 þ 612λμþ 720μ2Þ; ðC6Þ

a0 ≡ 1

240
ð15α2 þ 10αð10β þ 8γ þ 5λþ 6μÞ þ 668β2 þ 4βð568γ þ 167λþ 426μÞ

þ 2112γ2 þ 1136γλþ 3168γμþ 167λ2 þ 852λμþ 1188μ2Þ: ðC7Þ

The out-of-plane TA-TA contribution in Eq. (24) is given by

gðanhÞTATAoutðxÞ≡ b4x4 þ b2x2 þ b0; ðC8Þ

with

b4 ≡ 43β2 þ 2βð50γ þ 43λþ 50μÞ þ 60γ2 þ 20γð5λþ 6μÞ þ 43λ2 þ 100λμþ 60μ2

240δ2
; ðC9Þ

b2 ≡ −
25β2 þ 44βγ þ 50βλþ 44βμþ 20γ2 þ 44γλþ 40γμþ 25λ2 þ 44λμþ 20μ2

120δ2
; ðC10Þ

b0 ≡ 15β2 þ 10βð2γ þ 3λþ 2μÞ þ 12γ2 þ 4γð5λþ 6μÞ þ 15λ2 þ 20λμþ 12μ2

240δ2
: ðC11Þ

The in-plane TA-TA contribution in Eq. (25) is

gðanhÞTATAinðxÞ≡ 1

2δ2
ð2β þ 4γ þ λþ 3μÞ2 ðx

2 − 1Þ3ðx2 þ 3Þ
x

�
tanh−1ðxÞ − x3

3
− x

	
þ c10x10 þ c8x8 þ c6x6 þ c4x4 þ c2x2 þ c0; ðC12Þ

with

c10 ≡ 1

6δ2
ð2β þ 4γ þ λþ 3μÞ2; ðC13Þ

c8 ≡ 1

2δ2
ð2β þ 4γ þ λþ 3μÞ2; ðC14Þ

c6 ≡ −
3

2δ2
ð2β þ 4γ þ λþ 3μÞ2; ðC15Þ

c4 ≡ 1

240δ2
ð963β2 þ 3852βγ þ 1046βλþ 2972βμþ 3852γ2 þ 2092γλ

þ 5944γμþ 283λ2 þ 1612λμþ 2292μ2Þ; ðC16Þ

c2 ≡ −
1

24δ2
ð17β2 þ 68βγ þ 26βλþ 60βμþ 68γ2 þ 52γλ

þ 120γμþ 9λ2 þ 44λμþ 52μ2Þ; ðC17Þ

c0 ≡ 1

16δ2
ðβ þ 2γ þ λþ 2μÞ2: ðC18Þ
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Finally, the LA-TA contribution is given by the piecewise function

gðanhÞLATAðxÞ≡
8<
:

gðanhÞLATA;1ðxÞ if 0 < x < 1
δ ;

gðanhÞLATA;2ðxÞ if 1
δ < x < 1;

ðC19Þ

where

gðanhÞLATA;1ðxÞ≡ ð2β þ 4γ þ λþ 3μÞ2
2δ2ðδþ 1Þ5

�
−ðδþ 1Þ5 ðx

2 − 1Þ3ðx2 þ 3Þ
x

�
tanh−1ðxÞ − x3

3
− x

	

−
ðδþ 1Þ5

δ12
ðδ2x2 − 1Þ3ðδ6x6 þ 3δ4x4 þ 7δ2x2 þ 5Þ

x5

�
tanh−1ðδxÞ − 1

3
δ3x3 − δx

	

þ d10x10 þ d8x8 þ d6x6 þ d4x4 þ d2x2 þ d0

�
; ðC20Þ

with

d10 ≡ −
1

3
ðδþ 1Þ6ðδ2 − δþ 1Þ; ðC21Þ

d8 ≡ −ðδþ 1Þ6; ðC22Þ

d6 ≡ 1

3δ
ðδþ 1Þ5ð9δþ 2Þ; ðC23Þ

d4 ≡ −
1

315δ3
ð189δ8 þ 945δ7 þ 2706δ6 þ 5340δ5 þ 5779δ4

þ 1505δ3 − 2460δ2 − 1870δ − 374Þ; ðC24Þ

d2 ≡ 1

105δ5
ð−32δ6 þ 365δ5 þ 1057δ4 þ 930δ3 þ 930δ2 þ 465δþ 93Þ; ðC25Þ

d0 ≡ −
1

15δ7
ð−16δ6 þ 15δ5 þ 75δ4 þ 150δ3 þ 150δ2 þ 75δþ 15Þ; ðC26Þ

and

gðanhÞLATA;2ðxÞ≡ ð2β þ 4γ þ λþ 3μÞ2
2δ14ðδ2 − 1Þ5x5

�
−ðδ2 − 1Þ5ðδ2x2 − 1Þ3ðδ6x6 þ 3δ4x4 þ 7δ2x2 þ 5Þ

× coth−1ðδxÞ þ ðδ2 − 1Þ5½ð6δ12 þ δ8Þx8 − 8ðδ12 þ δ6Þx6 þ 3ðδ12 þ δ4Þx4

þ 8δ2x2 − 5�coth−1ðδÞ þ
X11
i¼1

eixi
�
; ðC27Þ

with

e11 ≡ δ11ðδ2 − 1Þ5; ðC28Þ

e10 ≡ 0; ðC29Þ

e9 ≡ δ9

315
ð105δ10 − 861δ8 þ 3066δ6 − 4266δ4 þ 525δ2 þ 151Þ; ðC30Þ

e8 ≡ δ9

3
ð−18δ12 þ 84δ10 − 147δ8 þ 74δ6 þ 82δ4 − 14δ2 þ 3Þ; ðC31Þ
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e7 ≡ −
2δ7

105
ð105δ10 − 1645δ8 þ 5474δ6 − 2914δ4 þ 1605δ2 − 321Þ; ðC32Þ

e6 ≡ 8δ7

3
ð3δ14 − 14δ12 þ 26δ10 − 29δ8 þ 43δ6 − 24δ4 þ 14δ2 − 3Þ; ðC33Þ

e5 ≡ −
2δ5

15
ð5δ10 þ 255δ8 − 342δ6 þ 350δ4 − 175δ2 þ 35Þ; ðC34Þ

e4 ≡ δ5

15
ð−45δ16 þ 210δ14 − 384δ12 þ 334δ10 þ 16δ8 − 350δ6

þ 384δ4 − 210δ2 þ 45Þ; ðC35Þ

e3 ≡ 19δ3

3
ðδ2 − 1Þ5; ðC36Þ

e2 ≡ −
8δ3

105
ð34δ10 − 329δ8 þ 790δ6 − 896δ4 þ 490δ2 − 105Þ; ðC37Þ

e1 ≡ −5δðδ2 − 1Þ5; ðC38Þ

e0 ≡ 64δ11

35
−
965δ9

63
þ 790δ7

21
−
128δ5

3
þ 70δ3

3
− 5δ: ðC39Þ

From the matrix element in Eq. (21), the widths for each anharmonic channel may be calculated explicitly, giving

ΓLA→LALAðqÞ ¼
q5

960πcLA4ρ3
ðαþ 6β þ 8γ þ 3λþ 6μÞ2; ðC40Þ

and

ΓLA→TATAinðqÞ ¼
q5

7680πcLA4ρ3

�
f1ðδ2 − 1Þ3ð1þ 3δ2Þcoth−1ðδÞ þ

Xi¼4

i¼1

fiδ2i−1
	
; ðC41Þ

with

f4 ≡ 15ð97β2 þ 388βγ þ 388γ2 þ 98βγ þ 196γλþ 25λ2

þ 4μð73ðβ þ 2γÞ þ 37λÞ þ 220μ2Þ; ðC42Þ

f3 ≡ −10ð353β2 þ 1412γ2 þ 724γλþ 93λ2 þ 2136γμþ 548λμ

þ 808μ2 þ 2βð706γ þ 181λþ 534μÞÞ; ðC43Þ

f2 ≡ 2563β2 þ 10252γ2 þ 5292γλþ 683λ2 þ 15544γμþ 4012λμ

þ 5892μ2 þ 2βð5126γ þ 1323λþ 3886μÞ; ðC44Þ

f1 ≡ −120ð2β þ 4γ þ λþ 3μÞ2; ðC45Þ

and

ΓLA→TATAoutðqÞ ¼
q5

7680πcLA4ρ3
Xi¼4

i¼1

giδ2i−1; ðC46Þ
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with

g4 ≡ 15β2 þ 20βγ þ 12γ2 þ 30βλþ 20γλþ 15λ2

þ 4μð5β þ 6γ þ 5λÞ þ 12μ2; ðC47Þ

g3 ≡ −2ð25β2 þ 20γ2 þ 44γλþ 25λ2 þ 40γμþ 44λμ

þ 20μ2 þ βð44γ þ 50λþ 44μÞÞ; ðC48Þ

g2 ≡ 43β2 þ 100βγ þ 60γ2 þ 86βλþ 100γλþ 43λ2

þ 20μð5β þ 6γ þ 5λÞ þ 60μ2; ðC49Þ

g1 ≡ 0; ðC50Þ

and finally

ΓLA→LATAðqÞ ¼
h12q5

64πcLA4ρ3

�
ðδ2 − 1Þ3ð1þ 3δ2Þ coth−1ðδÞ þ ð1 − δÞ

315ð1þ δÞ5
Xi¼11

i¼0

hiδi
	
; ðC51Þ

with

h12 ≡ ð2β þ 4γ þ λþ 3μÞ2; ðC52Þ

h11 ≡ 945; ðC53Þ

h10 ≡ 5670; ðC54Þ

h9 ≡ 12915; ðC55Þ

h8 ≡ 11340; ðC56Þ

h7 ≡ −4746; ðC57Þ

h6 ≡ −19656; ðC58Þ

h5 ≡ −18030; ðC59Þ

h4 ≡ −6540; ðC60Þ

h3 ≡ 793; ðC61Þ

h2 ≡ 2658; ðC62Þ

h1 ≡ 1083; ðC63Þ

h0 ≡ 128: ðC64Þ

2. Contact contributions

The functions parametrizing the phase-space integrals in
Sec. III B can be expressed as

gðcontÞLALAðxÞ≡ −xðx6 þ x4 − x2 − 3Þ þ ðx8 þ 2x4 − 3Þtanh−1ðxÞ
x5

; ðC65Þ

gðcontÞTATAðxÞ≡ ð1 − x2Þ2
x5

ðxð3 − x2Þ þ ðx4 þ 2x2 − 3Þtanh−1ðxÞÞ: ðC66Þ

The LA-TA mode is given by the piecewise function

gðcontÞLATAðxÞ≡
8<
:

gðcontÞLATA;1ðxÞ if 0 < x < 1
δ ;

gðcontÞLATA;2ðxÞ if 1
δ < x < 1;

ðC67Þ

with
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gðcontÞLATA;1ðxÞ≡ −
δðδþ 1Þ

x5

�
ðx2 þ 3Þðx2 − 1Þ3tanh−1ðxÞ þ

�
x8 þ 2x4

δ4
−

3

δ8

	
tanh−1ðδxÞ

�

þ 1

15δ6x4
½15ðδþ 1Þ2δ6x6 þ ð−59δ4 − 59δ3 þ 16δ2 þ 21δþ 21Þδ4x4

þ 15ð7δ6 þ 7δ5 − δ − 1Þδ2x2 − 45ðδ8 þ δ7 þ δþ 1Þ�; ðC68Þ

gðcontÞLATA;2ðxÞ≡ −
δðδþ 1Þ

x5

��
8x2 −

�
2

δ4
þ 6

	
x4 − 3þ 3

δ8

	
coth−1ðδÞ

þ
�
x8 þ 2x4

δ4
−

3

δ8

	
coth−1ðδxÞ

�
þ 1

15δ7ðδ − 1Þx5 ½15δ
7ðδ2 − 1Þx7

þ δ5ð5δ2 − 21Þx5 þ 30δ5ð−3δ4 þ 2δ2 þ 1Þx4 − 15δ3ðδ2 − 1Þx3
þ 40δ7ð3δ2 − 2Þx2 − 45δðδ2 − 1Þx − 45δ9 þ 30δ7 þ 6δ5 þ 30δ3 − 45δ�: ðC69Þ

All functions are only to be evaluated for 0 < x < 1, as enforced by the Heaviside functions in Eqs. (32)–(34).
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