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Our understanding of the dynamics and the phase structure of dense strong-interaction matter is to a large
extent still built on the analysis of low-energy models, such as those of the Nambu–Jona-Lasinio-type
model. In this work, we analyze the emergence of the latter class of models at intermediate- and low-energy
scales from fundamental quark-gluon interactions. To this end, we study the renormalization group flow of
a Fierz-complete set of four-quark interactions and monitor their strength at finite temperature and quark
chemical potential. At small quark chemical potential, we find that the scalar-pseudoscalar interaction
channel is dynamically rendered most dominant by the gauge degrees of freedom, indicating the formation
of a chiral condensate. Moreover, the inclusion of quark-gluon interactions leaves a significant imprint on
the dynamics as measured by the curvature of the finite-temperature phase boundary which we find to be in
accordance with lattice QCD results. At large quark chemical potential, we then observe that the dominance
pattern of the four-quark couplings is changed by the underlying quark-gluon dynamics, without any fine-
tuning of the four-quark couplings. In this regime, the scalar-pseudoscalar interaction channel becomes
subleading, and the dominance pattern suggests the formation of a chirally symmetric diquark condensate.
In particular, our study confirms the importance of explicitUAð1Þ breaking for the formation of this type of
condensate at high densities.
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I. INTRODUCTION

Low-energy models of the theory of the strong inter-
action (quantum chromodynamics, QCD) are still consid-
ered very valuable for a variety of reasons. In particular, in
the high-density regime, which is at least difficult to access
with lattice Monte Carlo techniques, the Nambu–Jona-
Lasinio (NJL) model [1,2] and its various variations and
relatives (see, e.g., Refs. [3–8] for reviews), such as quark-
meson (QM) models, allow us to gain some insight into the
plethora of symmetry-breaking patterns that may poten-
tially be realized in this regime; see Refs. [9–12] for
reviews. From a phenomenological point of view, this
regime attracts significant interest from the astrophysics
side. For example, studies of neutron stars require a
knowledge of the equation of state of strong-interaction
matter as input. However, the latter are currently still
plagued by (significant) uncertainties, at least at high
density; see, e.g., Ref. [13] for a recent review. In order

to constrain the equation of state further [14], we eventually
need a better understanding of the symmetry-breaking
patterns of QCD guided by first-principle approaches.
In two preceding works [15,16], we have studied the

relevance of Fierz completeness of four-quark self-
interactions in NJL-type models at finite temperature and
quark chemical potential. Our beyond-mean-field renorm-
alization-group (RG) analysis of the “hierarchy” of the
various interaction channels in terms of their relative
strengths allowed us to gain insight into the symmetry-
breaking patterns and the structure of the ground state.
Particularly at high density, we found the aspect of Fierz
completeness to be of great importance, leading to an
increased phase transition temperature as compared to
conventional NJL model studies. At least naively, this
observation might have crucial implications for the proper-
ties of cold dense quark matter at low temperatures as an
increase of the critical temperature may point to an increase
of the size of the gap in the low-energy spectrum.
The four-quark couplings appearing in the ansatz of

NJL-type models are usually considered as fundamental
parameters. In fact, owing to the nonrenormalizability of
NJL-type models in four space-time dimensions, both on
the perturbative and on the nonperturbative level (see, e.g.,
Refs. [17,18]), the ultraviolet (UV) cutoff scale Λ becomes
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a parameter of the model, too. Against this background,
the regularization scheme also becomes part of the defi-
nition of the model. The initial values of the four-quark
couplings are then chosen such that a given set of low-
energy observables is reproduced in the vacuum limit. In
Ref. [16], guided by the findings of RG studies of QCD
[19–21] and in order to relate to conventional NJL model
studies, we have set all four-quark couplings to zero
initially, except for the scalar-pseudoscalar coupling. As
the only remaining parameter, we adjusted this coupling to
fix low-energy observables in the vacuum limit. However,
this scale-fixing procedure underlying many low-energy
model studies can be potentially problematic. The distinct
role of the scalar-pseudoscalar interaction channel at the
initial UV cutoff scale can indeed be questioned since a
specific four-quark interaction channel is reducible by
means of Fierz transformations. Yet adopting more
complex initial conditions by also taking into account
four-quark couplings other than the scalar-pseudoscalar
interaction channel may suffer from the fact that the
parameters cannot be uniquely determined by a given
set of low-energy observables. Indeed, the values of the
low-energy observables may, in general, be reproduced by
various different parameter sets, or certain parameters
might even be left undetermined. The remaining ambiguity
has been found to affect the phase structure significantly;
see, e.g., Refs. [9,22–24]. Moreover, boundary conditions
which are defined in the vacuum limit are possibly
inappropriate for computations at finite external control
parameters, such as temperature T and/or quark chemical
potential μ. Considering NJL-type models to be rooted in
QCD, the RG evolution of gluon-induced four-quark
interactions in fact suggests a dependence of these model
parameters on external control parameters [25]. In particu-
lar, at finite quark chemical potential, as also discussed in
detail in Refs. [15,16] (see, e.g., Refs. [9,11,12,26] for
reviews), effective degrees of freedom (d.o.f.) associated
with four-quark interaction channels other than the scalar-
pseudoscalar interaction channel are expected to become
important or even dominant. In such a situation, a choice
for the initial conditions with a specifically tuned scalar-
pseudoscalar coupling is therefore unfortunate as it may
potentially bias the outcome in terms of symmetry-breaking
patterns along the finite-temperature phase boundary.
Thus far, we have not yet discussed the role of the UV

cutoff scale. In the context of NJL-type models, we have to
deal with the existence of a finite UVextent; i.e., the cutoff
scale Λ is limited by a validity bound which in turn limits
the model’s range of applicability in terms of external
parameters. The origin of this bound is actually twofold:
First, NJL-type models eventually become unstable in the
UV and develop a Landau pole at a certain scale. Second,
these models have a phenomenological UV extent beyond
which the description of the physics in terms of the models’
effective fields becomes invalid and the knowledge of

the underlying fundamental dynamics, i.e., quark-gluon
dynamics, is ultimately required.As a consequence, a choice
of the UV cutoff scale within the a priori unknown validity
bound either limits the applicable range of external param-
eters or, for external parameters outside of this range, implies
that the initial effective action is already a complicated
object itself; see Ref. [27] for a detailed discussion of these
issues. Considering NJL-type models to be embedded in
QCD, a possibility to resolve this problem is the determi-
nation of the model parameters by employing RG studies of
the fundamental theory; see, e.g., Refs. [25,28,29]. In the
past 20 years, tremendous progress has been made within
the functional RG framework in the development of a “top-
down” approach to QCD; see, e.g., Refs. [20,21,30–50].
The only input in such an approach is given by the
fundamental parameters of QCD, i.e., the current quark
masses and the value of the strong coupling in the pertur-
bative high-momentum regime. These functional RG stud-
ies are basically free of additional model parameters. In this
context, even very good quantitative agreement of results
from lattice QCD and functional RG studies has been
demonstrated at zero and finite temperature for QCD with
different flavor numbers; see, e.g., Refs. [21,35,37,38,50].
Whereas the aforementioned RG studies aiming at

quantitative precision constitute essential advances towards
predictive first-principle investigations of the QCD phase
diagram, eventually, even at high densities, we aim to take
another important step toward such a top-down first-
principles approach to analyze the phase structure of
QCD at high densities with functional methods. With
our analysis of the Fierz-complete NJL model with two
quark flavors in Ref. [16], we have gained valuable insight
into the quark dynamics. In the present work, we now
incorporate gluodynamics by extending our Fierz-complete
ansatz with dynamical gauge d.o.f., following earlier
functional RG studies [36,37,39,45]. In full QCD, the
values of the four-quark couplings are no longer funda-
mental parameters since these self-interactions are fluc-
tuation induced by the dynamics of the gauge fields. Taking
this aspect into account, the aforementioned issue associ-
ated with the determination of model parameters—such as
ambiguities related to the possibility to Fierz transform
given initial conditions and the potential existence of more
than one parameter set reproducing equally well a given set
of low-energy observables, or the dependence of the initial
conditions on external control parameters—can, in princi-
ple, be resolved. More specifically, including gauge
dynamics and thus resolving the fundamental microscopic
d.o.f. allows the initialization of the RG flow at a large scale
Λ associated with the perturbative regime, which effec-
tively corresponds to starting in the vacuum as we have
T=Λ ≪ 1 and μ=Λ ≪ 1. In this way, the finite UVextent as
implied by the validity bound of NJL-type models is
surmounted, and the limit on the range of applicability
in terms of external parameters is lifted.
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Working in the chiral limit, the strong coupling gs is the
only parameter which is set at the initial UV scale Λ. By
integrating out fluctuations from this scale Λ, the quark-
gluon vertex gives rise to 1PI box diagrams with two-gluon
exchange, which dynamically generate the four-quark
interaction channels. Depending on the strength of the
strong coupling and the external parameters, the quark
sector may then be driven to criticality, signaling the onset
of spontaneous symmetry breaking, e.g., chiral symmetry
breaking or diquark condensation of a specific type.
Following the approach developed in our two preceding
works [15,16], we consider the RG flow of the four-quark
couplings in the pointlike limit to study the QCD phase
structure at finite temperature and quark chemical potential.
In particular, we analyze the “hierarchy” of the four-quark
couplings in terms of their strength, which shall prove very
valuable in order to gain insight into the symmetry proper-
ties of the QCD ground state in the low-energy limit.
This work is organized as follows: In Sec. II, we discuss

general aspects of the formalism and concepts underlying
our study. We begin with a discussion of the relation of the
quark-gluon vertex and four-quark interactions in Sec. II A.
In Sec. II B, we then briefly review the relation of the RG
flow of four-fermion couplings to the onset of phase
transitions, including a discussion of the general structure
of the RG flow equations for the four-quark couplings. The
scale-fixing procedure underlying our present work is
discussed in Sec. II C. The QCD phase structure and
symmetry-breaking patterns at finite temperature and den-
sity are then analyzed in Sec. III. There, we also compare the
results for the phase boundary to the one obtained from our
previous Fierz-complete NJL model study [16]. Moreover,
we discuss the effect of explicit UAð1Þ symmetry breaking
and comment on the curvature of the finite-temperature
phase boundary at small chemical potential resulting from
various different approaches. Our conclusions can be found
in Sec. IV.

II. GENERAL ASPECTS OF THE FORMALISM

A. Quark-gluon vertex and four-quark interactions

In the present work, we employ the functional RG
approach [51] to study the RG flow of QCD starting from
the Euclidean QCD action (see Refs. [17,52,53] for
reviews):

S ¼
Z

d4x

�
1

4
Fa
μνFa

μν þ ψ̄ði=∂ þ ḡs=Aþ iγ0μÞψ
�
; ð1Þ

where ḡs is the bare gauge coupling and μ is the quark
chemical potential. The gluon fields Aa

μ enter the definition
of the field-strength tensor Fa

μν in the usual way. We
emphasize that we exclusively consider the case of quarks
coming in Nc ¼ 3 colors and Nf ¼ 2 flavors.

In the RG flow, the quark-gluon vertex generates quark
self-interactions already at the one-loop level via two-gluon
exchange. This gives rise to contributions to the quantum
effective action, e.g., of the following form:

δΓ ¼ 1

2

Z
d4x

X
j∈B

Zjλ̄jLj; ð2Þ

where the elements Lj form a ten-component Fierz-
complete basis B of pointlike four-quark interactions to
be specified below. The various terms are associated with
corresponding bare couplings λ̄i and vertex renormalization
factors Zj. By construction, the couplings are not param-
eters of our calculation but solely generated by quark-gluon
dynamics. This is an important difference from, e.g., NJL-
type model studies where such couplings represent input
parameters.
In the following, we focus on the RG flow of pointlike

projected four-quark correlation functions Γð4Þ, which
eventually corresponds to a calculation of the effective
action at leading order of the derivative expansion. To be
specific, we define the four-quark couplings associated
with the vertex of the form (2) as follows:

Zjλ̄jLj ¼ lim
pi→0

ψ̄αðp1Þψ̄βðp2ÞΓð4Þ;αβγδ
Lj

ðp1; p2; p3; p4Þ

× ψγðp3Þψδðp4Þ: ð3Þ

Here, α, β, γ, δ denote collective indices for color, flavor,
and Dirac structures determined by a specific element Lj of
our Fierz-complete basis. We add that this zero-momentum
projection does not represent a Silver Blaze symmetric
point [15,54,55]. However, it matches the standard defi-
nition of four-quark couplings in conventional low-energy
models (see Refs. [3,4,9,10,56] for reviews) and BCS-type
models (see Refs. [11,12,26,57] for reviews).
Let us now specify the elements Lj of our Fierz-

complete basis B of pointlike four-quark interactions.
Since Poincaré invariance is explicitly broken in our
calculations at finite temperature and quark chemical
potential, we are only left with rotational invariance among
the spatial components of the various possible channels.
Moreover, a finite quark chemical potential also explicitly
breaks the charge conjugation symmetry. Therefore, with
respect to the fundamental symmetries associated with
charge conjugation, time reversal, and parity, only invari-
ance under parity transformations and time-reversal trans-
formations remains intact. Assuming invariance of the
channels under SUðNcÞ ⊗ SULð2Þ ⊗ SURð2Þ ⊗ UVð1Þ,
we end up with a Fierz-complete basis composed of ten
elements [16]. Guided by QCD low-energy phenomenol-
ogy, we choose four of the ten channels such that they are
invariant under SUðNcÞ ⊗ SULð2Þ ⊗ SURð2Þ ⊗ UVð1Þ
transformations but break the UAð1Þ symmetry explicitly:
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Lðσ-πÞ ¼ ðψ̄ψÞ2 − ðψ̄γ5τiψÞ2; ð4Þ

LðSþPÞ− ¼ðψ̄ψÞ2− ðψ̄γ5τiψÞ2þðψ̄γ5ψÞ2− ðψ̄τiψÞ2; ð5Þ

Lcsc ¼ 4ðiψ̄γ5τ2TAψCÞðiψ̄Cγ5τ2TAψÞ; ð6Þ

LðSþPÞadj−
¼ ðψ̄TaψÞ2 − ðψ̄γ5τiTaψÞ2
þ ðψ̄γ5TaψÞ2 − ðψ̄τiTaψÞ2; ð7Þ

where, e.g., ðψ̄γ5τiψÞ2 ≡ ðψ̄γ5τiψÞðψ̄γ5τiψÞ and the Ta’s
denote the generators of SUðNcÞ. Moreover, we introduced
charge conjugated fields ψC ¼ Cψ̄T and ψ̄C ¼ ψTC, with
C ¼ iγ2γ0 being related to the charge conjugation operator.
The remaining six channels can then be chosen to be
invariant under SUðNcÞ ⊗ SULð2Þ ⊗ SURð2Þ ⊗ UVð1Þ ⊗
UAð1Þ transformations:

LðVþAÞk ¼ ðψ̄γ0ψÞ2 þ ðψ̄ iγ0γ5ψÞ2; ð8Þ

LðVþAÞ⊥ ¼ ðψ̄γiψÞ2 þ ðψ̄ iγiγ5ψÞ2; ð9Þ

LðV−AÞk ¼ ðψ̄γ0ψÞ2 − ðψ̄ iγ0γ5ψÞ2; ð10Þ

LðV−AÞ⊥ ¼ ðψ̄γiψÞ2 − ðψ̄ iγiγ5ψÞ2; ð11Þ

LðVþAÞadjk
¼ ðψ̄γ0TaψÞ2 þ ðψ̄ iγ0γ5TaψÞ2; ð12Þ

LðV−AÞadj⊥
¼ ðψ̄γiTaψÞ2 − ðψ̄ iγiγ5TaψÞ2: ð13Þ

Of course, this basis is not unique. In principle, we can
combine elements of the basis to perform a basis trans-
formation. However, as indicated above, our present choice
is motivated by the structure of the four-quark channels
conventionally employed in QCD low-energy models. In
fact, the scalar-pseudoscalar channel associated with pion
dynamics and chiral symmetry breaking is given by the
channel Lðσ-πÞ. The channel associated with the element
LðSþPÞ− can be rewritten as (up to a numerical constant)

∼ det ðψ̄ð1þ γ5ÞψÞ þ det ðψ̄ð1 − γ5ÞψÞ; ð14Þ

where the determinant is taken in flavor space. This channel
is associated with the presence of topologically nontrivial
gauge configurations violating the UAð1Þ symmetry.
Indeed, such configurations can be recast into a four-quark
interaction channel of the form (14) in the case of two-
flavor QCD [58–64]. The channel (7) may be viewed as a
version of the channel LðSþPÞ− with a nontrivial color
structure. We add that, for the phenomenologically more
relevant three-flavor case, the explicit breaking of the
UAð1Þ symmetry was suggested before the two-flavor case
in order to explain the mass splitting of the η and η0 in the
mesonic mass spectrum [65,66].

Finally, we have included a channel which allows us to
“measure” the status of the formation of a diquark con-
densate of the type

δa ∼ hiψ̄Cγ5ϵfε
a
cψi; ð15Þ

which carries a net baryon and net color charge.1 Note that
the channel Lcsc is invariant under SUðNcÞ ⊗ SULð2Þ ⊗
SURð2Þ ⊗ UVð1Þ transformations, and the corresponding
condensate leaves the chiral symmetry intact. However, the
formation of such a diquark condensate comes along with
the breakdown of the UVð1Þ symmetry, as expected for a
BCS-type condensate.2

With respect to our discussion of the effect of UAð1Þ
symmetry breaking, we add that we can use our Fierz-
complete set of pointlike four-quark interactions to monitor
the strength of UAð1Þ symmetry breaking. Indeed, requir-
ing that the effective action Γ is invariant under UAð1Þ
transformations, we find the following two sum rules,
which are satisfied simultaneously if the UAð1Þ symmetry
is intact:

Sð1Þ
UAð1Þ ¼ λ̄csc þ λ̄ðSþPÞadj−

¼ 0; ð16Þ

Sð2Þ
UAð1Þ ¼ λ̄ðSþPÞ− −

Nc − 1

2Nc
λ̄csc þ

1

2
λ̄ðσ-πÞ ¼ 0; ð17Þ

see Ref. [16] for a more detailed discussion. We shall come
back to the issue ofUAð1Þ symmetry breaking in Sec. III B.
To summarize, from here on, we consider the RG flow of

pointlike four-quark interactions as generated by the quark-
gluon vertex. The latter implies that the initial conditions of
the four-quark interactions are set to zero at the initial RG
scale Λ; i.e., they do not represent parameters of our study
as is the case for QCD low-energy models. We emphasize
again that our set of four-quark interactions is Fierz
complete; i.e., any other pointlike four-quark interaction
invariant under the symmetries specified above is reducible
by means of Fierz transformations.
Since we consider the RG flow of the four-quark

interactions at leading order of the derivative expansion
(i.e., in the pointlike limit as indicated above), the quark
wave-function renormalization factors do not receive con-
tributions directly from the four-quark interactions; see
Ref. [17] for a detailed discussion. Contributions to the
quark wave-function renormalizations resulting from the
coupling of the quarks to the gluons have been found to be
small at this order in earlier studies [32,35,39], at least for

1Here, ϵf ≡ ϵðα;βÞf and εac ≡ εaðm;nÞ
c are antisymmetric tensors in

flavor and color space, respectively.
2With respect to the diquark channel, we add that our

conventions in Eq. (6) are such that we only sum over the
antisymmetric (A) generators of the SUðNcÞ color group.
Normalization factors of this channel are chosen according to
the standard literature [9].
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RG scales relevant for the present work. Therefore, we do
not take into account the running of the quark wave-
function renormalization factors; i.e., we set them to 1 and
defer their computation to future work. Finally, we note that
quark self-interactions of higher order are also generated
dynamically in the RG flow. However, at leading order of
the derivative expansion, they do not contribute to the RG
flow of the four-quark self-interactions and are thus not
included in our present study [15–17]. Based on these
general considerations of the symmetries of QCD and the
structure of RG flow equations in this subsection, we
employ the following Fierz-complete ansatz of the effective
action for our computation of the four-quark couplings at
leading order (LO) of the derivative expansion:

ΓLO½Aa
μ; ψ̄ ;ψ � ¼

Z
d4x

�
1

4
Fa
μνFa

μν þ ψ̄ði=∂ þ ḡs=Aþ iγ0μÞψ

þ 1

2

X
j∈B

Zjλ̄jLj

�
: ð18Þ

The initial condition for the RG flow of this ansatz for the
effective action is given by Eq. (1), which is nothing but our
ansatz for the effective action with all four-quark couplings
set to zero. Note that the RG flow equations of the four-
quark couplings derived from this ansatz depend on the
strong coupling. Thus, we also need to take into account the
running of the latter. We shall discuss this in the next
subsection.

B. Phase transitions and four-quark interactions

The four-quark couplings depend on the chemical
potential, the temperature, and the RG scale k. Although
the scale dependence implies that part of the information on
the momentum dependence is still taken into account in our
RG analysis in an effective manner [67], the pointlike
approximation underlying our present work ignores rel-
evant information of four-quark correlation functions. To be
more specific, bound-state information is encoded in the
momentum structure of the quark correlation functions.
Therefore, our present approximation only allows us to
study the symmetric high-energy regime [17], whereas the
low-energy regime is only accessible in the absence of
(spontaneous) symmetry breaking, which is associated with
bound-state formation, as is the case at, e.g., high temper-
ature. For our purposes, this is nevertheless sufficient as it
enables us to study the approach towards the symmetry-
broken low-energy regime. Indeed, symmetry breaking is
ultimately triggered by a specific four-quark channel
approaching criticality as indicated by a divergence of
the corresponding coupling. Such a seeming Landau-pole-
type behavior of four-quark couplings can be traced back
to the formation of condensates since the pointlike four-
quark couplings can be shown to be proportional to the
inverse mass parameters of a generalized Ginzburg-Landau

effective potential for the order parameters in a (partially)
bosonized formulation [17,68,69]. Thus, if the size of all
four-quark couplings is found to be bounded in the
RG flow, the system remains in the symmetric regime
[17,35–37,67] and our ansatz (18) for the effective action
provides us with an approximate description of QCD on all
scales. The observation of a divergent four-quark coupling
for a given temperature and quark chemical potential may
hence be considered an indicator that the order-parameter
potential develops a nontrivial ground-state expectation
value in the direction associated with a specific four-quark
channel. In this case, our ansatz (18) for the effective action
now provides us only with an approximate description of
QCD for scales above the one at which a divergent four-
quark coupling is observed. The critical temperature TcrðμÞ
at a given value of the quark chemical potential above
which no spontaneous symmetry breaking occurs is then
defined as the smallest temperature for which the four-
quark couplings still remain finite in the infrared (IR) limit
associated with k → 0 [15–17,36,37]. However, we empha-
size that our present approach is only able to detect phase
transitions of second order as the definition of the critical
temperature is associated with a change from positive to
negative curvature of the order-parameter potential at the
origin. In the case of a first-order phase transition, a
nontrivial minimum of the potential is formed, but the
curvature at the origin remains positive. Consequently, our
criterion for the detection of a phase transition does not
allow us to detect first-order transitions. Still, it allows us
to detect the line of metastability [15]; for the first NJL
model analysis of this aspect, see [70]. In any case, the
nontrivial assumption entering our analysis of the QCD
phase structure in the present work is that it is possible to
relate the dominance pattern of the four-quark couplings to
the symmetry-breaking pattern in terms of condensates; see
Refs. [15,16,67,71] for a detailed discussion of this aspect.
It is reasonable to expect that the symmetry-breaking

patterns associated with the various four-quark channels
change when we vary, e.g., the quark chemical potential.
For example, the diquark channel may become more
relevant than the scalar-pseudoscalar channel at high
density. The most dominant channel can be identified by
requiring that the modulus of the coupling of this channel is
greater than the ones of all the other four-quark couplings.
For such an analysis to be meaningful, it is therefore
ultimately required to consider a Fierz-complete set of
four-quark couplings.
For the derivation of the RG flow equations of the four-

quark couplings, we employ the Wetterich equation [51],
which is a RG equation for the quantum effective action Γ.
Within this framework, the effective action Γ depends on
the RG scale k, which is related to the so-called RG “time”
t ¼ lnðk=ΛÞ. Note that the scale k defines an infrared (IR)
cutoff scale, and Λ may be chosen to be the scale at which
we fix the initial conditions of the RG flow of the
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couplings. The general structure of the RG flow equations
for the dimensionless renormalized couplings λi ¼ Zik2λ̄i
is given by

∂tλi¼ 2λi−AðiÞ
mnðτ; μ̃τÞλmλn−BðiÞ

j ðτ; μ̃τÞλjg2s −CðiÞðτ; μ̃τÞg4s ;
ð19Þ

with τ ¼ T=k and μ̃τ ¼ μ=ð2πTÞ. The temperature- and

chemical-potential-dependent coefficients AðiÞ
mn, B

ðiÞ
j , and

CðiÞ are auxiliary functions containing sums of the 1PI
diagrams depicted in Fig. 1. In addition, these functions
also contain the information on the chosen gauge. For
convenience, we restrict ourselves to Feynman gauge in the
following. In Eq. (19), terms bilinear in the four-quark

couplings with the coefficients AðiÞ
mn are associated with the

purely fermionic diagrams (a) in Fig. 1. Terms proportional
to λjg2s are generated by the triangle diagrams (b) depicted
in Fig. 1. Finally, terms proportional to g4s are associated
with the box diagrams (c) shown in Fig. 1. Note that we
have dropped an explicit dependence of these loop dia-
grams on the anomalous dimensions of the quark and gluon
fields as these additional contributions have been found to
be subleading in the symmetric regime [32,35–37,72].
For the derivation of the set of RG flow equations (19),

we have made extensive use of existing software packages
[73,74]. Because of the size of the resulting system of
equations for the Fierz-complete set of four-quark cou-
plings, we deal with the flow equations only numerically
and therefore refrain from listing these equations explicitly
here. An explicit representation of the flow equations for
the purely fermionic part as parametrized by the matrices

AðiÞ
mn can be found in our preceding work [16], including a

discussion of the regularization scheme also underlying our
present work. For the same regularization scheme, an
explicit representation of a Fierz-complete set of flow
equations for the four-quark interactions in the vacuum
limit in case of an SUðNcÞ ⊗ ULð2Þ ⊗ URð2Þ symmetry
can be found in Ref. [35], where the contributions propor-
tional to λjg2s and g4s have been taken into account as well.

In our present approximation, the RG flow of the gauge
sector enters the flow equations of the four-quark couplings
only via the running of the strong coupling. In our numerical
analysis in Sec. III, we employ the running coupling
computed nonperturbatively in Refs. [36,37] where the
same regularization scheme has been used as in the present
work. Let us be more explicit at this point. In Refs. [36,37],
the running of the gauge coupling has been computed at zero
and finite temperature but not at finite quark chemical
potential. An extension of these nonperturbative studies
to finite quark chemical potential is beyond the scope of the
present work and therefore deferred to future work. To
estimate the effect of a quark chemical potential on the
running of the strong coupling and thereby on the flow of the
four-quark couplings, we employ the running strong cou-
pling from Refs. [36,37] as obtained for (pure) Yang-Mills
(YM) theory (Nf ¼ 0) and for QCD with two massless
quark flavors. The reason behind this is that, at the one-loop
level, the quark contribution to the β function of the strong
coupling at finite quark chemical potential and zero temper-
ature has been found to be identical to the one in the vacuum
limit for RG scales k ≥ μ and to vanish identically for k < μ;
see, e.g., Refs. [41,50,75]. This implies that, at least at the
one-loop level at zero temperature, the RG flow of the strong
coupling is identical to the one in the vacuum limit for k ≥ μ
but identical to the one in YM theory for k < μ. Loosely
speaking, the YM coupling and the QCD coupling in the
vacuum limit may therefore be viewed as two extremes of
the zero-temperature QCD coupling at finite quark chemical
potential. The stepwise change of the β function of the strong
coupling at k ¼ μ is then smeared out at finite temperature.
In addition to corrections to the strong coupling origi-

nating from the presence of a finite quark chemical
potential, one may be worried about possible corrections
to the strong coupling arising from the presence of quark
self-interactions. However, provided the flow of the
four-quark couplings is governed by the presence of
fixed points [72], as is the case in the symmetric regime
[35–37], it follows from the analysis of (modified) Ward-
Takahashi identities that the backreaction of the four-quark
couplings on the strong coupling is negligible. For our
present analysis, the use of the strong coupling from
Refs. [36,37] in our set of flow equations for the four-
quark couplings is therefore not only a convenient but also
a consistent approximation.
We close this discussion by adding that the mechanism

underlying the dynamical generation of the four-quark
couplings and the role of the running gauge coupling for
spontaneous symmetry breaking can already be understood
in simple terms by analytically analyzing the fixed-point
structure of the RG flow equations for the four-quark
couplings. Here, we refrain from repeating this general
line of arguments and only refer the reader to the dis-
cussions given in Refs. [35–37,76–78]; see Ref. [17] for an
introduction.

FIG. 1. The 1PI diagrams contributing to the RG flow (19) of
the four-quark couplings λi. Note that there are two classes of
each diagram, which are associated with the signs of the quark
chemical potential appearing in the quark propagators: One class
represents the case of equal signs as depicted by the blue labels,
and the other one represents the case of opposite signs as depicted
by the red labels.
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C. Scale-fixing procedure

As already mentioned above, the initial values of the
four-quark interaction channels are not considered as
fundamental parameters in our present approach and are
set to zero at the UV scale Λ. This corresponds to a UAð1Þ-
symmetric scenario according to the sum rules (16) and
(17). The case with explicit UAð1Þ-symmetry breaking is
discussed separately in Sec. III B. In any case, the four-
quark couplings must be generated dynamically by quark-
gluon interactions, which removes a potential bias in the
parameter choice as present in low-energy model studies. In
fact, within our present study, we predict the values of the
four-quark couplings from the underlying quark-gluon
dynamics. This is a feature that has already been used in
Ref. [14] to constrain the equation of state of symmetric
nuclear matter.
The only free parameter in our study is the value of the

running gauge coupling gs at the initial RG scale Λ. This
value is adjusted at the UV scale Λ ¼ 10 GeV to obtain a
critical temperature Tcrðμ ¼ 0Þ≡ T0 ¼ 132 MeV at zero
quark chemical potential, which is the value of the chiral
phase transition temperature at μ ¼ 0 found in very recent
lattice QCD studies [79].3 In Sec. III, we use the scale T0 as
a reference scale; i.e., we “measure” all physical observ-
ables in units of this scale. The chosen value for Λ ensures
that T=Λ ≪ 1 and μ=Λ ≪ 1 for the range of external
parameters considered in the present work and therefore
allows us to avoid cutoff artifacts (and to reduce regulari-
zation-scheme dependence) [27].
In order to obtain the critical temperature Tcrðμ ¼ 0Þ ¼

132 MeV at μ ¼ 0, we tune the running gauge coupling at
the initial scale Λ. For example, for our study with a gauge
coupling with two quark flavors, this amounts to choosing
αsðΛ ¼ 10 GeVÞ ¼ g2s=ð4πÞ ¼ 0.2137. Evolved to the
Z-boson mass scale MZ ¼ 91.19 GeV, the value of the
gauge coupling fixed in this way is then about 6% greater
than the experimental results [80]. The necessity of a larger
initial value for the running gauge coupling in order to
trigger criticality in the quark sector has been observed
before in studies employing approximations of the present
type; see, e.g., Ref. [45]. Only the most advanced RG
truncations with a very accurate treatment of momentum
structures do not require such an “enhancement”; see, e.g.,
Refs. [20,21]. The latter is of particular importance for a
quantitative description of low-energy observables within
the symmetry-broken regime. For our present work aiming
at a study of the onset of spontaneous symmetry breaking
and an analysis of symmetry breaking patterns, we expect
that this plays a secondary role.

Finally, we note that we have checked that our results are
robust with respect to a variation of the initial RG scale Λ.
To be specific, our results are found to converge when we
choose Λ ≳ 2 GeV, provided that the gauge coupling at
this initial scale has been tuned correspondingly. Note that
this not only holds for the position of the computed phase
boundaries but also for the dominance patterns of the four-
quark couplings [for both ourUAð1Þ-symmetric studies and
for those with explicit UAð1Þ breaking].

III. PHASE DIAGRAM

A. Symmetry-breaking patterns

Let us now study the phase diagram in the plane
spanned by the temperature and the quark chemical
potential for the UAð1Þ-symmetric case, i.e., with all
four-quark couplings set to zero at the initial RG scale Λ.
Recall that we have defined the critical temperature TcrðμÞ
at a given value of the quark chemical potential to be the
smallest temperature for which all four-quark couplings
still remain finite in the IR limit k → 0 [15–17,36,37].
Also keep in mind that a divergence in the flow of one
four-quark coupling at a critical scale kcrðT; μÞ entails
corresponding divergences in all other channels as well.
However, as discussed in detail in Refs. [15,16], the
four-quark couplings, in general, develop distinct relative
strengths, and it is possible to identify a dominant four-
quark channel; i.e., the modulus of the associated cou-
pling is (significantly) greater than the absolute values
of all the other four-quark couplings (see our general
discussion above).
As a first nontrivial result, we observe a dominance

of the scalar-pseudoscalar coupling in the vacuum limit
(T ¼ μ ¼ 0), with the couplings diverging at a symmetry-
breaking scale kcrðμ ¼ 0Þ=T0 ≈ 2.62. Close to the sym-
metry-breaking scale, we find that the modulus of the
scalar-pseudoscalar coupling is at least 2 times greater than
the modulus of all other couplings, suggesting that the
QCD ground state is governed by chiral symmetry breaking
in the vacuum limit. At first glance, this is very similar
to the situation observed in NJL- and quark-meson-
type studies. However, the crucial difference is given by
the initial conditions for the four-quark couplings. In the
present case, we can exclude that the dominance of the
scalar-pseudoscalar channel may have been triggered by
the choice of the initial conditions of the four-quark
couplings since they are set to zero at the initial scale
and are therefore only generated dynamically. Thus, the
dominance of the scalar-pseudoscalar coupling indicating
chiral symmetry breaking is solely generated by quark-
gluon dynamics. This is in line with earlier RG flow studies
of QCD in the vacuum limit [19,20], and it has indeed been
observed that this dominance entails the formation of a
corresponding chiral condensate [20,21] governing the
low-energy dynamics.

3The lattice QCD study presented in Ref. [79] considering two
degenerate massless quarks and a physical strange quark mass
finds the chiral phase transition Tcr ¼ 132þ3

−6 MeV at zero quark
chemical potential.
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Increasing the temperature at vanishing quark chemical
potential, the dominance of the scalar-pseudoscalar inter-
action channel persists even up to high temperatures
beyond the critical temperature. The red line in Fig. 2
depicts the critical temperature as a function of the quark
chemical potential which has been obtained with the
running gauge coupling as computed in Refs. [36,37] for

Nf ¼ 2, here denoted by αQCD. Following the phase
boundary from small to large chemical potential, we first
observe that the dominance of the scalar-pseudoscalar
interaction channel persists up to μ=T0 ≈ 1.7 as indicated
by the solid red line. To illustrate the relative strengths of
the various four-quark couplings in this regime, we show
the scale dependence of the (dimensionful) renormalized
couplings at μ=T0 ¼ 1.0 for T=T0 ≈ 0.95≳ TcrðμÞ=T0

(i.e., right above the phase transition) in the left panel of
Fig. 3. This point is indicated in the phase diagram by the
little gray box labeled “1.” For purposes of illustration,
the various couplings are normalized by the value of the
scalar-pseudoscalar coupling λ̄ðσ-πÞ at k ¼ 0. We readily
observe that the dynamics is clearly dominated by the
scalar-pseudoscalar coupling. In fact, its modulus is at least
2 times greater than the modulus of all other couplings.
According to our line of argument, this dominance indi-
cates that in this regime the phase boundary continues to be
governed by chiral symmetry breaking.
Following the phase transition line, we then encounter

that the exclusive dominance of the scalar-pseudoscalar
channel goes away, and a small region from approximately
μ=T0 ≈ 1.7 to μ=T0 ¼ μχ=T0 ≈ 2.0 opens up (as depicted
by the red dotted line in Fig. 2). In this region, we observe
that the scalar-pseudoscalar channel, the CSC channel,
as well as the ðSþ PÞadj− -, ðV þ AÞadjk -, and ðV − AÞadj⊥ -

channels are most dominant, meaning that these channels
are significantly greater compared to the remaining inter-
action channels. Such a region of “mixed” dominance
might potentially indicate a metastable or mixed phase [71].

FIG. 2. Phase boundary associated with the spontaneous break-
down of at least one of the fundamental symmetries of QCD as
accessible by our Fierz-complete ansatz (red and blue lines). The
red line has been obtained by employing a strong coupling with
two massless quark flavors. To illustrate the effect of quark
contributions to the strong coupling, we also show the phase
boundary as obtained when the strong coupling from pure Yang-
Mills theory is employed; see main text for details. The gray
boxes labeled “1” and “2” specify two exemplary points for
which the RG flows of the four-quark couplings are
shown in Fig. 3.

FIG. 3. Scale dependence of the various renormalized (dimensionful) four-quark couplings at μ=T0 ¼ 1 and T=T0 ≈ 0.95 (left panel),
as well as at μ=T0 ¼ 4.0 and T=T0 ≈ 0.74 (right panel). These two parameter sets correspond to the little gray boxes in the phase
diagram shown in Fig. 2. According to the sum rules (16) and (17), the intact UAð1Þ symmetry implies λ̄csc ¼ −λ̄ðSþPÞadj−

, in agreement
with our numerical results.
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It is noteworthy that four out of this set of five dominant
channels are adjoint interaction channels, which may point
to a nontrivial color structure of the ground state in this
regime. However, the appearance of this regime may also
very well be a consequence of the UAð1Þ-preserving initial
conditions as the resulting UAð1Þ-symmetric RG flow
affects the development of dominance. Indeed, the “entan-
glement” of several equally strong four-quark couplings is
lifted by taking into account UAð1Þ-violating effects; see
Sec. III B.
For μ=T0 ≳ 2.0, depicted by the red dashed line in Fig. 2,

we eventually observe a clear dominance of the CSC
channel, indicating the emergence of a diquark condensate
δa. This dominance is again illustrated by the scale
dependence of the couplings in this region shown in the
right panel of Fig. 3. There, we show the RG flow for
μ=T0 ¼ 4.0 and T=T0 ≈ 0.74≳ TcrðμÞ=T0 (i.e., right above
the phase transition). In the phase diagram, the correspond-
ing point is depicted by the little gray box labeled “2” in
Fig. 3. Note that, in the right panel of Fig. 3, the couplings
are now normalized by the modulus of the dominant CSC
coupling, jλ̄cscj at k ¼ 0. We observe that the modulus of
any other four-quark coupling is at most less than half the
value of the CSC coupling, except for the ðSþ PÞadj−
coupling. The latter assumes the same value in the IR as
the CSC coupling, only with opposite sign. The reason for
this behavior is that the boundary conditions with all four-
quark couplings initially set to zero at the UV scale Λ leave
the axial UAð1Þ symmetry intact, as already mentioned
above. Since the RG flow preserves the symmetries of the
initial effective average action, the sum rules (16) and (17)
are exactly fulfilled at all scales k, with the first sum rule
implying λ̄csc ¼ −λ̄ðSþPÞadj−

. In fact, the sum rules show that
two of the ten four-quark couplings of our Fierz-complete
basis are not independent in theUAð1Þ-symmetric case. We
discuss the effect of UAð1Þ-violating initial discussions in
Sec. III B.
In Fig. 4, we show the dominance pattern of the four-

quark couplings along the finite-temperature phase boun-
dary presented in Fig. 2 (as obtained with the two-flavor
coupling αQCD). The values of the dimensionful renormal-
ized couplings are shown for k → 0 as functions of the
quark chemical potential for temperatures right above the
critical temperature TcrðμÞ, where we have normalized
the couplings by the scalar-pseudoscalar coupling λ̄ðσ-πÞ
for μ ¼ 0 at k ¼ 0 for convenience. As already mentioned
above, we first observe a clear dominance of the scalar-
pseudoscalar interaction channel for μ=T0 ≲ 1.7, followed
by a change of the dominance pattern to a dominance of the
CSC coupling for μ=T0 ≳ 2. In the region of CSC domi-
nance, the intact UAð1Þ symmetry is again encoded by the
fact that the values of the CSC and the ðSþ PÞadj− coupling
are identical, up to their signs. The dominance of the CSC
coupling for μ=T0 ≳ 2 is as clearly visible as the dominance
of the scalar-pseudoscalar coupling for μ=T0 ≲ 1.7. In fact,

the ratio of the modulus of the second largest coupling
and the largest coupling is even smaller in this high-
density regime. Note that, in Fig. 4, the values of the
four-quark couplings are extracted at a temperature T
slightly above the critical temperature TcrðμÞ, where
ðT − TcrðμÞÞ=T0 ≈ 0.004. By this, we ensure that the RG
flow is fully located in the symmetric regime, and the flow
can be followed down to k ¼ 0. However, owing to this
small distance to the phase transition line, the aforemen-
tioned region with “mixed” dominance is not fully resolved
in this figure.
The distinct dominance and evident “hierarchy” among

the four-quark self-interactions in the low- and high-density
regime are nicely illustrated in Fig. 4. In view of this result,
it is tempting to speculate whether such a change in the
hierarchy points to the existence of a nearby tricritical point
in the phase diagram. Yet, this aspect is speculative as the
presently employed approximations do not allow a definite
answer to this question. However, we emphasize that the
change in the hierarchy from a dominance of the scalar-
pseudoscalar coupling to a dominance of the CSC coupling
at μχ=T0 ≈ 2.0 is a nontrivial outcome of our study as it is
completely determined by the dynamics of the system
itself. The four-quark couplings are initially set to zero at
the UV scale Λ and are dynamically generated by quark-
gluon dynamics in the RG flow. Thus, the dynamics is not
affected by any kind of fine-tuning of the boundary
conditions of the four-quark couplings which would
potentially favor particular channels.
At this point, let us once more note that the dominance of

a four-quark coupling only indicates the onset of the
formation of an associated condensate. It neither guarantees
the actual formation (e.g., IR fluctuations could restore the

FIG. 4. (Dimensionful) renormalized four-quark couplings at
k ¼ 0 as functions of the quark chemical potential for temper-
atures ðT − TcrðμÞÞ=T0 ≈ 0.004 (i.e., slightly above the respec-
tive critical temperature Tcr), illustrating the “hierarchy” of the
four-quark couplings in terms of their relative strength along the
phase boundary (i.e., along the red line in Fig. 2). For conven-
ience, the values of the four-quark couplings are normalized by
the value of the scalar-pseudoscalar coupling λ̄ðσ-πÞ for μ ¼ 0 at
k ¼ 0.
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associated symmetries) nor does it strictly exclude the
possible formation of other condensates associated with
subdominant couplings. Our analysis based on the domi-
nance pattern of the four-quark couplings must therefore
be taken with some care; see also our discussion in our
preceding works [15,16]. Still, in the context of condensed-
matter physics, the appearance of a clear dominance of a
given channel has been found to be a precursor of the
formation of a corresponding condensate [71].
In Fig. 2, we also included results for the finite-

temperature phase boundary from a computation where
we have used a running gauge coupling as obtained in YM
theory (depicted by the blue line labeled αYM). The phase
boundary as well as the dominance agree almost perfectly
with the results from the computation using the running
coupling αQCD. To be specific, we observe a dominance of
the scalar-pseudoscalar coupling at small quark chemical
potential, a regime characterized by a “mixed” dominance
pattern between 1.7≲ μ=T0 ≲ 2.0, and finally a clear
dominance of the CSC coupling at large quark chemical
potential. This is noteworthy since the YM coupling αYM
grows more rapidly than the QCD coupling αQCD when the
scale k is lowered. However, the effect of this difference in
the scale dependence is also, to a certain extent, compen-
sated by our scale-fixing procedure. The initial value of the
YM gauge coupling has to be smaller than for the αQCD
coupling in order to obtain the same critical temperature
T0 ≡ Tcrðμ ¼ 0Þ ¼ 132 MeV at zero quark chemical
potential. Nevertheless, this observation may be viewed
as an indication that the hierarchy of the various couplings
in terms of their relative strength is predominantly deter-
mined by the dynamics within the quark sector, whereas the
gauge sector as associated with the details of the running
coupling is mostly required to bring the quark sector close
to criticality in the first place. Once the gauge sector has
rendered the four-quark couplings sufficiently large, they
become relevant operators in the RG flow, and the quarks
start to develop their “own effective dynamics.” Then, the
details of the gauge sector play a subleading role, at least in
the present approximation. Loosely speaking, one may
therefore state that we are basically left with a NJL-type
model once the four-quark couplings have been rendered
sufficiently large by the underlying quark-gluon dynamics.

B. Role of UA(1) symmetry

The initial conditions of the RG flow chosen so far leave
the axial UAð1Þ symmetry intact. All couplings of the four-
quark self-interactions are set to zero at the UV scale Λ and
are solely generated dynamically by quark-gluon inter-
actions in the RG flow. In, e.g., Refs. [36,37], UAð1Þ-
violating channels have been omitted based on the
assumption that they become relevant only in the low-
energy regime governed by spontaneous symmetry break-
ing. Our Fierz-complete basis B composed of the ten four-
quark interaction channels is effectively reduced to eight

interaction channels in the case of the UAð1Þ symmetry
being intact [16]. Recall that the sum rules (16) and (17)
imply that two of the couplings associated with the four
UAð1Þ-violating interaction channels of our basis B are not
independent. These sum rules are exactly fulfilled at all
scales in the symmetric phase and for all k > kcr in the
phase governed by spontaneous symmetry breaking. In
the latter case, the UAð1Þ symmetry may potentially still
be broken spontaneously below the symmetry-breaking
scale kcr. However, this cannot be resolved within our
present approximation.
In our preceding study of the phase structure of the NJL

model and the role of Fierz completeness [16], we have
observed that UAð1Þ symmetry breaking affects the domi-
nance of the four-quark couplings in terms of their relative
strength along the finite-temperature phase boundary. In
particular, we have found explicit UAð1Þ symmetry break-
ing to be important for the formation of the conventional
CSC ground state at intermediate and large values of the
chemical potential. In this work, the four-quark couplings
are now dynamically generated by quark-gluon dynamics.
Following the critical temperature TcrðμÞ as a function of
the quark chemical potential, we observe two regions
characterized by different distinct hierarchies of the four-
quark couplings which are remarkably robust against a
variation of the running gauge coupling; see Fig. 2 for the
UAð1Þ-symmetric case. The scalar-pseudoscalar interaction
channel dominates the dynamics at small quark chemical
potential, signaling the formation of the chiral condensate,
whereas at higher quark chemical potential, the dominance
of the conventional CSC coupling suggests the formation of
a diquark condensate. The latter is observed in spite of the
intact UAð1Þ symmetry in our considerations thus far. Only
for 1.7≲ μ=T0 ≲ 2.0, we observe a regime which is
characterized by several equally strong four-quark inter-
action channels; see our discussion in the previous sub-
section. Moreover, the dominance of the CSC coupling is
always accompanied by an equally strong ðSþ PÞadj−
channel as a direct consequence of the intact UAð1Þ
symmetry: The sum rule (16) ties the modulus of the
CSC coupling to the modulus of the ðSþ PÞadj− coupling.
In order to probe the role of explicit UAð1Þ-symmetry

breaking in our present study, we now analyze the RG flow
for UAð1Þ-violating boundary conditions for the four-quark
couplings. The strength of UAð1Þ breaking is effectively
controlled by the initial value of the ðSþ PÞ− coupling
since the associated four-quark interaction channel is
directly related to the so-called ’t Hooft determinant
(14); see Refs. [3,58–63]. In the following, we therefore
vary only the initial condition of this coupling but still set
the initial values of the other four-quark couplings to zero at
the UV scale Λ. For a given initial value of the ðSþ PÞ−
coupling, we then adjust the UV value of the gauge
coupling gsðΛÞ such that the value of the critical temper-
ature at zero chemical potential remains unchanged,
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Tcrðμ ¼ 0Þ ¼ 132 MeV. This ensures comparability
between our results for different initial conditions for the
ðSþ PÞ− coupling.
As also done in Refs. [15,16], we begin by analyzing the

fate of the UAð1Þ symmetry at finite temperature and quark
chemical potential with the aid of the sum rules (16) and
(17). To this end, we first normalize the two sum rules as
follows:

1 ¼ ðR1 þ R2Þjk¼Λ; ð20Þ

where

Ri ¼ N jSðiÞ
UAð1Þj: ð21Þ

The quantities Sð1Þ
UAð1Þ and Sð2Þ

UAð1Þ are defined in Eqs. (16)

and (17), respectively. A strong deviation of the sum rules
from zero indicates strong effective UAð1Þ breaking. In
Fig. 5, we show the scale dependence of the sum rules at
two characteristic values of the chemical potential for three
values of the temperature for each of the two cases.
Interestingly, we observe the exact same qualitative behav-
ior as found in Ref. [16] for the NJL model. At small quark
chemical potential close to the critical temperature TcrðμÞ,
UAð1Þ breaking is driven by the scalar-pseudoscalar
channel associated with pion dynamics, and it becomes
stronger toward the IR as indicated by increasing values of
R1 and R2, with R2 ≫ R1. At large chemical potential, we
find that the strength of UAð1Þ-symmetry breaking
also becomes stronger as the phase boundary is approached
from above, but it is now driven by the dynamics of
diquark d.o.f. as associated with the CSC channel. As a
consequence, R1 and R2 are of the same order of magnitude

since both depend on the CSC coupling; see Eqs. (16) and
(17). In either case, for increasing temperature, UAð1Þ
breaking as measured by the sum rules remains more and
more on its initial level as determined by the UAð1Þ-
violating boundary conditions in the UV regime since
quark fluctuations become more and more thermally
suppressed.
Let us now compare the phase diagram as obtained with

the UAð1Þ-symmetric initial conditions employed in the
previous subsection, i.e., with all four-quark couplings
initially set to zero, to the phase diagrams resulting from
UAð1Þ-violating initial conditions. The strength of the
explicit UAð1Þ breaking at the initial UV scale Λ is
controlled by the value of the (dimensionless) renormalized
coupling of the ðSþ PÞ− channel (’t Hooft channel), which

we choose to assume the values λðUVÞðSþPÞ− ¼ 0.01, 0.1, 1.0. In

the following, we only present results from computations
using the running gauge coupling for two massless quark
flavors. As in the UAð1Þ-symmetric case, the dependence
on our specific choice for the coupling is found to be very
mild anyhow. In Fig. 6, the various phase diagrams as
obtained with these three different choices for the boundary
conditions are shown. It is remarkable how little the critical
phase temperature as a function of the quark chemical
potential is affected by the strength of the initial explicit
breaking of the UAð1Þ symmetry, although the strength in
terms of the initial value of the ðSþ PÞ− coupling is varied
over 3 orders of magnitude.4 Across the entire range of
chemical potentials shown in this figure, the variation of the

FIG. 5. Illustration of the scale dependence of the explicit UAð1Þ breaking as measured by the normalized sum rules R1 (dashed lines)
and R2 (solid lines) at μ ¼ 0 (left panel) and at μ=T0 ¼ 4.0 (right panel) for three values of the temperature for each of the two cases. The
strength of the initial explicit UAð1Þ symmetry breaking is controlled by the value of the (dimensionless) renormalized coupling of the

ðSþ PÞ− channel (’t Hooft channel) at the UV scale Λ, exemplarily chosen to be λðUVÞðSþPÞ− ¼ 1.0 in this figure.

4Note that the considered range of values for the ðSþ PÞ−
coupling is consistent with the size of the value that is expected
from a direct computation of this quantity at a given scale Λ [63].
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critical temperature for any given value of the chemical
potential is less than 2%.5 In all cases, we observe a
dominance of the scalar-pseudoscalar coupling at small
quark chemical potential, depicted by the solid lines in
Fig. 6. The regime of “mixed” dominance for chemical
potentials in the range 1.7≲ μ=T0 ≲ 2.0 appearing in the
case of UAð1Þ-symmetric initial conditions vanishes for all
considered UAð1Þ-violating initial conditions. Choosing

0.01 ≤ λðUVÞðSþPÞ− ≤ 1.0 for the initial value of the coupling

associated with the UAð1Þ-violating ðSþ PÞ− channel, we
indeed find that the dominance changes directly from the
scalar-pseudoscalar channel to the CSC channel within the
region 1.8≲ μχ=T0 ≲ 2.0, as indicated by the dashed lines
in Fig. 6. This is similar to what has been found in a Fierz-
complete NJL model study [16].

The hierarchy of the various four-quark couplings in
terms of their relative strength along the phase boundary is
shown in Fig. 7, exemplarily for the initial coupling

λðUVÞðSþPÞ− ¼ 1.0. This figure again shows the values of the

(dimensionful) renormalized couplings for k → 0 as func-
tions of the quark chemical potential for temperatures
ðT − TcrðμÞÞ=T0 ≈ 0.002 [i.e., slightly above the critical
temperature TcrðμÞ for a given quark chemical potential μ].
The values are normalized by the scalar-pseudoscalar
coupling λ̄ðσ-πÞ for k → 0 at zero chemical potential. We
again observe a clear dominance of the scalar-pseudoscalar
interaction channel for μ=T0 ≲ 2.0 and a clear dominance
of the CSC interaction channel for larger values of the
chemical potential. Compared to the case with UAð1Þ-
symmetric boundary conditions (see Fig. 4), these domi-
nances appear even more pronounced in the present case. In
particular, the CSC channel is not accompanied anymore
by an equally strong ðSþ PÞadj− coupling. The latter now
assumes considerably smaller values for μ=T0 ≳ 2.0 in
comparison to the computation with intact UAð1Þ sym-
metry, whereas the CSC coupling assumes even slightly
larger values. From this, we conclude that the breaking of
the UAð1Þ symmetry plays an important role in “shaping
the hierarchy” of the four-quark interaction channels and
thus in the formation of associated condensates as indicated
by their dominances. This observation confirms the impor-
tance of explicit UAð1Þ breaking for the formation of the
conventional CSC ground state at large chemical potential
as already discussed in Ref. [16] for NJL-type models.
In this respect, we also refer again to early seminal works
on color superconductivity; see, e.g., Refs. [81–90]. It is

FIG. 7. Hierarchy of the four-quark couplings in terms of their
relative strength along the phase boundary (blue line in Fig. 6).
To obtain this figure, we have evaluated the renormalized four-
quark couplings for k → 0 as functions of the quark chemical
potential for temperatures ðT − TcrðμÞÞ=T0 ≈ 0.002 [i.e., slightly
above the critical temperature TcrðμÞ for a given quark chemical
potential]. The values of the four-quark couplings are shown for

UAð1Þ-violating initial conditions with λðUVÞðSþPÞ− ¼ 1.0 for the ’t

Hooft coupling. To normalize the couplings, we use the scalar-
pseudoscalar coupling for k → 0 and zero quark chemical
potential.

FIG. 6. Phase boundary associated with the spontaneous break-
down of at least one of the fundamental symmetries of QCD as
accessible by our Fierz-complete ansatz now under the influence
of explicit UAð1Þ symmetry breaking, in comparison to the phase
boundary resulting from a corresponding Fierz-complete NJL
model study (black line); see also Ref. [16]. All results (except for
those from the NJL model study) have been obtained by
employing a strong coupling with two massless quark flavors.
The strength of the initial explicit UAð1Þ symmetry breaking is
controlled by the value of the (dimensionless) renormalized
coupling of the ðSþ PÞ− channel (’t Hooft channel) at the
UV scale Λ. The values of all other four-quark couplings have
been chosen to be initially zero. The phase boundary is shown for
UAð1Þ-symmetric boundary conditions as well as for UAð1Þ-
violating initial conditions with λðUVÞðSþPÞ− ¼ 0.01, 0.1, 1.0. A

dominance of the scalar-pseudoscalar interaction channel is
depicted by solid lines and a dominance of the CSC channel
by dashed lines. The case of “mixed” dominance occurring for
UAð1Þ-symmetric boundary conditions is indicated by a dotted
line, although it is hardly visible on the scale of the plot.

5For all initial conditions of the computations shown in Fig. 6,
the symmetry-breaking scale in the vacuum limit remains
approximately the same value, kcr=T0 ≈ 2.6. Still, a direct
quantitative comparison of the phase boundaries has to be taken
with some care as the different computations do not necessarily
lead to the same values of low-energy observables.
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noteworthy that we find that the change in the hierarchy
from a dominance of the scalar-pseudoscalar coupling to a
dominance of the CSC coupling at μχ=T0 ≈ 2.0 is remark-
ably insensitive to the initial strength of explicit UAð1Þ
symmetry breaking as controlled by the initial coupling

λðUVÞðSþPÞ− associated with the ’t Hooft channel. Whereas the

aforementioned insensitivity of the position of the phase
boundary may be partially attributed to the scale-fixing
procedure underlying our study, we find that the observed
change in the hierarchy of four-quark couplings and the
sole dominance of the CSC coupling triggered only by the
explicit UAð1Þ symmetry breaking is a nontrivial outcome
completely determined by the dynamics of the system
itself.
Let us finally compare our results with those from a

Fierz-complete NJL model study [16]. In Fig. 6, we also
show the finite-temperature phase boundary resulting
from a Fierz-complete NJL model study (black line).
The corresponding flow equations have been presented
in Ref. [16]. In this computation, the initial scalar-
pseudoscalar coupling at the UV scale Λ=T0 ≈ 75.76 has
been tuned such that we obtain Tcrðμ ¼ 0Þ ¼ 132MeV for
the critical temperature at μ ¼ 0. The remaining initial four-
quark couplings are set to zero. Interestingly, we find that
the finite-temperature phase boundary agrees well with the
one obtained from our present study with a two-flavor
running gauge coupling αQCD, at least for small quark
chemical potential. For μ=T0 ≳ 0.5, however, the two phase
boundaries start to deviate from each other significantly.
Indeed, at the largest quark chemical potential shown in
Fig. 6, μ=T0 ¼ 4.4, the critical temperature resulting from
the NJL model computation is Tcr=T0 ≈ 0.366. In contrast
to that, at the same quark chemical potential, the compu-
tation including dynamical gauge fields yields a critical
temperature that exceeds the one from the NJL model study
by a factor of 2: Tcrðμ ¼ 4.4T0Þ=T0 ≈ 0.731. This obser-
vation may have further phenomenological consequences.
For example, in standard BCS theory, the critical temper-
ature can be directly related to the size of the diquark gap δa

at zero temperature, i.e., Tcr ∼ jδj [26,57,91]. Thus, the
observed increase of the critical temperature in our results
from the computation including dynamical gauge d.o.f.
may hint at a larger diquark gap at T ¼ 0.
Recall that we use different initial conditions for the

four-quark couplings in our NJL model study and in our
study with dynamical gauge fields. This is required since
different mechanisms are at play which drive the quark
sector to criticality. To be specific, in our NJL model study,
it is required to choose a sufficiently large initial scalar-
pseudoscalar coupling to ensure that the RG flow diverges
at a finite symmetry-breaking scale kcr for sufficiently low
temperatures, signaling the onset of spontaneous symmetry
breaking. Apart from the value of the coupling associated
with the ’t Hooft channel, the four-quark couplings in our
QCD study are solely dynamically generated, and the quark

sector is driven to criticality by the gauge coupling
becoming sufficiently large; see Refs. [17,35–37] for a
detailed discussion of the latter mechanism. Of course, this
difference also affects the results at large quark chemical
potential, although the gauge coupling plays a less promi-
nent role in this regime as the dynamics is largely
controlled by the appearance of a BCS-type instability.
One may argue that the initial conditions chosen in the
case of the NJL model study actually favor the scalar-
pseudoscalar coupling and do not sufficiently support the
dynamics associated with the formation of a diquark
condensate or other channels which may become relevant
at large chemical potential. Indeed, the boundary condi-
tions enforce that the dynamics are initially driven by the
scalar-pseudoscalar self-interaction, at least over a wide
range of RG scales. Still, at large chemical potential, the
CSC channel is found to dominate the dynamics even in the
case of the NJL model. As discussed in detail in Refs. [16],
this can be understood from an analysis of the fixed-point
structure. Our study taking into account gauge d.o.f. comes
without the requirement of an initial tuning of a specific
four-quark coupling. It is therefore intriguing that the
“hierarchy” of the various interaction channels in both
computations changes at approximately the same quark
chemical potential from the scalar-pseudoscalar coupling to
the CSC coupling; see Fig. 6. This observation indicates
that the hierarchy of the interaction channels in terms of
their strength is determined, to a large extent, by the
interplay of the various four-quark couplings themselves;
see also our discussion in the previous subsection.
As a closing remark, we would like to add that the

comparison of the different phase boundaries shown in
Figs. 2 and 6 have to be taken with some care. Although all
computations yield approximately the same critical scale
kcr=T0 ≈ 2.6 (symmetry-breaking scale) in the vacuum
limit, which sets the scale for low-energy observables O ∼
kcr (see, e.g., Ref. [76]), our present approximation does not
allow us to check whether the different studies indeed lead
to the same values of low-energy observables in the IR
limit. This potential issue complicates a comparison of our
results for the phase boundary, as well as our subsequent
comparison of the curvature of the phase boundary.

C. Curvature of the phase boundary

Finally,webriefly commenton the curvature κ of the finite-
temperature phase boundary at small chemical potential:

κ ¼ −T0

dTcrðμÞ
dμ2

����
μ¼0

: ð22Þ

The results for the curvature as obtained from various studies
are summarized in Table I.
Compared to our Fierz-complete NJL model study, we

find the curvature to be significantly decreased in our study,
including dynamical gauge d.o.f. In fact, the curvature is
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reduced by approximately 40%. The curvature of a stan-
dard one-channel NJL model study in the mean-field
approximation is even more than 4 times greater than that
in our present study with gauge d.o.f. This holds true for all
settings with gauge d.o.f. considered in this work, including
computations using a Yang-Mills coupling, a strong cou-
pling for the two-flavor case, as well as computations
taking into account explicit UAð1Þ symmetry breaking
[labeled “fRG (QCD)” in Table I]. Note that the results
from our Fierz-complete fRG calculations including gauge
d.o.f. listed in Table I have been obtained with the strong
coupling for the two-flavor case. For the case with explicit

UAð1Þ symmetry breaking, we have chosen λðUVÞðSþPÞ− ¼ 1.0

for the initial condition of the coupling associated with the
’t Hooft channel. A summary of results for the curvature
from lattice QCD calculations with two flavors can also be
found in Table I. We observe that the results from our Fierz-
complete studies taking into account gauge d.o.f. are well in
accordance with those from lattice QCD studies. We add
that low-energy model studies indicate that the inclusion of
IR fluctuation effects tend to further lower the value of the
curvature [92,97–99]. For the 2þ 1-flavor case, more
recent lattice results for the curvature are also available,
indicating κ ∼ 0.034…0.21 [100]. The curvature found in a
very recent 2þ 1-flavor fRG-QCD study with physical
masses is also in accordance with the latter results [50]. In
any case, a direct comparison of our present results to those
from 2þ 1-flavor studies is only possible to a limited extent,
if at all. Still, in general, it is reasonable to expect, from our
present study, that the issue of Fierz incompleteness also
affects the results for the curvature in the 2þ 1-flavor case,
as it does in the 2-flavor case (see Table I). Indeed, it has also
been observed in a Fierz-incomplete two-channel study of a
2þ 1-flavor NJL-type model that four-quark interaction
channels other than the scalar-pseudoscalar channel can
significantly impact the value of the curvature [101].

IV. CONCLUSIONS

In this work, we have analyzed the RG flow of four-
quark interactions in the pointlike limit in a Fierz-complete

fashion starting from the classical QCD action in the UV
limit. Working in the chiral limit, the only parameter of our
study in the UAð1Þ-symmetric limit is given by the strong
coupling gs which we fixed at a large initial UV scale in the
perturbative regime.
With this setting at hand, we found that the inclusion of

gluodynamics leads to an increase of the critical temper-
atures at large quark chemical potential in comparison to
the results from a corresponding Fierz-complete NJL model
study. Assuming that the critical temperature can be related
to the size of the zero-temperature gap in a color super-
conducting phase of quark matter, our results therefore
suggest that the diquark gap is likely to be greater than the
one found in corresponding NJL model studies, at least
within the range of chemical potentials considered in our
present work.
Toward the IR limit, the treatment of the four-quark

interactions in the pointlike limit does not allow us to
access the phase governed by spontaneous symmetry
breaking. The introduction of mesonic auxiliary fields by
means of a Hubbard-Stratonovich transformation or by
applying the more advanced technique of dynamical
hadronization (see Refs. [32,52,69,102] and, e.g.,
Refs. [20,21,39,45,50] for their application to QCD) would
enable us to study the dynamics even within regimes
governed by spontaneous symmetry breaking. The use
of the latter technique would allow us to continuously
perform Hubbard-Stratonovich transformations of the four-
quark couplings in the RG flow (at every RG scale) and
would thereby enable us to access the low-energy regime,
i.e., the regime below the symmetry-breaking scale kcr in
our present study, including a computation of the order-
parameter potential. In particular, with respect to a more
detailed study of the effect of UAð1Þ breaking in the
low-energy regime, it may be worthwhile to build this
technique around a combination of our present study
and existing detailed functional RG studies of the low-
energy sector taking UAð1Þ breaking into account
[103,104]. Nevertheless, in order to gain some insight into
the structure of the ground state emerging in the case of
spontaneous symmetry breaking already within our present
study, we followed the approach of our NJL model studies
in Refs. [15,16] and analyzed the hierarchy of the four-
quark couplings.
Our RG analysis of theUAð1Þ-symmetric case revealed a

clear dominance of the scalar-pseudoscalar interaction
channel associated with chiral symmetry breaking at small
quark chemical potential. Very importantly, this dominance
is not triggered by a specific choice for the initial conditions
of the four-quark couplings since all four-quark couplings
are set to zero at the initial RG scale; i.e., they are solely
gluon induced in the RG flow. For μ=T0 ≳ 2.0, we then
observe a change in the hierarchy. In this regime, the CSC
channel associated with the formation of the most conven-
tional color superconducting condensate in two-flavor

TABLE I. Curvature κ of the two-flavor finite-temperature
phase boundary as obtained from different studies; see main text
for details. Note that the curvature range for the mean-field
studies reflects the difference between the chiral limit and the
case of physical pion masses. The fRG results in this work have
been obtained in the chiral limit.

Setting Curvature κ

Mean field (NJL, one channel) [9,92] 0.197…0.200
fRG (NJL, Fierz-complete) 0.074
fRG (QCD, UAð1Þ-symmetric) 0.046
fRG (QCD) 0.046
Lattice QCD [93–96] 0.034…0.070
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QCD now dominates the quark dynamics. We emphasize
that the dominance pattern as a function of the quark
chemical potential as well as the actual position μχ , where
the dominance pattern changes from a scalar-pseudoscalar
dominance to a CSC dominance, is found to be a
remarkably robust feature. The little influence of the
different running gauge couplings considered may be
viewed as an indication that the dominance pattern is
largely determined within the quark sector. The gauge
sector as associated with the details of the running coupling
is mostly required to bring the quarks close to criticality.
Once the four-quark couplings have been rendered suffi-
ciently large by the underlying quark-gluon dynamics, the
quarks develop their “own dynamics,” and the details of
the gauge sector start to play a subleading role, at least in
the present approximation. At this point, loosely speaking,
we are then basically left with a NJL-type model. Note
again that the dynamics in our present study is not
“contaminated” by any kind of fine-tuning of the initial
conditions for the four-quark couplings, which would, in
general, favor particular channels. However, the analysis
based on the hierarchy of the four-quark couplings must
nevertheless be taken with some care. In fact, it is clear that
a dominance of a specific four-quark coupling neither
guarantees the formation of an associated condensate in the
IR nor does it exclude the formation of other condensates.
Still, it should also be mentioned that corresponding studies
in the context of condensed-matter theory show that the
appearance of a clear dominance of a specific four-fermion
coupling is indeed a precursor for the formation of the
associated condensate [71].
In order to probe the effect of explicit UAð1Þ-symmetry

breaking on the phase boundary and the dominance pattern
of the four-quark couplings, we implemented UAð1Þ-
violating initial conditions in the form of finite values
for the coupling associated with the so-called ’t Hooft
channel. Even at large chemical potential, the considered
strengths of explicit UAð1Þ symmetry breaking at the initial
UV scale showed surprisingly little effect on the shape of
the phase boundary. The same is true for the actual position
of the point μχ , where the dominance pattern of the four-
quark couplings changes qualitatively. Compared to the
UAð1Þ-symmetric RG flow, however, UAð1Þ-violating
initial conditions affect the hierarchy of the four-quark

couplings along the phase boundary, which is clearly
visible in, e.g., the amplification of the dominance of the
scalar-pseudoscalar interaction channel at small chemical
potential as well as of the dominance of the CSC channel at
large chemical potential. From this, we conclude that
explicit UAð1Þ symmetry breaking indeed plays an impor-
tant role in the formation of the condensates, in particular,
with respect to the formation of the conventional CSC
ground state at large chemical potential [81–90]. Future
extensions of our present work should of course include a
direct computation of the ’t Hooft coupling within our RG
flow by following earlier works in this direction [63].
Of course, our present study can be further improved

in various directions. Still, our analysis already provides
an important insight into the dynamics underlying
the QCD phase structure at finite temperature and quark
chemical potential and consolidates the findings
obtained from our preceding Fierz-complete NJL-type
model study [16]. Moreover, the inclusion of gauge d.o.f.
combined with the Fierz-complete set of four-quark
interactions enables us to identify the relevant effective
low-energy d.o.f. and to determine, or at least constrain,
from first principles the couplings of a suitably con-
structed truncation for the low-energy sector, in particu-
lar, at large quark chemical potential. In the future, this
may prove very valuable, e.g., to study the thermody-
namics of quark matter at high density. Indeed, first
steps in this direction have already been taken very
recently [14].
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