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We analyze the zero point energy of composite particles (or resonances) which are dynamically created
from relativistic fermions. We compare the zero point energies in medium to the vacuum one, taking into
account the medium modification of the constituent particles. Treating composite particles as if quasiparticles,
their zero point energies contain the quadratic and logarithmic UV divergences even after the vacuum
subtraction. The coefficients of these divergences come from the difference between the vacuum and
in-medium fermion propagators. We argue that such apparent divergences can be cancelled by consistently
using fermion propagators to compute the quasi-particle contributions as well as their interplay, provided that
the self-energies of the constituents at large momenta approach to the vacuum ones sufficiently fast. In the
case of quantum chromodynamics, mesons and baryons, which may be induced or destroyed by medium
effects, yield the in-medium divergences in the zero point energies, but the divergences are assembled to
cancel with those from the quark zero-point energy. This is particularly important for unified descriptions of
hadronic and quark matter which may be smoothly connected by the quark-hadron continuity.
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I. INTRODUCTION

Strongly correlated systems of fermions typically develop
composite objects or collective modes [1-3]. The examples
include fermion pairs in superfluidity [4], composite fermions
in quantum hall systems [5], hadrons in quantum chromo-
dynamics (QCD), and many others. Those states often play
dominant roles in transport phenomena or in thermal equa-
tions of state, especially when fermions as constituents have
the excitation energies larger than the composites.

In principle the composites can also contribute to the
Zero point energy, i.e., the vacuum energy of a system or
equations of state at zero temperature through their quan-
tum fluctuations. The consideration for these contributions
may be potentially important for, e.g., QCD equations of
state at high baryon density where the relevant degrees of
freedom (d.o.f.) change from hadrons to quarks [6—14].
This paper will address problems of the in-medium zero
point energy of composite particles. The UV divergences
appear if the interplay between the composites and their
constituents is not properly taken into account.

The UV divergences to be discussed are associated with
the summation of states for composite objects. Composite
particles have the total momenta which must be integrated.
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One might think that the composite particle dissociates
at some momentum which provides a cutoff on the
integral. But in general there are also states whose
energy spectra survive to high energy and behave as

Ecomp(K) ~ \/MZomp + v?K? (Meomp: the energy in the rest

frame; k: spatial momentum; v: velocity approaching
to the light velocity in the UV limit). The number of
their states grows as ~|k|?; in this case the zero
point energy is ~ [ Ak E o, (K) = aAly + bmiompyAfy +
cmﬁomp In Ayy + - -+, where Ayy is some UV scale much
bigger than the natural scale of the theory. The first term is
saturated by the physics at high energy and hence is
universal, so can be eliminated by the vacuum subtraction.
This is not the case for the second and the third terms which
arise from the coupling between universal hard part and
soft dynamics; the soft part can be easily affected by the
environment and is not universal. These arguments clearly
require closer inspections based on more microscopic d.o.f.
Another problem is that, going from zero to high fermion
density, composite states may not keep the one-to-one
correspondence to their vacuum counterparts, e.g., some
composite states in vacuum might disappear in medium.
This mismatch in the d.o.f. likely leaves the mismatch in
the UV contributions which in turn appear as the UV
divergences in equations of state. A more general question
is how excited states, including the resonances and con-
tinuum, should be taken into account. To discuss these
issues, some integral representations should be used to
include all possible states in a given channel [15-19].
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In this paper we analyze the structure of UV divergences
which come from the composite particles and their con-
stituents. We argue that, to handle the UV divergences
associated with the composite particles, it is most essential
to take into account the interplay between the composites
and their constituents. In short, they transfer the UV
divergences one another when the fermion bases (or
propagators) are deformed in a nonperturbative way. As
a consequence, graph by graph cancellations by the vacuum
subtraction do not take place; only the sum cancels. To keep
track the impact of changes in fermion bases, we apply the
two-particle irreducible (2PI)-formalism.

In order to make the zero point energy UV finite, we
demand: (i) all vacuum n-point functions are made finite in
some way; (ii) the fermion self-energies approach the
universal limit sufficiently fast at high energy. With these
conditions the quadratic divergences in the zero-point energy
cancel, as we can see from the general structure of the 2PI
functional. Meanwhile the removal of the logarithmic
divergences depend on models and requires more sophisti-
cated discussions, but after all the origin of the problems can
be traced back to the in-medium self-energies.

The discussions were originally motivated for the appli-
cations to QCD equations of state at finite baryon density
[8-14,20-23]. But we consider the problems in more
general context, aiming at not only renormalizable theories
but also nonrenormalizable ones. The latter is often used for
practical calculations of equations of state, but usually
requires introduction of a UV cutoff which always leaves
questions concerning with impacts of the cutoff effects or
artifacts. In particular whether equations of state depend on
the model cutoff quadratically or logarithmically makes
important difference. It is important to identify the origins;
the strong cutoff dependences may be intrinsic to the
structure of models whose origin can be traced back to
the microphysics, but some may be due to inconsistent
approximations and are artifacts to be eliminated. In this
paper we try to structure our arguments in such a way that
we will be able to disentangle the intrinsic and artificial
cutoff dependence.

To make our arguments concrete, we will often refer to
the Gaussian pair-fluctuation theory in which the fermion
pair fluctuations are added on top of mean field results.
For nonrelativistic fermions, this theory has been successful
descriptions in the context of the BEC-BCS crossover
[24-26]. On the other hand, these theories have incon-
sistency in the treatments of the single-particle and of
composite particles, and, in the case of relativistic fermions
[27,28], it leads to the UV divergences which must be
cutoff by hand. It is rather easy to see the existence of the
inconsistency. On the other hand, it is less obvious that such
inconsistency can be the source of the UV divergences.

This paper is organized as follows. Section II is devoted
to further illustration of the UV problem. We consider
fermion pairs as the simplest example of composites and

discuss their contributions to the equations of state. In
Sec. III we discuss the “single particle” contribution with
the self-energy and its UV divergent contribution to the
equation of state. In Sec. IV we briefly overview the
structure of the 2PI-functional and present the general
strategy to handle the UV divergences. We isolate the
medium contributions induced by the medium modifica-
tions of fermion propagators. In Sec. V we first discuss the
medium contributions without modifications of the vacuum
fermion bases. In Sec. VI we examine the impacts of
the change of fermion bases and discuss how to handle the
UV divergences associated with it. The interplay between
single particle’s and composite’s contributions is discussed
within the 2PI-formalism. Section VII is devoted to
summary.

We use the notation [, = [d*x, [ = i (‘1;7’)’4, fp =/ %,
and Try[---] = (IL)_, [, )trp[-- ] where tr), are trace over
the Dirac indices. The momenta p, = (pg — iu, p;) will be

also used.

II. THE PAIR FLUCTUATIONS

As the simplest example, we consider the fermion pair-
fluctuation contributions to the equations of state. The
resummation of 2-body graphs generates bound states,
resonance poles, and continuum. The popular approach is
the Gaussian pair-fluctuation theory in which the contri-
butions from the 2-particle correlated contributions are
simply added to the mean field equations of state. In this
section we examine how the UV divergence appears in
equations of state in theories of relativistic fermions.

We start with a free streaming 2-quasiparticle propagator,

G- (P3K) = Sae (P1)Spp (P-),
where k is the total momentum of the two particle which
is conserved, while p is the relative momentum. The self-
energy corrections are included into the definition of S.
We write the 2-body interaction as V), then the resummed
2-fermion propagator is given in a symbolic form as

Go

gzgo-i-govgo-f—"':l_ivgo,

(2)

where the summation over internal momenta and other
quantum numbers is implicit. The poles are found by
searching for the values of k, = (E(k),k) such that
1- Vgo =0.

We assume that G and V in vacuum are made finite by
some renormalization procedures or by introduction of
physical cutoffs. For theories like QCD or QED, the
4-fermion functions are UV finite as far as we use the
renormalized fermion propagators and vertices. For theo-
ries with contact interactions the 4-fermion functions are
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UV divergent and must be made finite by physically
motivated cutoffs [29]. In this paper we call such cutoffs
intrinsic to models “physical cutoff,” and distinguish it
from Ayy, a regulator which must be taken to infinity at the
end of calculations. After n-point functions are made finite,
Ayy shows up only when we close all the lines of n-point
functions to compute the zero-point energy.

In the expression for equations of state, this 2-fermion
propagator appears inside of the logarithm; drawing the
corresponding closed diagrams (Fig. 1, left), we must
attach the symmetry factor 1/(2n) and sum them up,

OE[S] = 3 5 T [(Vy)"

n=1

1
=- Esz[Lnﬂ -VG)]

= S TrLn(G/Go)". 3)
where we wrote the energy density as a functional of S for
the later purpose. The expression includes bound states,
resonances, and the continuum in the 2-body channel.

The form of Ln(G/G,) reflects the fact that uncorrelated
product of fermion lines in G must be subtracted to avoid the
double counting (linked-cluster theorem). It should be also
clear that the term Ln(G/G,) approaches zero at very large
energy; the kinetic energy is much larger than the potential
energy and hence G — G,. Meanwhile, even though this
cancels the leading UV contributions, we expect Ln(G/Gy)~
1/k* that may produce the quadratic and logarithmic
divergences after integrating the momentum k.

We have not yet introduced a counter term or a vacuum
subtraction procedure for the zero point function, so we set

our reference energy density to the vacuum one, CDIZing [Svac)s
evaluated for some propagator S,,. at u = 0. Then the
renormalized energy density is

DIRE[S] = DE"E[S] — DY™E[S ). (4)

However, this vacuum subtraction in general is not sufficient
to cancel the above-mentioned quadratic and logarithmic

(522]5 — 5m2

315

q)gounter [ S]

FIG. 1. The pair fluctuation diagrams that generate quadratic
divergences. The counterterms, whose values are fixed in the
vacuum calculations, are also shown.

divergences. The coefficients of ~Afy, and ~In Ayy terms
are sensitive to the physics in the IR, and can differ for S
and S,,..

To see how these UV divergences arise, let us consider
for the moment the diagram such that the graphs except the
propagator carrying momentum p_ is set to S,,., see Fig. 2.
We consider the case where large momentum k flows into
the two-body scattering kernel, as we are interested in the
composites at large total momenta. This contribution has
the structure,

N/ szac(p_)(smed(]?_> _Svac(p—))

~ _/ 22vacSvac (Emed - 2vac)Svac’ (5)
P

where we expand Smed = Svac - Svac(zmed - ZvaC)SvaC'
(There is also the integral over p,, but it is hidden in
subgraphs of the vacuum self-energy %,,,.(p_) multiplied
to Shed — Syac-) At this point in treating the vacuum self-
energy in the subgraph, it is necessary to mention the
necessity to include counterterms [30,31] (Fig. 1, right),

OS] = Try [(S22 — 6my)S], (6)

which cancel the divergence in %,,,.. We note that §,, and
om, are medium independent as they should, but can
couple to the medium-dependent propagators S. These
counterterms renormalize the vacuum self-energy part
in the graph. Then we can focus on the medium effects
coupled to the UV finite self-energy. We count the power of
momenta as Toyae ~ Tyae ~ Zmed ~ P and Sy, ~ p~LL It is
plausible that the medium effects decouple at high
momenta, so we expect the cancellation of the leading
component in X . — Z,.; then the rest behave as
Tied — Zvac ~ A2oq/ P Where Apeq is some IR scale in
the medium. But even after this cancellation happens, the

integral over p still leads to ~A{yA2.;.

hard

hard

\

7

FIG. 2. The difference between the medium and vacuum self-
energy from the 2-particle correlations. Very large momenta,
pi.k — oo, flows into the graph, except a fermion line with
momentum p_ which is finite. (The counter terms to renormalize
the vacuum self-energy part is not explicitly shown.)

E2vac
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The severest UV divergence comes from the vector self-
energies and is quadratic. If we ignore the modification
of the vector self-energies as in typical mean field
model treatments, we have less divergence but it is still
~A% ;InAyy. Unless we assume unreasonably stronger
damping for X .4 —X,,, Wwe cannot avoid the UV
divergences.

As we will see, the divergences associated with the
product of IR and UV contributions will be handled by
taking into account the interplay between a composite state
and the constituents in it.

III. THE SINGLE PARTICLE CONTRIBUTION

In this section we look at the single particle contribution
to the equations of state. We assume that a fermion acquires
the self-energy from the IR dynamics which is sensitive
to the presence of the medium. After calculating the
in-medium self-energy, the last step is to close the fermion
line and we get the single particle contribution to equations
of state.

We begin with the case in which the fermion acquires
the momentum independent mass gaps, M ,.q at finite p,
and M,,. at 4 =0. Using the propagators, Sieqvac =
—(P = M pedvac)~"s the contribution at u is [32]

~Tr,LnS;l, = -2 / O(Emea(p) — 1) + 1 Enea().
P

Emed<p) = \/ Mied =+ p2’ (7)

where the particle and antiparticle contributions are
included. After subtracting the vacuum counterpart, we get

_TranS;]l;d + TranS\Talc = 2/ 9(/" - Emed(p))Emed(p)
p

— 4/p(Emed(p) - Evac(p))’
(8)

where E,,.(p) = /M2, + p°. The last set of terms vanish
if Mg = M,,, but otherwise it leaves the quadratic

divergence, ~ — (M2, — M2,.)Ady.

To improve the situation, it is tempting to consider the
momentum dependence of the gap as M — M(p), and
demand that beyond some physical damping scale Agqymp
the mass function M(p) approaches to some universal
value independent of the IR physics. For instance one can

think of

M? (p) ~ { Mlz“ed,vac (|p|2 < Aﬁamp)
d,va ’
med,vac mgniv + Cmed,vac/p2 (|p|2 > A%lamp)

©)

then the zero point energy is

/ (Enea(D) = Evae(D))

P

~ (Mﬁwd - M\Z/ac)Agamp + (Cr2116d - C%aC) In Agy. (10)
The first term is characterized by the damping scale. The
typical model results are obtained if we entirely neglect
the terms ¢yyeq.vac in the UV region, but the validity of such
procedures is uncertain from the physical point of view. In
general Cpeqyqc €Xist and are nonuniversal, leaving the
logarithmic UV divergence.

The situation gets even worse if we also take into account
the modification of the residue function Z,.q yac(P) Which
appears if the vector self-energy is nonzero. The propa-
gators are Smed,vac = _Zmed,vac (ﬁ - Mmed,vac)_l' Assuming
the dampmg Zmed,vac(p) ~ Zuniv + dmed,vac/pz’ the differ-
ence of TrLnS between the medium and vacuum cases
leaves the quadratic divergence ~(dpyeq — dyac) Ay -

Therefore the damping of the self-energy at high
momenta alone cannot be the sufficient condition for the
UV finiteness of equations of state (unless extraordinary
damping takes place in the self-energy). In order to get
physical equations of state, we need to assemble these UV
divergent pieces with those from other origins.

IV. EQUATIONS OF STATE IN THE 2PI
FORMALISM: SOME DEFINITIONS

A. The structure of 2PI functional

We have seen that the quasiparticle contributions to
equations of state from the composites and their constitu-
ents in general have the quadratic divergences. It is
tempting to expect these divergences to cancel. Actually
these terms do not directly cancel and we must go one step
further to correctly handle the double counting problem.

For this purpose we use the formalism of the two particle
irreducible (2PI) action, developed by Luttinger-Ward [33],
Baym-Kadanoff [34,35], and its relativistic version by
Cornwall-Jackiw-Toumbolis [36]. Its renormalizability
was first discussed in [37] and since then seminal works
have followed [38]. These works gave detailed account
by explicitly choosing some of renormalizable theories,
while we discuss the structure of the medium-induced UV
divergences in more abstract fashion, so that we can
emphasize the common aspects in the renormalization
programs. In particular our arguments also may include
the cases for non-renormalizable models.

The 2PI action I[S;u] is a functional of a fermion
propagator S,

I[S; 4] = Tr LnS + Tr, [SES#)] + @[$],
Slsul = s - (S{lree)_l’ (11)
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which includes a tree level propagator (in Euclidean space),
Sto(p) =822(p) =—(p—m)~", with the fermion mass m.
The Try [Si} term plays a role to cancel the double counted
contributions. The @ functional is the sum of 2PI graphs
composed of dressed fermion propagators. We assume that
a set of counterterms have been introduced to renormalize
the vacuum self-energies and vertices. The number of
counterterms can be either finite or infinite depending on
the renormalizability of theories [39], but this aspect is not
important for our arguments. We also note that, because we
write the action as a functional only for fermion propa-
gators, the graphs we consider are not necessarily 2PI with
respect to the propagators of other possible fields.

The variation of @ with respect to S yields the graphs for
the fermion self-energies, and if we choose S to give the
extrema, it satisfies the Schwinger-Dyson equation,

SIS 1 sl _ __ools]
5S(p) £l (p) - 28l(p) =0, =B(p) = 55(p)"
(12)

The solution of the Schwinger-Dyson equation is written as
S%(p). If we further differentiate ®[S] by S, we get kernels
with the 3-, 4-, and more-external legs. The equation of
state at y is obtained as

—P(p) = 18" u) = 1182 0 = 0], (13)

where the pressure is set to zero at u = 0.

Now several comments are in order on the structure of

the functional:

(1) The expression of the 2PI functional differs from
the expression of thermodynamic potential in the
Gaussian pair-fluctuation theories. The latter has the
structure

Igpr = Iy + D2 [Syr].
Ivik = TriLnSyg + Try [SypZ 5] + Oyp[Syirl,
(14)

where ®,[S] is the sum of ®;"¢[S] and er[S]
defined in Egs. (3) and (6). The mean field part Ig
is the 2PI functional and @y includes only 2PI
graphs composed of a single fermion line. Here the
solution of the Schwinger-Dyson equation in the
mean-field level, Sy, was substituted and SISwr# —
—6Pp\r/8S| s+ e note that the structure of /g has
the form of the 2PI formalism. After just adding the
Gaussian fluctuations @, [S], however, we lose such
correspondence by neglecting its impact on the
fermion self-energy. In fact the incomplete treatment
of such contributions introduces the double counting

of some contributions; they are the origin of the UV
divergences, as we will clarify shortly.

(i) In the 2PI formalism the rernomalization of n(>0)-
point functions in vacuum does not readily guarantee
the UV finite equations of state. The situation is
different from the 1PI effective action I'[¢], as a
functional of some field values, ¢ [40]. For the 1PI
functional, we consider the form

ww—rw—or—/kwwy+bW+cw+~+

X

(15)

where a, b, ¢, - - - are some constants which must be
renormalized. Here a, b, c, - - - appear in the n-point
functions obtained from the functional derivative
8"T"'/6¢", and they get renormalized through the
studies of these functions. With the expression (15),
the UV finiteness of a,b,c,--- can be directly
translated into the finiteness of the 1PI functional
for a given distribution of ¢(x). In contrast, the 2PI
functional is characterized by a variable S(x,y);
even when the coefficients of S are finite, this
variable by itself can generate the divergence in
the limit of x — y. Therefore we need the discus-
sions about the asymptotic behaviors of S.

B. Isolating the divergence

In the following we analyze the UV divergences in the
functional. We first define

Ip[Ss ) = 11S;] = 11827 4 = 0), (16)

which is a functional of § at finite u. To clarify the structure,
it is convenient to distinguish the contributions associated
with the change of fermion bases and the other, since the
treatments of the UV divergences will be different for these
two contributions. We decompose

TalS: ] = (18340~ 11813 ]) + (118! ] = 118250 = 0])
= Ips[Ssp] + I ap (17)

Here the first term in the right-hand side (RHS), I55[S; 4],
measures the energy gain or cost associated with the change
of bases, § — ) (defined below), at the same chemical
potential. Clearly at S = S’l‘| the functional is 7,5 =0,

guaranteeing the existence of S for which the functional
I 1s UV finite. On the other hand, the second term in
Eq. (17) compares the energies at different chemical
potentials but with the same fermion bases; for this purpose
we have introduced an in-medium propagator made of the
vacuum fermion bases,
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=0 ~
S|(p)=8"(p— p) = [-B+m+Z|(p)"
(p) =25 )(p - p). (18)
That is, we changed only the variable as py — po — i but

fixed all the others in the vacuum propagator. We empha-
size that, except for the 4 = 0 case, Sﬁ in general does not

minimize I[S; u], so is not the solution of the Schwinger-
s # 29 = —50/ 55| s+ More

about S’I‘| will be discussed in the next section.

Dyson equation, i.e.,

Below we will first give some concrete discussions for
the in-medium propagators made of the vacuum fermion
bases. After this preparation we discuss how I,, and /g
are made UV finite. We emphasize that the functional
Ixs[S; 4] is UV finite only for particular classes of S; the
in-medium self-energy of S must approach to the vacuum
counterpart sufficiently fast at large momenta.

V. IN-MEDIUM CALCULATIONS WITHIN THE
VACUUM FERMION BASES

A. In-medium propagators made
of the vacuum fermion bases

We first give more remarks concerning with the termi-
nology “fermion bases.” We define them directly from the
fermion propagators, rather than the unitary transformation
of fermion field operators as the latter need not be
manifestly treated. For the propagator S H( p), most gen-
erally the spectral functions are the same as the vacuum
one, and in this sense the propagator S’r| (p) is made of the

vacuum fermion bases. In the spectral representation,

o d vac w, VaC ()
Sﬁ( ) = _/ _W|: (w,p) 4 Pyc(w,p) ], (19)
0o 2m|ipo+pu—w ipg+u+w

vac + medium

yIS|1 =

where pg*, pi* are the spectral functions in vacuum
(4 x 4 matrices) for particle and antiparticle components,
respectively. Or one can also write the invariant mass
parametrization

" dsﬁ vac()_|_ vac()
S”() _A 27rp p—f

(20)

where the Lorentz invariance in vacuum ensures that
py5(s) are the Lorentz scalar which depends only on
the Lorentz scalar variable s. The vacuum spectral func-
tions reflect that we are using the same fermion bases as in
vacuum, while the modification H - H — uN (H: hamil-
tonian, N: number of fermions) is reflected only through
the change of variable p, — po —iu.

B. The self-energy
Below we compare the structure of 267 and Zﬁ , then
discuss both can be UV finite by the vacuum counterterms.
These self-energies differ only when the fermion self-
energy graph includes fermion loops, see Fig. 3. The key
observation is that the shift p — p in Zﬁ affects the

propagator connected to the external leg, but does not
affect the momenta of fermion loops; the fermion propa-

gators in fermion loops are the vacuum one, S’*‘ZO( S"“ 0),
that does not depend on y. On the other hand, in P H], all

propagators, from the one connected to the external
fermion lines as well as those forming loops, are S”

the formal structure of the difference in the self—energles
can be written as

= (p) - i (p)

= [ @@ -2 . en

fea

FIG. 3. The self-energies z H]( ) and Z"“ (p) (the 1-fermion loop case as an illustration). In the former all fermion lines are calculated
with the propagator SH’ while in the latter all internal fermion loops are calculated with the vacuum propagator $*="_The fermion lines

connected to the external legs are common for 2l H]( ) and Z’”‘( ); if no-fermion loop is available, these two self-energies coincide.
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where G » is the fermion line connected to the external
fermion legs with momentum p, and the function 7 is the
diagram attached to G,,. They are connected by lines carrying
a set of momenta, {k} = (kj,kp,---), which will be
integrated. The difference in the self-energies is summarized
in Z through the difference of fermion propagators in the
fermion loops. From the definition it should be clear that the
two self-energies coincide if there are no fermion loops.

1. Fermion loops

To see how 71! ({k}) and Z I57] ({k}) are calculated, we
focus on the subdiagrams in which there is one fermion
loop and external lines with momenta ¢, q,,... are
attached, see Fig. 4. Let [ be the loop momenta. Then
all fermion propagators S| in the loop has the u-dependence
only through the combination of Io = Iy — ip. More explic-
itly such a loop contains the structure (reminder:

Si(p) = S(p = B)

Fi (Iy) = —u[S" (T + q1) V128 (1 + ¢2)

X V2.3Sl::0(7 +q3) -, (22)

in which several external lines with momenta g,_; , ... are
attached to the fermion loop with the vertices V. For the
moment we introduce an infinitesimal temperature 7 and

use the Matsubara formalism with I, — @, —iu where
w, = (2n + 1)xT [32]. Here u is hidden in the variable I,
so the integral over [, leads to

JEROE T; / Fi (@, - )

dlﬂ” ily)
27'[1 e T +1
where C is the contour surrounding the poles of

(e[OT_” +1)7', and now this factor is the only place where

vac + medium

the u-dependence appears. Next we pick up poles from
each propagator by deforming the contour C in the standard
way. Here we consider the poles of the ith propagator in the
loop F l{q}. For this calculation the most general expression
can be obtained by using the spectral representation,

S’::(](_ilo + gio- 1+ q;)
/ dw; [pp" (Wi 1+ q;)
= - - +
0 27[ lO w; + 190

where g, is left Euclidean. After picking up the residues
lo = £w; —iq,y, the statistical factors in Eq. (28) for
particles become, in the zero temperature limit,

pic(wi 1+ q;)
l() + w; + lin

(24)

1

Wi—H=igj0
T

= O(u—wy), (25)
+1

and for antiparticles

1

—Wi—H=14jg
T

1 (26)
+1

The antiparticle contributions are totally made of the
vacuum quantities; after all the two loop graphs are
expressed as the sum of the vacuum pieces and the medium
dependent part,

[F2 = [0,
x/GW—

= (=iw;,1) and ¢, ; = ¢, — q;)

Z/ dw;
wi) L (<iwy),  (27)
where (/,,

Fl{q;i}(_iwi) = —tr[- o SI’::O(IW + fli—l,i)Vi—l,i(P;V)aC(Wn l))
X Vi,i+155::0(lw + 1)) (28)

FIG. 4. The 1-fermion loop graph with many line insertions, see the expression Eq. (22). The loop momentum is /. Using the standard
technique of the analytic continuation one can isolate the vacuum piece and the medium dependent piece, as shown in Eq. (28). The box

in the last diagram specifies where we pick up the pole.
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After the integration of [, the vacuum spectral density pp*
remains as contributions from the ith propagator. Note that
we have shifted variables 1 4 q; in the spectral density so
that the jth propagator depends on {g} through the
combination g ;.

Now we can see the domain of the spatial momenta 1 is
bound and the integral over 1 is UV finite. To confirm this
we use the fact the energy of the vacuum spectral function

behaves as w = vVm? +1° for a state with the invariant
mass m>. Then we notice that there is the energy bound
O(u — w) which in turn limits the domain of 1. The result is
entirely expressed by the vacuum spectral density and y, as

we used the propagators Sﬁ and Sﬁzo

2. Integrating lines connected to fermion loops

We have just verified the fermion loops in the subgraphs
are divided into the vacuum pieces plus UV finite pieces.
The last step for the evaluation of the self-energies is to
integrate out momenta connecting the fermion loops to the
external fermion lines.

As an example a one-fermion loop graphs for the self-

energy difference, il (p)— Z"“( p), are shown in Fig. 5.

The vacuum part in the fermion loop was already canceled
by taking the difference. Note that one of fermion lines in
the loop is replaced with the vacuum spectral density with
the restriction O(u — E.4,) attached, as in Eq. (28). The
graph in Fig. 5 can be evaluated by using the vacuum
4-point functions which are renormalized and UV finite.
The only question is whether closing two legs with
momenta | generates the UV divergence, but its integration
domain is restricted, so no new UV divergences arise.

So we have proved that 25 (p) — "“ (p) is UV finite.
Moreover Z"“ (p) and il (p) are separately UV finite; the

¢ (/J‘ - ElJrl'h')

%
=0

*

vac. 4-point function
"UV finite "

FIG. 5. The next-to-worst UV contribution with 1-medium
insertion (the 1-fermion loop case as an illustration). The
vacuum-medium piece is UV finite, as we can regard the graph
originated from the contraction between 6-function and the
vacuum 4-point function which can be renormalized by the
vacuum counterterms.

former is the vacuum self-energy with replacement p — p

and hence is UV finite; thus E[S’\‘\]( p) is also UV finite.

The case with more fermion loops does not introduce any
essential modifications. Essentially such graphs can be
regarded the vacuum n-point functions contracted to the
medium @-functions. The vacuum functions are assumed to
be UV finite, and the contraction only leads to integrals
whose domains are limited, so the results of the integration
are all finite.

We note that the present argument does not ask whether
the theory is renormalizable or not. If all vacuum functions
are made UV finite for some fermion bases, and if we keep
using the same bases from the vacuum to a medium, then
the in-medium self-energies are UV finite. The key fact was
that the UV contributions exactly cancel in Eq. (27). If we
used different bases for the vacuum and medium, the
cancellation was not exact; in such cases we must consider
the power counting for asymptotic momenta, as we will
discuss in the next section.

C. The UV finiteness of I,

Finally we consider /. The naive power counting of the
dimensionality indicates the presence of terms like ~u> A3y,
or ~u*InAyy. The vacuum subtraction, however, com-
pletely cancels these UV divergences as far as we use the
same fermion bases for the vacuum and medium. This is
what happens in perturbation theory and has been discussed
in the standard textbook [32]. For the later purpose we
briefly review this cancellation in somewhat abstract
fashion, looking at general graphs which may include
infinite number of loops.

The discussion goes in the very similar way as one given
for the self-energy, see Fig. 6 for the zero-point energy.
There may be several fermion loops. But as we have
already discussed, we can decompose each loop into the
vacuum term and medium part with #-function inserted.
Thus by considering all fermion loops we find the product
of the vacuum term and the medium terms.

The potentially worst UV divergence would appear if
we pick up the vacuum contributions from all fermion
loops, but it is the vacuum quantity and can be canceled
by the vacuum subtraction. The next-to-worst divergence
appears if we pick up only one medium piece but choose
the vacuum pieces for all the rest of fermion loops. But
such diagrams can be regarded as vacuum fermion
2-point functions contracted with the medium piece.
The vacuum 2-point function is UV finite by our
assumption on the vacuum renormalization, and its
contraction of the external fermion legs with the medium
dependent piece, bound by u, does not yield any addi-
tional UV divergence. Thus the 2PI graphs with one
medium piece are UV finite. The graphs with more
medium pieces can be discussed in the same way. With
this we conclude 7,, is UV finite.
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vac + medium vac

¢ (/’L - E1+Ch)

vac. 2-point self-energy
" UV finite "

FIG. 6. An example of the ®-functional with 2-fermion loops. In each loop we decomposed the vacuum and medium dependent parts,
and then considered the product. The vacuum-vacuum product has the UV divergence that can be subtracted off. The 1-medium
insertion graphs are UV finite, as we can regard the graph originated from the contraction between 0-function and the renormalized
vacuum 2-point self-energy. The same logic is applied for higher orders of medium insertions.

VI. UV CONTRIBUTIONS INDUCED BY
CHANGES OF FERMION BASES

A. The UV finiteness of /,¢ and constraints
on the fermion bases

We have already seen that the 2PI functional in medium
is finite if we keep using the same fermion bases as in the
vacuum. But the medium effects often deform the fermion
bases, typically in a nonperturbative manner. The purpose
here is to examine that to what extent we can change the
fermion bases without encountering the UV problems. If
we met UV divergences, we would be forced to keep the
bases same as the vacuum one (for which 7, ¢ is guaranteed
to be zero). It is important to emphasize that, unless
correctly handling the UV contributions, we might artifi-
cially exclude physical solutions.

For these reasons we analyze in detail the UV structure
of the functional /¢ (defined in Eq. (17)) and the condition
required for S. We classify the strength of the UV
contribution by choosing the expansion parameter as
(reminder: E[# = §-1 — (§% )~' which becomes the
physical self-energy when we choose S to be the solution
of the Schwinger-Dyson equation)

$7H(p) = 57 (p) = E5¥(p) = Zfi(p) = AT (p).  (29)

This measures the difference between § and ). We count
Slsml 2"“ ~ p at large p. For the physical solution of S,
we expect that at large p the IR effects decouple; if this is

the case AX — 0 as p — oo. The question is how fast this
damping is. To characterize the damping, we write

AT ~ p=Hr, (30)
with which

S(p) = Sy(p) ~ =S (p)AZS(p) ~p~**",  (31)

modulo possible logarithmic factors in p. Here we consider

the power of p, not p, because the counting based on the

latter involves the expansion of y/p which is not helpful.

We characterize S by this damping. The asymptotic

behaviors of § —§ are classified by the value of y:

(a) They = 0 case will be called “canonical” and we regard
it as our baseline; powers are reduced by 2 compared to
the single fermion propagators, S — S ~ P

(b) The y = —1 case happens when we omit the vector
self-energies and include only mass self-energies,
leading to § — S ~ P

(c) The y =1 case happens if we include only mass
self-energies as in (b) but assume that the medium-
induced constant shift of the self-energies, e.g.,
AY ~AM = const, survives to large momenta, leading
to S — SH Ni?_z;

(d) They = 2 case happens if the medium-induced shift in
the residue function survives to large momenta and
couples to the p-component, e.g., AX ~ AZp, with
AZ = const, leading to S — Sy~ ph

(e) The case y > 2 is regarded unlikely, so this case will
be excluded from our considerations, unless otherwise
stated.

In the following, models in our mind are those of Yukawa
or gauge theory types in which fermion couples to bosons
whose propagators behave as ~p~2 in the UV domain. To
simplify the presentation we assume the absence of tadpole-
type graphs. If there are tadpoles, the self-energies acquire a
constant independent of the external momenta, as in the
cases (c) and (d) which will require extra discussions of
shifting the (bosonic) field, ¢ — ¢g + ¢. Such procedures
will not be performed in this paper.

B. Preparation: Power counting for the subgraphs

The discussion of the UV behaviors get involved because
of loops in subgraphs. To disentangle various UV diver-
gences shared by different loops, it is useful to specify the
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soft and hard parts in the graphs. We assign powers for
fermion propagators as

p~'  (hard)
o { M1 (soft) (32)

where M is a constant with the mass dimension one.
Accordingly the fermion self-energy is

hard
s {p (hard) (33)
M (soft)
For boson propagators we assign
-2 hard
D~ {p (hard) (34)
M2 (soft)

Finally we also assign powers for loop integration,

4
/ N{ p*  (hard) (35)
1 LM* (soft)
where the domain of integration is restricted to the IR
region for the soft part.

As an illustration we consider a 2-loop graph for the
fermion self-energies where one-fermion loop is connected
to external lines by 2-boson lines (Fig. 7). We use a box to
indicate that inside the box the lines participating in the
loops are hard.

For the graph (a), one fermion line in the loop is kept soft
but all the other lines are set hard. Then the counting is

Meptx (ptp™tpTt M) ~ Mt (36)

where the first is the factor from the phase space; M* is the
phase space for the soft fermion line and p* for the other
loop momenta. The factor in the parenthesis is from
propagators. Therefore this case (a) is ~p~! and hence
UV finite for p — oo.

For the graph (b), the fermions in the loop are hard but
the others are all soft. The power counting is

MiApt x (MTIM™ x p=2) ~ p2. (37)

(a) soft

For the graph (c), all lines are hard, so
PP x (p~'pt X p) ~ pP (38)

The graphs (b) and (c) are the order of ~p? and apparently
have the quadratic divergence whose origin is the hard
fermion loop. The leading quadratic divergence is cancelled
by the vacuum subtraction, but generally that procedure
still leaves the logarithmic divergence coupled to quantities
dependent on the fermion bases. To eliminate such con-
tributions we need special cares by summing a proper set of
graphs. We will come back to this point when we discuss
the boson self-energy in Sec. VID.

C. The self-energies for fermions

Before looking at the zero-point energy, we compare the
self-energies for different bases and examine how the
difference can be made finite. More explicitly we will
assume y ~ 0 for the counting and then check that the self-
energy graphs are finite under this assumption; if not we
would run into inconsistencies. Here it is sufficient to
discuss the ¢ = 0 case for the divergences associated with
the change of bases; as we have already seen, the in-
medium and vacuum self-energies for the same bases differ
only by the UV finite value.

The structure of fermion self-energies looks relatively
simple because from the dimensional ground they appa-
rently have only the logarithmic divergences. This is indeed
the case if there are no fermion loops inside of the self-
energy graphs. Extra cares are necessary for graphs with
internal fermion loops in the subgraphs. To see it we
consider the difference in the self-energies for propagators

S#=0 and §"7°,
5%,

(21— 587y
0S5 |50

($#0=$t0) 5+ (39)

af

where the first term in the RHS represents the sum of
graphs in which one fermion line is set to S¥=0 — $4= and
all the others are S*~°.

As an example, we consider a 2-loop graph shown in
Figs. 8 and 9. The above expansion produces two types of
graphs. In the first type (the graph in Fig. 8), a subtracted

An example of 2-loop graph. In a box, lines participating in a loop carry hard momenta.
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vac. loop

el

S=0 _ gu=0

vac. counter term

§4=0 — gi=0

FIG. 8. A graph generated from the expansion of pa(Cd
Y™ (with 2-boson lines) to the linear order of $*=° — §*=°. The
divergence from the vacuum fermion loop is cancelled by the
counter term in the second graph, to leave powers ~[%. It is
combined with the boson propagators and a subtracted fermion
propagator, leading to the UV finite result.

propagator S#=0 — st=0 belongs to the line shared with the
external legs. In the second type (the graph in Fig. 9), one
line in the fermion loop is set to SH=0 _ S’fo.

In the first type, a momentum / enters the fermion loop
made of the vacuum propagators. As we saw in the last
section, the UV divergence would happen only in the case
where hard momentum enters the fermion loop. The loop
is made of the vacuum bases, so with our assumption on
the vacuum renormalization, it is made UV finite by the
counter term (or some cutoff). Then, from the dimension-
ality the loop leaves powers ~/*> (modulo logarithm) with
UV finite coefficients. Now this piece is contracted with
two gluon propagators attached to the fermion line, to yield
factors 12 x (I72)2 x 73 ~I7> (factors from two boson
propagators; the internal fermion loop; and S*=° — S’:ZO).
Thus the integral over [ leaves UV finite functions of
fermion external momenta.

Next we consider the graph in Fig. 9, where one line in

the fermion loop is set to $#=0 — §*=° Again it is sufficient

u=0
s

FIG. 9. A graph generated from the expansion of D)
Y51 (with 2-boson lines) to the linear order of §#=0 — §*~°.
The bubble graph contains a single subtracted propagator
§#=0 — §*=° Naive counting leads to ~InAyy in the fermion
loop. To eliminate it other graphs not shown here (with more
boson line insertions) must be added. The way of the cancellation
depends on models.

to consider the divergence from the fermion loop. The loop
include a subtracted fermion propagator of ~/=3, but this
reduction of powers is not sufficient to make the loop
convergent; there would remain the logarithmic divergence.
No vacuum counterterm is available to eliminate this
divergence. Hence this divergence must be cancelled by
assembling the divergences from other graphs. This diver-
gence in the fermion loop also propagate to the fermion
self-energies.

Before discussing how to handle this divergence, it is
more convenient to rephrase it in terms of boson self-
energies. Let 15 a correlator of quark bilinear currents.
This is the fermion contributions to the boson self-energies.
We note an algebraic relation,

™) = 1187 — 2Te[$4"V (540 — $470) V]
— Tr[($#=0 — S0V (s#=0 — &)V, (40)

where the second term in the RHS is what we are
discussing. The first term in the RHS is the vacuum
functions and can be made finite by the vacuum
counterterm, while the integral of the third term is
convergent and is the order of /7. Therefore proving
the UV finiteness of the second term in the RHS is
equivalent to proving the UV finiteness of the left-hand
side (LHS).

Actually the UV finiteness of 119" is necessary but
not sufficient condition to make the fermion self-energy
finite. From the dimensional ground 15”1 ~ 12, but we
need TI5 ") —TI5™"1 ~ [0, ie., the leading contributions
of I> to cancel. Otherwise the self-energy difference
of ~[?> couple to two boson propagators to yield [72.
Then the fermion self-energy may have the logarithmic
divergence.

From these arguments, now our problem about the
fermion self-energies is now translated to the problem of
proving the boson self-energies to be UV finite and ~1°.

Before proceeding to the boson self-energies, we men-
tion what happens if there are more boson lines attached to
the fermion loop and to the fermion line connected to the
external legs. An example is shown in Fig. 10. In this case
the analyses are actually simpler than the case shown in
Fig. 9; the fermion loop more than two boson line
insertions is by itself UV convergent, so that there is no
danger to get the UV divergent factor from this subgraph.
Also, the 2-loop subgraph with 3-boson lines can be
regarded as the vacuum 4-point fermion functions is
convergent by itself. So if one of the loop is soft, the
result is convergent. Finally, when all loops are hard,
the 4-point function is ~/=2 and $*=0 — §*=° ~ 3, so
the integration over / leaves UV finite quantities. Therefore
subgraphs, in which the fermion loop with only two boson
line insertions, is exceptional and requires special cares.
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UV finite

UV finite

FIG. 10. A graph contributing to =5l — 5] with 3-boson
lines. The linear order of $¥=0 — §*=° appear in the fermion loop.
This subgraph is UV finite as each boson line insertion reduces
the power by one. The other subgraphs made of 4-point fermion
functions are also UV finite.

D. The self-energies for bosons

The discussion for the bosonic self-energies should be
much more involved than the fermion cases, since the naive
power counting indicates its leading divergence to be the
quadratic order. The leading divergence can be cancelled in
the difference of the self-energies, while the next-to-leading
order UV divergence (logarithmic divergence) may couple
to the quantities dependent on the fermion bases. Our
task is to identify the recipe to remove the logarithmic
divergence.

Such recipe requires the detailed discussions which
depend on models. There have been detailed analyses in
the literatures which will not be repeated here; we give only
the outline of the necessary discussion. Two examples are
considered: gauge and Yukawa theories.

In both cases it is not sufficient to look at only a single
graph; the UV divergence is eliminated only by summing
up a proper set of graphs, or using the improved vertices
which depend on our choice of bases for S. The choice of
graphs depend on the graphs used to calculate the fermion
self-energies.

2
AUV

2 2
Ay +k*In 5]

FIG. 11.

For gauge theories, the calculations are technically
involved, but the required principle is clear-cut: the gauge
invariance. The situation is schematically shown in Fig. 11.
The gauge invariance protects the polarization function
from the quadratic divergences, and for this we need to
include a proper set of 2PI-graphs which keeps the
(truncated) 2PI functional gauge invariant. In particular
the vertex must be improved as V.. — VI[S], when we take
into account the change of fermion bases [41,42]. Once this
is done for all S, the leading divergence of TT*! always starts
with the logarithmic one, and after single subtraction
(18] — 11157) becomes UV finite.

For Yukawa type theories, it is not easy to express the
recipe in simple terms. Typically we have no symmetry
restriction on the appearance of bosonic mass terms
nor the quadratic divergence. After taking the difference
between two self-energies, the quadratic divergence can-
cels, while the logarithmic divergence in general couples
to quantities that depend on the fermion bases. Such
logarithmic divergences must be combined with those
appearing in the 4-point boson functions with fermion
loops. (Unlike the gauge theory cases, the 2-point boson
functions start with quadratic divergence so that 2-more
boson insertions can reduce the divergence only to the
logarithmic one.) In short, the renormalization program of
2-point boson functions requires resummed 4-point boson
functions in the subgraphs. In the end the problem is
reduced to the renormalization of the Bethe-Salpeter
amplitudes appearing in the subgraphs [37]. After this
is done for all S, the single subtraction makes the boson
self-energies UV finite.

In what follows, we will assume that we prepare the 2PI
functional which includes the proper set of graphs to make
the boson self-energies UV finite.

Now we discuss the power counting of the difference
of boson energies, ITIS! — I1IS'), for different bases S and §'.
Before the subtraction the coefficients of /> contain the
logarithmic divergence together with /-dependent functions
dependent of the fermion bases,

Apv
k2 + f[5]

~ k?In foee

A gauge theory example for the fermion loop contributions to the boson self-energies. The fermion bases are S(#S.). The

1-loop result with a unimproved vertex results in the violation of the gauge invariance and quadratic divergence. They are associated
with the change of bases S,.. — S. Improving the vertex to recover the gauge invariance eliminates the quadratic divergence.
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1] 2 ‘ ‘%JV
[T°1(]) ~ Fln—""Y—
( ) Cuniv 2 f[S]

+ O(I°). (41)
where f[S] is basis-dependent quantity of ~I°, and ¢y,
is the universal coefficient of the logarithmic divergence.
At I much larger than the nonperturbative scale (I > f[S]),
subtracting the self-energy for ' yields

II(1) = TSU(E) ~ cyniy (f[S] = f1S']) ~ O(). (42

As we have seen, this is necessary for the UV finiteness of
the fermion self-energies. In the next section we will also
see that the same is required for the zero-point energy.

E. The zero-point energy

Finally we discuss the zero-point energy assembling the
discussions given in the previous sections.

Let us begin our analyses with the single particle
contribution TrLnS. Its expansion starts from the linear
order in AX,

Tr,LnS — TranS"“ = —Tr,Ln(1 + S"“AZ)
S srazy). @3
=Y Sl m(sjazy). (43)

n=1

In our counting, the n = 1 term is the order of ~A12;{,y that
corresponds to the terms producing the quadratic diver-
gences in Sec. IIl. The n = 2 term is the order of ~A%yv
(~In Ayy fory = 0), and the n = 3 terms are ~AI}%,+3”, and
so on. (Clearly this expansion is useless for y > 2.)
Meanwhile the Tr,[SY] terms in the 2PI action yield
Try [SE] = Try[$1 ] = Try[S{AZ] + Tr, [(S — )Z),
(44)

S = 571 — (Sh..)™' where we used Il = SWI—
(Stree)™ =Zj. In our counting S - S|~ —S|(AX)S]| ~
p~3*7. Here we observe that the first term in the RHS

can be used to cancel the n = 1 term in the Tr;LnS terms in
Eq. (43), i.e., the strongest UV term in the single particle
contribution. On the other hand the second term in the RHS

S
|/2 (coocoo) =
S

is the order of A%J(,y. This piece can be canceled by terms
from the ®-functional,

[] — @[}] = ~Tr, £ (5 - 51)]

1 o"d
3 G n

(5- S’ﬂ, (45)
S=Sﬁ

where we expand ®[S] around S"“ . The meaning of the

second trace is that we replace the n-propagators in the
®-functional by S — S"“, and then set the rest of propagators

to S"“.

operation: we can write S = (S —S) + S| and draw all

As shown in Fig. 12, this is purely an algebraic

possible diagrams made of S — S"“ and S"“ .
We note that the vertex functions §"®/5S" | sy are uv
finite. Its evaluation can be done as performed in Sec. V B;

we can isolate u-independent pieces of n-point vertex
functions through the analytic continuation as in Eq. (28),

8D
os"

5o

- n
s=5/ oS S=s~0=s"7"

+ ffinite [15 5520]7 (46)

where fguielu: $4"] is a functional of u and §%=°. Here are
two remarks concerning with §"®/6S". First, its UV
finiteness follows from the fact that §"®/8S" at S~ is
the vacuum n-point vertices which are UV finite. Second,
taking derivative with respect to S, at each time the
integration over loop momentum disappears while the §
in the denominator adds one power of momentum, so the
powers of §"®/5S" are ~p*3".

Assembling the above-mentioned three pieces of con-
tributions to 7,5, we find

naslsi = Y- S (stazy
n=2

+ Ty [(§ — Sp)(E — =71

1 O]
+ Z ETI'" [W

n=2"" =i

(S - Sﬁ)”] . (47)

FIG. 12. An example for the expansion of ®[S] around S = S’ﬁ . Shown is the Fock term.
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The replacement of S with S — SH accompanies the reduc-
tion of the powers from p~! to ~p~3*7, so the terms in the
last sum of the RHS is ~A{y @7
divergence is at most NAIZJ”V.

and for y <2 the

We note that the worst divergences, ~A%;{,V, have been
cancelled. Indeed the powers of AX start from the quadratic
order, ~(AX)?, in which the powers are reduced by p*=%.
In the context of the quadratic divergences discussed in
Sec. II and III (which were discussed with the assumption
of y = 0), we first add them, and then subtract the double
counted contributions; this results in the cancellation of the
worst divergences. For this cancellation it is essential to
keep track all the effects associated with the change of
fermion bases; some appears from the single particle
contributions and the other from composite particles or
backgrounds. Now the leading divergence is weaker than

naive expectations, and is the order of NA%”V which
becomes ~InAyy at y = 0.

We can proceed further. From now on we focus on our
canonical case, y ~ 0, and examine the logarithmic diver-
gence. We pick up the UV divergent pieces in Eq. (49) as

s[4 = = Ty [(S = (£ — 3]

+ Try[(S - S"“)(z[&ﬂ] — Z[SH])]

(48)

where we used S"“ (AX)S) =~
and 5°®/55* = —6%/6S.

So far we have not used specific properties of § except its
asymptotic behaviors. Now we substitute the solution of the
Schwinger-Dyson equation, S%, in place of S. Then, by
definition £ = (§#)~1 — (8t..)~! = =15, and we obtain

—(S = S)), ATS = £ — 51,

1 "
Ips[S5p) = —ETrl[(S" S (EST — =]
o+ Ty (% — ) (211 — =)
1 ox
CoTh |2 (-S|, (4
3 I [55 S:S’ﬁ(S S||) ] (49)
Finally we expand
W H 52
e = I R (50)
=8|
with which we end up with
1
LaslStsu] = =T [(8t = S = 2] + O(8. = 5)*.
(51)

The last term yields ~Ay 2+ ” and will be neglected. We

could not find a way to further simplify the expression of
Eq. (51), so at this point we stop transforming it, and then
look into more details.

First we recall that the structure of =%/ — H is given by

Eq. (21) or Fig. 3. Therefore Eq. (51) yields graphs shown
in Fig. 13 where we pick up graphs with 1-fermion loop as
examples. If we decompose the graph into the @-function
part and the others, the latter can be regarded as the self-
energy graph in which single subtraction is done for the
fermion loop. We have analyzed the UV structure of these
graphs in Sec. VI C looking at graphs in Figs. 9 and 10. We
concluded these graphs to be finite (after the vertex
improvement). Contracting these UV finite self-energies
with the -function leaves UV finite results.

With this we conclude that the 7,5 is UV finite, as far as
the propagator S leads to the UV finite self-energies for
fermions and bosons.

self-energy graph Sy - Sﬁt
(subtracted) /\
S s} 2 S
I g=0 Se=0
0 (/" - El+Qi)

0 (14— Ervq,)

FIG. 13.

A 1-fermion loop example of Eq. (51). The self-energy difference X

Iy _ H is indicated by a box with blue lines. It is

contracted with the subtracted propagator Sk — S"“ The box with green lines indicates the self-energy graph with one subtraction. They

have the same UV structure as graphs shown in Figs. 9 and 10 and are UV finite. As a result these graphs are UV finite after contracting

with the @-function.

036001-14



ZERO POINT ENERGY OF COMPOSITE PARTICLES: THE ...

PHYS. REV. D 101, 036001 (2020)

VII. SUMMARY

We have investigated the UV divergences in the zero-
point energy of composite particles that are associated with
the change of fermion bases. We use the 2PI functional to
keep track all the impacts due to the change of bases, and
show that the UV divergences all cancel, provided that the
in-medium fermion propagator at high energy approaches
sufficiently fast to the vacuum counterpart.

While we started with the examples of 2-particle corre-
lation or composite particles made of 2-particles, in the
discussion of 2PI functional we did not refer to the specific
form of the ®-functional, so the discussion can accom-
modate also the 3-, 4-, and infinite particle correlations.

In phenomenology, the present discussions may be
important for the QCD equation of state at high baryon
density where baryons merge exhibiting quark d.o.f.
The relevant effective d.o.f. change, and there must be a
framework which simultaneously treat baryons and quarks
while avoid the double counting. The 2PI formalism allows

us such computation and cancels the apparent UV diver-
gences which are expected from naive quasiparticle pic-
tures for the constituents and composites.

We emphasize again that our attention in this paper is not
necessarily restricted to renormalizable theories. Rather our
intention is to understand the UV structure in general
context so that we will be able to construct models or invent
efficient cutoff schemes for effective theory calculations
with physically motivated UV cutoff. After the removal
of the artificial UV divergences, only the dependence on
the physical cutoff remains so that our task is reduced to
quantifying such cutoff scale from the microscopic calcu-
lations. The practical implementation of composite par-
ticles will be presented elsewhere.
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