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The complex scalar dark matter (DM) candidate in the gauged two-Higgs-doublet model, stabilized by a
peculiar hidden parity (h parity), is studied in detail. We explore the parameter space for the DM candidate
by taking into account the most recent DM constraints from various experiments, in particular, the
PLANCK relic density measurement and the current DM direct detection limit from XENON1T. We
separate our analysis in three possible compositions for the mixing of the complex scalar. We first constrain
our parameter space with the vacuum stability and perturbative unitarity conditions for the scalar potential,
LHC Higgs measurements, plus Drell-Yan and electroweak precision test constraints on the gauge sector.
We find that DM dominated by composition of the inert doublet scalar is completely excluded by further
combining the previous constraints with both the latest results from PLANCK and XENON1T. We also
demonstrate that the remaining parameter space with two other DM compositions can be further tested by
indirect detection like the future Cherenkov Telescope Array gamma-ray telescope.
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I. INTRODUCTION

Dark matter (DM) has become one of the most discussed
topics in cosmology, astrophysics, and particle physics.
However, besides the indirect evidence from the power
spectrum from the cosmic microwave background radiation
and the galaxy rotational curves which provide strong hints
for the need of DM, current experiments for DM direct
detection, indirect detection, and collider searches still
show no clue for the nature of DM. Currently, the best
description of the early history of the Universe is given by
the ΛCDM model which assumes the presence of dark
energy and cold DM in additional to the ordinary matter.
The leading hypothesis is that this cold DM is composed of
weakly interacting massive particle (WIMP) that was
thermally produced just like the other Standard Model
(SM) particles in the early Universe. It is well known that
the most compelling feature of WIMP DM is that after
freeze-out whence the DM reaction rates fall behind the
Hubble expansion rate of the Universe, it is possible to
achieve the correct relic abundance with an electroweak

sized annihilation cross section with a WIMP mass of a few
hundred GeV to a few TeV.
On the collider phenomenology side, we now know that

all the major decay modes of the SM 125 GeV Higgs
discovered on July 4, 2012 at the Large Hadron Collider
(LHC) have been observed except the Zγ and μþμ− modes.
So far, all the experimental results agree with the SM
predictions within 10%–15%. Nevertheless, there are still
some rooms for new physics. A particular class of models
that extends simply the scalar sector of the SM to address
new physics is quite popular. Themost well-known example
is the general two-Higgs-doublet model (2HDM), which has
several variants and resulted in very rich phenomenology.
For a review of 2HDM and its phenomenology, see, e.g.,
[1,2]. One of the interesting variants of 2HDM is to impose a
Z2 symmetry in the model so that the second Higgs doublet
is Z2 odd and then can be a DM candidate. This is the inert
Higgs doublet model (IHDM) [3], and many detailed
phenomenological studies [4–27] have been performed over
the years. Furthermore, the idea that this Z2 symmetry
emerges accidentally in a renormalizable gauged two-
Higgs-doublet model (G2HDM) has been explored recently
in [28]. In G2HDM, the two Higgs doublets are grouped
together in an irreducible doublet representation of an extra
non-Abelian SUð2ÞH gauge group. Besides the new hidden
SUð2ÞH, the SMgaugegroup is extended by including a new
Uð1ÞX symmetry. The scalar sector is further extended by
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including a new SUð2ÞH doublet and a triplet, both singlets
under the SM gauge group.
Although any electrically neutral Z2-odd particle in

G2HDM can be considered a DM candidate, such as W0

or heavy new neutrinos, in this work we choose to
concentrate on the phenomenology of the complex scalar
DM candidate. The reason is mainly that we want to present
this model as a viable alternative to IHDM and as such our
setup is focused in providing a light, neutral, and Z2-odd
complex scalar. Another reason is practicality, given that
our setup is complicated enough to distinguish at least
three main types of DM candidates coming only from the
scalar sector due to mixing effects. We will study in detail
the differences, similarities, and results of these three
possibilities. Phenomenologically, we expect all of them
to communicate with the SM through Higgs portal type
interactions [29,30]. However, we will demonstrate that the
SM Z boson as well as its heavier siblings in G2HDM will
also play non-negligible roles as mediators in various DM
processes in relic density, direct and indirect detection,
especially for the inert doubletlike DM case.
In the past, some collider phenomenology of G2HDM

has been studied [31–33]. It was determined that Drell-Yan
type signals may help detect the G2HDM Z0 in the high
luminosity upgrade of the LHC [32] and that enhancement
of pair production of Higgs boson in the LHC is moderate
compared to the SM [33]. In a recent study, it has been
determined that G2HDM has a viable scalar sector param-
eter space [34], compatible with vacuum stability and
perturbative unitarity conditions, as well as Higgs phe-
nomenology constraints from the LHC. The gauge sector is
constrained by electroweak precision tests (EWPT) [35],
setting limits on the masses of the new gauge bosons and
the gauge sector parameter space. It is precisely these two
recent studies on the scalar and gauge sectors constraints
(SGSC) that we will take as starting point for our study,
thus ensuring that the final constrained parameter space is
consistent with previous studies and that our result has a
stronger relevance.
This paper is organized as follows. In Sec. II, we briefly

recall some salient features of the G2HDM model, in
particular the scalar potential and mass spectra. In Sec. III,
we point out after spontaneous symmetry breaking there
exists an accidental discrete Z2 symmetry in the whole
Lagrangian of G2HDM. We classify all the particles in the
model according to whether they are even or odd under this
discrete symmetry, dubbed as h parity. This residual
symmetry forbids the lightest particle in the hidden sector
to decay and hence it, if electrically neutral, may be a cold
DM candidate in the model. We discuss further the
compositions of complex scalar dark matter that is relevant
in this work. In Sec. IV, we discuss the DM constraints
included in our analysis and how they are affected by our
setup in more general terms. We describe how relic density
(RD), direct detection (DD), and indirect detection (ID)

measurements constrain each of the three different com-
positions of complex scalar DM considered. We also
discuss the collider searches of DM from the monojet plus
missing energy search and invisible Higgs decay. In Sec. V,
after a brief description of the methodology used in our
numerical analysis, we present the results of our analysis.
Finally, in Sec. VI, we summarize our findings and
conclude, including a brief comment on future detectability.
Some Feynman rules that are most relevant to the processes
discussed in this work are collected in the Appendix.

II. THE G2HDM MODEL

A. Matter content

The gauge symmetry group of G2HDM expands the SM
gauge group SUð2ÞL × Uð1ÞY by adding a hidden sector of
SUð2ÞH ×Uð1ÞX. In the scalar sector, we have the two
SUð2ÞL Higgs doublets H1 and H2 both paired into an
SUð2ÞH doublet H. The two scalar SM singlets, ΔH and
ΦH, have been put into the triplet and doublet representa-
tions of SUð2ÞH, respectively. In order to construct gauge
invariant Yukawa couplings, new right-handed heavy
fermions have been added as SUð2ÞH companions of the
SM right-handed fermions, pairing both of them together
into SUð2ÞH doublets, but remaining SUð2ÞL singlets.
Anomaly cancellation requires further that we add two
pairs of left-handed heavy leptons and two pairs of left-
handed heavy quarks for each family, all of them are
singlets under both SUð2Þ groups and under Uð1ÞX. We
note that the SUð2ÞH is not the same as the SUð2ÞR in left-
right symmetric models [36,37]. The W0ðp;mÞ in G2HDM
does not carry electric charge, while the W0� in left-right

TABLE I. Matter contents and their quantum number assign-
ments in G2HDM. Note that H here is written explicitly as an
SUð2ÞH doublet and, thus, the T stands for SUð2ÞH transposition.
For doublets of a single SUð2Þ, T stands for transposition under
that same SUð2Þ.
Matter fields SUð3ÞC×SUð2ÞL×SUð2ÞH×Uð1ÞY×Uð1ÞX
H ¼ ðH1; H2ÞT (1, 2, 2, 1=2, 1)

ΔH (1, 1, 3, 0, 0)
ΦH (1, 1, 2, 0, 1)

QL ¼ ðuL; dLÞT (3, 2, 1, 1=6, 0)

UR ¼ ðuR; uHR ÞT (3, 1, 2, 2=3, 1)

DR ¼ ðdHR ; dRÞT (3, 1, 2, −1=3, −1)
LL ¼ ðνL; eLÞT (1, 2, 1, −1=2, 0)
NR ¼ ðνR; νHR ÞT (1, 1, 2, 0, 1)

ER ¼ ðeHR ; eRÞT (1, 1, 2, −1, −1)
νHL (1, 1, 1, 0, 0)

eHL (1, 1, 1, −1, 0)
uHL (3, 1, 1, 2=3, 0)

dHL (3, 1, 1, −1=3, 0)
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symmetric models does. Thus, we use the superscripts p
and m to label them, instead of þ and −. We also note that
nonsterile right-handed neutrinos νlRs introduced in the
mirror fermion models of electroweak scale right-handed
neutrinos [38–40] are in a different manner. In the mirror
fermion models, νlRs are grouped with mirror charged
leptons lMR s to form SUð2ÞL doublets. Here in G2HDM,
they are grouped with new heavy right-handed neutrinos
νHlR to form SUð2ÞH doublets instead. For other related
ideas extending the 2HDM with extra gauge symmetries to
address flavor problem, dark matter, and neutrino masses,
see, e.g., [41–46]. The matter contents of the G2HDM
model and their respective quantum numbers are listed in
Table I.

B. Scalar potential and constraints

1. Scalar potential

For this work, we will be using the scalar potential from
Ref. [34] that extends the original potential of Ref. [28] by
adding two new terms with couplings λ0H and λ0HΦ. The
most general scalar potential that respects the G2HDM
symmetries can be divided into four different parts,

VT ¼ VðHÞ þ VðΦHÞ þ VðΔHÞ þ VmixðH;ΔH;ΦHÞ: ð1Þ

The first term VðHÞ in Eq. (1) consists of the two Higgs
doublets H1 and H2 only and is given by

VðHÞ ¼ μ2HðHαiHαiÞ þ λHðHαiHαiÞ2

þ 1

2
λ0Hϵαβϵ

γδðHαiHγiÞðHβjHδjÞ
¼ μ2HðH†

1H1 þH†
2H2Þ þ λHðH†

1H1 þH†
2H2Þ2

þ λ0Hð−H†
1H1H

†
2H2 þH†

1H2H
†
2H1Þ; ð2Þ

where Greek and Latin letters refer to SUð2ÞH and SUð2ÞL
indices, respectively, both of which run from 1 to 2, and we
use the notation Hαi ¼ H�

αi. From the second line of
Eq. (2), one can clearly see that VðHÞ has the discrete
Z2 symmetry of H1 → H1 and H2 → −H2. Since VðHÞ
contains all the renormalizable terms constructed solely

from H1 and H2, this discrete symmetry is automatically
present. Recall that in general 2HDM, one needs to impose
this discrete symmetry to avoid unwanted terms that may
lead to flavor changing neutral current in the Higgs-
Yukawa interactions at the tree level. The second term
VðΦHÞ is for the SUð2ÞH doublet ΦH only and given by

VðΦHÞ¼ μ2ΦΦ
†
HΦHþλΦðΦ†

HΦHÞ2
¼ μ2ΦðΦ�

1Φ1þΦ�
2Φ2ÞþλΦðΦ�

1Φ1þΦ�
2Φ2Þ2; ð3Þ

where ΦH ¼ ðΦ1;Φ2ÞT. The third term is for the SUð2ÞH
triplet ΔH and is given by

VðΔHÞ ¼ −μ2ΔTrðΔ2
HÞ þ λΔðTrðΔ2

HÞÞ2

¼ −μ2Δ

�
1

2
Δ2

3 þΔpΔm

�
þ λΔ

�
1

2
Δ2

3 þΔpΔm

�
2

;

ð4Þ

where

ΔH ¼
� Δ3=2 Δp=

ffiffiffi
2

p

Δm=
ffiffiffi
2

p
−Δ3=2

�
¼ Δ†

H with

Δm ¼ ðΔpÞ� and ðΔ3Þ� ¼ Δ3: ð5Þ

Furthermore, unlike other models with SUð2ÞL triplet
Higgs, the off-diagonal components Δp;m do not carry
electric charge. We use the subscripts p andm to label them
instead of þ and −, in the same way as the new gauge
bosonsW0ðp;mÞ. Finally, the last term Vmix consists all three
scalars H, ΦH, and ΔH,

VmixðH;ΔH;ΦHÞ
¼ þMHΔðH†ΔHHÞ−MΦΔðΦ†

HΔHΦHÞ
þ λHΦðH†HÞðΦ†

HΦHÞ þ λ0HΦðH†ΦHÞðΦ†
HHÞ

þ λHΔðH†HÞTrðΔ2
HÞ þ λΦΔðΦ†

HΦHÞTrðΔ2
HÞ: ð6Þ

Equation (6) can be expanded further in terms of the
component fields of H, ΔH, and ΦH as follows:

VmixðH;ΔH;ΦHÞ¼þMHΔ

�
1ffiffiffi
2

p H†
1H2Δpþ

1

2
H†

1H1Δ3þ
1ffiffiffi
2

p H†
2H1Δm−

1

2
H†

2H2Δ3

�

−MΦΔ

�
1ffiffiffi
2

p Φ�
1Φ2Δpþ

1

2
Φ�

1Φ1Δ3þ
1ffiffiffi
2

p Φ�
2Φ1Δm−

1

2
Φ�

2Φ2Δ3

�
þλHΦðH†

1H1þH†
2H2ÞðΦ�

1Φ1þΦ�
2Φ2Þþλ0HΦðH†

1H1Φ�
1Φ1þH†

2H2Φ�
2Φ2þH†

1H2Φ�
2Φ1þH†

2H1Φ�
1Φ2Þ

þλHΔðH†
1H1þH†

2H2Þ
�
1

2
Δ2

3þΔpΔm

�
þλΦΔðΦ�

1Φ1þΦ�
2Φ2Þ

�
1

2
Δ2

3þΔpΔm

�
: ð7Þ
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Interestingly, the whole scalar potential VT in Eq. (1) is
invariant under the combined discrete symmetry H1 → H1,
H2 → −H2, Φ1 → −Φ1, Φ2 → Φ2, Δ3 → Δ3, and Δp;m →
−Δp;m. Since VT consists of all renormalization terms
constructed out of H, ΔH, and ΦH, this discrete symmetry
can be viewed as an accidental one in the scalar sector of
the model. In fact, one can extend this discrete symmetry to
the whole renormalizable Lagrangian of G2HDM. We will
discuss this further in Sec. III.

2. Spontaneous symmetry breaking

The gauge symmetry of G2HDM is broken spontane-
ously by the vacuum expectation values (VEVs) of
hH1i ¼ ð0; v= ffiffiffi

2
p ÞT, hΦ2i ¼ vΦ=

ffiffiffi
2

p
, and hΔ3i ¼ −vΔ. In

Ref. [28], we demonstrated that vΔ satisfies a cubic
equation with all coefficients expressed in terms of the
fundamental parameters in the scalar potential. Solutions of
vΔ can be found either analytically or numerically and plug
into the linear coupled equations for v2 and v2Φ that can then
be solved straightforwardly. Since vΔ has three different
roots in general, the correct one will be picked by minimum
energy requirement. Thus, the symmetry breaking of
SUð2ÞL ×Uð1ÞY × Uð1ÞX in G2HDM is induced or trig-
gered by the triplet VEV vΔ which breaks SUð2ÞH. Note
that the sign of μ2Δ is negative with respect to μ2Φ and μ2H. If
μ2Δ > 0, SUð2ÞH is spontaneously broken by the VEV
vΔ ≠ 0. After SUð2ÞH symmetry breaking is triggered, the
vacuum alignment of ΦH is controlled by the quadratic
terms for Φ1 and Φ2 given by

μ2Φ þ 1

2
MΦΔvΔ þ 1

2
λΦΔv2Δ þ 1

2
ðλHΦ þ λ0HΦÞv2; ð8Þ

μ2Φ −
1

2
MΦΔvΔ þ 1

2
λΦΔv2Δ þ 1

2
λHΦv2; ð9Þ

respectively. The parameters MΦΔ, λΦΔ, λHΦ, and λ0HΦ can
be either positive or negative independent of the sign of μ2Φ,
meaning that Eqs. (8) and (9) can be positive and negative,
respectively. One can achieve hΦ1i ¼ 0 and hΦ2i ≠ 0 by
making judicious choices of the parameters. Furthermore,
SUð2ÞL symmetry breaking is controlled by the quadratic
terms of H1 and H2. After expanding the potential, the
coefficients for them are

μ2H −
1

2
MHΔvΔ þ 1

2
λHΔv2Δ þ 1

2
λHΦv2Φ; ð10Þ

μ2H þ 1

2
MHΔvΔ þ 1

2
λHΔv2Δ þ 1

2
ðλHΦ þ λ0HΦÞv2Φ; ð11Þ

respectively. Similar to the ΦH case, the parameters
involved can be either positive or negative independently
of the sign of μ2H, but this time Eqs. (10) and (11) would be
negative and positive, respectively. In this case, the gauge

symmetry SUð2ÞL is broken by the vacuum alignment
hH1i ≠ 0 and hH2i ¼ 0. In our numerical scan for the
parameter space in Sec. V, we will search for parameters
such that Eqs. (8) and (11) are positive while Eqs. (9) and
(10) are negative in order to achieve the desired vacuum
alignment. The μ2H, μ

2
Φ, and μ2Δ parameters will be fixed

using the VEV equations (Eqs. (18)–(20) of Ref. [28]).
Since H1, Φ2, and Δ3 are all even under Z2, the discrete
symmetry is not broken by their VEVs. Therefore, the Z2-
odd H2 can become a DM candidate as long as it is lighter
than all other Z2-odd particles in the model.

3. Theoretical and phenomenological
constraints on the scalar potential

We will begin our analysis by considering the conditions
determined in Ref. [34] for the scalar sector parameter
space. Namely, we want to start with a parameter space that
leaves the scalar potential bounded from below, with
couplings that remain within perturbative unitarity ranges
and make sure that we can actually achieve a sufficiently
SM-like Higgs with a ∼125 GeV mass and that can pass
the limits set by the LHC.
While for the minimum of the potential one checks the

quadratic terms, to ensure that the scalar potential is
bounded from below for large-field values one is mainly
concerned with the quartic terms. In Ref. [34], it was shown
that copositivity criteria [47–49] is enough to find con-
ditions for the potential to be bounded from below and have
a stable vacuum. The copositive conditions are

λ̃HðηÞ ≥ 0; λΦ ≥ 0; λΔ ≥ 0; ð12Þ

ΛHΦðξ; ηÞ≡ λ̃HΦðξÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̃HðηÞλΦ

q
≥ 0;

ΛHΔðηÞ≡ λHΔ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̃HðηÞλΔ

q
≥ 0;

ΛΦΔ ≡ λΦΔ þ 2
ffiffiffiffiffiffiffiffiffiffi
λΦλΔ

p
≥ 0; ð13Þ

ΛHΦΔðξ; ηÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̃HðηÞλΦλΔ

q
þ 1

2
ðλ̃HΦðξÞ

ffiffiffiffiffi
λΔ

p
þ λHΔ

ffiffiffiffiffi
λΦ

p
þ λΦΔ

ffiffiffiffiffiffiffiffiffiffiffiffi
λ̃HðηÞ

q
Þ

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛHΦðξ; ηÞΛHΔðηÞΛΦΔ

p
≥ 0; ð14Þ

where the parameters ξ and η can have any value in the
ranges 0 ≤ ξ ≤ 1 and −1=4 ≤ η ≤ 0.
On the other hand, we have to make sure that our

parameter space remains within perturbative limits. Again,
we look only at quartic couplings since 2 → 2 scattering
processes induced by cubic couplings are suppressed by
their propagators while quartic couplings are not. After
checking all the possible 2 → 2 scattering processes, the
final ranges allowed by perturbative unitarity are
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jλiðM1Þj ≤ 8π; ∀ i ¼ ð1;…; 10Þ;
jλHj ≤ 4π; jλ0Hj ≤ 8

ffiffiffi
2

p
π; j2λH � λ0Hj ≤ 8π; jλΦj ≤ 4π; jλΔj ≤ 4π;

jλHΦj ≤ 8π; jλ̃HΦj ¼ jλHΦ þ λ0HΦj ≤ 8π; jλ0HΦj ≤ 8
ffiffiffi
2

p
π;

jλHΔj ≤ 8π; jλΦΔj ≤ 8π; ð15Þ

where
λ1 ¼ 2λH; λ2 ¼ 2λΦ; λ3 ¼ 2λΔ; λ4;5 ¼ 2λH � λ0H;

λ6;7 ¼ λ̃þH þ λΦ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ02HΦ þ ðλ̃þH − λΦÞ2

q
; ð16Þ

with λ̃þH ≡ λH þ λ0H=2 and λ8;9;10 given by the three roots of the equation λ3 þ aλ2 þ bλþ c ¼ 0 with

a ¼ −5λΔ − 6λΦ − 10λH þ λ0H;

b ¼ −6λ2HΔ − 3λ2ΦΔ þ 5λΔð10λH − λ0H þ 6λΦÞ þ 6λΦð10λH − λ0HÞ − 8ðλHΦ þ λ0HΦ=2Þ2;
c ¼ 36λΦλ

2
HΔ − 24λHΔλΦΔðλHΦ þ λ0HΦ=2Þ þ 40λΔðλHΦ þ λ0HΦ=2Þ2 þ ð3λ2ΦΔ − 30λΔλΦÞð10λH − λ0HÞ: ð17Þ

On the phenomenological side, wewill require the presence of a SMHiggs with a mass of 125.09�0.24GeV and a signal
strength for the Higgs decay into two photos of μγγggH ¼ 0.81þ0.19

−0.18 as found by the ATLAS experiment [50]. For more details
about the theoretical conditions described here, we encourage the interested reader to consult Ref. [34].

C. Mass spectra

1. Higgs-like (Z2-even) scalars

Expanding the scalar potential in terms of the VEVs and taking the second derivatives with respect to the scalar fields,
one can obtain the mass terms and the mixing terms of the scalar fields. The SM Higgs is extracted from the mixing of three
real scalars h, ϕ2, and δ3.

1 The mixing matrix of these Z2-even neutral real scalars written on the basis of S ¼ fh;ϕ2; δ3gT
is given by

M2
0 ¼

0
BB@

2λHv2 λHΦvvΦ v
2
ðMHΔ − 2λHΔvΔÞ

λHΦvvΦ 2λΦv2Φ
vΦ
2
ðMΦΔ − 2λΦΔvΔÞ

v
2
ðMHΔ − 2λHΔvΔÞ vΦ

2
ðMΦΔ − 2λΦΔvΔÞ 1

4vΔ
ð8λΔv3Δ þMHΔv2 þMΦΔv2ΦÞ

1
CCA: ð18Þ

The physical fields with definite mass can be obtained by
doing the similarity transformation to this mixing matrix
via orthogonal rotation matrix, O, in such a way that

OT ·M2
0 ·O ¼ Diagðm2

h1
; m2

h2
; m2

h3
Þ; ð19Þ

where the masses of the fields are arranged in ascending
mannermh1 ≤ mh2 ≤ mh3. The interaction basis S and mass

eigenstates are related through the O mixing matrix via
S ¼ O · fh1; h2; h3gT. In this setup, the 125 GeV Higgs
boson observed at the LHC is identified by the lightest
mass eigenstate h1.
Other Z2-even scalars are massless and would be

Goldstone bosons G�;0 and G0
H which do not mix with

other scalar fields. However, they mix with the longitudinal
components of the gauge fields and will be absorbed
away.

2. Dark (Z2-odd) scalars

The charged Higgs is sitting at the upper component of
H2 which acquires mass from all three VEVs, but it does
not mix with other fields. Since H2 couples to all three
multiplets H1, ΦH, and ΔH, after SSB it acquires tree mass
terms one with each VEV given by

1We follow the notations of [28] shifting the scalar fields as

H1 ¼
� Gþ

vþhffiffi
2

p þ iG0

�
; H2 ¼

�
Hþ

H0
2

�
;

ΦH ¼
� Gp

H

vΦþϕ2ffiffi
2

p þ iG0
H

�
; and ΔH ¼

� −vΔþδ3
2

Δpffiffi
2

p

Δmffiffi
2

p vΔ−δ3
2

�
:
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m2
H� ¼ MHΔvΔ −

1

2
λ0Hv

2 þ 1

2
λ0HΦv

2
Φ: ð20Þ

The complex fields Gp;m
H , H0ð�Þ

2 , and Δp;m
2 also acquire mass terms and mix. On the basis of G ¼ fGp

H;H
0�
2 ;ΔpgT , the

squared mass matrix is given by

M02
0 ¼

0
BB@

MΦΔvΔ þ 1
2
λ0HΦv

2 1
2
λ0HΦvvΦ − 1

2
MΦΔvΦ

1
2
λ0HΦvvΦ MHΔvΔ þ 1

2
λ0HΦv

2
Φ

1
2
MHΔv

− 1
2
MΦΔvΦ

1
2
MHΔv

1
4vΔ

ðMHΔv2 þMΦΔv2ΦÞ

1
CCA: ð21Þ

This matrix has zero determinant, which means that at least
one of the mass eigenstates is massless. Despite complex
fields, the mass matrix in Eq. (21) is real and symmetric; we
can rotate this matrix into its diagonal form through a
similarity transformation with the orthogonal matrix OD,

ðODÞT ·M02
0 ·OD ¼ Diagð0; m2

D;m
2
Δ̃Þ: ð22Þ

The relation between interaction and mass states is
given by G ¼ OD · fG̃p; D; Δ̃gT. The first zero eigenvalue
in Eq. (22) corresponds to G̃p;m, the would-be Goldstone
boson to be absorbed byW0ðp;mÞ, the complex gauge bosons
of SUð2ÞH. Here we assume the hierarchy m2

D < m2
Δ̃. Note

that we strictly avoid degenerate masses to simplify the
analysis when D is the dark matter candidate. However,
from the mass expressions given below, one can see that
very specific parameter choices are necessary to make the
two massive states degenerate. The masses of the two
physical massive eigenstates are given by

M2
D;Δ̃ ¼ −B ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 − 4AC
p

2A
; ð23Þ

where

A ¼ 8vΔ;

B ¼ −2½MHΔðv2 þ 4v2ΔÞ þMΦΔð4v2Δ þ v2ΦÞ
þ 2λ0HΦvΔðv2 þ v2ΦÞ�;

C ¼ ðv2 þ v2Φ þ 4v2ΔÞ½MHΔðλ0HΦv
2 þ 2MΦΔvΔÞ

þ λ0HΦMΦΔv2Φ�: ð24Þ

The lightest state between H� and D, if lighter than
every other Z2-odd state, has the possibility to become the
DM candidate. However, an electrically charged DM
candidate such as H� is undesirable. For this reason, we
will concentrate on parameter space where mH� > mD.

3. Gauge bosons

After SSB, the gauge bosons that acquire mass terms are
the B, X and all the components ofW andW0. The charged
W� gauge bosons remains completely SM-like with its
mass given by MW ¼ gv=2. The W0p ¼ ðW0mÞ� does not
mix with the SM W� and acquires a mass given by

m2
W0ðp;mÞ ¼ 1

4
g2Hðv2 þ v2Φ þ 4v2ΔÞ: ð25Þ

The remaining gauge bosons, B, W3, W03, and X have
mixing terms. We can write their mass terms as a 4 × 4

matrix using the basis V 0 ¼ fB;W3;W03; XgT,

M2
1 ¼

0
BBBBBBB@

g02v2
4

þM2
Y − g0gv2

4
g0gHv2

4
g0gXv2

2
þMXMY

− g0gv2
4

g2v2

4
− ggHv2

4
− ggXv2

2

g0gHv2
4

− ggHv2

4

g2Hðv2þv2ΦÞ
4

gHgXðv2−v2ΦÞ
2

g0gXv2
2

þMXMY − ggXv2

2

gHgXðv2−v2ΦÞ
2

g2Xðv2 þ v2ΦÞ þM2
X

1
CCCCCCCA
; ð26Þ

where MX and MY are the two Stueckelberg mass param-
eters [51–59] introduced for Uð1ÞX and Uð1ÞY , respec-
tively. This mass matrix has zero determinant, meaning that
there is at least one massless state that can be identified with

2See previous footnote for the definitions of these complex
scalars.
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the photon. The remaining three states are massive in
general. One of them, the Z, is related to the SM gauge
boson ZSM, and the other two are the extra gauge bosons Z0
and Z00. As in the neutral scalars case, we can diagonalize
this mass matrix by an orthogonal rotation matrix OG

4×4
such that V 0 ¼ OG

4×4 · fA; Z; Z0; Z00gT. We will also use Zi
with i ¼ 1, 2, 3 for Z, Z0, Z00, respectively, in the following.
As noted in Ref. [35], one can justify the parameter choice
MY ¼ 0 by considering the electric charges of the fermions.
Otherwise, the neutrinos would not be neutral and all the
SM electric charges would receive a correction that grows
with MY . Therefore, hereafter we will consider MY ¼ 0.3

This choice makes possible to rotate the first and second
rows and columns of Eq. (26) (with MY set to 0) using the
Weinberg angle in a SM-like manner. Applying the 4 × 4
rotation

OW ¼

0
BBB@

cW −sW 0 0

sW cW 0 0

0 0 1 0

0 0 0 1

1
CCCA ð27Þ

as ðOWÞT ·M2
1ðMY ¼ 0Þ ·OW , we find the mass matrix

M2
Z ¼

0
BBBBB@

0 0 0 0

0 M2
ZSM − gHv

2
MZSM −gXvMZSM

0 − gHv
2
MZSM

g2Hðv2þv2ΦÞ
4

gXgHðv2−v2ΦÞ
2

0 −gXvMZSM
gXgHðv2−v2ΦÞ

2
g2Xðv2 þ v2ΦÞ þM2

X

1
CCCCCA; ð28Þ

where MZSM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
v=2 is the SM gauge boson ZSM

mass. Given the form of the rotation matrix OW , we can
identify the first component of the basis of this matrix
with the photon, which is immediately massless, and the
second with the ZSM. The new intermediate basis in
this case is V 0

Z ¼ fA; ZSM;W03; XgT. We can rewrite the
original rotation matrix as the product of two matrices
OG

4×4ðMY ¼ 0Þ ¼ OW ·OZ, where the matrix OZ diago-
nalizesM2

Z in Eq. (28). In that case, we can relate the mass
eigenstates with the intermediate states as V 0

Z ¼ OZ·
fA; Z; Z0; Z00gT. Hereafter, we will call OG to the non-
diagonal 3 × 3 part ofOZ, such thatOZ

jþ1;kþ1 ¼ OG
j;k with j

and k ¼ 1, 2, 3, as explicitly shown in Eq. (6) of Ref. [35].
Note that the photon A remains the same between the
intermediate states V 0

Z and the mass eigenstates. This
necessarily means that the only nonzero element in the
first column and row of OZ is OZ

1;1 ¼ 1.
Interestingly, the only gauge boson that acquires mass

contributions from the three nonzero VEVs is the W0ðp;mÞ
with its mass given in Eq. (25).

III. ACCIDENTAL DISCRETE SYMMETRY (h
PARITY) AND DARK MATTER CANDIDATE

As mentioned in the previous section, the stability of the
scalar dark matter candidate in this model is protected by
the accidental discrete Z2 symmetry in the scalar potential
which is automatically implied by the SUð2ÞL ×Uð1ÞY ×
SUð2ÞH ×Uð1ÞX gauge symmetry. Due to its special
vacuum alignment where the H2 field does not acquire a
VEV, the accidental Z2 symmetry remains intact after SSB.
It was argued in [28] that there is no gauge invariant higher
dimensional operator that one can write down which can

lead to the decay of DM candidate in G2HDM. The
presence of the accidental discrete Z2 symmetry after
SSB reinforces such argument.
This discrete Z2 symmetry in G2HDM that we observe

here is kind of peculiar in the sense that different compo-
nents of the SUð2ÞH doublets H and ΦH, and triplet ΔH
have opposite parity. Thus, for dark matter physics, it is
mandatory to give VEVs to those scalars with even parity.
Otherwise, the Z2 symmetry will be broken spontaneously
which will lead to no stable DM as well as the domain wall
problem in the early Universe. Another peculiar feature of
this Z2 symmetry is that it acts on the complex fields. We
will refer this accidental discrete Z2 symmetry as the
hidden parity (h parity) in G2HDM in what follows.
This h parity can actually be extended to the whole

renormalizable Lagrangian of G2HDM, including the
gauge, scalar, and Yukawa interactions. For example, while
the SM W� and all the neutral gauge bosons γ, Zi are
always coupled to a pair of SM fermions f̄fð0Þ or a pair of
new heavy fermions f̄Hfð0ÞH, theW0ðp;mÞ always couples to
one SM fermion and one new heavy fermion f̄Hf0 or f̄f0H.
Similar features can be observed in the gauge-Higgs sector
and the Yukawa couplings in G2HDM. For instance, while
γ, Zi, and W� are always coupled to a pair of Z2-even
scalars or a pair of Z2-odd scalars, the W0ðp;mÞ always
couples to one Z2-even and one Z2-odd scalars. Also, hi

3Note that with both vanishingMX andMY , the mass matrix in
Eq. (26) will have two zero eigenvalues and one would enjoy to
have two unbroken Uð1Þ s. One of them is the familiar photon,
while the other can be identified as the dark photon. With just one
nonzero MX , the remaining local symmetry is the electromag-
netism Uð1ÞEM.
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always couples to either f̄f or f̄HfH, while for the new
Yukawa couplings, the dark matter D ðD�Þ always couples
with ūuH and d̄Hd (ūHu and d̄dH) and the charged Higgs
Hþ ðH−Þ always couples with ūdH and ūHd (d̄Hu and d̄uH),
etc. Therefore, besides the Z2-even/-odd scalars discussed
in the previous section, one is naturally led to assignW0ðp;mÞ

and all new heavy fermions fH to have odd h parity, and all
SM gauge particles including the additional neutral gauge
bosons to have even h parity. A summary of the h parity for
all the fields in G2HDM is collected in Table II.
Thus, besides the two well-known accidental global

symmetries of baryon number and lepton number inherited
from the SM, there is also an accidental discrete Z2

symmetry in G2HDM. Other than protecting the stability
of the lightest electrically neutral Z2-odd particle to give
rise to a DM candidate, this accidental Z2 symmetry also
provides natural flavor conservation laws for neutral
currents [60,61] at the tree level for the SM sector in
G2HDM [28], as described in the previous paragraph.
While it is important to unravel if the h parity in G2HDM
has a deeper origin from a larger theoretical structure, for
example, like grand unification or supersymmetry or brane
world, we will not pursue further here.
In principle, any electrically neutral Z2-odd neutral

particle can be a DM candidate (e.g., the heavy neutrinos
νH, the complex scalar mass eigenstate D, and the gauge
boson W0ðp;mÞ). In this work, we focus on the lightest Z2-
odd complex scalar fieldD. From Eq. (21), we know thatD
is a linear combination of the interaction states Gp

H, H
0�
2 ,

and Δp. Using G ¼ OD · fG̃p;D; Δ̃gT, we can write this
linear combination as

D ¼ OD
12G

p
H þOD

22H
0�
2 þOD

32Δp; ð29Þ

where OD
ij represents the ði; jÞ element of the orthogonal

matrix OD. The actual values of the elements of this matrix
depend on the actual numerical values of the parameters
in Eq. (21).
Since a particular dominant component cannot be inferred

from Eq. (21) together with the constraints presented in
Sec. II B, we take the approach of considering three different
main compositions. Using the rotation matrix elements,
we can define the Gp

H, H0�
2 , and Δp compositions as

fGp ¼ ðOD
12Þ2, fH2

¼ ðOD
22Þ2, and fΔp

¼ ðOD
32Þ2, respec-

tively, satisfying fGp þ fH2
þ fΔp

¼ 1. Our results will be
classified in three different cases as follows:

(1) Inert doubletlike DM for fH2
> 2=3.

(2) SUð2ÞH tripletlike DM for fΔp
> 2=3.

(3) SUð2ÞH Goldstone bosonlike DM for fGp > 2=3.
To avoid cluttering in the following, we will use the more
concise terms doubletlike, tripletlike, and Goldstone-like
DM to refer to the above cases of 1, 2, and 3, respectively.
In order to realize any one of the three cases of the DM

discussed above, one needs to have its diagonal element in
the mass matrix given by Eq. (21) to be the lightest, while
its mixings with the other two off-diagonal elements are
small. However, the mixing among the other two can be
arbitrary. Take the Goldstone-like DM as an example. It is
easy to note that the (1,1) and (3,3) elements of the mass
matrix in Eq. (21) have a see-saw behavior controlled by
the value of vΔ. The (2,2) element remains almost unaf-
fected thanks to the term proportional to large v2Φ.
Goldstone-like DM is characterized by a large value in
the (1,1) element of Eq. (21) when compared to the (1,2)
and (1,3) elements, given by λ0HΦvvΦ=2 and −MΦΔvΦ=2,
respectively, so as to suppress the mixing effects. The size
of the (1,2) element is not relevant since it is proportional to
the smaller term vvΦ as compared with both the (1,1) and
(2,2) elements which are always much larger. The differ-
ence in size between the (1,1) and (1,3) elements is best
measured by taking the ratio between them, which is
roughly about 2vΔ=vΦ. In other words, the vΔ=vΦ ratio
controls the Goldstone boson composition of the DM mass
eigenstate. This is illustrated in Fig. 1, where the correlation
between the ratio vΔ=vΦ and the composition mixing
parameter fGp is shown for all DM types. The small arc
in the correlation curve with fGp > 2=3 is highlighted by
red color, indicating only a small parameter space is

FIG. 1. Correlation between the ratio vΔ=vΦ and the compo-
sition mixing parameter fGp for all the DM types after applying
constraints from the scalar and gauge sectors.

TABLE II. Classification of all the fields in G2HDM under
h parity.

Fields h parity

h, G�;0, ϕ2, G0
H , δ3, f, W

μ
1;2;3, Bμ, Xμ, Wμ0

3 , G
μa 1

Gp;m
H , H0

2, H
0�
2 , H�, Δp;m, fH , W

μ0
1;2

−1

CHEN, LIN, NUGROHO, RAMOS, TSAI, and YUAN PHYS. REV. D 101, 035037 (2020)

035037-8



allowed for Goldstone-like DM. Note that when the ratio
vΔ=vΦ grows close to 1, EWPT disfavors the presence of
relatively light Z0 state with larger mixing with the SM Z.
Values of fGp larger than ∼0.8 are accessible only through
negative MΦΔ, resulting in tachyonic DM mass. Therefore,
to realize a Goldstone-like DM with fGp > 2=3 in the
following numerical analysis, one needs to do some fine-
tunings in the parameter space. For the inert doubletlike and
tripletlike DM, no fine-tunings are required.

IV. DARK MATTER EXPERIMENTAL
CONSTRAINTS

To determine WIMP DM properties, one can
measure the DM-SM interactions via several approaches.
Conventionally,DMdirect detection,DMindirect detection,
and collider search are used for the hunting forDM.Thus far,
null signalswere reported fromall these experimental efforts
and only allowed regions have been shown in the DMmodel
parameter space. On the other hand, the DM relic density
measurement can indeed give a signal region which can
constrain the parameter space of DM model in a significant
way. Hence, our strategy is to determine the parameter space
in G2HDM allowed by the current relic density measure-
ment, and the limits deduced fromDMdirect detection, DM
indirect detection, and collider search (at the LHC). In this
section, we briefly describe each of these experimental
constraints used in this analysis.

A. Relic density

It is fascinating to wonder about the thermal history of
DM based on all our current knowledge of physics. The
simplest scenario is that a WIMP maintains its thermal
equilibrium with the SM sector before freeze-out and the
DM number density can be described by a Boltzmann
distribution. Therefore, the DM mass determines its abun-
dance before freeze-out. As in most WIMP theories, owing
to the small DM-SM couplings, the relic density comes out
too large and the correct abundance can be only achieved
by some specific mechanisms. The mechanisms to reduce
the thermal DM relic density in the G2HDM can be both
from DM annihilation and also from coannihilation with
heavierZ2-odd particles. Coannihilation only happens if the
next lightest Z2-odd particles are slightly heavier than DM
(usually≲10%) so that its number density at the temperature
higher than freeze-out does not suffer a large Boltzmann
suppression. In our setup, the heavier Z2-odd scalar Δ̃, the
chargedHiggs, new heavy fermions, or gauge bosonW0ðp;mÞ
can coannihilatewith the DMcandidateD. Additionally, the
SM Higgs and Z resonance can play an important role for
the doubletlike DM while there is no Z resonance in the
tripletlike and Goldstone-like DM cases because both ΔH
and ΦH are SM singlets. As we will see later, the couplings
betweenDMand someof themediators inG2HDMcould be
suppressed by mixings or cancellations.

The scalar Δ̃ and the DM candidate D come from the
same mass matrix. The splitting between their masses is
mostly controlled by the second term in the numerator of
Eq. (23). Hence, coannihilation between DM and Δ̃ can
only happen if MΦΔ ≳Oð10 GeVÞ and vΦ ≳ 70 TeV.
However, this condition also makes DM masses at around
Oð1 TeVÞ or larger.
For the doubletlike DM case, the mass of the DM

candidate is close to the mass of the charged Higgs with
the splitting approximately given by

m2
H� −m2

D ≈ −
1

2
λ0Hv

2 ð30Þ

in the approximation where DM mass is dominated by the
(2,2) element of the matrix in Eq. (21). For tripletlike DM,
the mass differences between D and the other heavy Z2-
odd scalars are usually large enough so that coannihilation
can be avoided. Coannihilation between D and W0 occurs
for DM mass closing to W0 mass which is heavy due to
large vΦ. As for the resonance, only h1 and h2 resonances
are present. Due to ΔH being an SM singlet, any D
annihilation through Z-boson like mediator is suppressed
by mixings.
To compare against experimental data, we will consider

the latest result from the PLANCK Collaboration [62] for
the relic density, Ωh2 ¼ 0.120� 0.001. In particular, we
will require the parameter space of G2HDM to reproduce
this well-measured value with a 2σ significance.

B. Direct detection

The most recent constraint for DM direct search is given
by the XENON1T Collaboration [63]. The null signal result
from this search puts the most stringent limit on DM-
nucleon cross section so far, especially for the DMmass that
lies between10 and100GeV.TheXENON1TCollaboration
excluded DM-nucleon elastic cross sections above
10−46 cm2 for a DM particle with mass around 25 GeV.
In models with isospin violation (ISV), DM interactions

with proton and neutron can be different and the ratio
between the DM-neutron and DM-proton effective cou-
plings, fn=fp, can have values that differ from 1 signifi-
cantly depending on the model parameters. In particular,
for a target made of xenon, the ratio fn=fp ≈ −0.7
corresponds to maximal cancellation between proton and
neutron contributions [64].
For instance, if DM interacts with nucleons mediated by

the Z boson, the strength is characterized by the electric
charge and the third generator T3 of SUð2ÞL group. The
vectorial coupling of quark q (u or d type) to the SM Z
boson in G2HDM is

gVq̄qZ ¼
i
2

�
g
cW

ðT3−2Qqs2WÞOG
11þgHT 0

3O
G
21þgXXOG

31

�
:

ð31Þ
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Due to different Qq, T3, T 0
3, and X charges, this coupling is

expected to vary depending on the quark q being u or d
type. Hence, the Z boson interacts with proton and neutron
differently and the fn=fp can be different from 1. For the
case of DM with a non-negligible doublet composition, we
found that DM can couple to proton or neutron differently
via Zi boson exchange and it leads to ISV.
Generally speaking, exact cancellation between neutrons

and protons is expected to be in a tiny region of parameter
space. Nevertheless, the G2HDM doubletlike DM can have
a much wider distribution of fn=fp. Furthermore, a more
subtle interference between the contributions from neutral
gauge and Higgs boson exchange can result in two different
scattering cross sections for DM (D) and anti-DM (D�) with
neutrons. Such a difference may compensate for any
cancellation caused by ISV. While one can expect a
negligible cancellation from ISV effects in most of the
G2HDMparameter space,we consider these effects in all the
DM scenarios. To include ISV effects, one has to compute
the DM-nucleus elastic scattering cross section σDN ,

σDN ¼ 4μ2A
π

½fpZ þ fnðA − ZÞ�2; ð32Þ

where N stands for a nucleus with mass number A and
proton number Z. For definiteness, we will ignore all the
isotopes of xenon and fix A and Z to 131 and 54,
respectively, in this work. We obtain the effective couplings
fp and fn by using micrOMEGAs [65]. The DM-nucleon
reduced mass is denoted as μA ¼ mDmA=ðmD þmAÞ. On
the other hand, the limit published by XENON1T is for the
nucleon with isospin conserving assumption fn ¼ fp. To
reconstruct the XENON1T results at the nucleus level for
general value of the ratio fn=fp, we use the following
expression:

σX1TDN ¼ σSIp ðX1TÞ ×
μ2A
μ2p

×

�
Z þ fn

fp
ðA − ZÞ

�
2

; ð33Þ

where μ2p is the DM-proton reduced mass. In this work, we
use Eq. (33) to constrain our direct detection prediction.
Since we are dealing with complex scalar DM, we need

to consider the anti-DM interaction with the nucleon. The
DM-nucleon interaction and anti-DM-nucleon interaction
in general can be quite different. When the mediators are
heavy enough, one can integrate them out to obtain
effective interactions for the DM and nucleon. The spin
independent interaction for complex scalar DM can be
written in terms of effective operator as [66]

LD¼ 2λN;eMDDD�ψ̄NψN þ iλN;oðD�∂μ

↔
DÞψ̄Nγ

μψN; ð34Þ

where the ψN , λN;e, and λN;o denote the nucleon field
operator, the coupling of even operator, and the coupling of

odd operator, respectively. The effective coupling of DM
(anti-DM) with the nucleon is given by

λN ¼ λN;e � λN;o

2
; ð35Þ

where the plus (minus) sign stands for DM-nucleon (anti-
DM-nucleon) interaction. The first term in the right-hand
side of Eq. (34) represents the even operator interaction
between DM and the nucleon. It is called even operator
because when one exchanges D with D�, the interaction
stays the same. On the other hand, under a similar exchange
between D and D�, the second term flips sign. Thus, it is
called odd operator. As a result, the interaction strength
between DM-nucleon and anti-DM-nucleon will not be the
same and it is given by Eq. (35). Hence, the numerical value
of σD�N is in general not equal to σDN given by Eq. (32)
because the effective couplings fp and fn for D are not the
same as those for D�.
The Feynman diagrams of the dominant contribution to

describe DM-quark interactions in the G2HDM are shown
in Fig. 2. The left panel is the t channel with three Higgs
bosons exchange, while the right panel is the t channel with
three neutral gauge bosons exchange. Thus, G2HDM
captures the features from both the Higgs-portal and
vector-portal DM models in the literature.
Note that the doubletlike DM in this model has a large

scattering cross section because the vertex DD�Z is
governed by the SM coupling as shown in Eq. (A2) and
hence not suppressed by any mixing angle. Due to the
additional contributions from other heavy gauge bosons
(Z0 and Z00), the DM-neutron cross section is 3 orders of
magnitude larger than the DM-proton cross section. This
ISV effect is also observed in tripletlike DM (Δp), but the
ISV occurs mildly due to the mixing suppression between
the DM (Δp) and Z coupling. This suppression makes the
Z exchange contribution comparable with Z0 and Z00, as
well as the contribution from the SM Higgs h1 exchange.

C. Indirect detection: gamma ray from dSphs

Excluding the early Universe, DM at the present may
also annihilate to SM particles significantly at the halo
center where DM density is dense enough to produce

FIG. 2. The dominant Feynman diagrams with the Z2-even
Higgs bosons (left) and neutral gauge bosons (right) exchange for
direct detection of DM.
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cosmic rays or photons which can be distinguished from
those standard astrophysical background. Such a measure-
ment is known as DM indirect detection. As long as indirect
detection constraints are concerned, the continuum gamma-
ray observations fromdwarf spheroidal galaxies (dSphs) can
usually place a robust and severe limit on the DM annihi-
lation cross section for DMmasses larger than 10 GeV [67].
This is owing to two advantages of searching DM at the
dSphs. First, the dSphs provides an almost background-free
system because they are faint but widely believed to be DM
dominated systems. Second, their kinematics can be pre-
cisely measured; hence, the systematical uncertainties from
DM halo can be controlled. Therefore, in this work, we will
only use the dSphs constraints implemented in LikeDM [68]
to evaluate the χ2 statistics of ourmodel based on Fermi Pass
8 data (photon counts), recorded from August 4, 2008 to
August 4, 2015. The two-dimensional 2σ criteria is taken to
be Δχ2 ¼ 5.99 in our study.
The standard gamma-ray fluxes produced from DM

annihilation at the dSphs halo is given by

dΦγ

dEγ
¼ hσvi

8πm2
D
× J ×

X
ch

BRðchÞ × dNch
γ

dEγ
; ð36Þ

where J ¼ R
dldΩρðlÞ2 is the so-called J factor, which

integrates along the line-of-sight l with the telescope
opening angle given by Ω. The DM density distribution
is denoted as ρðlÞ. Here, we take 15 dSphs and their J
factors as the default implementation in LikeDM. The index
ch runs over all the DM annihilation channels. The
annihilation branching ratio BRðchÞ and energy spectra
dNch

γ =dEγ are computed by using micrOMEGAs and PPPC4
[69], respectively.
Similar to Higgs portal models, an inert Higgs DM in our

setup can only annihilate to the SM fermions via Higgs
portal or Z boson. On the other hand, if the DM is heavier
than mW , then the four points interaction DD�WþW− can
have a higher photon flux to be tested.

D. Collider search

1. Monojet search

DM particles could be produced copiously at colliders.
Unfortunately, DM cannot be detected on its own since it
would pass through detectors without leaving any trace.
Therefore, one should look for the DM production asso-
ciated with visible SM particles. At the LHC, the signal of
an energetic jet from initial state radiation that balances the
momentum of undetected DM, usually referred to monojet
signal, is one of the sensitive channels to the search for DM.
As shown in Fig. 3, the DM pairs are mainly produced in
the Feynman diagrams with the exchanges of Z2-even
Higgs bosons and neutral gauge bosons in the G2HDM.
For numerical study, we take the parameters allowed by
EWPT [35] and the XENON1T constraints (to be discussed

in Sec. V) and find out that the cross sections are far below
the current limits set by ATLAS [70] and CMS [71]
Collaborations at the LHC. Therefore, the monojet search
would not play any significant role in determining the
viable parameter space for DM in G2HDM.

2. Invisible Higgs decay

The Higgs boson will decay into a pair of DMs when the
DM is lighter than half its mass. This decay channel is
known as the invisible decay of the Higgs boson. At tree
level in G2HDM, the partial decay width of the Higgs
boson to pair of dark matter, h1 → DD�, is given by

Γðh1 → DD�Þ ¼ ðOD
32Þ4

16πmh1

λ2DD�h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
D

m2
h1

s
; ð37Þ

where the λDD�h1 coupling depends on the composition of
the h1. For example, for the tripletlike DM case, it can be
deduced from Eq. (A6), viz.,

λDD�h1 ≈O11λHΔvþO21λΦΔvΦ − 2O31λΔvΔ: ð38Þ

Currently, the upper limit on the Higgs invisible decay
branching ratio is rather loose, about 24% at 95% C.L. [72]
at the LHC. Taking mD ≪ mh1 together with SM Higgs
total decay width of 13 MeV [72], the LHC limit implies an
upper bound,

ðOD
32Þ2λDD�h1 < 5.099 GeV: ð39Þ

However, we found this limit is not as stringent as DM
direct detection unless mD ≲ 10 GeV where DM recoil
energy is below the XENON1T threshold.

FIG. 3. The representative Feynman diagrams of leading
contributions for monojet at the LHC in the G2HDM, where
hi ¼ h1, h2, h3 and Zi ¼ Z, Z0, Z00.
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V. NUMERICAL ANALYSIS AND RESULTS

A. Methodology

In order to keep consistency with previous G2HDM
studies, in particular the scalar sector constrains presented
in [34], we will perform random scans to generate a sample
of points consistent with all the conditions mentioned there.
In our case, we will not keep vΦ fixed. Due to Z0 search
constraints [35], we start our scan range at vΦ ¼ 20 TeV.
Considering the energy scale for future colliders, we scan
vΦ up to 100 TeV.4

Wewill complete the scan with the free parameters of the
gauge sector gH and gX, while fixing the Stueckelberg mass
parameter MX ¼ 2 TeV corresponds to the heavy MX
scenario discussed in [35]. We will keep the gH coupling
below 0.1 to avoid the Drell-Yan constraints. The lower
bound of gH will be decided point by point such that theW0
boson is heavier than DM D. From Eq. (25), we can obtain
a condition for the minimum value of gH,

gHmin ¼
2mDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ v2Φ þ 4v2Δ
p : ð40Þ

Additionally, we will require that the gauge bosons
Z0 and Z00 are both heavier than the SM-like Z and that
the latter has a mass within its 3σ measured value
of 91.1876� 0.0021 GeV.
To keep heavy fermions above detection limits, we will

consider their masses to be no less than 1.5 TeV from the
searches of supersymmetric colored particles quoted in the
Particle Data Group [73] or 1.2 ×mD from coannihilation
consideration. In addition, we want to keep the new
Yukawa couplings, related to the new heavy fermion
masses generically by5 mfH ¼ yfHvΦ=

ffiffiffi
2

p
, to be reasonably

small in order to minimize their effects on perturbative
unitarity and renormalization group running effects.
Therefore, we use the following formula to determine
the appropriate Yukawa couplings for each point in our
scan:

yfH ¼ max

�
1.5 TeV

vΦ=
ffiffiffi
2

p ;min

�
1.2mD

vΦ=
ffiffiffi
2

p ; 1

��
: ð41Þ

Given the size of vΦ and the fact that mD has to be the
lightest Z2-odd particle, we expect that Eq. (41) to easily
remain below 1 for all our parameter space. Thus, in this

setup, one expects most coannihilation contributions come
from other Z2-odd particles such as Δ̃, H�, and W0.
From these two steps, we collect ∼5 million points that

include numerical values for model parameters, and
results from scalar and gauge bosons masses, and the
elements of three mixing matrices O, OD, and OG. We
pass these numbers to micrOMEGAs [65] to calculate relic
density, DM-nucleon cross section, and annihilation cross
section at present time. Finally, the annihilation cross
section and annihilation channels composition are passed
to LikeDM [68] for the calculation of indirect detection
likelihood.
Due to the notably less abundant nature of doubletlike

solutions compared to the other two compositions of DM,
a scanning dedicated to find doubletlike solutions was
made. For aMHΔ ≪ vΔ, we can make the (2,2) entry in the
mass matrix in Eq. (21) smaller than the (3,3) one with the
condition

λ0HΦ <
MΦΔ

2vΔ
: ð42Þ

Applying this condition increases the abundance of solu-
tions where the lightest complex scalar composition is
dominated by H0�

2 . This explains the far more limited scan
range for the parameter λ0HΦ for the doubletlike DM case.
The complete set of parameters scanned and their ranges
can be found in Table III.
Note that in Table III, the different ranges forMHΔ,MΦΔ,

vΔ, and vΦ are selected for the three cases so that we can
easily find the corresponding DM composition. In particu-
lar, the very different and smaller fine-tuned ranges of vΔ
and vΦ in the Goldstone-like column are due to this
composition being present for vΔ=vΦ ≈ 0.8 but limited
by EWPT to be less than ∼0.9, as demonstrated earlier near
the end of Sec. III.
Before embarking upon the numerical results, we

make some comments on the Sommerfeld enhance-
ment [74,75] in the DM annihilation cross section for
indirect detection which may be important whenever
mχ=mM > 4π=g2. Here mχ and mM denote the masses
of the fermionic DM χ and vector mediator M,
respectively, and g is the gauge coupling. In G2HDM,
the DM is a complex scalar D and the mediators can be
either the Higgses hi or neutral gauge bosons Zi. Since
all their masses are quite massive and not too distinct
from each other, we do not expect significant
Sommerfeld enhancement in G2HDM. Certainly, a more
decent study is necessary in order to provide a definite
answer. Furthermore, we will see in our analysis below
that the direct detection limit from XENON1T will
provide more stringent constraints than the current
indirect detection results from Fermi-LAT. We will
ignore such effects in the present analysis.

4For the Goldstone-like DM scenario, the scan range of vΦ is
fine-tuned to a smaller range from 20 to 28 TeV in order to realize
this scenario.

5We note that while the Yukawa couplings among the SM
fermions and the neutral Higgses maintain flavor diagonal in
G2HDM, the new Yukawa couplings are in general not. For
simplicity, we have set the unitary mixing matrices among
different flavors of heavy and SM fermions in the new Yukawa
couplings with the Z2-odd scalars to be the identity matrix.
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B. Results

To ease the discussion of our numerical results, it is
useful to divide the DM mass range into several regions as
follows:

(i) Light DM mass region where annihilation final
states of cc̄ and τþτ− are opened

(ii) The resonance region where DM mass is close to
SM Z or Higgs resonance.

(iii) The intermediate DM mass from Higgs resonance
mh1=2 to ∼500 GeV where DM mainly annihilates
to WþW− and ZZ.

(iv) The heavy DM mass larger than 500 GeV.

1. Inert doubletlike DM

The doubletlike DM in G2HDM is similar to the IHDM
case in the limit where the scalar (S) and pseudoscalar (P)
components in H0

2 are mass degenerate. We show the
scatter plot for the relic density dependence on the DM
mass in the left panel of Fig. 4. Similar to Refs. [13,76],
there are several different annihilation mechanisms gov-
erning different DM mass regions. However, the observed

TABLE III. Parameter ranges used in the scans mentioned in the text. MX is fixed at 2 TeV in this work and MY is set to be zero
throughout the scan.

Parameter Doubletlike Tripletlike Goldstone-like

λH [0.12, 2.75] [0.12, 2.75] [0.12, 2.75]
λΦ [10−4, 4.25] [10−4, 4.25] [10−4, 4.25]
λΔ [10−4, 5.2] [10−4, 5.2] [10−4, 5.2]
λHΦ [−6.2, 4.3] [−6.2, 4.3] [−6.2, 4.3]
λHΔ [−4.0, 10.5] [−4.0, 10.5] [−4.0, 10.5]
λΦΔ [−5.5, 15.0] [−5.5, 15.0] [−5.5, 15.0]
λ0HΦ [−1.0, 18.0] [−1.0, 18.0] [−1.0, 18.0]
λ0H [−8

ffiffiffi
2

p
π, 8

ffiffiffi
2

p
π] [−8

ffiffiffi
2

p
π, 8

ffiffiffi
2

p
π] [−8

ffiffiffi
2

p
π, 8

ffiffiffi
2

p
π]

gH [See text, 0.1] [See text, 0.1] [See text, 0.1]
gX [10−8, 1.0] [10−8, 1.0] [10−8, 1.0]
MHΔ=GeV [0.0, 15000] [0.0, 5000.0] [0.0, 5000.0]
MΦΔ=GeV [0.0, 5.0] [−50.0, 50.0] [0.0, 700]
vΔ=TeV [0.5, 2.0] [0.5, 20.0] [14.0, 20.0]
vΦ=TeV [20, 100] [20, 100] [20, 28.0]

FIG. 4. Doubletlike DM SGSC allowed regions projected on (mD, ΩDh2) (left) and (mD, σSIn ) (right) planes. The gray area in the left
panel has no coannihilation or resonance. The gray area in the right panel is excluded by PLANCK data at 2σ.
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relic abundance ΩDh2 ≈ 0.1 only occurs at around mD ∼
10 GeV and mD > 500 GeV.
In the following, we discuss in more detail the DM

annihilations for this inert doubletlike DM case in the four
DM mass regions (i)–(iv) consecutively.

(i) First, the DM masses that lie between 1 and 10 GeV
whose major contributions of the DM annihilation
cross section are given by DD� → cc̄ and τþτ− via
s-channel SM Higgs exchange. Despite of the small
c and τ Yukawa couplings, the cross section can be
slightly enhanced by the relatively big DD�hi
coupling, as given in Eq. (A4). Thanks to large
values for λHΦvϕ and λHΔvΔ. However, the total
cross section is too small to bring the relic density in
this mass range closer to the PLANCK measure-
ment. Due to the opening of the DD� → bb̄ channel
and its larger Yukawa coupling, the correct relic
density can be obtained for DM masses between 11
and 20 GeV.

(ii) When DM mass is around half the Z mass, the Z
exchange diagram becomes very efficient and the
enhancement in resonant annihilation brings the
relic density well below 0.12 of the PLANCK
measurement. We note that DD�Zi couplings are
unique in G2HDM due to the nature of complex
scalar. In IHDM, the DM can be either the real or
imaginary parts of H0

2 ¼ Sþ iP, in which case
neither the SSZ nor PPZ coupling is present.
Similarly, it also happens for DM mass at around
half the SM Higgs mass, where again, enhanced
annihilation rate through Higgs exchange brings the
relic density even lower.

(iii) If DM mass is increased above half the SM Higgs
mass (mh1=2 < mD < 500 GeV), the Higgs reso-
nance is no longer efficient. However, once the
gauge boson final state, especially WþW−, opens
(mD > mW), the total cross section is governed by
the process DD� → WþW−. The relevant diagrams
for this process are the four-point interaction
DD�WþW−, s channel mediated by each hi and
each Zi gauge bosons, and t and u channels with
charged Higgs mediator. The dominant channel is
the s channel through lightest Higgs h1 (not efficient
but non-negligible) and second lightest Higgs h2
exchange. The third Higgs h3 is too heavy and not
relevant. Thus, the annihilation cross section is
determined by the DD�h1 and DD�h2 couplings.
These two couplings have terms proportional to each
of the three VEVs [see Eq. (A4)], which are usually
too large in order to have enough relic density at the
DM mass region below 500 GeV. As a result, the
observed relic density (within 2σ region) cannot be
satisfied in this regime as one can see in the left
panel of Fig. 4. The other three final states opening
in this intermediate mass range are ZZ, h1h1, and tt̄,

which are all subdominant compared with the
WþW− final state.

(iv) Finally, in the heavy mass region (mD > 500 GeV),
the dominant final states are from the longitudinal
components of the gauge bosons, namely Wþ

LW
−
L

and ZLZL. For ZLZL final state, there is an exact
cancellation between the four-point contact inter-
action diagram and the t and u channels of D
exchange diagrams. The sum of these three diagrams
is proportional to ðsþ tþ u − 2m2

D − 2m2
ZÞ and

hence vanishes identically due to kinematical con-
straint. Thus, the remaining diagrams for DD� →
ZLZL are given by the s-channel hi exchange which
lead to S-wave total cross section in the nonrelativ-
istic limit. There is a similar cancellation between
the four-point contact interaction diagram and the t-
channel charged Higgs exchange diagram for the
Wþ

LW
−
L final state. The sum of the amplitudes from

these two contributions is given by

Að4-ptþCharged HiggsÞ

≈
e2ðOD

22Þ2
2m2

Ws
2
W

�ðs − 2m2
WÞ

2
þ ðt −m2

DÞ2
ðt −m2

H�Þ
�
; ð43Þ

where t ¼ m2
D þm2

W − s=2. Clearly, when s is
sufficiently large such that all masses can be ignored
and t ∼ −s=2, the above amplitude vanishes. How-
ever, one notes that if D −H� coannihilation hap-
pens for this heavy DM mass region, i.e., when
mD ≃mH� , the above amplitude also vanishes.
Thus, in the heavy DM mass region, where the D −
H� coannihilation occurs, the dominant diagrams
that contribute to DD� → Wþ

LW
−
L are the hi and Zi

exchanges which give rise to S- and P-wave total
cross sections, respectively, in the nonrelativistic
limit. We can also conclude that the total cross
sections for DM annihilation into both Wþ

LW
−
L and

ZLZL final states in G2HDM are consistent with
unitarity [77].

In the right panel of Fig. 4, we show the scatter plot for
the spin independent direct detection cross section versus
the DM mass. The interactions between DM and nucleons
are mediated by t-channel hi and Zi boson exchange, with a
small contribution from u-channel heavy fermion
exchange. Due to the SUð2ÞL ×Uð1ÞY charge of the inert
doublet H2, the doubletlike DM-nucleon cross section is
dominated by Z exchange. As one can see in the plot, the
doubletlike DM in G2HDM predicts a typical value of the
cross section of order 10−38 cm2. It can be excluded by
XENON1T [63] and CRESST-III [78] down to DM masses
above 2 GeV. For the points below 2 GeV that survive the
CRESST-III constraint, the predicted relic abundance is
always higher than the measured PLANCK value.
Regarding the ISV effects, we check that jfn=fpj remains
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typically 3 orders of magnitude far away from the maximal
cancellation value of fn=fp ≈ −0.7. Therefore, there is
no noticeable reduction in the nucleon-level DD cross
section.
It is clear from the previous discussion that for the

doubletlike DM case there is no surviving parameter space
that can remain after the constraints from both PLANCK
and XENON1T are taken into account. Therefore, doublet-
like DM in G2HDM is completely ruled out by current
experiments, at least under the somewhat generic condi-
tions setup in this paper. A study of particular mechanisms
or very specific sets of parameters (e.g., a very light
mediator region) that may bring down the relic density
for light doubletlike DM (∼1 GeV) while keeping the
prediction of direct detection intact is out of the scope of the
present analysis.

2. SUð2ÞH tripletlike DM

One fundamental difference between tripletlike and
doubletlike DM is that now D is dominated by the term
OD

32Δp in Eq. (29). Therefore, one should expect all the
couplings to behave differently from the previous doublet-
like case. In particular, the coupling terms that were
relevant for doubletlike DM will now be suppressed by
a smaller OD

22. In Fig. 5, we show the scatter plots for the
relic density and spin independent direct detection cross
section versus the DM mass mD at the left and right panels,
respectively, for the tripletlike case. Similar to the doublet-
like case, one can divide the DM mass in different
regions for discussions. The opening channels are the same
in each region and hence no need to repeat here. However,

the dominant channels in each region may be changed
due to the differences of the couplings in both DM
compositions.
For the relic density, the resulting resonances and

coannihilation regions are presented in the left panel of
Fig. 5. We found that in the DM mass range below mh1=2
[region (i)], the dominant DM annihilation contribution to
the relic abundance comes from s-channel Higgses
exchange with final states of τþτ− and bb̄. By looking
at the DD�hi coupling in Eq. (A6), it is easy to see that the
large value of vΦ makes annihilation through h2 (δ3-like)
comparable with annihilation through h1 (SM-like) while
the heavier h3 (ϕ2-like) contribution remains subleading.
As expected, the lowest relic density happens at the Higgs
resonance region mD ≈mh1=2, combining with the large
DD�h1 coupling from the first term of Eq. (A6). Of course,
one can always decrease the values of vΦ or vΔ to reduce
the coupling size for larger relic abundance, but this is not
particularly interesting for a thermal DM scenario. As DM
becomes heavier, other resonance turns on. For
mD > 100 GeV,D is massive enough to have points where
2mD ≈mh2 and some points resulting in resonant annihi-
lation through s-channel h2 exchange. In contrast to the
doubletlike scenario, it is possible for the tripletlike DM to
have a very wide range of relic density values, given the
several different possible combinations for the DD�hi
coupling in Eq. (A6). Unlike the doubletlike case, for
the tripletlike DM case in region (ii), the reduction of the
relic density due to the Z-resonance enhancement in the
annihilation cross section is absent because the tripletΔH is
a SM singlet, meaning that the interaction between DM and

FIG. 5. Tripletlike DM SGSC allowed regions projected on (mD, ΩDh2) (left) and (mD, σSIn ) (right) planes. The gray area in the left
panel has no coannihilation or resonance. The gray area in the right panel is excluded by PLANCK data at 2σ. In the right panel, the
lower red solid line is the published XENON1T limit with isospin conservation, while the upper green solid line is the same limit but for
ISV with fn=fp ¼ −0.5. Some orange filled squares are above the published XENON1T limit due to ISV cancellation at nucleus level.
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the SM Z is suppressed by product of small mixing
elements like ðOD

32Þ2OG
21 according to Eq. (A5).

In region (iii) where mh1=2 < mD < 500 GeV, the relic
density reduction mechanism is similar to the doubletlike
DM case discussed above. The annihilation cross section is
highly dominated by WþW− (more than ∼50%), h1h1
(∼25%), and ZZ (∼20%) final states. The main contribu-
tion to the WþW− final state comes from S wave given by
hi exchange, while the P-wave contribution is suppressed
and originated from neutral gauge bosons mediator
exchange. The S-wave annihilation cross section is con-
trolled by the DD�h1 and DD�h2 couplings, as can be seen
in Eq. (A6). The contribution from h3 exchange is
negligible because of its heavy mass.
In region (iv) where mD > 500 GeV, DM annihilates

into Wþ
LW

−
L predominantly while other channels are

subdominant, similar to the doubletlike DM case. There
is no need to elaborate further here.
Generally speaking, the charged Higgs H� contribution

here can be omitted since it is more than twice heavier than
the DMD. Differently from the doubletlike case, there is no
coannihilation betweenH� andD in the tripletlikeDMcase.
Next, the coannihilation betweenDMand Δ̃ is absent aswell
because the Δ̃ is also much heavier thanD due to the choice
of larger vΔ to make the (3,3) entry of Eq. (21) smaller.
Therefore, the only possible efficient coannihilation is
between DM andW0 for DM mass above 400 GeV (orange
boxes at the left panel of Fig. 5). This coannihilation is only
important for relic density above 0.12, where some DD�
annihilation channels may be insufficient because their

couplings to hi and Zj may be suppressed. A small region
with heavy fermion coannihilation happens for mD >
1 TeV with relic density above 10 (green shaded points
in the left panel of Fig. 5). This is close to the maximal relic
density in our scan for that mass range. This indicates that
heavy fermion coannihilation is important only when the
other annihilation channels are strongly suppressed.
Regarding direct detection, due to the DD�Z coupling

suppression by mixings in this tripletlike case, the elastic
DM-nucleon scattering spin independent cross section
mediated by hi and the extra neutral gauge bosons Z0
and Z00 bosons may be relevant. We confirm that the
dominant contribution to the spin independent cross section
is given by h1 and the next dominant contributions are Z
and Z0, while h2, h3, and Z00 are always subdominant. The
contributions mediated by heavy fermions are negligible
due to suppression by their masses in the propagators.
In the right panel of Fig. 5, we can see that for mD ≳

300 GeV it is possible to find a region that agrees with relic
density constraint from PLANCK at 2σ and remains below
the published XENON1T limit at the neutron with
fn=fp ¼ 1. Note that some of the allowed points (orange
squares) are above this XENON1T limit. This is due to
mild ISV cancellation that brings such points below the
XENON1T limit at nucleus level, as given by Eq. (33). For
comparison, the XENON1T limit at the neutron level with
ISV of fn=fp ¼ −0.5 is also shown.
The constraint of indirect detection from Fermi-LAT’s

gamma-ray observation imposed on the tripletlike DM is
shown in Fig. 6. The left panel presents the DM

FIG. 6. The present time total annihilation cross section according to dominant annihilation channel (left) and DM-neutron elastic
scattering cross section (right) for fΔp

> 2=3 in the tripletlike DM case versus the DM mass mD. Two-dimensional 2σ criteria of the ID
constraints is Δχ2 ¼ 5.99 based on Fermi dSphs gamma-ray flux data. Future Cherenkov Telescope Array (CTA) measurements may
help constrain regions with DM masses above Oð102Þ GeV as shown in the left panel. In the right panel, the lower red solid line is the
published XENON1T limit with isospin conservation, while the upper green solid line is the same limit but for ISV with fn=fp ¼ −0.5.
Some blue filled squares are above the published XENON1T limit due to ISV cancellation at nucleus level.
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annihilation cross section dependence6 on the DM mass at
the present Universe with SGSCþ RD. Results with
dominant annihilation channels of either bb̄ or WþW−

are indicated explicitly. One can see that DM with mD ≲
90 GeV mainly annihilates to bb̄. At the region near the Z
or h1 resonance, the corresponding cross section at the
present Universe drops while satisfying the relic density.
This is a typical feature of the resonance region because the
DM relative velocity at the early Universe is much larger
than the value at the present one. In order to cancel a large
cross section caused by the resonance at the early Universe,
a small coupling of DD�Z or DD�h1 is required to make
hσvi at the early Universe comes close to the canonical
value of 10−26 cm3 · s−1. However, when the Universe
temperature drops, the resonance cannot be maintained
by the kinetic energy of DM at the present day. At this time,
the cross section becomes smaller and is hard to be
observed by Fermi-LAT.
Once DM mass is heavier thanW� boson mass, the final

state WþW− starts dominating the annihilation cross
section rapidly. Note that the current ID sensitivity can
only apply strongly for the DM mass located between
10 GeV and few hundred GeV. However, the future CTA
sensitivity [79] might reach the TeV region of mD and
further constrain our parameter space, as show in the left
panel of Fig. 6.

In the right panel of Fig. 6, we display the exclusion from
ID projected on the plane of DM-neutron spin independent
cross section σSIn versus mD. We can see that all the ID
excluded points sit above the limit set by XENON1T. The
exclusion limits are given by recent XENON1T data (blue
unfilled squares) and Fermi gamma-ray constraints (orange
crosses). One can see the XENON1T exclusion power is
much stronger than Fermi gamma-ray exclusion.

3. SUð2ÞH Goldstone bosonlike DM

In this case, as shown at the end of Sec. III (see Fig. 1),
the Goldstone-like DM D will be a mixture dominated by
Gp

H with an important component coming from Δp, while
the H0�

2 component remains suppressed. In the left panel of
Fig. 7, for the DM mass regions (i)–(iii), the dominant
channels for DM annihilation in the relic abundance
calculation are similar to the tripletlike DM case. In heavy
mass region (iv), the cross section is again dominated by
the Wþ

LW
−
L final state which contributes ∼50%, while the

transverse component is negligible. The main difference
between Goldstone-like and tripletlike DM can be under-
stood by their corresponding dominant couplings. For
tripletlike DM, the dominant couplings are given by
Eqs. (A5) and (A6) which are proportional to the ðOD

32Þ2
characterizing the corresponding Δp component. Similarly,
one expects that the Goldstone-like DM receives its
dominant couplings purely via Eqs. (A7) and (A8).
However, this is not the case for Goldstone-like DM.
There is also an important contribution coming from the
Δp part in the relevant couplings. Thus, one needs to

FIG. 7. Goldstone-like DM SGSC allowed regions projected on (mD, ΩDh2) (left) and (mD, σSIn ) (right) planes. The gray area in the
left panel has no coannihilation or resonance. The gray area on the right is excluded by PLANCK data at 2σ. In the right panel, the lower
red solid line is the published XENON1T limit with isospin conservation, while the upper green solid line is the same limit but for ISV
with fn=fp ¼ −1.5. The small region of orange filled squares above the published XENON1T limit presents ISV cancellation at
nucleus level.

6Note that to apply Fermi-LAT constraints we use photon flux
as calculated with Eq. (36). The annihilation channels displayed
in Fig. 6 are only leading channels that may not be significantly
above other channels.
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include not only the couplings proportional to ðOD
12Þ2 but

also the ones proportional to ðOD
32Þ2. The effect of Δp

component in this case is reducing the DD�h1 and DD�h2
couplings while enhancing the DD�Z and DD�Z0 cou-
plings. As a consequence, the dominant DM annihilation
channel Wþ

LW
−
L will be dominated by P-wave component

originated from the Z0 exchange, while the S-wave part
coming from the h1 and h2 mediators is subdominant. The
next important contribution is given by the Z0Z0 final state.
The Z0Z0 final state occurs via four-point contact inter-
action, t and u channels of D exchange and s channel of
neutral Higgses exchange. The presence of the Δp com-
ponent in the Goldstone-like DM further enhances the
DD�Z0Z0 coupling resulting in the appearance of the new
important final state Z0Z0 in the heavy mass region (iv).
Coannihilation in this case is very similar to the triplet-

like DM case. The most relevant coannihilations happen
withW0 and heavy fermions for large masses and large relic
density. Coannihilation with W0 only presents when the
DM mass gets close to 300 GeV and its relic density is
mostly above the PLANCKmeasurement. As the tripletlike
DM case, the usual DD� annihilation channels become
smaller leaving more way for coannihilations that, other-
wise, would be negligible. For the case of heavy fermions,
coannihilation happens for DM masses above 1 TeV and
mostly for the upper bound of relic density, where DD�
coannihilation is even more suppressed than for the
W0 case.
In the right panel of Fig. 7, we show the scatter plot for

the DM-neutron cross section dependence on the DMmass.

The dominant contribution comes from h1 exchange with
the next dominant ones given by the exchange of Z and Z0
bosons. The bottom part of the gray region in Fig. 7 comes
mostly from interactions mediated by the Z and Z0 gauge
bosons and is limited from below by our lower limit for the
scan range of gH determined by Eq. (40). The interference
between h1, Z, and Z0 exchange makes the spin indepen-
dent cross section varies in a wide range. The orange points
located between 200 GeV ≤ mD ≤ 600 GeV satisfy the
observed relic density while escaping the current bound on
direct detection given by XENON1T experiment. The
dominant contribution for these points is given by the
gauge bosons exchange Z and Z0. Due to the fine-tuning
parameter space for the Goldstone-like DM mentioned
earlier, only the ratio of fn=fp ¼ −1.86 has enough ISV
cancellation to satisfy the published XENON1T limit
assuming isospin conservation. For comparison, the
XENON1T limit with ISVof fn=fp ¼ −1.5 is also shown.
In the ID side, there is no relevant constraining for this

Goldstone bosonlike case. Because of P-wave suppression
of the Z and Z0 exchange in the dominant channels of bb̄
and WþW−, most of the points in agreement with the relic
density measurement from PLANCK have a very low
annihilation cross section at the present time and are far
beyond the reach of current experiments of indirect
detection, as can be seen clearly in the zoomed in region
on the ðhσvi; mDÞ plane at the left panel in Fig. 8 allowed
by the SGSCþ RD. For DM masses below 100 GeV, the
annihilation is dominated by bb̄ final state with 90% of the
total cross section in average. For DMmass above the mass

FIG. 8. The present time total annihilation cross section by dominant annihilation channels (left) and DM-neutron elastic scattering
cross section (right) for fGp > 2=3 in the Goldstone-like DM case versus the DM mass mD. Two-dimensional 2σ criteria of the ID
constraints is Δχ2 ¼ 5.99 based on Fermi dSphs gamma-ray flux data. Future CTA measurements may help constrain regions with DM
masses above Oð102Þ GeV as shown in the left panel. In the right panel, the lower red solid line is the published XENON1T limit with
isospin conservation, while the upper green solid line is the same limit but for ISV with fn=fp ¼ −1.5. Some blue filled squares are
above the published XENON1T limit due to ISV cancellation at nucleus level.
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of the W�, the WþW− final state dominates completely
with an average of 50% of the total cross section. Unlike
tripletlike DM, ID alone does not further constrain the
points allowed by PLANCK. The right panel of Fig. 8
shows the zoomed in region of points on the ðmD; σSIn Þ
plane allowed by the SGSCþ RDþ ID and SGSCþ
RDþ IDþ DD. As mentioned before, ISVeffect (fn=fp≈
−1.86) reduces the sensitivity of the XENON1T result and
some points pass all the constraints SGSC+RD+ID+DD
even though they are above the direct detection limit at
nucleon level. Note that there are no points satisfying
SGSCþ RDþ IDþ DD beyond mD ∼ 1 TeV in this
Goldstone-like case.

C. Constraining parameter space in G2HDM

From previous sections, we have learned that the
doubletlike DM scenario cannot fulfill the DM constraints
and that the Goldstone-like DM requires some fine-tuning
in the parameter space and to escape the XENON1T limit a
particular value of fn=fp ≈ −1.86 is required. Therefore,
we will be focusing on discussing the allowed G2HDM
parameter space based on the tripletlike DM.
In Fig. 9, we present the allowed regions of the quartic

couplings from the SGSC constraints (green region) and
SGSCþ RDþ DD constraints (red scatter points).
Comparing the green regions with the red scatter points
in Fig. 9, one can easily obtain the following results:

FIG. 9. A summary plot for the scalar potential parameter space allowed by the SGSC constraints (green region) and SGSC+RD+DD
constraints (red scatter points) for the tripletlike DM. The numbers written in the first block of each column are the one-dimensional
allowed range of the parameter denoted in horizontal axis after the SGSCþ RDþ DD cut.
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(i) The allowed ranges on λH and λ0H remain more or
less the same before and after imposing RDþ DD
constraints.

(ii) λΦ, λHΔ, and λΦΔ are mostly constrained by RDþ
DDconstraints. To understand this effect, one can see
fromEq. (A6) that there are three dominant terms that
contribute to the DD�hj couplings, λHΔvO11,
λΦΔvΦO22, and λΔvΔO33 for j ¼ 1, 2, 3, respectively.
Clearly, λHΔ and λΦΔ are restricted by the allowed
Higgs coupling sizes.

(iii) Regarding to lighter mediator, in particular for h2,
the mixing O22 is strongly related to λΦ so that λΦ
and λΦΔ are correlated as shown in the third row
from bottom to top and second column of Fig. 9.

These two parameters are related to h1 decay to ff̄
and are constrained by Higgs physics and further by
DD constraints.

(iv) However, λΔ is not constrained because either the
DM annihilation or DM-nucleon elastic scattering
cross section via the exchange of h3 is suppressed by
its heavy mass mh3 .

(v) On the other hand, the two off-diagonal terms λHΦ
and λ0HΦ are constrained mildly. This is due to the
loose requirement that we set for the tripletlike DM
fΔp

> 2=3. In fact, we checked that there can be an
important contribution from the Gp

H component with
fGp

H
up to 1=3. As a consequence, even though λHΦ

and λ0HΦ do not appear explicitly in the coupling of

FIG. 10. A summary plot for the VEVs,MΦΔ, gX , and gH parameter space allowed by the SGSC constraints (green region) and SGSC
+RD+DD constraints (red points) for the tripletlike DM.
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DD�hi given in Eq. (A6), they appear via subdomi-
nant component Gp

H as seen in Eq. (A8).
Next, we project the allowed G2HDMparameter space to

the two VEVs vΦ and vΔ, the two cubic couplingsMHΔ and
MΦΔ, and the two new gauge couplings gH and gX in Fig. 10.
Again, by comparing the green regions and the red scatter
points in Fig. 10, we can arrive at the following results:

(i) Strikingly, only gH and vΦ can be further constrained
by RDþ DD. Interestingly, we found such an
exclusion comes from the lower allowed DM mass.
The allowed DM mass values range from hundreds
of GeV to a few TeV. This range is reflected in gH
since the minimal value we choose for gH is given by
Eq. (40) and depends directly on the DM mass.

(ii) The other four parameters gX, vΔ, MHΔ, and MΦΔ
are not sensitive to the dark matter physics con-
straints from RDþ DD.

In summary, given the setup of the parameter space in
our numerical scanning, a good WIMP candidate in
G2HDM is the tripletlike complex scalar with a mass
mD in the electroweak scale, and it requires gH ≳ 2 × 10−2

and vΦ ≳ 30 TeV.

VI. SUMMARY AND CONCLUSION

The G2HDM is a novel two-Higgs-doublet model with a
stable DM candidate protected by an accidental discrete
symmetry (h parity) without the need of imposing it by
hand as in the IHDM. After SUð2ÞH symmetry breaking,
the symmetry remains intact and one can find three
electrically neutral potential DM candidates with odd h
parity: the lightest dark complex scalar D, heavy neutrino
νH, and the SUð2ÞH gauge boson W0ðp;mÞ. Though these
three candidates are all interesting, we focus this paper on
the most popular one, the new scalar DM D, which is
complex and hence differ from the DM in IHDM. Unlike
IHDM, the mixing between Z-odd scalars adds a touch of
complexity since DM in G2HDM not only comes from the
inert doublet but may also be SUð2ÞH Goldstone-like and
tripletlike. We took the dominant composition (fj > 2=3
with j ¼ H2, Δp, Gp) as a criteria to classify them, but the
mixture between them can be simply inferred. In this paper,
we have discussed these three types individually with two
assumptions: that all the new non-SM heavy fermions are
heavy enough to have mostly negligible contributions and
that DM was thermally produced before the freeze-out
temperature. We have comprehensively shown their detect-
ability and exclusions by the current SGSC and DM
constraints (mainly RDþ DD).
Because the DM candidate is chosen to be a complex

scalar in G2HDM, the DM phenomenology becomes very
rich since it has captured both features of the Higgs-portal
and vector-portal DM models discussed in the literature.
For the inert doubletlike DM, we found some interesting

features. First, the main difference between the inert
doublet DM in IHDM and G2HDM is that in IHDM there

is in general a mass splitting between the scalar S and
pseudoscalar P components of H0

2, while in G2HDM they
are completely degenerate and combined into one single
complex field H0

2 ¼ Sþ iP. Recall that in IHDM there is
only ZSP derivative coupling but no ZSS and ZPP
derivative couplings. As long as the mass splitting between
S and P remains larger than the exchange energy between
DM and nucleons in the direct detection experiments,
the interactions mediated by the Z gauge boson are sup-
pressed in IHDM. Since this splitting does not exist in
G2HDM, such interactions are unsuppressed and they can
bring the spin independent cross section up to ∼10−38 cm2,
which is significantly above the XENON1T 95% C.L. limit
for mD ≳ 10 GeV and above CRESST-III result for mD ≳
2 GeV (Fig. 4 right panel). On the other hand, for
mD ≲ 10 GeV, the DM is over abundant because of on-
shell annihilation channels in cc̄ and τþτ− (Fig. 4, left panel).
Hence, we conclude that the inert doubletlike DM can be
completely excluded by SGSCþ RDþ DD constraints.
Next, a SUð2ÞH triplet scalarlike DM was discussed.

Since the composition fH2
has to be tiny in order to avoid

the tension with DMDD, the tripletlike DM can mostly mix
with the Goldstone boson Gp. There is no Z-resonance
region in the tripletlike DM for DM annihilation and the
parameter space is more or less consistent with Higgs portal
DM. However, DD is still the most stringent constraint
comparing with ID and collider constraints. The allowed
DMmass by SGSCþRDþDD is required to be heavier than
mD ≳ 300 GeV (Fig. 5, right panel). Despite weaker con-
straints coming from ID (Fig. 6, left panel) and collider
searches, it might be possible to detect the heavy DM mass
region by the futureCTAand 100TeV colliders even if aDM
signal is not found at direct detection experiments before
hitting the neutrino floor. As shown by the blue solid boxes
in the right panel of Fig. 6, the allowed tripletlike DM mass
consistent with SGSCþRDþIDþDD is ≳300 GeV.
For the last case of the Goldstone-like DM, we found that

it is not possible to obtain a pure Goldstone-like DM. The
nontachyonic DM condition and EWPT constraints prohibit
the composition fGp > 0.75 (Fig. 1), unless one would like
to move to a more fine-tuned region of parameter space.
Thus, there is a significant component coming from the
triplet in the Goldstone-like DM. Because of the P-wave
suppression of the Z and Z0 exchange in the dominated
channels of bb̄ and WþW−, the annihilation cross section
happens to be smaller than for the tripletlike case and lesser
points within the PLANCK relic density measurement
(Fig. 7, left panel). Furthermore, XENON1T measurement
excludes almost all the points with appropriate relic density,
except for those with a particular value of isospin violation
(fn=fp ≈ −1.86) where the sensitivity at XENON1T is
reduced. Therefore, only a small region of orange boxes
in the right panel of Fig. 7 with mD in the range of 150–
600 GeV can pass all the SGSCþ DD constraints imple-
mented in this work. For ID, the annihilation cross section at
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the present time for the Goldstone-like DM is typically
smaller than the limit from Fermi gamma-ray constraints
(Fig. 8, left panel).With significant ISV, only theGoldstone-
like DMwith a mass in the window of 150–600 GeV can be
consistent with SGSCþ RDþ IDþ DD, as given by the
blue solid boxes in the right panel of Fig. 8.
We also presented the impact of DM constraints on the

G2HDM parameter space in Figs. 9 and 10 for the
tripletlike DM. In this case, we found that the following
parameters λΦ, λHΔ, λΦΔ, gH, and vΦ are significantly
constrained by DM constraints, mainly RDþ DD, while
the four parameters gX, λΔ, vΔ, and MHΔ remain more or
less the same as given by the SGSC. It is interesting to note
that the SGSC constraints on gH and vΦ as studied in
[34,35] are now further constrained by RDþ DD. We note
that the lower limit of gH > 7.09 × 10−3 for vΦ < 100 TeV
is reachable by the future linear (lepton-antilepton) and
100 TeV hadron colliders.
Before closing, we would like to make a few comments.

Originally, the SUð2ÞH triplet field ΔH was introduced to
give mass to the charged Higgs [Eq. (20)] in [28] where the
two parameters λ0H and λ0HΦ were missing. With these two
extra parameters included, the triplet field ΔH is no longer
mandatory. We note however that the triplet field ΔH can
give rise to a nonsingular ’t Hooft-Polyakov monopole
[80,81] for the hidden SUð2ÞH which can play the role as
DM due to its topological stability, as studied in [82].7

Nevertheless, one can have a minimal G2HDM without
the triplet field. Then theDMD in thisminimalmodelwould
be justmixture of the inertHiggsH0�

2 and theGoldstone field
Gp

H. From the analysis in this work, we know that this DM
scenario must be highly fine-tuned in the parameter space
due to SGSCþ RDþ DD. A more interesting alternative
DMcandidate in this minimal G2HDM is theW0ðp;mÞ, which
certainly deserves a separate study. Finally, whether the
accidental discrete symmetry of h parity, identified here in
the renormalizable Lagrangian for classification of all
particles inG2HDM,and the Stueckelbergmass have deeper
origins remain to be explored in the future.
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APPENDIX: FEYNMAN RULES

Here we list the relevant couplings to the DM analysis in
various processes discussed in the text. We use the conven-
tional notations g and g0 to denote the SMSUð2ÞL andUð1ÞY
couplings, respectively. The cW and sW denote the cosine
and sine of the Weinberg angle. The gauge couplings for
SUð2ÞH and Uð1ÞX are denoted by gH and gX, respectively.
In addition, for the scalar-scalar-gauge derivative vertices,
we adopt the convention that all momenta are incoming.

1. Four-point contact interaction

ðA1Þ

2. Dominant couplings for inert doubletlike DM

ðA2Þ

7We thank P. Ko for bringing this reference to our attention.
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ðA3Þ

ðA4Þ

3. Dominant couplings for tripletlike DM

ðA5Þ

ðA6Þ
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4. Dominant couplings for Goldstone bosonlike DM

ðA7Þ

ðA8Þ
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