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The scattering phase shifts are invariant under unitary transformations of the Hamiltonian. However, the
numerical solution of the scattering problem that requires to discretize the continuum violates this phase-
shift invariance among unitarily equivalent Hamiltonians. We extend a newly found prescription for the
calculation of phase shifts which relies only on the eigenvalues of a relativistic equal-time Hamiltonian and
its corresponding Chebyshev angle shift. We illustrate this procedure numerically considering ππ, πN and
NN elastic interactions which turns out to be competitive even for a small number of grid points.
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I. INTRODUCTION

Hadronic reactions at intermediate energies provide a
working and phenomenological scheme to access to the
corresponding dynamical interactions from scattering
experiments and their corresponding partial-wave analysis
in terms of phase shifts. Even in the simplest cases the
conditions of relativity and unitarity are mandatory require-
ments, while the description of bound states and resonances
requires a nonperturbative approach. Within a Lagrangian
and covariant field theoretical setup, all these demands
are best encapsulated within the Bethe-Salpeter equation
(BSE) [1] (see Ref. [2] for an early review), where the
interaction is defined by a two-particle irreducible four-
point function. In practice, this object needs to be truncated,
depends on the renormalization scale and is itself off-shell
ambiguous as there is a reparametrization freedom in the
definition of the fields [3,4] (see e.g., [5] for an explicit
discussion of low energy interactions). The BSE is an
integral 4D equation and hence presents not only many
practical but also conceptual mathematical challenges
because scattering is naturally formulated in Minkowsky
space and truncated exchange interactions display an
intricate singularity structure [6] so that a full solution
has only been found recently [7,8].
Due to all these complications the conventional approach

to the two-body relativistic problem has been the study of
judicious 3D reductions of the BSE closer in spirit to the
Lippmann-Schwinger equation [9] in the nonrelativistic
case (see e.g., [10,11] for elementary discussions), but
preserving the unitarity character of the scattering ampli-
tude. This viewpoint leads to quasioptical or quasipotential

models proposed long ago [12]. Among the many different
proposals and variants based on this idea it is worth
mentioning the Blankenbecler-Sugar equation [13], the
Kadyshevsky equation [14] and the Gross spectator equa-
tion [15,16]. While any of these schemes has its advantages
and disadvantages, our main results and formulas, however,
can be easily extended to these other schemes with minor
modifications.
In this paper, we will choose for definiteness the

Kadyshevsky equation [14] which befits a Hamiltonian
formulation in quantum field theory. The usefulness of the
Hamiltonian approach, besides providing a compelling
physical picture, relies on the explicit use of a Hilbert
space and becomes more evident when dealing with the
few-body problem, where one expects to determine binding
energies of multihadron systems in terms of their mutual
interactions at the relativistic level in several quantization
schemes [17]. For pedagogical reasons we will assume
throughout the paper the equal-time quantization scheme
with energy-independent interactions, where the scattering
problem is formulated closely to the nonrelativistic case.
Alternatively, one might analyze the light-front formu-
lation, which is often preferred; but we leave it for a future
study (for a review of the few-body problem in front form
and its advantages due to the trivial vacuum structure see
e.g., [18] and references therein).
Unfortunately, only in a few cases, such as e.g., separable

potentials, can one provide an analytical or semianalytical
solution of the relativistic two-body scattering problem
and in this case one employs a numerical-inversion
method which implies a discretization procedure on a
given momentum grid [19]. From a physical point of view,
the introduction of a momentum grid corresponds to add an
external interaction or to introduce a restriction on the
Hilbert which constrains the energy levels of the system.
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A well-known example corresponds to impose boundary
conditions at a spherical box with finite volume and radius
R which provides an equidistant momentum grid for large
box sizes, pn ∼ πn=R [20] or equidistant energies [21].
Another example which will be relevant in this paper
corresponds to diagonalizing in a Laguerre basis [22]
which yields a Gauss-Chebyshev momentum grid. (See
[23] for a comprehensive and self-contained exposition on
Chebyshev methods.) This so-called L2-methods [24] have
clear computational advantages, but quite generally, basic
properties of scattering such as the intertwining property of
the Moller wave operators do not hold [25] and are only
recovered in the continuum limit.
One important aspect within the Hamiltonian approach

and relevant to the present study is the notion of equivalent
potentials [26,27], i.e., the fact that unitarily equivalent
Hamiltonians produce identical phase shifts, hence they are
referred to as phase-equivalent potentials. Because the
eigenvalues of the Hamiltonian H are invariant under H →
UHU† with UU† ¼ U†U ¼ 1 we will also talk about
isospectral phase shifts, namely those that fulfill

δl;HðpÞ ¼ δl;UHU†ðpÞ; ð1Þ

where l is the angular momentum, p the center-of-mass
(CM) momentum, H is the Hamiltonian and U an arbitrary
unitary transformation. In a broader context, this is the
counterpart of the Lagrangian field reparametrization of the
BSE [3–5]. A characterization for equivalent relativistic
Hamiltonians has been proposed in Ref. [28]. It is perhaps
not so well known that the numerical methods employed to
invert the scattering matrix equation generally violate this
unitary equivalence, namely a unitary transformation of the
Hamiltonian on the grid does not yield the same phase shift,
see Eq. (1). The effect disappears when the grid is suffi-
ciently fine or equivalently when the number of grid points
becomes large. This violation has been illustrated explicitly
in the nonrelativistic case [29,30] and will also be shown to
occur in the present work.
The question is that while one expects that with a fine

grid the continuum limit will eventually and effectively be
recovered and hence the isospectral invariance of the phase
shifts, spectral methods based on the eigenvalues provide
themselves a natural and invariant definition of the phase
shift. These methods based on the Fredholm determinant
originally proposed by DeWitt [21] (see also [20]) and
improved by others [24] (see e.g., [31] for a review and
references therein and Refs. [29,30,32] for related ideas
within a nuclear physics context). However, while these
methods are by construction isospectral for any number of
grid points they are not necessarily accurate. In a recent
paper [33] we have provided a method that is both
isospectral and accurate for a coarse grid in the non-
relativistic case. In this paper, we analyze the consequences
of such a method for the relativistic situation and illustrate it

with several low energy, S, P and D phases for ππ, πN,
and NN.
The present paper is organized as follows. We will

review this issue and will use for definiteness the
Kadyshevsky equation in Sec. II and we review some of
its properties including a proof of isospectrality. The
solution of the scattering equations requires a momentum
grid which may be implemented with the Gauss-Chebyshev
quadrature in three different ways none of them complying
with the isospectrality requirement, as we show in Sec. III.
In Sec. IV we analyze three isospectral definitions of the
scattering phase shifts based on the energy shift, the
momentum shift and the Chebyshev angle shift which
specifically depend on the mass of the particles. In Sec. V
we present our numerical results for some separable ππ, πN
and NN model interactions. Finally, in Sec. VI we come to
the conclusions and provide some outlook for future work.

II. RELATIVISTIC SCATTERING: THE
KADYSHEVSKY APPROACH

A. Generalities

In this section, we review some relevant quantities for
completeness and in order to fix our notation and con-
ventions. Elementary discussions may be found in text-
books [10,11]. The Kadyshevsky equation in the CM frame
with

ffiffiffi
s

p
CM energy and in the equal-mass case reads [14]1

Tðp⃗0; p⃗;
ffiffiffi
s

p Þ¼Vðp⃗0; p⃗Þþ
Z

d3q
ð2πÞ3

Vðp⃗0; q⃗Þ
4E2

q

Tðq⃗; p⃗; ffiffiffi
s

p Þffiffiffi
s

p
−2Eqþ iε

;

ð2Þ

where the potential is symmetric Vðp⃗0; p⃗Þ ¼ Vðp⃗; p⃗0Þ and
energy independent. These two conditions are necessary in
order to check unitarity, since

Tðp⃗0; p⃗;
ffiffiffi
s

p Þ − Tðp⃗; p⃗0;
ffiffiffi
s

p Þ�

¼
Z

d3q
ð2πÞ3 2πiδð

ffiffiffi
s

p
− 2EqÞ

Tðp⃗0; q⃗;
ffiffiffi
s

p ÞTðq⃗; p⃗; ffiffiffi
s

p Þ�
4E2

q
:

ð3Þ

A residual ambiguity of the Kadyshevsky equation has
been discussed in Ref. [34] and the 3D reduction of the BS
equation with a separable kernel has been addressed [35].
The 3D reduction of the relativistic three-body Faddeev
equation associated to this quasipotential was proposed
afterward [36]. As compared to other approaches [37], this

1The case of two different masses corresponds to replace E2
q →

Eqωq and
ffiffiffi
s

p ¼ 2Eq → Eq þ ωq with Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

p
and

ωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2

p
. We will keep the equal-mass case because

the formulas are much simpler for presentation purposes and will
return to this situation when analyzing the πN case.
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particular 3D reduction satisfies a Mandelstam representa-
tion, i.e., a double dispersion relation both in the invariant
mass s and momentum t Mandelstam variables [38]. The
appearance of spurious singularities has been addressed in
the different approaches in Ref. [39]. In addition, the
Kadyshevsky equation also lacks spurious singularities
in the related three-body problem [40]. Actually, there
has been already some work with this equation for the case
of ππ, Nπ and NN scattering [41] for separable potentials,
where the lowest partial waves corresponding to S, P, and
D angular momenta have been fitted, which will be
discussed below in more detail.

B. Partial waves

This 3D scheme has the advantage that, besides enabling
a relativistic Hamiltonian interpretation for the scattering
problem, they also become amenable to numerical analysis
since, at the partial-waves level, they reduce to 1D linear
integral equations. Using rotational invariance2

Tðp⃗0; p⃗;
ffiffiffi
s

p Þ ¼ 4π
X
lm

Ylmðp̂0ÞYlmðp̂Þ�Tlðp0; p;
ffiffiffi
s

p Þ: ð4Þ

At the partial-waves level and for spin-zero equal mass
particles we get

Tlðp0;p;
ffiffiffi
s

p Þ

¼Vlðp0;pÞþ
Z

∞

0

dq
q2

4E2
q

Vlðp0;qÞTlðq;p;
ffiffiffi
s

p Þffiffiffi
s

p
−2Eqþ iε

; ð5Þ

where þiε implements the original Feynman boundary
condition of the BSE and corresponds to outgoing spherical
waves, Eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

π

p
and on the mass shell one hasffiffiffi

s
p ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

π

p
with p the CM momentum. For a real

potential this equation satisfies the two-body unitarity
condition, so that the phase shift is given by

T−1
l ðp; p; ffiffiffi

s
p Þ ¼ −

πp
8Ep

½cot δlðpÞ − i�: ð6Þ

Alternatively, we may define the reaction matrix Rl,

T−1
l ðp; p; ffiffiffi

s
p Þ ¼ R−1

l ðp; p; ffiffiffi
s

p Þ þ i
πp
8Ep

; ð7Þ

so that

− tan δlðpÞ ¼
π

8

p
Ep

Rlðp; p;
ffiffiffi
s

p Þ; ð8Þ

where the corresponding reaction matrix satisfies the
equation

Rlðp0; p;
ffiffiffi
s

p Þ ¼ Vlðp0; pÞ

þ
Z
�

∞

0

dq
q2

4E2
q

Vlðp0; qÞRlðq; p;
ffiffiffi
s

p Þffiffiffi
s

p
− 2Eq

;

ð9Þ
where the principal value has been introduced in the inte-
gral. As it is well known we can implement the principal
value by means of a subtraction using the trivial identity

Z
�∞

0

2k0dp
p2 − k20

¼
Z
�∞

−∞

dp
p − k0

¼ 0; ð10Þ

whence follows the integration rule

Z
�∞

0

dp
fðpÞ

2E0−2Ek
¼
Z

∞

0

dp

�
fðpÞ

2E0−2Ep
−
fðk0ÞE0

k20−p2

�
; ð11Þ

where
ffiffiffi
s

p ¼ 2E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þm2

p
. Using this we get

Rlðp0; p;
ffiffiffi
s

p Þ

¼ Vlðp0; pÞ þ
Z

∞

0

dq

�
q2

4E2
q

Vlðp0; qÞRlðq; p; 2E0Þ
2E0 − 2Eq

−
k20
4E0

Vlðp0; k0ÞRlðk0; p; 2E0Þ
k20 − q2

�
: ð12Þ

In the continuum Eqs. (5), (9) and (12) are fully equivalent,
but discretized versions provide different results, all of
them violating the isospectrality of the phase shifts, as will
be shown in Sec. II C.
Note that for our normalization convention in the

spherical basis we have the closure relation

1 ¼
Z

∞

0

dq
q2

4E2
q
jqihqj: ð13Þ

As it is well known, bound states appear as poles of the
scattering matrix. This allows defining a Hamiltonian in the
CM system,

HΨlðpÞ≡ 2EpΨðpÞ þ
Z

∞

0

dq
q2

4E2
q
Vlðp; qÞΨlðqÞ; ð14Þ

so that the homogeneous Kadyshevsky equation reads

HΨlðpÞ ¼
ffiffiffi
s

p
ΨlðpÞ: ð15Þ

While this equation is usually meant to solve for the
bound state problem, we will actually show below how
it can also be used to solve the scattering problem on a finite
momentum grid.

2We restrict ourselves to central isotropic interactions. The
important case of tensor anisotropic potentials leading to coupled
channels presents some differences and complications and will be
discussed in a separate publication.
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C. Scattering equivalence

One of the most remarkable features of quantum scatter-
ing is the lack of uniqueness of the interaction; under unitary
transformations of the Hamiltonian the S-matrix, or equiv-
alently the phase shifts remain invariant. In this section. we
remind of this fact by considering the continuum limit first.
We will then see that its discretized counterpart through a
finite momentum grid does not preserve this symmetry if the
corresponding phase shifts are defined as in Eq. (41).
In operator form Vðp⃗0; p⃗Þ≡ hp⃗0jVjp⃗i and Tðp⃗0; p⃗;

ffiffiffi
s

p Þ≡
hp⃗0jTð ffiffiffi

s
p Þjp⃗i and the Kadyshevsky equation written as a

Lippmann-Schwinger reads

T ¼ V þ VG0T ð16Þ
¼ V þ VGV ð17Þ
¼ Vð1 −G0VÞ−1 ¼ ð1 − VG0Þ−1V ð18Þ

which we write alternatively in equivalent forms and
have defined G−1 ¼ ffiffiffi

s
p þ iε −H ¼ G−1

0 − V. Within this
Hamiltonian framework, in the continuum, we consider a
unitary transformation U of the Hamiltonian H, given
by H → H̃ ¼ UHU† ≡H0 þ Ṽ where Ṽ ¼ UHU† −H0.
Taking the exponential representation of a unitary operator
U ¼ eiξ with ξ ¼ ξ† a self-adjoint operator, for an infini-
tesimal transformation we have to lowest order U ¼ 1þ
iξþOðξ2Þ and hence ΔV ¼ i½ξ; H�. If we take the form
T−1 ¼ V−1 −G0 we have ΔV−1 ¼ −V−1ΔVV−1 and sim-
ilarly for T so that

ΔT ¼ TV−1ΔVV−1T

¼ ð1 −G0VÞ−1ΔVð1 − VG0Þ−1
¼ G−1

0 G½ξ; H�GG−1
0

¼ ð1þ TG0ÞξG−1
0 −G−1

0 ξð1þ G0TÞ; ð19Þ

where we have used Eq. (18). Thus, taking matrix elements
and because of the external factors G−1

0 we get in the limit
ε → 0 at the on shell point 2Ep ¼ 2E0

p ¼ ffiffiffi
s

p
the result

ΔTðp⃗0; p⃗Þj2Ep¼2E0
p¼

ffiffi
s

p ¼ 0: ð20Þ

Thus, for a given generator ξ ¼ ξþ we have that

ΔV ¼ i½ξ; H� ⇒ ΔδlðpÞ ¼ 0; ð21Þ

or equivalently, for finite transformations δl;HðpÞ ¼
δl;UHU†ðpÞ.

III. DISCRETIZATION SCHEMES AND
SCATTERING INEQUIVALENCE

A. Momentum grid

There are only a few cases where the scattering equa-
tions can be solved analytically. The momentum grid

discretization introduces both an infrared Δp as well as
an ultraviolet numerical cutoff, Λnum. In our previous work,
we used a Gauss-Chebyshev grid [33] for interactions that
have a fast falloff. However, the kind of hadronic inter-
actions we will be dealing with here to illustrate our method
have long tails in momentum. Thus, we consider a Gauss-
Chebyshev quadrature which is re-scaled in such a way that
we distinguish two subdivisions within the [0;∞) integra-
tion range. Namely, half of the grid points are arranged
within the interval ½0;Λ1=2�, and the other half are distrib-
uted along the ½Λ1=2;∞Þ. The parameter Λ1=2 is chosen to
select the region of interest. In this way, the long-tails
effects are broadly taken into account and at the same time,
the physical region of interest is covered with enough
density of points. This allows us to study the region of
interest in detail, without neglecting long-tails effects. The
grid differs then from the Gauss-Chebyshev parametriza-
tion used in our nonrelativistic NN-scattering study [33],
and is given by3

pn ¼
1þ zn
1 − zn

; ð22Þ

wn ¼
2ΛN

2

ð1 − znÞ2
dzn; ð23Þ

with

zn ¼ − cos

�
π

N

�
n −

1

2

��
; ð24Þ

dzn ¼
π

N
sin

�
π

N

�
n −

1

2

��
; ð25Þ

where n ¼ 1;…; N. The parameter Λ1=2 selects the interval
½0;Λ1=2� that contains the first N

2
points. The lowest and

highest momenta in the grid are

pmin ¼ p1 ¼
1 − cosð π

2NÞ
1þ cosð π

2NÞ
; ð26Þ

pmax ¼ pN ¼ 1 − cos ½πð1 − 1
2NÞ�

1þ cos ½πð1 − 1
2NÞ�

: ð27Þ

For a large grid and for n ≪ N we have pn ¼
Λðπn=2NÞ2=2 which differs from the spherical box quan-
tization. The integration rule becomes

Z
∞

0

dpfðpÞ →
XN
n¼1

wnfðpnÞ: ð28Þ

3One could alternatively use pn ¼ 2
π tan

−1 zn as it is done by
Haftel and Tabakin [19].
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On the momentum grid, the Hamiltonian is defined as

HΨn ≡ 2EnΨn þ
X
k

wk
p2
k

4E2
k

Vn;kΨk; ð29Þ

where Ψn ≡ hpnjΨi ¼ ΨðpnÞ and Vnk ¼ Vðpn; pkÞ. The
closure relation on the grid is given by

X
n

jpni
wnp2

n

4E2
n
hpnj ¼ 1: ð30Þ

While these factors are ubiquitous, they are a bit annoying
because the Hermiticity does not correspond to invariance
under interchange of files and rows. Therefore we define
the barred basis

jpni≡
ffiffiffiffiffiffi
wn

p
pn

2En
jpni ð31Þ

so that the barred Hamiltonian reads

H̄nk ¼
� ffiffiffiffiffiffi

wn
p

pn

2En

�
−1
Hnk

ffiffiffiffiffiffi
wk

p
pk

2Ek
ð32Þ

¼ 2Enδnk þ V̄nk; ð33Þ

where the barred potential reads

V̄nk ¼
ffiffiffiffiffiffi
wn

p
pn

2En
Vnk

ffiffiffiffiffiffi
wk

p
pk

2Ek
ð34Þ

which are obviously Hermitian, H̄nk ¼ H̄kn and V̄nk ¼ V̄kn.
An infinitesimal unitary transformation generates a change
ΔV ¼ i½ξ; H� on the grid, which in the partial waves barred
basis reads

ΔV̄nk ¼ −ΔV̄kn ¼ i
XN
l¼1

½ξklH̄ln − H̄klξln�; ð35Þ

where we have dropped the angular momentum l for
simplicity. We can then proceed to discuss the discretization
of Eqs. (5), (9) and (12) which basically fall into two
categories: schemes where just the grid points are needed
and schemes where additional observation points are added.
It is worth noticing that unlike standard solution meth-

ods, where the energy,
ffiffiffi
s

p
, and momentum, p, grids are

independent from each other (see e.g., [10]), here we will
address versions of the scattering equation which invoke
only momentum grid points. However, as it was shown in
[30,42] for the nonrelativistic case, this definition of the
phase shift is not invariant under unitary transformations on
the finite momentum grid. The phase inequivalence goes
away in the continuum limit Δp → 0 corresponding to
N → ∞. It must also be said that the numerical problem can
be also formulated following the Haftel-Tabakin procedure
[19], which provides a value of the reaction matrix at any

point outside the momentum grid (the so-called observation
point). However, in order to consider a family of scattering-
equivalent Hamiltonians, which are known in a given
momentum grid, the calculation of matrix elements at
points outside the grid would require some extrapolation.

B. Scattering amplitude on the grid

In order to illustrate the lack of isospectrality in the
finite momentum grid, let us consider the discretized
version of Eq. (5) with a finite ϵ and an arbitrary energy
e ¼ ffiffiffi

s
p ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. This corresponds to taking matrix

elements of the operator form, so that

Tnmð
ffiffiffi
s

p Þ ¼ Vnm þ
XN
k¼1

wkp2
k

4E2
k

VnkTkmð
ffiffiffi
s

p Þffiffiffi
s

p
− 2Ek þ iε

ð36Þ

which in the barred basis becomes

T̄nmð
ffiffiffi
s

p Þ ¼ V̄nm þ
XN
k¼1

V̄nkT̄kmð
ffiffiffi
s

p Þffiffiffi
s

p
− 2Ek þ iε

: ð37Þ

Let us remind that the meaning of this equation is to take
the continuum limit before the limit ε → 0. In practice, this
corresponds to assume wn=ε ≪ 1 and a practical conse-
quence is the strict loss of unitarity since the delta function
on the grid becomes smeared as a Lorentz function.
Nonetheless, we may take the prescription (K1)

Re½T−1
l ð2EnÞ�nn ¼ −

πpn

8En
cot δK1l ðpnÞ ð38Þ

which corresponds to the real part of Eq. (6) on the grid. In
any case, under a unitary finite dimensional transformation
the chain of relations leading to Eq. (19) follows, and thus
in the momentum grid we have (for finite ε and unrestricted
summation)

ΔT̄nnð2EnÞ ¼
X
m≠n

4ðEn − EmÞε
4ðEn − EmÞ2 þ ε2

ξnmT̄nmð2EnÞ ð39Þ

which is nonvanishing, unless the continuum limit is taken.
Although the solution based on this method is not terribly
accurate it serves the purpose of illustrating our point. We
have also numerically checked that for particular unitary
transformations U inducing the change V → Ṽ ≡UHU† −
H0 the phases from Eq. (37) are indeed not invariant, unless
a large number of grid points are considered.

C. Reaction matrix on the grid

The scattering problem for the reaction matrix associated
with the Kadyshevsky equation for the half-off shell
reaction matrix on the grid reads (the limit ε → 0 is already
taken)
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Rnm ¼ Vnm þ
XN
k≠m

Vnkwk
p2
k

4E2
k

1

2Em − 2Ek
Rkm; ð40Þ

where Rnm ≡ rðpn; pm; 2EmÞ and the restricted sum,P
k≠m, implements in the momentum grid the principal

value prescription. This problem can directly be solved by
N matrix inversions for every single energy En in the grid,
whence the phase shift can be extracted using Eq. (8)
evaluated on the grid points (prescription K2),

− tan δK2l ðpnÞ ¼
πpn

8En
Rnn: ð41Þ

Our arguments apply equally well to the discretized form of
Eq. (9) as given by Eq. (40) and in Fig. 1 we show for
definiteness a particular case obtained by generating
a uniparametric family of unitary operators according
to ξ ¼ −i½H0; V� so that the infinitesimal change ΔV ¼
½½H0; V�; H�Δs and we integrate from s ¼ 0 to s ¼ 10 fm2

(see e.g., Refs. [43,44] and references therein).

D. Scattering on the grid with observation points

Finally, let us consider the original approach of Haftel
and Tabakin for Eq. (12), where in addition to the grid
points, p1;…; pN , the notion of the observation point, say
k0 ≠ pn, is introduced. The algorithm to find the phases is
given by the equation

Rðp;k0;2E0Þ¼Vðp;k0Þþ
XN
k¼1

wkp2
k

4E2
k

Vðp;pkÞRðpk;k0;2E0Þ
2E0−2Ek

−
XN
k¼1

wkk20
4E0

Vðp;k0ÞRðk0;k0;2E0Þ
k20−p2

k

¼
XN
k¼0

Vðp;pkÞRðpk;k0;2E0ÞDk; ð42Þ

where Ek¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
kþm2

p
and E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20þm2

p
. Taking p ¼ pn

and p¼k0 one generates Nþ1 equations. To ease the nota-
tion we define ρn0¼Rðpn;k0;2E0Þ and ρ00¼Rðk0;k0;2E0Þ,
so that the equations read

ρn0 ¼ Vn0 þ
XN
k¼1

DkVnkρk0 þD0Vn0ρn0 ð43Þ

ρ00 ¼ V00 þ
XN
k¼1

DkV0kρk0 þD0V00ρ00; ð44Þ

where

Dk ¼

8><
>:

wkp2
k

4E2
k

1
2E0−2Ek

; for 1 ≤ k ≤ N

wkk20
4E0

1
k2
0
−p2

k
; for k ¼ 0.

ð45Þ

In the continuum D0 vanishes, but on the finite grid it
actually improves the accuracy. The solution is given by
Rðk0; k0; 2E0Þ, similarly to Eq. (8) (prescription K3),
namely

− tan δK3l ðk0Þ ¼
πk0
8E0

Rlðk0; k0; 2E0Þ: ð46Þ

The question if we can check whether the calculated phase
shift, or ρ00 ¼ Rðk0; k0; 2E0Þ, at the observation point k0 is
isospectral or not, i.e., under the changes ΔV ¼ i½ξ; H� on
the grid requires to distinguish two relevant cases, depend-
ing on whether the observation point is included or not in
the unitary transformation.
We sketch here a perturbative proof that isospectrality

does not hold. In perturbation theory, and going to the
barred basis we get to second order

ρ̄00 ¼ V̄00 þ
XN
k¼1

D̄kV̄2
0k þ D̄0V̄2

00 þOðV3Þ ð47Þ

so that because in any case ΔV̄00 ¼ 0 and

ΔV̄0k ¼−ΔV̄k0

¼ i
XN
l¼1

ðξ0lH̄lk− H̄0lξlkÞþ iðξ00H̄0k− H̄00ξ0kÞ; ð48Þ

where H̄0l ¼ V̄0l and H̄lk ¼ 2Elδlk þ V̄lk and we have

Δρ̄00 ¼ 2
XN
k¼1

1

2E0 − 2Ek
V̄0kΔV̄k0 þOðV3Þ ð49Þ

which is nonvanishing. Nonperturbatively we may take
specific unitary transformations. While the observation
points can be chosen arbitrarily, generally, we observe that
close to the momentum grid points the phase shifts are
particularly unstable against unitary transformations either

FIG. 1. Comparison of results obtained using the discretized
scattering equation for the reaction matrix with N ¼ 25 points
using the prescription K2 for the 00ππ phase shift (see main text)
and its evolved result after a uniparametric family of unitary
operators according to ξ ¼ −i½H0; V�.
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in the spaceHN orHNþ1. We have also analyzed the case of
a unitary uniparametric family where infinitesimally ΔV ¼
½½H0; V�; H�Δs [43] using a grid of N þ 1 observation
points kn nested into the grid of N momentum points pn,
i.e., k0 < p1 < k2 < p2 < � � � < pn < kn which generates
a 2N þ 1 dimensional space which leads to similar results.

IV. ISOSPECTRAL PHASE SHIFTS

The requirement of isospectrality naturally suggests to
determine the phase shifts from the spectrum of the
Hamiltonian, a fact noted by DeWitt [21] and Fukuda and
Newton [20] long ago based on equidistant energy or
momentum grids respectively. Here we will present three
different alternatives based on the Gauss-Chebyshev grid
whose performance will be analyzed in the next section. On
the momentum grid, the eigenvalues equation can be
written as4

HΨn ≡ 2EnΨn þ
X
k

wk
p2
k

4E2
k

Vn;kΨk ¼
ffiffiffi
s

p
Ψn; ð50Þ

where Ψn ≡ hpnjΨi. Denoting the N eigenvalues and
eigenfunctions as

Ψn;α
ffiffiffiffiffi
sα

p ≡ 2Eα; ð51Þ
we write the energy in the form

Eα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
α þm2

π

q
; ð52Þ

where Pα is the “distorted” momentum by the interaction.
As it was proposed in [20] and exemplified in [30,42] the
phase shift can be identified as the momentum shift in units
of the momentum resolution, namely5

δnðPnÞ ¼ −π
Pn − pn

Δpn
¼ −π

ΔPn

Δpn
: ð53Þ

This prescription is a consequence of describing the
scattering problem in a box and imposing the physical
condition of a vanishing wave function in the wall (see [33]
for a reexamination). It is equivalent to a trapezoidal rule
quadrature, and for a Chebyshev grid can be written as

δMS
n ðPnÞ ¼ −π

Pn − pn

wn
; ð54Þ

where the label MS stands for momentum-shift formula.
Another prescription is given by DeWitt [21] which

relates the phase shifts with the energy-levels shift

produced in the stationary states of a system bound in a
large spherical box, when a finite-range perturbation is
introduced. This is formulated in the following way:

δn ¼ −π
ΔEn

Δe
; ð55Þ

where ΔEn is the shift from the unperturbed to the
perturbed energy levels and Δe is the separation between
levels in the unperturbed system. In terms of momentum-
grid points the energy-shift (ES) formula reads

δESn ¼ −π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
n þm2

p
pnwn

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
n þm2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
n þm2

q �
: ð56Þ

Note that in the ultrarelativistic case, i.e., for very small
masses Eqs. (57) and (56) are equivalent. This situation
holds in the ππ scattering case at intermediate energies.
Based on DeWitt’s argument, we have generalized the

formula Eq. (56) to any momentum grid in the non-
relativistic case [33], even in the case that the energy levels
are not equidistant. As an example, we consider the
employed momentum grid in this work, Eqs. (22)–(25).
Using the analogy between the energy levels of scattering
states in a box and the discretization given by a finite grid,
and observing that the equidistance happens in the argu-
ment of the cosine function, we have prescribed [33] the
following ϕ-shift formula based on the shift of such an
angle, and write

δΦS
n ¼ −π

Φn − ϕn

dϕn
¼ −π

Δϕn

dϕn
; ð57Þ

where ϕn ¼ π
N ðn − 1

2
Þ, dϕn ¼ π

N, and the distorted angles
Φn are calculated inverting Eqs. (22)–(25) replacing pn
by Pn.
These three prescriptions, momentum, energy, and ϕ

shift, have been considered in the analysis of NN scattering
using a nonrelativistic toy model [33]. We will show here
again that the ϕ-shift method prescription is the one that
best reproduces the solution in the continuum. As we will
see in our numerical study, the method gives reliable
predictions even for a grid with a small number of points.
The generalization to any momentum grid amounts to
finding the variable that is distributed equidistantly along
the momentum grid.
Note that if wewant thevalue of the phase shift atN single

energy values the inversion method requires N matrix
inversions, whereas in the spectral shift methods the N
phases are obtained at once in a single diagonalization.

V. NUMERICAL RESULTS

The purpose of this numerical analysis is to study the
predictive power and the accuracy of the ϕ-shift method in
the relativistic case of ππ scattering, in a similar way as it
was done in the case of NN-scattering using a

4The barred equations lead to identical eigenvalues.
5We are assuming here that there are no bound states. For the

bound state case, the formulas have to be modified in order to
comply with Levinson’s theorem and in [30,42].
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nonrelativistic toy model [33]. For completeness and in
order to compare the mass effect in the different cases, we
are going to consider also several channels in NN and πN
scattering to illustrate the heavy and heavy-light systems
respectively. We will use here more realistic potentials than
the ones employed in [33].

A. Separable models

For definiteness, we use the form of potentials deter-
mined by the fit already carried out by Garcilazo and
Mathelitsch [41] for the lowest partial waves using sepa-
rable potentials and upgrade the fitting parameters to the
newest phases reported by the most recent Madrid group
2011 analysis [45]. The most remarkable feature of these
fits is the very long tail of the interaction, particularly for
the P-wave, which reaches up to 10 GeV.
Long tails in momentum space indicate large strengths in

configuration space. In fact, the effect has been observed in
the Marchenko approach to the inverse scattering problem
[46]. The effect becomes milder when the interaction is
coarse grained. Therefore, the long-tails feature is not just
an artifact of the fit, as for instance the inverse scattering
problem in coordinate space provides very short-distance
local potentials [46]. Of course, the fact that the potential is
separable, of the form

Vlðp0; pÞ ¼ ηglðp0ÞglðpÞ; ð58Þ

where η ¼ �1 facilitates the solution, reducing it to a
simple quadrature. Indeed, the Kadyshevsky equation,
Eq. (5) is solved by the ansatz

Tlðp0; p;
ffiffiffi
s

p Þ ¼ glðp0ÞglðpÞTlð
ffiffiffi
s

p Þ; ð59Þ

and inserting this in Eq. (5) we get

½Tlð
ffiffiffi
s

p Þ�−1 ¼ 1 −
Z

∞

0

dq
q2

4E2
q

η½glðqÞ�2ffiffiffi
s

p
− 2Eq

; ð60Þ

yielding the final result,

p cot δlðpÞ ¼ −
8Ep

πVlðp; pÞ
�
1 −

Z
�

∞

0

dq
q2

4E2
q

Vlðq; qÞffiffiffi
s

p
− 2Eq

�
;

ð61Þ

whence the phase shifts can directly be computed by any
convenient integration method for any value of the CM
energy,

ffiffiffi
s

p
. Taking these values, we may then proceed to

check the three different prescriptions, which only generate
them on grid points. Form factors of Eq. (58) are given in
the Appendix.
Following our previous work [33], we consider the

abbreviations p-shift, E-shift, and ϕ-shift when referring

to the momentum-shift, energy-shift and angle-shift for-
mulas, cf. Eqs. (54), (56) and (57), respectively.

B. Dependence on the momentum grid and
comparison with the standard method

The first case we take into consideration in some detail is
the ππ-scattering. First of all, we study how our ϕ-shift
results, calculated in a finite momentum grid, differ from
the exact solution in the continuum and compare our results
with the procedure of solving the Lippmann-Schwinger
(LS) like equation in the same momentum grid (prescrip-
tion K2).
In Fig. 2 we show our ϕ-shift results (blue dots), which

turn out to lie exactly on the smooth, green line that
represents the exact solution. The LS calculation is repre-
sented by the orange line. Each arrow in Fig. 2 corresponds
to a different channel, and each column corresponds to a
different number of grid points used in the calculation,
namely, N ¼ 25, 50, 100, respectively.
Similarly to what we observed in the nonrelativistic case

[33], the ϕ-shift formula provides excellent results in all
cases, reproducing very accurately the exact solution, even
in the case of the grid with the smallest number of points,
N ¼ 25. While the LS method converges to the continuum
as the number of points increases (the exception is the P1
wave, where the LS turns out to predict values very
accurately in the whole interval), the ϕ-shift results do
not move away from the exact solution in any visible way in
the considered grids. Recall furthermore, that only half of
the points are inside the studied interval, while the other
half are distributed along the long tail of the potential.
Both methods turn out to be very similar and accurate in

the case of the LI ¼ S2, D0 and D2 waves. This is
foreseeable, since while in the first two cases the phase
shifts cover a wide range of values in a short energy
interval, in the last three channels, the phase shifts remain
rather small (δ02; δ20 < �30° and δ22 < 3°) in the same
energy range. Thus, perturbation theory becomes appli-
cable and the main difference is just a higher-order effect.
The ϕ-shift method for calculating phase shifts turns out

to provide outstanding results in the ππ-scattering phase
shifts. They are comparable or better than those provided
by conventional approaches.

C. Comparison of the three different prescriptions

In this section, we calculate phase shifts using the three
different prescriptions presented in Sec. IV.
When using the ϕ-shift, Eq. (57), or E-shift prescription,

Eq. (56), we may represent the results as a function of the
distorted momentum Pn, or as a function of the free
momentum pn. The phase shifts δðPnÞ and δðpnÞ will
acquire the same values but will be horizontally displaced
from each other by the momentum shift. This ambiguity
does not arise in the p-shift case, since the phase shift is a
function of the interacting momentum by construction.
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Figure 3 shows two lines for every ππ-scattering chan-
nel. The upper row (in blue) shows the phase shifts
calculated using the ϕ-shift prescription, Eq. (57), while

the lower row (in red) shows the phase shifts according to
the energy-shift prescription, Eq. (56). The p-shift results
are numerically almost identical in this case to the E-shift

FIG. 2. Phase shifts calculated using our ϕ-shift prescription (blue dots) compared with the numerical fit (green, smooth line) and with
the result obtained from the Lippmann-Schwinger equation (stepwise, orange line). Each column corresponds to the calculation made
with a grid of N ¼ 25, 50, and 100 points, respectively.
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ones, and they are not depicted in an extra graphic. Phase
shifts represented as a function of the transformed momen-
tum Pn are plotted using a darker line with round markers
while phase shifts plotted as a function of the free
momentum pn are given by a lighter line with square
markers. All these lines are compared with the exact
calculation represented by the green line without markers.
In some cases, we have chosen a reduced interval, in such a
way that the difference between lines is more visible.
We observe in Fig. 3 that in all cases, the phase shifts

represented as a function of the interacting momentum Pn

lie closer to the exact solution. This was already pointed out
in the nonrelativistic case studied in [33]. Observing the
first and third rows (blue) in Fig. 3, we see that our ϕ-shift
results totally overlap the green line which is not even
visible. The E-shift (as well as p-shift) prescription given in
the second and forth rows (red) yields values that lie always
below those provided by the momentum-shift one. In all
cases, ϕ- and E-shift, the phase shifts represented as a
function of the free momentum pn (light line with square
markers) appear displaced according to the momentum
shift: to the right for attractive interactions, and to the left

FIG. 3. Phase shifts calculated using the ϕ-shift, E-shift and p-shift methods for every channel in ππ-scattering and compared with the
exact solution (green, smooth line). The first and third lines (in blue) show the ϕ-shift results and the second and fourth lines (in red)
show the E- or p-shift results, which are equal in this case due to the relativistic pion masses. In all cases the phase shifts are represented
as a function of the distorted momentum (darker line with round markers), and as a function of the free momentum (lighter line with
square markers). The calculation was made with a grid of N ¼ 50 points.

MARÍA GÓMEZ-ROCHA and ENRIQUE RUIZ ARRIOLA PHYS. REV. D 101, 036003 (2020)

036003-10



for repulsive ones. Indeed, the Pn − pn is negative for
attractive interactions and positive for repulsive ones. Since
the p-shift formula prescribes that the phase shift is a
function of the interacting momentum, and the E-shift
formula reproduces it in this case of very light masses, we
assume that taking the interacting momentum as the
independent variable is the most adequate option.

As it was explained in [33], both the E- and p-shift
prescriptions are actually an approximation of the ϕ-shift
formula. Indeed, the E-shift formula implies an equal-
distance separation of energy levels, like the p-shift
formula implies an equal-distance separation in momentum
space. The Gauss-Chebyshev grid employed here does not
satisfy those conditions. Instead, the equidistant separation

FIG. 4. NN-scattering phase shifts for the 1P1 channel. Upper row: Comparison of our ϕ-shift results (blue dots) with the exact
solution (green, smooth line) and the LS result (orange line) calculated in a grid of N ¼ 25, 50 and 100, respectively. Lower row: Phase
shifts calculated in a grid of N ¼ 50 points using the three different prescriptions as labeled in the corner. In each figure of the lower row
the phase shifts are represented as a function of the distorted momentum (darker line with round markers) and as a function of the free
momentum (lighter line with square markers).

FIG. 5. The same as in Fig. 4 but for the 3P1 channel.
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occurs in the Chebyshev angle. Therefore, the adequate
formula for our grid is the ϕ-shift. Nevertheless, we have
seen that still the E- and p-shift formulas turn out to be a
very good approximation, since the obtained results ana-
lyzed for N ¼ 50 points are comparable or even better than
those obtained through the standard LS equation.

D. Heavy masses and nonequal masses

Figures 4–9 show the obtained results for NN-scattering,
where the form factors for separable potentials are taken

from [41] and are given in the Appendix. The phase shifts
are plotted as a function of TLab.
The first row of each of these figures shows the ϕ-shift

result, compared with the LS results and with the exact
solution for a grid of N ¼ 25, 50, and 100 points,
respectively. The second row shows the result obtained
using the ϕ-, p- and E-shift, as labeled in the corner, for a
momentum grid of N ¼ 50 points. In this case, the proton
mass is not negligible, and hence Eqs. (54) and (56) are no
longer equivalent, and the numerical difference can be
appreciated (see e.g., Fig. 8). In analogy to what has been

FIG. 6. The same as in Fig. 4 but for the 3P2 channel.

FIG. 7. The same as in Fig. 4 but for the 1D2 channel.
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done in the ππ analysis, we use a darker line with round
markers to represent the results when using the interacting
momentum as the implicit independent variable, and a
lighter line with square markers when we use the free
momentum as the independent variable in TLab. We have
selected in some cases an interval where the difference
between lines is more visible.
In the studied interval, 0 ≤ TLab ≤ 300, the phase shifts

do not reach values higher than around 30 degrees, so that
there are no abrupt changes in the curves and, as a

consequence, the deviation from results obtained in one
or another method is not significant.
Figures 10–18 show the phase shifts calculated for πN

scattering. Like in the NN case, Eqs. (54) and (56) are
not equivalent due to the large mass of the proton involved.
But one can hardly appreciate the difference from the
numerical results due to the very small range of values that
the phase shifts take in most of the channels, with the
exception of the P33 wave, which reaches from 0 to around
120 degrees.

FIG. 8. The same as in Fig. 4 but for the 3D2 channel.

FIG. 9. The same as in Fig. 4 but for the 3D3 channel.
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VI. CONCLUSIONS

The analysis of hadronic interactions requires in many
cases a numerical solution of the relativistic scattering
problem, which from a quantum field theoretical point of
view would be best formulated in terms of the 4D Bethe-
Salpeter equation, but in practice, one uses 3D reductions.
This is most often done by placing the system in a finite
momentum grid and proceeding to inverting the corre-
sponding inhomogeneous scattering equation. In this paper,

we have analyzed the Kadyshevsky equation in the equal-
time form, which allows for a corresponding relativistic
interpretation of the Schrödinger equation and is fully
compatible with a field theoretical Hamiltonian formu-
lation. As we have discussed, one important feature of
scattering is the freedom to carry out unitary transforma-
tions of the Hamiltonian. The discretized versions of the
scattering equations violate such an invariance, and hence
the computed phase shifts are not isospectral. On the other

FIG. 10. The same as in Fig. 4 but for πN scattering in the S11 channel.

FIG. 11. The same as in Fig. 4 but for πN scattering in the S31 channel.
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hand, the eigenvalues of the Hamiltonian are by definition
invariant, and hence it makes sense to determine the phase
shifts directly from the eigenvalues, for which several
schemes have already been presented.
We have studied the predictive power of the momentum-

shift and energy-shift prescriptions for calculating phase
shifts. We have generalized to the relativistic case a new
prescription based on an argument that holds for any
momentum grid. The new prescription requires to find
the variable that holds an equidistant space between
points along the momentum grid. The chosen grid in this

work is a Gauss-Chebyshev quadrature and the equal
spacing occurs in the Chebyshev angle ϕ ¼ π

N ðn − 1=2Þ.
As it turns out, this prescription yields exceptionally good
results, even in the case of a grid with a relatively small
number of points.
Besides providing accurate isospectral phases even in

rather coarse momentum grids, our ϕ-shift formula is
computationally cheaper than any conventional solution
based on the matrix inversion of the inhomogeneous
scattering equation. Indeed, if we want to compute N
energy values of the phase shift with a grid of N points we

FIG. 12. The same as in Fig. 4 but for πN scattering in the P33 channel.

FIG. 13. The same as in Fig. 4 but for πN scattering in the P13 channel.
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have a computational complexity of N ×OðN3Þ because
N-inversions are needed, whereas with the diagonalization
method we have at once all phase shifts with OðN3Þ cost
[47]. However, this happens at a price: while in our case the
phases are computed at the interacting momenta, in the
conventional solution the momenta are arbitrary.
All these findings are of special relevance for calcula-

tions that use a Hamiltonian framework. Indeed, many
scattering studies are carried out within Lagrangian
approaches, while the study of phase shifts in the context

of a Hamiltonian formalism is rather sparse. It turns
out, however, that the Hamiltonian formalism is very
convenient or even necessary for certain purposes address-
ing renormalization issues [43].
The Kadyshevsky equation is very convenient in order to

consider the three-body interaction problem. It is possible
to couple the two-body interaction force into the three-body
equation, in such a way that, for instance, a controlled
knowledge of the ππ-interaction may lead to a precise
description of 3π resonances, such as the ω or the A1 ones.

FIG. 14. The same as in Fig. 4 but for πN scattering in the P31 channel.

FIG. 15. The same as in Fig. 4 but for πN scattering in the D13 channel.
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FIG. 16. The same as in Fig. 4 but for πN scattering in the D15 channel.

FIG. 17. The same as in Fig. 4 but for πN scattering in the D33 channel.
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A method with such a predictive power like the one we
have presented in this work opens the possibility of making
accurate predictions for such states with a rather manage-
able computational cost.
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APPENDIX: FORM FACTORS AND MODEL
POTENTIALS

The form factors gLI , with L being the angular
momentum and I the isospin, in the case of ππ interaction
are given by

g00ðpÞ ¼
617.865p2

ðp2 þ 99.3951Þ2 þ
423.64

p2 þ 1034.75
; ðA1Þ

g11ðpÞ ¼ p

�
132.237

p2 þ 900.462
−

5.11596
p2 þ 21.9744

�
; ðA2Þ

g02ðpÞ ¼
3.65p2

ðp2 þ 3.9601Þ2 þ
175.7

p2 þ 357.21
; ðA3Þ

g20ðpÞ ¼
284.863p2

ðp2 þ 53.6235Þ2 ; ðA4Þ

g22ðpÞ ¼
289.289p2

ðp2 þ 101.039Þ2 ; ðA5Þ

where all the potentials are attractive, i.e., the parameter
η ¼ 1 in Eq. (58), except the 02 and the 22 that are
repulsive, i.e., η ¼ −1.
For NN scattering we have for every 2Sþ1LJ

g1P1
ðpÞ ¼ p

�
96.6852p2

ðp2 þ 8.72978Þ3 þ
104.81

ðp2 þ 6.17934Þ2
�

ðA6Þ

g3P1
ðpÞ ¼ p

�
139.976p2

ðp2 þ 4.3655Þ3 þ
4.39386

ðp2 þ 0.877575Þ2
�

ðA7Þ

g3P2
ðpÞ ¼ p

�
158.854p2

ðp2 þ 8.16363Þ3 þ
15.1423

ðp2 þ 2.91507Þ2
�

ðA8Þ

g1D2
ðpÞ¼p2

�
674.983

ðp2þ6.37134Þ3−
179.268p2

ðp2þ2.74016Þ4
�

ðA9Þ

g3D2
ðpÞ¼p2

�
513.691

ðp2þ4.44559Þ3−
156.742p2

ðp2þ2.06874Þ4
�

ðA10Þ

g3D3
ðpÞ¼p2

�
357.477

ðp2þ6.99909Þ3−
111.479p2

ðp2þ4.26756Þ4
�

ðA11Þ

and

FIG. 18. The same as in Fig. 4 but for πN scattering in the D35 channel.
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η1P1
¼ η3P1

¼ 1; ðA12Þ

η3P2
¼ η1D2

¼ η3D2
¼ η3D3

¼ −1: ðA13Þ

Finally, the form factors for πN scattering are, for every
L2S2I channel,

gS11ðpÞ ¼
14.6454

p2 þ 12.2543
; ðA14Þ

gS31ðpÞ ¼
95.4252

p2 þ 30.9159
−

3.13741
p2 þ 1.83667

; ðA15Þ

gP33
ðpÞ ¼ p

�
36.8052

p2 þ 102.726
þ 0.0867424
p2 þ 0.226963

�
; ðA16Þ

gP13
ðpÞ ¼ p

�
10.4023

p2 þ 15.7088
−

2.31101
p2 þ 31.1786

�
; ðA17Þ

gP31
ðpÞ ¼ 13.079p

p2 þ 12.222
; ðA18Þ

gD13
ðpÞ ¼ 364.057p2

ðp2 þ 49.925Þ2 ; ðA19Þ

gD15
ðpÞ ¼ 10.8919p2

ðp2 þ 6.79962Þ2 ; ðA20Þ

gD33
ðpÞ ¼ 2.18078p2

ðp2 þ 3.20603Þ2 ; ðA21Þ

gD35
ðpÞ ¼ 7.52545p2

ðp2 þ 5.20257Þ2 ; ðA22Þ

and

ηS31 ¼ ηP31
¼ ηD35

¼ 1; ðA23Þ

ηS11 ¼ ηP13
¼ ηD13

¼ ηD15
¼ ηD33

¼ −1: ðA24Þ

In all cases the parameters have units of fm−1 or fm−2 in
such a way that the form factors are dimensionless.
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