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Within the minimal left-right (LR) symmetric model we revisit the predictions for the kaon CP violating
observables ε and ε0 in correlation with the neutron electric dipole moment. We perform a complete study of
the cross constraints on the model parameters, phases and the MWR

scale, considering the two cases of
extended parity or charge conjugation as LR discrete symmetries, together with the possible presence of a
Peccei-Quinn symmetry. We discuss in particular two scenarios: whether the Standard Model saturates the
experimental value of ε0=ε or whether new physics is needed, still an open issue after the recent lattice
results on the QCD penguin matrix elements. Within the first scenario, we find no constraints on the LR
scale in the charge-conjugation case while in the parity case we show thatMWR

can be as low as 13 TeV. On
the other side, the request that new physics contributes dominantly to ε0 implies strong correlations among
the model parameters, with an upper bound ofMWR

< 8–100 TeV depending on tan β in the case of charge
conjugation and a range ofMWR

≃ 7–45 TeV in the parity setup. Both scenarios may be probed directly at
future colliders and only indirectly at the LHC.

DOI: 10.1103/PhysRevD.101.035036

I. INTRODUCTION

Flavor phenomenology offers a window for physics
beyond the Standard Model (SM). In particular, flavor
changing neutral current (FCNC) processes play a key role
in the search for new phenomena since they are forbidden at
the tree level. For processes involving light quark families,
on top of the loop suppression a further reduction results
from the smallness of the family quark mass splittings,
known as the GIM mechanism [1]. Moreover, CP violation
requires the presence of the three families in the loop and
therefore of the hierarchically small mixings [2]. The rarity
of these processes is indeed a smashing success of the SM
setup. Kaon CP-violating (CPV) observables as ε and ε0
belong to this class and are a most sensitive probe for most
extensions of the standard electroweak scenario.
A flavor conserving observable that shares a similar

discovery potential is the electric dipole moment of the

neutron (nEDM) [3]. It violates parity and time-reversal
and therefore CP. In the SM direct electroweak contribu-
tions are generated at higher loop order and are well below
the present experimental bound (2.9 × 10−26 e cm [4]). A
direct contribution related to the QCD theta-term θ̄ also
induces an nEDM, which then requires θ̄ < 10−10.
Such a tiny bound is technically natural in the SM

because θ̄ is perturbatively protected [5], thus avoiding the
need for a first principle understanding of its smallness, the
so-called strong CP problem. On the other hand, the issue
is real in most SM extensions which exhibit new flavor
structures and additional CPV phases that lead to poten-
tially large contributions to these observables.
In the present work, we update on the scrutiny of left-

right (LR) symmetric theories, based on the gauge group
G ¼ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L [6–8]. A particular
role is played by the minimal version of the left-right
symmetric models (LRSM) [9]. Besides being predictive,
the model provides a natural rationale for the origin and
smallness of the neutrino mass [10,11], a setup for the
restoration of parity at high scale [12], and a novel source
for neutrinoless double-beta decay [13,14]. The LRSM
has aroused a renewed interest in the era of LHC, because
of the possibility of a direct detection via the Keung-
Senjanovic (KS) process [15], which violates lepton
number in full analogy with the low energy neutrinoless
double-beta decay.
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The minimality of the model ensures a connection
between Majorana and Dirac masses, making it a predictive
theory even for neutrinos [16–19]. Since early times the LR
scale MWR

as well as the model parameters were found to
be strictly constrained by flavor physics [20,21]. More
recently the possibility of a low LR scale within the LHC
reach was emphasized combining bounds from many
observables [22]. Subsequent analyses focusing on ε0 were
performed [23,24] and a lower bound on the LR scale
slightly above 3 TeV was finally evinced [25], including the
relevant constraints from Bd;s meson oscillations.
The impact of the nEDM bound on the LRSM requires a

separate comment. Exact and spontaneously broken P has
been considered as a solution of the strong CP problem
[26] as an alternative to the dynamical Peccei-Quinn (PQ)
mechanism [27–29]. In the case of spontaneously broken
P, θ̄ becomes computable in terms of a single CP-violating
parameter. The original argument was revisited in [30]
uncovering a large bound on the LR scale of about
MWR

> 30 TeV, which pushes the scale beyond the current
experimental reach. This conclusion is however specific of
the given setup and could be spoiled by envisaging, for
instance, the presence of a PQ mechanism so that the LR
scale might still be at the reach of LHC. Although MWR

below 6 TeV is disfavored by the demand that the Higgs
sector remains in a perturbative regime [31–33], an energy
window remains for discovery via the KS process [34].
As we shall see, the phase and flavor structure of the

LRSM tightly correlates nEDM, ε and ε0, calling for a
comprehensive and detailed study. We shall not enter here
the debate on the SM calculations of ε0 that presently suffer
from large uncertainties and leave open the possibility of
large new physics contributions [35,36]. Our analysis will
address the different scenarios according to the relevance of
the LRSM contributions, addressing the present and future
implications.
Early detailed studies are found in [37–39]. The topic has

received a renewed interest in the last few years. The works
[40,41] address the problem via an effective theory of RH
currents in a model independent way which necessarily
misses the detailed phase correlations. Ref. [42] analyzes a
specific choice of LR discrete symmetry (the left-right
charge conjugation C, see below) and we shall compare
their findings with our results. In particular we point out an
issue in the calculation of the relevant meson-baryon
couplings that affects the calculation of the chiral loop
contributions and alters substantially the conclusions in the
PQ scenario. In [43], the left-right parity P was considered
in the limit of decoupled WR, where only the flavor-
changing heavy scalar contributes, making it effectively a
particular two Higgs doublet model. In all cases, the
detailed analysis of the correlations among the different
observables shows to be relevant.
In summary, we review and reassess the impact of the ε,

ε0 and nEDM observables on the LRSM, paying attention

to the theoretical uncertainties, presently dominated by the
hadronic matrix elements, and to the phase patterns and
correlations ensuing from either choice of LR symmetry
(generalized P or C). As far as ε0=ε is concerned, we
consider two benchmark cases: (i) a scenario in which the
SM prediction of ε0 saturates the experimental result, and
(ii) a new-physics one where the LRSM contribution is the
main source for it.
We conclude that, in the case of P the standard scenario

imposes a lower bound on the LR scale of ∼13 TeV, while
a substantial new-physics contribution to ε0 can arise for
MWR

¼ 7–45 TeV, with the nEDM at the reach of the new
generations of experiments. The presence of a PQ axion
reduces nontrivially the nEDM and substantially relaxes
these limits. In the case of C, no lower bound arises in the
standard scenario, since the relevant phases can be set as
small as needed. On the other hand, LR contributions can
saturate ε0 for MWR

as large as 100 TeV according to the
configuration of the model parameters.
The study is organized as follows. In the next section

we briefly recall the LRSM features which are relevant for
the analysis. In Secs. III, IV and V we review and update
the LRSM contributions to the K0 − K0 oscillations, ε0=ε
and nEDM respectively, and discuss the status of hadronic
matrix elements calculations. In Sec. VI we finally show
the outcome of our numerical study. We report in the
appendices the relevant tools, namely loop functions,
operator anomalous dimensions, meson and baryon chiral
Lagrangian, and explicit formulæ for the CP-violating
phases in the LRSM.

II. THE MODEL

A. The gauge and scalar sectors

The LRSM, with gauge group SUð2ÞL×SUð2ÞR ×
Uð1ÞB−L×SUð3Þc, contains three additional gauge bosons
related to the SUð2ÞR group, W�

R and a new neutral vector
Z0. Left-handed and right-handed quarks and leptons are
accommodated in the fundamental representations of
SUð2ÞL;R, QL;R ¼ ðudÞtL;R, lL;R ¼ ðνeÞtL;R, with electric
charge Q ¼ I3L þ I3R þ B−L

2
, where I3L;R are the third

generators of SUð2ÞL;R. In analogy with the SM, the RH
charged currents induce flavor-violating (FV) interactions,
and furthermore WR mixes with WL. This provides a RH
interaction mediated by the light mass-eigenstate, mostly
the standard gauge boson W, namely

Lmix−current ¼
gffiffiffi
2

p ζWμūRVRγμdR þ H:c:; ð1Þ

where ζ is the gauge boson mixing to be defined shortly, VR
is the right-handed equivalent of the standard CKM matrix,
and u, d span the three quark flavors.
The SUð2ÞR ×Uð1ÞB−L → Uð1ÞY spontaneous sym-

metry breaking is provided by a RH triplet ΔRð1L; 3R; 2Þ
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ΔR ¼
�
Δþ=

ffiffiffi
2

p
Δþþ

Δ0 −Δþ=
ffiffiffi
2

p
�
R

ð2Þ

via the vacuum expectation value (VEV) vR developed by
Δ0. Then the WR gauge boson has mass MWR

¼ gvR.
The LR mixing ζ between WR and W ≃WL is

ζ ≃ −reiα sin 2β; ð3Þ

with r ¼ M2
WL

=M2
WR

and tan β≡ tβ ¼ v2=v1. From the
direct experimental limit on the LR scale one obtains
jζj < 4 × 10−4. Here v1;2 are related to the electroweak
breaking, provided by a bidoublet field Φð2L; 2R; 0Þ

Φ ¼
�
ϕ0
1 ϕþ

2

ϕ−
1 ϕ0

2

�
; ð4Þ

with VEV hΦi¼diagfv1;eiαv2g [12]. The standard electro-
weak VEV is given by v2 ¼ v21 þ v22, with v ≪ vR. The
standard Higgs boson is contained in (4) predominantly
in the real part of ϕ1; the imaginary and complex compo-
nents of ϕ2 are instead neutral scalars whose masses are
proportional to vR. They have to be heavy enough because
they mediate tree-level FCNC, and their presence plays
an important role in the phenomenology of the low-
scale LRSM.
For the present study devoted to the CP observables ε,

ε0=ε and nEDM, one of the main ingredients is Eq. (1). It
contains sources of CP-violation because of the sponta-
neous phase α inside ζ and of the complexity of VR.
Remarkably, a tree-level contribution to ε0 is generated by
the LR mixing ζ via an effective four-quark operator
(defined below as QLR

2 ) obtained after integration of the
gauge field. The complete basis of operators, induced at
tree or loop level and through renormalization to low scale,
will be listed in Sec. IV. A similar treatment is reserved for
nEDM, in the case of ΔS ¼ 0 transitions: as we shall see,
analogous effective operators generate via chiral loops the
dominant contribution to the nEDM [30]. The account and
evaluation of the various sources of ε0 and nEDM are the
matter of dedicated sections in the following.

B. The choice of LR discrete symmetry

In Eq. (1) the condition gL ¼ gR ¼ g is assumed, being
gL;R the gauge coupling of SUð2ÞL;R. This follows from an
additional discrete symmetry in the LRSM relating the left
and right sector. Such a symmetry is not unique: it can be
realized either with a generalized parity P or a generalized
charge conjugation C which, in addition to exchanging the
weak gauge groups, are defined respectively by [22]

P∶
�
QL ↔ QR

Φ → Φ† ; C∶
�
QL ↔ ðQRÞc
Φ → ΦT

; ð5Þ

with analogous transformationa for the lepton doublets.
The action of P and C on the Yukawa Lagrangian

LY ¼ Q̄LðYΦþ Ỹ Φ̃ÞQR þ H:c: ð6Þ

implies Y ¼ Y† and Y ¼ YT respectively, and the same for
Ỹ. After the quark mass matrices

Mu ¼ v1Y þ v2e−iαỸ

Md ¼ v2eiαY þ v1Ỹ ð7Þ

are bidiagonalized given forms of VR are obtained,
according to the properties of Y, Ỹ. The case of C is fairly
simple [22]:

VR ¼ KuV�Kd; ð8Þ

with V the standard CKM matrix and Ku;d diagonal
matrices of free phases Ku ¼ diagfeiθu ; eiθc ; eiθtg, Kd ¼
diagfeiθd ; eiθs ; eiθbg, where from now on we adopt θb ¼ 0.
In the case of P, an analytical form for VR has been

recently found, with a perturbative expansion in the small
parameter jsαt2βj≲ 2mb=mt ≃ 0.05 [44,45]:

VR;ij ¼ Vij − isαt2β

�
Vijtβ þ

X3
k¼1

VkjðVmdV†Þik
muii þmukk

þ VikðV†muVÞkj
mdjj þmdkk

�
þOðsαt2βÞ2; ð9Þ

where mu;d are the diagonal quark mass matrices. This
expression is not unique, other solutions are found by
replacing mii → simii and

V → diagfsu; sc; stgVdiagfsd; ss; sbg; ð10Þ

where si are arbitrary signs (and from now on we adopt
sb ¼ 1). In Appendix A, explicit expressions for the
relevant phase combinations are given for generic si.
The argument of the determinant of the fermion mass

matrices can also be computed [30,44,45], namely

θ̄ ≃
1

2
sαt2βRetrðm−1

u VmdV† −m−1
d V†muVÞ ð11Þ

at the first order in sαt2β.

III. K0 − K̄0 MIXING

A particularly constraining process for the LRSM is
the neutral kaon mixing, effectively induced through the
chirally enhanced operator

hK0js̄Lds̄RdjK0i ¼ 1

2
f2KmKBK

4

�
m2

K

ðms þmdÞ2
þ 1

6

�
; ð12Þ
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where fK and mK are the decay constant and the mass of
the meson K respectively, and L; R ¼ ð1 ∓ γ5Þ=2. This
operator is generated via the LR box diagrams and even at
the tree-level through the exchange of a flavor-changing
(FC) scalar [12,46]. The inclusion of the one-loop renorm-
alization of the tree-level diagrams, necessary for a gauge
invariant result [47], has phenomenologically relevant
implications [25]. The bag factor BK

4 has been computed
on the lattice by various groups with some 20% discrep-
ancies [48]. For the present study, we follow the discussion
and numerical analysis of Ref. [25], to which we refer the
reader for the details.
The CP violating parameter ε, which gauges the indirect

CP violation in the mixing, is particularly important in
constraining the external CP-phases introduced in the
previous section [22,25]. The bounds may be inferred by
using a convenient parametrization of new physics in ε,
namely

hε ≡ ImhK0jHLRjK0i
ImhK0jHLLjK0i

; ð13Þ

which in the case of C turns into

hCε ≃ Im½eiðθd−θsÞðAcc þ Act cosðθc − θt þ ϕÞÞ�; ð14Þ

while in the case of P becomes

hPε ∝ Im½eiðθd−θsÞ½Acc þ Acteiϕ cosðθc − θtÞ��; ð15Þ

with ϕ ¼ argðVLtdÞ ≃ −22°. Acc;ct correspond to the con-
tributions of charm-charm and charm-top quark in the
effective Lagrangian. They are real numbers which
scale circa as M−2

WR
, as we consider the contribution of

the FC scalar to be at most comparable to the one
of MWR

, corresponding to MH ≃ 6MWR
within the pertur-

bative regime [25]. For a wide range of MWR
one

has Act=Acc ≃ 0.45.
Conservatively we allow the amount of new physics in ε

to be at most 10% [49]. This translates into a sharp
constraint on θd − θs [25], which in the case of C reads

j sinðθs − θdÞjscst¼−1 <

�
MWR

104 TeV

�
2

j sinðθs − θdÞjscst¼1 <

�
MWR

71 TeV

�
2

; ð16Þ

while for P one has

j sinðθs − θd þ 0.16Þjscst¼−1 <

�
MWR

104 TeV

�
2

j sinðθs − θd − 0.16Þjscst¼1 <

�
MWR

71 TeV

�
2

: ð17Þ

IV. DIRECT CP VIOLATION IN K0 → ππ

A. Effective interactions

Mesonic and hadronic processes that involve weak
interactions are best described in terms of the operator
product expansion, which factorizes short- and long-dis-
tance effects. For ΔS ¼ 1 flavor changing transitions the
effective Lagrangian can be written in the form

LΔS¼1 ¼ −
GFffiffiffi
2

p
X
i

CiQi þ H:c:; ð18Þ

where Qi are the relevant operators and Ci the correspond-
ing Wilson coefficients (GF is the Fermi constant).
In the Standard Model the ΔS ¼ 1 Lagrangian involves

tree-level operators as well as QED and QCD induced loop
diagrams. When both left and right chirality interactions are
present, the standard set of operators is enlarged to include,
at the scale of 1 GeV, 28 operators [23]

QLL
1 ¼ðs̄αuβÞLðūβdαÞL QRR

1 ¼ðs̄αuβÞRðūβdαÞR
QLL

2 ¼ðs̄uÞLðūdÞL QRR
2 ¼ðs̄uÞRðūdÞR

Q3¼ðs̄dÞLðq̄qÞL Q0
3 ¼ðs̄dÞRðq̄qÞR

Q4¼ðs̄αdβÞLðq̄βqαÞL Q0
4¼ðs̄αdβÞRðq̄βqαÞR

Q9¼
3

2
ðs̄dÞLeqðq̄qÞL Q0

9¼
3

2
ðs̄dÞReqðq̄qÞR

Q10¼
3

2
ðs̄αdβÞLeqðq̄βqαÞL Q0

10¼
3

2
ðs̄αdβÞReqðq̄βqαÞR

ð19Þ

QRL
1 ¼ðs̄αuβÞRðūβdαÞL QLR

1 ¼ðs̄αuβÞLðūβdαÞR
QRL

2 ¼ðs̄uÞRðūdÞL QLR
2 ¼ðs̄uÞLðūdÞR

Q5¼ðs̄dÞLðq̄qÞR Q0
5¼ðs̄dÞRðq̄qÞL

Q6¼ðs̄αdβÞLðq̄βqαÞR Q0
6¼ðs̄αdβÞRðq̄βqαÞL

Q7¼
3

2
ðs̄dÞLeqðq̄qÞR Q0

7¼
3

2
ðs̄dÞReqðq̄qÞL

Q8¼
3

2
ðs̄αdβÞLeqðq̄βqαÞR Q0

8¼
3

2
ðs̄αdβÞReqðq̄βqαÞL

ð20Þ

QL
g ¼ gsms

16π2
s̄σμνtaG

μν
a Ld QR

g ¼ gsms

8π2
s̄σμνtaG

μν
a Rd

QL
γ ¼ ems

16π2
s̄σμνF

μν
a Ld QR

γ ¼ ems

8π2
s̄σμνF

μν
a Rd; ð21Þ

with ðq̄qÞL;R ≡ q̄γμðL;RÞq, L;R≡ 1 ∓ γ5, and implicit
summation on q ¼ u, d, s. QLL

1;2 are the SM operators
usually denoted as Q1;2. The dipole operators Qg;γ are
normalized with ms, for an easy comparison with existing
calculations and anomalous dimensions. It is known
that some of the operators above are characterized by
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enhancements due to their chiral structure, either in the
running of the short distance coefficient or in the matrix
element. In particular the Wilson coefficients of the QCD
dipole operatorsQL;R

g receive a large enhancement from the
mixing with the current-current operators.
At the leading order the operators generated by the SM

and the LR short distance physics are: QAB
2 , Q4, Q0

4, Q6,
Q0

6, Q7, Q0
7, Q9, Q0

9, Q
A
g , QA

γ , with A;B ¼ L, R. Their
Wilson coefficients are for current-current operators

CLL
2 ¼ λLLu ; CLR

2 ¼ ζ�λLRu ;

CRR
2 ¼ rλRRu ; CRL

2 ¼ ζλRLu ; ð22Þ

for the penguins

C4 ¼ C6 ¼
αs
4π

Σiλ
LL
i FLL

1 ðxiÞ

C0
4 ¼ C0

6 ¼
αs
4π

rΣiλ
RR
i FRR

1 ðrxiÞ

C7 ¼ C9 ¼
αeu
4π

Σiλ
LL
i ELL

1 ðxiÞ

C0
7 ¼ C0

9 ¼
αeu
4π

rΣiλ
RR
i ERR

1 ðrxiÞ; ð23Þ

and for the dipoles

msCL
g ¼Σi½msλ

LL
i FLL

2 þζmiλ
RL
i FLR

2 þmdrλRRi FRR
2 �

msCR
g ¼Σi½mdλ

LL
i FLL

2 þζ�miλ
LR
i FLR

2 þmsrλRRi FRR
2 �

msCL
γ ¼Σi½msλ

LL
i ELL

2 þζmiλ
RL
i ELR

2 þmdrλRRi ERR
2 �

msCR
γ ¼Σi½mdλ

LL
i ELL

2 þζ�miλ
LR
i ELR

2 þmsrλRRi ERR
2 �: ð24Þ

In the above, eu ¼ 2=3 is the u-quark charge, xi ¼
m2

i =m
2
WL

with i ¼ u, c, t, and FAB
1;2 and EAB

1;2 are the loop
functions, given in Appendix B. The parameters ζ and r are
defined in Eq. (3). Finally λABi ¼ V�A

is V
B
id, where VL and VR

are the Cabibbo-Kobayashi-Maskawa (CKM) matrix and
its right-handed analogue [Eqs. (8)–(9)].
The different terms of the coefficients in Eqs. (22)–(24)

are generated at the decoupling of the relevant heavy
thresholds, and thus at different scales, namely MWL

or
mt for the current-current operators and top-dominated
loops, mc for the charm dominated loops, and mWR

for the
RR current-current ones.
The direct CP violation in K0 → ππ decays is para-

metrised as

Re
ε0

ε
≃

ωffiffiffi
2

p jεj

�
ImA2

ReA2

−
ImA0

ReA0

�
; ð25Þ

where ω ¼ ReA2=ReA0 ≃ 1=22.2. The isospin amplitudes
AI (I ¼ 0, 2) are defined from the ΔS ¼ 1 effective
Hamiltonian as hð2πÞIjð−iÞHΔS¼1jK0i ¼ AIeiδI , where δI
are the strong phases of ππ scattering. The phase of ε0,

π=2þ δ2 − δ0 ¼ 42.50 � 0.90, cancels to a very good
approximation the phase of ε.
While the imaginary part of the amplitudes are

calculated within the model, the real parts are set at their
experimental values: ReA0¼3.33×10−7GeV and ReA2 ¼
1.49×10−8 GeV, as well as the indirect CP violation
parameter jεj ¼ ð2.228� 0.011Þ × 10−3. Because of the
large uncertainty associated to the new physics contribution
to ε0 we neglect in Eq. (25) a Oð10%Þ isospin breaking
correction (for a recent recap on isospin violation in the SM
amplitudes see Ref. [35]). As a matter of fact, the major
source of uncertainty resides in the evaluation of the
hadronic matrix elements, that we are going to discuss next.
For the following discussion and numerical analysis it is

convenient to introduce the parameter

hε0 ¼
ε0LR
ε0exp

; ð26Þ

where ε0LR represents the additional LRSM contribution to
ε0, and is normalized to the present experimental central
value, jε0expj ¼ 3.7 × 10−6.

B. Matrix elements

In this section we address the evaluation of the K0 → ππ
matrix elements of the left-right current-current operators
QLR

1;2. We define hQLR
i i0;2 ≡ hðππÞI¼0;2jQLR

i jK0i. A naive
estimate is provided by the simple factorization of the
matrix elements in terms of currents and densities and
vacuum insertion known as the vacuum saturation approxi-
mation (VSA) [50]. In spite of the expected large non-
factorizable corrections the VSA has been conveniently
used in the past as a reference benchmark. The calculation
of the current-current operators in the left right framework
via the VSA prescription is found in [21]. In terms of the
QLR

1;2 operators defined above one has

hQLR
1 i0 ¼ −hQRL

1 i0 ¼ −
1

3

ffiffiffi
2

3

r
ðX þ 9Y þ 3ZÞ

hQLR
1 i2 ¼ −hQRL

1 i2 ¼ −
1

3

ffiffiffi
1

3

r
ðX − 6ZÞ

hQLR
2 i0 ¼ −hQRL

2 i0 ¼ −
1

3

ffiffiffi
2

3

r
ð3X þ 3Y þ ZÞ

hQLR
2 i2 ¼ −hQRL

2 i2 ¼ −
1

3

ffiffiffi
1

3

r
ð3X − 2ZÞ; ð27Þ

with

X≡ihπþjūγμγ5dj0ihπ−js̄γμujK0i≃
ffiffiffi
2

p
fπðm2

K−m2
πÞ

Y≡ihπþπ−jūuj0ih0js̄γ5djK0i≃
ffiffiffi
2

p
fKm4

K=ðmsþmdÞ2
Z≡ihπþjūγ5dj0ihπ−js̄ujK0i≃

ffiffiffi
2

p
fπm4

K=ðmsþmdÞ2: ð28Þ
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At variance with [21] in Eq. (28) a factor i is conventionally
factored out. When allowed, charged pions are replaced by
neutral pionswith a factor of 2 accounting for their exchange,
so that for instance iZ ¼ 2hπ0jūγ5uj0ihπ0js̄djK0i. The term
Y contributes equally to charged and neutral pions and
accordingly it is absent in the isospin 2 projection of the
amplitudes

A0 ¼
1ffiffiffi
6

p ð2A� þ A00Þ;

A2 ¼
1ffiffiffi
3

p ðA� − A00Þ: ð29Þ

In Eq. (27) nonleading terms in 1=N due to color Fierz are
kept according to the VSA prescription. For QLR

2 the 1=N
terms Y and Z are chirally enhanced and dominate the
amplitude, that turns out to be approximately 1=3 of the
corresponding one of QLR

1 . The VSA values in Table I are
given at the scale of 1 GeV with ðms þmdÞð1 GeVÞ≈
132 MeV.
In the second column we report the results of the

computation of the K0 → ππ matrix elements of QLR
1;2

within the chiral quark model (χQM) approach [23,24].
In this modeling of low energy QCD the meson octet chiral
Lagrangian is complemented with an effective quark-
meson interaction [51,52], which provides a connection
between the QCD degrees of freedom and the lightest
hadronic states. Meson interactions are then obtained by
integration of the constituent quarks and the chiral
Lagrangian coefficients are determined in terms of three
nonperturbative parameters, namely the constituent quark
mass and the quark and gluon condensates.
In the nineties an extensive program was carried out in

order to calculate all ΔS ¼ 1 matrix elements relevant to
the ΔI ¼ 1=2 rule and direct CP violation in K0 → ππ
decays based on the χQM at the NLO in the chiral
expansion [53]. By adopting a phenomenological approach
it was shown that a fit of the ΔI ¼ 1=2 rule could be
obtained for expected values of the three nonperturbative
parameters of the model [54].1 In turn, this allowed a
coherent calculation of the matrix elements for the whole
dimension six ΔS ¼ 1 SM Lagrangian[55], including the
dimension five chromomagnetic dipole operator [56,57].2

The relevance of nonfactorizable 1/N model and chiral
corrections in lifting the cancellation between the gluon
and electromagnetic penguin was exposed, leading in 1998
to the prediction ε0=ε ¼ 17þ17

−10 × 10−4 [60,61] shortly

afterwards confirmed by the precise experimental findings
of KTEV [62] and NA48 [63] collaborations

ε0=ε ¼ 16.6� 2.3 × 10−4: ð30Þ

Subsequent attempts to resum the final state interactions
via dispersion relations [64–68] lead to a confirmation of
the enhancement of the I ¼ 0 amplitudes and of the
agreement between SM and data.
In recent years the phenomenological χQM framework

has been applied to the calculation of the matrix elements of
relevant operators in the left-right model [24]. In Table I the
matrix elements of QLR

1;2 obtained in the model at the scale
of 0.8 GeV are evolved to 1 GeV. As remarked in [24],
attention must be paid in subtracting an unphysical con-
tribution to the K0 → ππ amplitudes generated by the
presence of a K0 → vacuum transition (tadpole) [69]
induced by the LR current-current operators. We see again
in the χQM calculation an enhancement of the ΔI ¼ 1=2
amplitudes compared to the ΔI ¼ 3=2 ones. This pattern is
led by the one-loop chiral loop contributions, which include
the final state rescattering.3

In the third column of Table I we report the results
obtained with the dual QCD (DQCD) approach [71] (for a
recent summary and references see Ref. [36]). A rescaling
factor of

ffiffiffiffiffiffiffiffi
3=2

p
has been applied in order to normalize the

DQCD results to the amplitudes defined in Eq. (29). The
DQCD calculation of the hadronic matrix elements is based
on a truncated chiral Lagrangian and leading N factoriza-
tion [72–74]. The matrix elements of the four quark
operators are calculated in the large N limit at zero
momentum by factorizing the four quark operators in
terms of color singlet currents or densities via their chiral
representations. The meson operators undergo an evolution
quadratic in the cutoff scale up to Λ ≃ 0.7 GeV [75]. They
are then matched with the short-distance Wilson coeffi-
cients at the 1 GeV scale.
This approach has shown to be successful in the past in

predicting the size of the bag parameter BK in K̄0 − K0

TABLE I. Comparison of K0 → ππ matrix elements of the left-
right current-current operators QLR

1;2 in different approaches. The
values are given at the scale of 1 GeV in units of GeV3 for central
values of the relevant input parameters.

VSA χQM DQCD

hQLR
1 i0 −1.8 −3.6 −1.1

hQLR
1 i2 0.53 0.33 0.40

hQLR
2 i0 −0.62 −1.2 −0.059

hQLR
2 i2 0.16 0.092 −0.005

1Model dependent nonfactorizable 1=N corrections propor-
tional to the gluon condensate were shown to play a crucial role in
depleting the isospin 2 amplitude while contributing to the
enhancement of the isospin 0 amplitude.

2Very recent lattice [58] and QCD model [59] calculations of
the gluon dipole operator give a K0 → ππ matrix element smaller
by about a factor of two [23].

3The impact of final-state interactions in ε0=ε has been recently
questioned in [70].
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mixing [76,77] in agreement with lattice calculations.
[78,79] Recently, by supporting (and providing a model
rationale for [80]) the RBC-UKQCD lattice results [81,82]
for the ΔI ¼ 1=2 rule and the direct CP violation in K0 →
ππ decays, leading to

ε0=ε ¼ 1.38� 6.90 × 10−4: ð31Þ

In spite of the enormous progress made in the past
decade, the present lattice calculations of the K → ππ
matrix elements still fail in reproducing the strong rescat-
tering phase δ0 (by about 3σ) and do not include isospin
breaking.4 It is fair to say that, given the delicate cancella-
tion between the QCD and QED penguin operators that
leads to the present SM estimate, we should await for a
comprehensive and precise lattice description of the K →
ππ decays before claiming the need of new physics
explanations.
On the other hand, a detailed reevaluation of ε0=ε within

the chiral Lagrangian framework, including isospin break-
ing, leads to [35]

ε0=ε ¼ 15� 7 × 10−4 ð32Þ

in agreement, albeit with a large error, with the data.5

In Table I the values of the relevant matrix elements
are reported at the scale of 1 GeV for our operator basis.
It is apparent in the comparison the reduced size of
hQLR

1 i0 and the minuscule size of the QLR
2 matrix

elements. These results stem from the large N factori-
zation of the current-current operator [corresponding to
the subleading term X in Eq. (28)]. The meson evolution
of the QLR

2 operator mixes it with the chirally enhanced
QLR

1 but with a renormalization suppression factor of
Λ2=ð4πfπÞ2, so that 1=N chirally enhanced terms turn
out to be not effective. This is a distinctive feature of the
DQCD approach.
The authors of Ref. [42] invoke isospin symmetry to

connect the QLR
1.2 matrix elements to the analogues of the

SM gluon and electromagnetic penguins Q5;6;7;8, for which
lattice calculation are available at a scale of 3 GeV. No
numerical details are given in [42]. We find that the QLR

matrix elements so derived follow quite nearly the pattern
and size of the VSA results.
Given the spread and pattern of values in Table I we

conservatively use in our analysis the results of VSA as a
reference benchmark, while including a conservative theo-
retical uncertainty of a factor of two.

V. NEUTRON EDM

A. Strong CP in LRSM

While the SM provides a natural answer to the smallness
of θ̄, the latter being perturbatively protected [5], more
general approaches have been proposed, which are relevant
for new physics extensions. The Peccei-Quinn (PQ) axion
models [27–29] provide an elegant way to address dynami-
cally the problem. On the other hand other solutions
involving the UV completion are possible, as the restora-
tion of a mirror symmetry in the fermion sector [85] or
other extensions [86,87]. For a grand unified embedding
see [88].
Within the LRSM such a solution is provided by the

scenario in which the P symmetry is exact at high scale
and then spontaneously broken [26]. The symmetry sets
to zero the topological term θ, so that θ̄ is computable
after spontaneous breaking, see Eq. (11). Since this is by
far the dominant contribution to dn, the constraint on θ̄
translates into a very stringent limit on the combination
sαt2β and thus into the effective vanishing of all phases
θi, which are directly driven by it. In such a situation the
ε constraint in Eq. (17) implies a lower bound on the LR
scale, MWR

≳ 28 TeV [30], as derived in the limit θs −
θd → 0 [25]. This conclusion is avoided if θ̄ is canceled
by a different mechanism, like the PQ one. In the case of
LRSM with C, both arg detM and θQCD are free
parameters, and if one does not want to exploit this
freedom as a fine-tuning, the θ̄ issue has again to be
addressed by assuming some underlying mechanism, as
mentioned above.
After the PQ setup removes θ̄, still the presence of

P- and CP-violating LR effective operators generates
various sources of the nEDM [89], in both the C and P
cases. We review and compare their impact in the
following sections. It turns out that the most relevant
contribution to dn is due to meson loops after the shift
of the meson fields in the Uð3Þ chiral Lagrangian,
induced by the CP-violating four-quark operators (see
Appendix D). As we will see, the proper calculation
of the meson-baryon couplings in the Uð3Þ chiral
Lagrangian, shows in the PQ case an exact cancelation
that suppresses the predicted nEDM. This result is due to
the remnant θ̄ induced by the relevant LR quark
operators. Such a feature was missed in Ref. [42], where
a different dependence of the meson-baryon couplings
on the mesons VEVs is obtained.
In the following sections we briefly review the contri-

butions to the neutron EDM, arising in the LRSM, from
short- and long-distance sources.

B. Effective operators

The effective CP odd Lagrangian relevant for the nEDM
can be written as [90,91]

4The role of isospin breaking contributions in the lattice
calculations has been further scrutinized in [83].

5A very recent update based on a detailed reassessment of the
isospin breaking effects leads to ε0=ε ¼ 14� 5 × 10−4 [84].
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LEDM ¼ −
GFffiffiffi
2

p
� X2

q≠q0;i¼1

Cqq
0

i Oqq0
i þ 1

2

X4
q≠q0;i¼3

Cqq
0

i Oqq0
i

þ
X4
q;i¼1

CqiO
q
i þ C5O5

�
; ð33Þ

where q ¼ u, d, s and the effective operators are given by

Oq0q
1 ¼ q̄0q0q̄iγ5q; Oq0q

2 ¼ q̄0αq0βq̄βiγ5qα; ð34Þ

Oq0q
3 ¼ q̄0σμνq0 q̄σμνiγ5q; ð35Þ

Oq0q
4 ¼ q̄0ασμνq0β q̄βσμνiγ5qα; ð36Þ

Oq
1 ¼ q̄qq̄iγ5q; Oq

2 ¼ q̄σμνq q̄σμνiγ5q; ð37Þ

Oq
3 ¼ −

e
16π2

eqmq q̄σμνiγ5qFμν; ð38Þ

Oq
4 ¼ −

gs
16π2

mqq̄σμνiγ5TaqGaμν; ð39Þ

O5 ¼ −
1

3

gs
16π2

fabcGa
μσG

b;σ
ν G̃c;μν: ð40Þ

The tensor operators Oq0q
3;4 are symmetric in q0q (iγ5σμν ∝

εμναβσαβ), hence the factor 1=2 in Eq. (33). The Oq0q
1;2 and

dipole operators Oq
3;4 are obtained from the ΔS ¼ 1

Lagrangian Eqs. (18)–(21) by replacing s → d ¼ q.

Accordingly, the Wilson coefficients Cq0q
1;2 at the weak scale

are related to the ΔS ¼ 1 ones by

Cud
1;2 ¼ −Cdu

1;2 ¼ 4ImCRL
1;2; ð41Þ

while

mu;deu;dC
u;d
3 ¼ 2msImðCR;L

γ Þ; ð42Þ

mu;dC
u;d
4 ¼ 2msImðCR;L

g Þ; ð43Þ

where one should replace λABi¼q0 with λABq0q ¼ V�A
q0qV

B
q0q, thus

selecting in Eq. (24) only the mixed LR terms.
The Wilson coefficient of the three-gluon operator O5 is

suppressed by αs=4π and its contribution to the nEDM is
negligible for light quarks. At the integration scale of each
heavy quark it is given by [92–95]

C5ðmqÞ ¼
αsðmqÞ
8π

Cq
4ðmqÞ; ð44Þ

with q ¼ b giving the dominant contribution, proportional
to mt=mb [see Eq. (24)].

By inspection of Eqs. (22)–(24), the leading operators
induced by gauge boson exchange, which are sensitive to
the new CP phases through the LR mixing ζ, are those
obtained from QLR;RL

2 and QL;R
g;γ . The Oq

1;2 operators are
induced by neutral scalar exchange with CP-violating
couplings (Z boson exchange does not induce CP violating
transitions). On the other hand, the contributions of the
heavy doublet Higgs, that we assume decoupled at a scale
higher than the right-handed gauge bosons, are always
suppressed by the light quarks Yukawa couplings, and are

henceforth neglected. Analogously, the operators Oq0q
3;4 are

not generated at the tree level in the model, but obtained via

gluonic corrections of Oq0q
1;2 . Since Oq0q

3;4 are flavor sym-
metric their contribution to the renormalization of Oq

1;2 and

Oq
3;4 is proportional to C

q0q
1;2 þ Cqq0

1;2 , which vanishes to great
accuracy in the present framework. One noticeable conse-
quence is that the leading additive QCD renormalization of
the dipole operators Oq

3;4 comes at the NLO in the loop

expansion (LO in αs) from theOq0q
1;2 operators, in analogy to

the ΔS ¼ 1 case.
The QCD anomalous dimensions and mixings of the

whole set of operators in Eq. (33), at the leading order in
the loop expansion, are found in Ref. [92]. A more recent
NLO calculation is presented in Ref. [96]. We report the
relevant anomalous dimension matrix in Appendix C in our
normalization. At the hadronic scale theWilson coefficients

Cqq0
1 and Cqq0

2 turn out to be comparable, with a slight

predominance of the radiatively induced Cqq0
1 .

The quark EDM from Oq
3 is given in units of e by

dq ¼ −
GFffiffiffi
2

p eqmq

4π2
Cq
3 ð45Þ

and analogously for the chromo-EDM

d̃q ¼ −
GFffiffiffi
2

p mq

4π2
Cq
4: ð46Þ

The neutron EDM can be obtained from Eqs. (45)–(46),
evaluated at the hadronic scale, via naive dimensional
analysis, chiral perturbation theory or QCD sum rules,
the latter providing a more systematic approach. A recent
reevaluation in this framework gives [92,97]6

6A chiral perturbation calculation of the chromoelectric di-
poles gives coefficients larger by order one factors [98], while a
very recent lattice calculation gives [99] dn ¼ 0.8dd − 0.2du, still
missing the chromoeletric dipoles. Since, as we shall see, the
dipole contributions to the nEDM are largely subdominant,
the present variance in the calculations is immaterial for our
conclusions.
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dn ≃ 0.32dd − 0.08du þ eð0.12d̃d − 0.12d̃u − 0.006d̃sÞ:
ð47Þ

In the presence of a PQ axion, the effective CP and
chiral-symmetry breaking operators in Eq. (33) still induce
a nonzero θ̄ [89,100], as explicitly derived in Eq. (D20) for
Oud

1 . As a result, in the PQ case Eq. (47) is modified to
include the contribution to the nEDM of the θ̄ induced by
the chromoelectric dipoles [101]

dPQn ≃ 0.32dd − 0.08du þ eð0.25d̃d þ 0.14d̃uÞ: ð48Þ

The size of the nEDM induced by the θ̄ term is estimated by
various methods to be [102–108]

dn ≃ −ð1–4Þ × 10−16θ̄ ð49Þ

in units of e · cm.
The contribution of the Weinberg three-gluon operator to

the nEDM is subject to large hadronic uncertainties, related
to the method of evaluation. By comparing different
calculations one finds [109]

dn ¼ −ð10–30 MeVÞGFffiffiffi
2

p egs
8π2

C5ð1 GeVÞ: ð50Þ

In the LR framework the dominant chirality flip of the
dipole operators depends on the fermion masses in the loop.
Albeit chirally unsuppressed, the two-loop Weinberg oper-
ator O5 turns out to give a subleading contribution to
the nEDM.

C. The long-distance contributions

The operatorOqq0
1 mediates meson to vacuum transitions

that when chirally rotated away generate P and CP-
violating interactions among mesons and baryons. These
couplings induce potentially large contributions to the
nEDM via chiral loops [90,110]. As shown in Ref. [42],
the pion VEV carries an enhancement factorms=ðmuþmdÞ
with respect to the other VEVs. In the pion-baryon coupl-
ings it then dominates the chiral loop contributions to the
nEDM. As a matter of fact, by considering the Uð3ÞL ×
Uð3ÞR chiral Lagrangian (Appendix D) with the inclusion
of the axial anomaly term [103] one obtains

hπ0i ≃ GFffiffiffi
2

p ðC1ud − C1duÞ
4c3

B0Fπðmd þmuÞ
; ð51Þ

with hπ0i ≫ hη0;8i by a factor ms=ðmd −muÞ. For the
notation and estimate of chiral couplings and low energy
constants (LEC) see Appendix D.
Given the leading role of hπ0i, the relevant CP violating

baryon-meson couplings are [Eqs. (D15)–(D17)]

ḡnpπ ≃
2
ffiffiffi
2

p
B0

F2
π

ðbD þ bFÞðmd −muÞhπ0i; ð52Þ

ḡnΣ−Kþ ¼B0

Fπ
ðbD−bFÞ

�
−2

ffiffiffi
2

p
mu

hπ0i
Fπ

−
2
ffiffiffi
2

pffiffiffi
3

p ðmu−2msÞ
hη8i
Fπ

−
4ffiffiffi
3

p ðmuþmsÞ
hη0i
F0

�
;

ð53Þ

with bD þ bF ≃ −0.14 and bD − bF ≃ 0.28 in units of
GeV−1. As we comment in Appendix D, these results
differ from those of Ref. [42]. In particular, the coefficient
of the pion VEV in Eq. (53) is not enhanced by ms. As a
consequence ḡnΣ−Kþ is of size comparable to ḡnpπ and all
meson VEVs are relevant. In addition, when considering
the PQ scenario, the θ̄ induced by the Oud

1 operator cancels
exactly the ḡnpπ coupling, leaving only ḡnΣ−Kþ ; the loga-
rithmic enhancement in the pion mediated loop (visible
below) is therefore lost and the predicted nEDM is strongly
suppressed. On the contrary the Ous

1 operator consistently
induces a cancelation of ḡnΣ−Kþ but a nonzero gnpπ , so that, in
spite of being doubly Cabibbo suppressed, the logarithmic
enhancement of the pion loop makes its contribution to the
nEDM no longer negligible, albeit still subdominant. We
quantitatively discuss the effects of the pion coupling
cancelation in the PQ setup in the following section.
Up to unknown LECs (that are numerically sublead-

ing according to a naive dimensional estimate [42]) the
nEDM computed from baryon-meson chiral loops leads to
[111,112]

dn ≃
e

8π2Fπ

ḡnΣ−Kþffiffiffi
2

p ðD − FÞ
�
log

m2
K

m2
N
−
πmK

2mN

�
; ð54Þ

to be compared with the LO pion contribution [113]

dn ≃ −
e

8π2Fπ

ḡnpπffiffiffi
2

p ðDþ FÞ
�
log

m2
π

m2
N
−
πmπ

2mN

�
; ð55Þ

where at the leading order DþF≡gA≃1.3 and D − F≃
0.3. In Ref. [114] large logarithmic corrections to the
tree level result are computed leading to Dþ F ≃ 1 and
D − F ≃ 0.2. We include this spread within the hadronic
uncertainty in our numerical analysis. In Eqs. (54)–(55) the
extended-on-mass-shell prescription is applied to ensure a
correct power counting [115].
In spite of the large pion log in Eq. (55), Eq. (54) gives a

non-negligible contribution to the nEDM and we will
include it in our numerical analysis, together with the pion
loop contributions induced by ḡnnπ [30,40,113].7

7The direct short-distance contribution to the isovector CP
odd pion nucleon coupling, which is part of the unknown loop
counterterm, is estimated to be sizeable, albeit with a large
uncertainty [116]. We assume no large cancellation occurs.
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VI. NUMERICAL ANALYSIS

A. Preliminaries

According to Eq. (26) and to the discussion of the LR
hadronic matrix elements in Sec. IV B we obtain

hε0 ¼ 0.92 × 106jζj½sin ðα − θu − θdÞ þ sin ðα − θu − θsÞ�
þ 320jζj½sin ðα − θc − θdÞ þ sin ðα − θc − θsÞ�
þ 6200r sin ðθd − θsÞ; ð56Þ

which is normalized to unity when matching the central
experimental value in Eq. (30). The contributions that are
proportional to the LR mixing ζ in Eq. (3) are due to
current-current (first line) and dipole operators (second
line), while the term proportional to r represents the RR
current contribution. The relative magnitude of the three
contributions is readily estimated. From the direct search
limitMWR

≳3.7 TeV (see [34]) one obtains an upper bound
on the mixing, ζ < 4 × 10−4. Thus, the first line can easily
overshoot by orders of magnitudes the experimental value.
The contribution of the dipoles instead amounts at most to
hε0 ∼ 0.25. As for the last line, the phase θd − θs is con-
strained by εK, with different outcomes in theC orP cases. In
the case of C, from Eq. (16) one finds r sin ðθd − θsÞ <
1.4 × 10−6, so that this contribution falls short of∼0.008 and
can be neglected. In the case of P, from Eq. (17) one finds
rsinðθd−θsÞ≲2.5×10−5ð7 TeV=MWR

Þ1.5, which contrib-
utes to hε0 at most as 0.15, where MWR

is constrained to be
larger than 7 TeV as we shall see in the following.
It is convenient to note that in the dominant contribution

to ε0, namely in

hε0 ≃ 0.92 × 106jζj½sin ðα − θu − θdÞ þ sin ðα − θu − θsÞ�;
ð57Þ

the constraints (16)–(17) on θd − θs enforced for low LR
scale imply that the result depends on a single combination
of phases, e.g., α − θu − θd.
Turning to the neutron electric dipole moment, in

analogy with ε0 it is convenient to introduce the parameter

hdn ¼
dLRn
d<n

; ð58Þ

where the LR contribution to the dipole moment is
normalized to the present experimental bound, d<n ¼
2.9 × 10−26 e cm.
From the results of the previous section and those in the

appendices we finally obtain, for central values of the
hadronic parameters at the neutron scale,

hnoPQdn
¼ 106jζj½þ1.65 sin ðα − θu − θdÞ
− 0.007 sin ðα − θc − θdÞ
þ 0.00095 sin ðα − θt − θbÞ�; ð59Þ

hPQdn ¼ 106jζj½þ0.21 sin ðα − θu − θdÞ
− 0.010 sin ðα − θc − θdÞ
þ 0.00095 sin ðα − θt − θbÞ�; ð60Þ

where the first line includes the contribution of the LR
current-current operators via chiral loops, generated by the
ḡnpπ , ḡnΣ−Kþ and ḡnnπ couplings, and in the PQ case it
includes the induced shift on θ̄ [see Eq. (D20)]. As already
mentioned in the previous section, the Oud

1 induced θ̄
cancels exactly the ḡnpπ coupling, leaving only ḡnΣ−Kþ to
contribute in chiral loops to the nEDM (see the discussion
in Appendix D). The logarithmic enhancement of the pion
mediated loop is therefore lost with a consequent suppres-
sion of the predicted nEDM.
The much smaller second and third lines derive from

the dipole and the Weinberg operators respectively (includ-
ing the renormalization mixing). The results in the noPQ
case are in fairly good agreement with those reported
in Ref. [42].
In the discussion that follows we will consider these

outcomes as benchmark values. In order to consider the
uncertainties discussed in the previous sections, we allow a
range of 50%–200% for hε0 due mostly to the relevant LR
matrix elements, and a 30% uncertainty on hdn related to
the long-distance parameters D and F in Eqs. (54)–(55).
It appears immediately that the combinations of phases

in the leading terms of Eq. (56) and Eqs. (59)–(60) can lead
to correlations that open the possibility to test the LR setup.
This is especially clear for low scale MWR

< 30 TeV
because, in view of the ε constraints in Eqs. (16)–(17),
θd and θs are strongly related.
In the following, we explore this correlation by consid-

ering the two phenomenological scenarios for ε0=ε: namely,
whether the SM prediction falls short of the experimental
value with the missing contribution being provided by low
scale LRSM, or whether the SM prediction saturates the
observable and thus a lower bound on theWR mass follows.
It is then crucial to consider the difference between the P

and C choice of the discrete LR symmetry. The important
feature is that the phases θi are free for C, while for P they
are predicted as a function of sαt2β. Therefore, in the case of
C one can always suppress the effects CP violation by
setting the phases to zero, and thus no lower bound can be
placed on the WR scale. On the contrary, requiring a
sizeable contribution to ε0 bounds the size LR scale from
above. For the case of P the phases can be calculated
analytically in a power series of sαt2β, as demonstrated in
[17]. For our purposes it is enough to consider the leading
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order expressions, which we recalculate for generic signs si
(see Appendix A for the detailed expressions).
In summary, for the sake of clarity, we shall discuss our

results with reference to two alternative scenarios in which
(i) the SM saturates the experimental value of ε0=ε and thus
the LRSM contribution has to be bounded from above, or
(ii) the SM contribution falls within the present experi-
mental error and the LRSM contribution provides about the
whole amount. We name these limiting scenarios ε0SM and
ε0NP respectively. In either case we require the contribution
to dn to be less than the present experimental bound (the
effect of future experimental improvements are also
shown). Thus, we set

ε0SM: hdn < 1. and jhε0 j < 0.15,
ε0NP: hdn < 1. and hε0 ¼ 0.9� 0.15.

The uncertainty of 0.15 is related to the present exper-
imental error on ε0=ε.
A discussion of the correlated predictions for hε, hε0 and

hdn will be given next in the cases of C and P, distinguish-
ing between the ε0SM and ε0NP scenarios.

B. Results

Our results are summarized in Figures 1–5. We analyze
separately the C and P cases. The scattered plots are
obtained for benchmark values of the hadronic parameters.
Case of C. Because the phases are free parameters, the

LRSM contribution to both ε0 and dn can be made
vanishing by appropriate tuning. Correspondingly, in
Fig. 1 the dots populate the gray band around zero no
matter how lowMWR

is. As a result, no bound on MWR
can

be placed in the ε0SM scenario.
In the ε0NP scenario instead, because one requires a

sizeable contribution of the LRSM to ε0, an upper bound
on MWR

appears. Its size clearly depends on tβ. For
instance, for large tβ ≃ 0.5, near its perturbativity limit
(right frame in Fig. 1), one sees that WR must be lighter

than 115 TeV, while for tβ ¼ 0.025, MWR
< 30 TeV is

required (left frame).
One also notices that the correlation between ε0 and dn is

sharper (thinner band) for WR lighter than ∼30 TeV and
small tβ (left frame). In this regime due to the εK constraint
θs − θd has to be small (modulo π); the dominant first lines
in Eqs. (59) and (56) depend on the same phase combi-
nation and are thus confined in a tiny strip. This correlation
is progressively absent in the large tβ regime (right frame)
because there WR is much heavier and the ε constraint
becomes less effective.
In any case, since the free phases as well as α are at

present not directly tested by other observations, it is
convenient to marginalize over them and show the resulting
upper bound on MWR

correlated with tβ. This is depicted
in Fig. 2, where the upper bound on MWR

in the ε0NP
scenario is seen to range from less than 10 TeV (for
tβ ∼ 10−3) up to more than 100 TeV (for large tβ).
In Fig. 2 we also show the effect of tightening the

constraint on dn to < 0.03, in view of the future experi-
ments. One can conclude that when this bound will be
reached, the LRSM contribution to ε0 can take place only
for somewhat large tβ ≳ 0.1.
We depict with a dashed contour the bound obtained

after including the theoretical uncertainties dominated by
those on the matrix elements. A numerical difference can be
appreciated, but the picture patterns remain.
Case of P. In this case all phases are predicted in terms

of α and tβ, and although the 32 different combinations of
signs su;c;t;d;s [see Eq. (10)] give rise to different numerical
predictions, the resulting picture illustrated in Fig. 3 shows
well defined and narrow bands. One can observe that the
new physics contribution to ε0 shows a different pattern
with respect to the previous case.
First, for low scale WR it is not possible to make ε0

vanishing by a convenient choice of phases, and thus a

FIG. 1. Case of C: Contribution of the LRSM to ε0 and dn for random phases, various choices of MWR
and two choices of tβ: small

tβ ¼ mb=mt (left) or large tβ ¼ 0.5 (right). Only those points that satisfy the ε constraint are shown. The left (gray) and right (cyan)
vertical bands define the ε0SM and ε0NP scenarios respectively. The long-dashed line represent the current dn experimental bound and the
short-dashed one a future reach of dn < 10−27 e · cm.
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lower bound on MWR
emerges in the ε0SM scenario. As

anticipated above, the reason is the role played by the εK
constraint Eq. (17): for low scaleWR one must have quite a
large θs − θd ∼�0.16 [25] and so the combinations in
Eq. (56) can never vanish in correspondence of vanishing
hε0 , hdn . Thus, by loweringMWR

the predicted values of hε0
shift to larger values, as shown in Fig. 3.
From the plot it can be argued that the ε0SM scenario

requires MWR
≳ 15 TeV. The detailed analysis gives infor-

mation on the correlations between the phases and scales
involved, as we report in Appendix E, that shows the
complex interplay of the 32 sign combinations and the tight
correlation among α, tβ and MWR

.
With the numerical study at hand, by marginalizing on α

we depict in Fig. 4 the lower bound onMWR
as a function of

tβ,. We find that the lowest allowed scaleMWR
≳ 15 TeV is

achieved for tβ ∼ 0.15. The darker area shows the impact of
including the theory uncertainty dominated by the hadronic
matrix elements (100% for ε0 and 30% for nEDM). This
relaxes the lower bound to a least possible value of
MWR

≳ 13 TeV, which is achieved for tβ ∼ 0.1. In the
PQ scenario (dotted line) the lower bound is relaxed to
about 6 TeV for tβ ∼ 0.2.
In the ε0NP case the situation is even more structured and

interesting. The constraint hdn < 1. can be satisfied by

choosing the vacuum phase α appropriately, if possible,
thus providing a prediction of hε0 . As expected, the request
hε0 ≃ 0.9� 0.15 sharply constrains the range of MWR

. For
instance in Fig. 3, for benchmark values of the parameters,
a preferred range of MWR

¼ 9–15 TeV emerges. This is
better seen in Fig. 5 where by marginalizing again on α we
depict the allowed region in the plane MWR

-tβ for the ε0NP
scenario in the case of P with benchmark hadronic

FIG. 3. Case of P: Contribution of the LRSM to ε0 and dn for
various choices of MWR

by scanning on phases and tβ, while
satisfying the ε constraint. The left (gray) and right (cyan) vertical
bands define the ε0SM and ε0NP scenarios respectively. The long-
dashed line denotes the current experimental upper bound, while
the short-dashed one a future reach of dn < 10−27 e · cm.

FIG. 2. Case of C in ε0NP scenario: Allowed region in theMWR
-tβ

plane for 0.9ε0exp to arise from new physics. The nEDM prediction
is taken below 1 (light shading) or 0.03 (dark shading) of the
present experimental bound. Solid lines correspond to the chosen
benchmark values of the hadronic parameters, while the dashed
contours include the theoretical uncertainty. In the progressively
shaded band at the top, tβ ≳ 0.6, quark Yukawa couplings become
nonperturbative [22], while at the left, for MWR

< 6 TeV, the
scalar sector becomes nonperturbative [31–33].

FIG. 4. Case of P: The shaded regions in the MWR
-tβ plane are

excluded in order to have at most 15% new physics contribution
to ε0=ε and dn below the present experimental bound. The lighter
region assumes benchmark hadronic parameters, while the darker
one includes the theory uncertainties, as discussed in the text. The
dotted line marks the PQ case.
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parameters (darker shaded area). The region spans the
perturbative interval tβ ≃ 0.005–0.1 and MWR

below
15 TeV. When we include the hadronic uncertainties
(lighter shaded area) we find that the allowed region relaxes
substantially in the MWR

direction, which spans the 7–
45 TeV interval.
In summary, in the case of P, our numerical analysis

shows that with conservative theoretical uncertainties
the ε0SM scenario places a lower bound MWR

≳ 13 TeV,
while the ε0NP scenario requires MWR

¼ 7–45 TeV and
tβ ¼ 0.005–0.5. Both these bounds will get considerably
tighter with the expected reduction of the theoretical errors
on ε0, coming from a precise lattice determination of the
relevant hadronic matrix elements.

VII. CONCLUSIONS

In this work we have revisited the CP-violating observ-
ables ε, ε0 and dn within the LRSM and derived updated
limits on the LR scale MWR

and model parameters. In
particular, our analysis aimed to fully investigate the
correlations among the observables for the different setups
of the model parameters, arising by a given choice of
discrete LR symmetry.
The issue is relevant also in the light of the recently

reopened debate on the magnitude of the theoretical SM
prediction for ε0 following the recent lattice results,
suggesting that the SM may fall short of reproducing the

experimental value of ε0=ε. While waiting for a fully
consistent picture of the kaon hadronic decays from lattice,
we considered here two limiting scenarios named as ε0SM
and ε0NP respectively, according to whether the SM or the
LRSM saturate the experimental value.
In the LRSM each choice of P or C discrete symmetry

implies crucially different predictions and constraints for
the RH CKM phases with a strong impact on the new
physics scale.
Previous detailed studies on ε; ε0 in the LRSM can be

found in [23–25], and of ε, ε0, dn in [30,42]. In particular, the
LRSM prediction for εwas thoroughly analyzed in [25] and
gives a tight constraint on theRHCKMphases versus theLR
scale. On the other hand the relation with dn was studied
recently in [30] mainly within the assumption of exact P
parity and thuswith vanishingQCD theta term (although the
possibility of a different UV completion was foreseen).
In order to investigate an interesting and predictive

scenario for the neutron dipole moment, we considered
explicitly the PQ setup as a dynamical solution of the theta
QCD problem and investigated in detail the impact of the
explicit breaking of the PQ symmetry by the effective
operators in the minimal LRSM. Our analysis shows that
the new contribution to dn coming from the shift of the
axion potential, has a dramatic impact on the outcome,
suppressing substantially the predicted nEDM. This result
is at variance with the conclusions of Ref. [42], and we
identify the issue in the proper extraction of the relevant
meson-baryon couplings from the Uð3Þ chiral Lagrangian.
The inclusion of the strange quark in the analysis does not
provide the large enhancement of the chiral loops claimed
in [42] but still it is numerically relevant and we evaluate
the chiral loop contributions to dn within the Uð3Þ chiral
framework (not considered in [30]).
Other studies on this topics have recently appeared in the

literature. In particular (i) in [41] the authors address the
RH interactions in an effective parametrization, (ii) in [42]
the authors address the LRSM model with C symmetry,
seemingly ignoring the phase correlations deriving from the
ε constraint, and focusing on small tβ only; (iii) in [43] the
case of P symmetry is analyzed by decoupling the scale of
LR gauge interactions,MWR

, and effectively studying a two
Higgs doublet model. The study presented here aims to
provide a comparative picture of the implications of ε, ε0
and dn on the minimal LRSM setup, exhibiting the main
patterns of the model parameters and scales due to the
correlations among the observables.
Given the suppression of the nEDM in the effective PQ

scenario, which does not lead to significant bounds on the
LR scale, we analyzed in detail, for both C and P, the case
where the ultraviolet completion of the low energy minimal
LR model sets θ̄ ¼ 0 (see for instance [85]). This leads to
interesting and predictive scenarios for the nEDM.
Our conclusions in the ε0SM case can be summarized as

follows: for the choice of C symmetry, which allows for

FIG. 5. Case of P: The shaded regions in the MWR
-tβ plane are

allowed in order for new physics to provide 0.9ε0exp, while
keeping the contribution to dn below the present experimental
bound. The smaller region assumes benchmark values for the
hadronic parameters, while the larger one includes the theory
uncertainties, as discussed in the text.
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several free phases, one finds constraints on them but no
lower bound on the RH scale is present. For the choice of P
instead, where all the CKM phases are predicted in terms of
one vacuum phase, we find a lower boundMWR

> 13 TeV,
which includes conservative theoretical uncertainties on the
hadronic parameters. Future improvement on these uncer-
tainties will push this bound slightly higher, up to 15 TeV.
This is in any case smaller than the tight lower bound of
∼30 TeV which stems from exact parity with spontane-
ously induced θ̄ ≠ 0 [30].
In the ε0NP scenario, the LRSM contributions may

saturate ε0 and still hold the dn below the experimental
bound or at the reach of future probes. An upper limit on
MWR

is naturally demanded for this to happen. The case of
P, being more constrained, requires MWR

¼ 7–45 TeV (or
MWR

¼ 9–15 TeV with benchmark hadronic parameters)
and tβ > 0.005. On the other hand for the C case, the LR
contributions can saturate ε0 for MWR

ranging from about 8
to 115 TeV with increasing tβ, from 0.001 to its perturba-
tivity bound ≃0.5.
The scale ofMWR

∼ 7 TeV lies just at the limiting reach of
LHC in the golden KS channel [34]. On the other hand, it
may show up as an effective interaction either in the dilepton
channel or, for a particular range of neutrino masses, in
displaced decays of the Higgs to two RH neutrinos [117].

A future hadronic collider at 30 TeV center-of-mass
energy would probe easily the mass scale up to ∼15 TeV in
the KS process [118] (for TeV scale RH neutrinos) or in the
lepton plus missing energy channel [34] (for RH neutrinos
below 100 GeV), the two having comparable reach.
The prominent WR → dijet channel would give an earlier
signature, independently from the RH neutrino mass.
Finally, a FCC-hh collider with 100 TeV center-of-mass

energy would probe MWR
up to 40 TeV [33,118] and thus

test thoroughly the scenarios analyzed here.
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APPENDIX A: THE EXTERNAL PHASES OF VR

In the case of P the external phases can be worked out
from the perturbatively computed VR [44] in Eq. (9). For
the analysis on dn and ε0 performed in this article, the
relevant phase combinations are θu þ θd and θu þ θs, that
can be expressed in terms of the quark masses, the CKM
angles, the expansion parameter sαt2β and the arbitrary
signs si:

θuþθd≃
sαt2β
2

�
sin2θ12

�
2ss
ms

−
sd
md

�
ðmcsccos2θ23þmtstsin2θ23Þ−

su
mu

ðmdsdcos2θ12þ ssmssin2θ12Þ
�
þ su− sd

2
π; ðA1Þ

θu þ θs ≃
sαt2β
2

�
cos2θ12

ss
ms

ðmcsccos2θ23 þmtstsin2θ23Þ −
su
mu

ðmdsdcos2θ12 þmssssin2θ12Þ
�
þ su − ss

2
π: ðA2Þ

APPENDIX B: LOOP FUNCTIONS

The loop functions relevant for the SM and the LRSM
short-distance coefficients in Eqs. (22)–(24) are given by
[21,119–121]

FLL
1 ¼ xð−18þ 11xþ x2Þ

12ðx − 1Þ3 −
ð4 − 16xþ 9x2Þ ln x

6ðx − 1Þ4 ðB1Þ

ELL
1 ¼ −

x2ð5x2 − 2x − 6Þ
18ðx − 1Þ4 ln xþ 19x3 − 25x2

36ðx − 1Þ3 þ 4

9
ln x

ðB2Þ

FLL
2 ¼ xð2þ 3x − 6x2 þ x3 þ 6x ln xÞ

4ðx − 1Þ4 ðB3Þ

ELL
2 ¼ xð8x2 þ 5x − 7Þ

12ðx − 1Þ3 þ x2ð2 − 3xÞ
2ðx − 1Þ4 ln x ðB4Þ

FLR
2 ¼ −4þ 3xþ x3 − 6x ln x

2ðx − 1Þ3 ðB5Þ

ELR
2 ¼ 5x2 − 31xþ 20

6ðx − 1Þ2 −
xð2 − 3xÞ
ðx − 1Þ3 ln x: ðB6Þ

One also has FRR
1;2 ¼ FLL

1;2ðrxiÞ and similarly for ERR
1;2.

APPENDIX C: ANOMALOUS DIMENSIONS

As explained in Sec. V the pattern of model values of the
weak scale Wilson coefficients in Eq. (33) allow us to
reduce the basis of the effective operators to

Oqq0 ¼ fOqq0
1 ;Oqq0

2 ;Oq0q
1 ;Oq0q

2 g; ðC1Þ

Oq ¼ fOq
3;O

q
4g: ðC2Þ
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TheLOmixingmatrix of theOqq0 operators is givenby [92]

γð1Þqq0→qq0 ¼

0
BBBB@

−16 0 0 0

−6 2 0 0

0 0 −16 0

0 0 −6 2

1
CCCCA; ðC3Þ

while the dipole anomalous-dimensionmatrix (we neglect the
mixing of O5 into Oq

4) reads [122,123]

γð1Þq→q ¼
 

32
3

0

32
3

28
3

!
: ðC4Þ

The subscripts qq0 and q in the γ’s indicate the nonvanishing
subblocks of the anomalous-dimension matrix.
The mixing of Oqq0 into the dipoles is readily obtained

from Ref. [96], taking into account the different operator
basis and the covariant derivative conventions

γð1Þqq0→q ¼

0
BBBBBB@

8
3

eq0
eq

mq0
mq

− 67
6

mq0
mq

−8 eq0
eq

mq0
mq

− 5
2

mq0
mq

8
9

eq0
eq

mq0
mq

− 67
18

mq0
mq

− 8
3

eq0
eq

mq0
mq

− 5
6

mq0
mq

1
CCCCCCA
: ðC5Þ

The Wilson coefficients evolve according to

dC
d log μ

¼ Cγð1Þ
αs
4π

; ðC6Þ

where γð1Þ is the 6 × 6 anomalous dimension matrix. The
γ’s superscript indicates the αs=4π order of the mixing.
The short-distance running of the LR effective

operators for ΔS ¼ 1 and ΔS ¼ 2 transitions is discussed
in Refs. [23,25], respectively.

APPENDIX D: THE MESON AND BARYON
CHIRAL LAGRANGIANS

The LO chiral Lagrangian for the octet of Nambu-
Goldstone bosons and the η0 singlet, including the bosonic
representation of the O1q0q operator is given by

L ¼ F2
π

4
tr½ðDμUÞ†DμU þ χðU þU†Þ�

þ a0tr½logU − logU†�2

þ GFffiffiffi
2

p
X
u;d;s

fiCLRLRijkl ðc1½U�ji½U�lk − c1½U†�ji½U†�lk

þ c2½U�li½U�jk − c2½U†�li½U†�jkÞ
þ iCRLLRijkl ðc3½U†�ji½U�lk − c3½U�ji½U†�lkÞg; ðD1Þ

where we follow the notation of Ref. [42]. The 3 × 3
matrix U represents nonlinearly the nine Goldstone states.
Under Uð3ÞL × Uð3ÞR rotations L × R it transforms as
U → RUL†, while χ includes explicitly the quark masses,
namely

U ¼ exp

�
2iffiffiffi
6

p
F0

η0I þ
2i
Fπ

Π
�
; ðD2Þ

Π≡

0
BBBB@

1
2
π0 þ 1

2
ffiffi
3

p η8
1ffiffi
2

p πþ 1ffiffi
2

p Kþ

1ffiffi
2

p π− − 1
2
π0 þ 1

2
ffiffi
3

p η8
1ffiffi
2

p K0

1ffiffi
2

p K− 1ffiffi
2

p K̄0 − 1ffiffi
3

p η8

1
CCCCA; ðD3Þ

χ ¼ 2B0diagfmu;md;msg ðD4Þ

and I is the identity matrix. Fπ is the pion decay constant in
the chiral limit, while F0 denotes the η0 decay constant,
which we approximate to be equal. The quark mass term is
written in terms of the condensate B0 ≃m2

π=ðmu þmdÞ.
The second term in Eq. (D1) represents the anomaly

induced by the QCD instantons in the large N limit [103].
The coupling a0 satisfies 48a0=F2

0 ≃m2
η þm2

η0 − 2m2
K .

The third term represents the bosonization of C1q0qO1q0q
where the sum over q ≠ q0 ¼ u, d, s is understood. The
coefficients that encode the short distance physics are given
by CLRLRijkl ¼CRLLRijkl ≡Pq≠q0C1q0qδiq0δjq0δkqδlq. The unknown
low energy constants (LEC) c1;2;3, are estimated in the large
N limit as

c1 ∼ c2 ∼ c3 ∼
F4
πB2

0

4
: ðD5Þ

The terms proportional to c1 and c3 induce VEVs of the
Goldstone nonet. However, the c1 terms are proportional to
ðC1ud þ C1duÞ, which vanishes due to Eq. (41). Thus, only
the c3 contributions, proportional to ðC1ud − C1duÞ are
nonvanishing. By neglecting jC1usj, doubly Cabibbo sup-
pressed with respect to jC1udj, we confirm the results in [42]

hπ0i
Fπ

≃
GFffiffiffi
2

p ðC1ud−C1duÞ
c3

B0F2
π

×
B0F2

πðmuþmdÞmsþ8a0ðmuþmdþ4msÞ
B0F2

πmumdmsþ8a0ðmumdþmdmsþmsmuÞ
;

ðD6Þ

hη8i
Fπ

≃
GFffiffiffi
2

p ðC1ud − C1duÞ
c3ffiffiffi
3

p
B0F2

π

ðmd −muÞ

×
B0F2

πms þ 24a0
B0F2

πmumdms þ 8a0ðmumd þmdms þmsmuÞ
;

ðD7Þ
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hη0i
F0

≃
GFffiffiffi
2

p ðC1ud − C1duÞ
ffiffiffi
2

p
c3ffiffiffi

3
p

B0F2
π

ðmd −muÞ

×
B0F2

πms

B0F2
πmumdms þ 8a0ðmumd þmdms þmsmuÞ

;

ðD8Þ

where the leading short distance coefficients C1qq0 are given
in Eq. (41). The comparison of Eqs. (D6)–(D8) shows the
ms=ðmd −muÞ enhancement of hπ0i over the others
(empirically 20a0 ≃ B0F2

πms).
The relevant baryon chiral Lagrangian can be written

as [103]

LB ¼Tr½B̄iγμð∂μBþ½Γμ;B�Þ−MBB̄B�

−
D
2
tr½B̄γμγ5fξμ;Bg�−

F
2
tr½B̄γμγ5½ξμ;B��

−
λ

2
tr½ξμ�tr½B̄γμγ5B�þbDtr½B̄fχþ;Bg�þbFtr½B̄½χþ;B��

þb0tr½χþ�tr½B̄B�þ � � � ; ðD9Þ

where

B¼

0
BBB@

1ffiffi
2

p Σ0þ 1ffiffi
6

p Λ0 Σþ p

Σ− − 1ffiffi
2

p Σ0þ 1ffiffi
6

p Λ0 n

Ξ− Ξ0 − 2ffiffi
6

p Λ0

1
CCCA; ðD10Þ

U ¼ ξRξ
†
L ðξR ¼ ξ†LÞ ðD11Þ

and

Γμ ≡ 1

2
ξ†Rð∂μ − irμÞξR þ 1

2
ξ†Lð∂μ − ilμÞξL; ðD12Þ

ξμ ≡ iξ†Rð∂μ − irμÞξR − iξ†Lð∂μ − ilμÞξL; ðD13Þ

χþ ≡ ξ†LχξR þ ξ†Rχ
†ξL: ðD14Þ

Finally, MB denotes the baryon mass in the chiral limit. In
Eq. (D9) the interaction terms proportional to D, F and λ
are CP conserving, while those proportional to bD, bF
and b0 violate CP. The constants D and F are extracted
from baryon semi-leptonic decays to be at tree level D ≃
0.8 and F ≃ 0.5 [124], while from baryon mass splittings
one obtains bD ≃ 0.07 GeV−1, bF ≃ −0.21 GeV−1 [103]
and b0 ≃ −0.52 GeV−1 from the πN σ-term.
By properly rotating the meson fields in the baryonic

lagrangian in such a way that hUi ¼ 1 we can extract the
relevant CP-violating baryon interactions with the physical
meson fields [89,103]. Considering the vertices with one
neutron and charged particles we obtain

ḡnpπ ¼
B0

Fπ
ðbD þ bFÞ

�
2
ffiffiffi
2

p
ðmd −muÞ

hπ0i
Fπ

−
2
ffiffiffi
2

pffiffiffi
3

p ðmu þmdÞ
�hη8i
Fπ

þ
ffiffiffi
2

p hη0i
F0

��
; ðD15Þ

ḡnΣ−Kþ ¼B0

Fπ
ðbD−bFÞ

�
−2

ffiffiffi
2

p
mu

hπ0i
Fπ

−
2
ffiffiffi
2

pffiffiffi
3

p ðmu−2msÞ
hη8i
Fπ

−
4ffiffiffi
3

p ðmuþmsÞ
hη0i
F0

�
:

ðD16Þ

These results differ from those obtained in Ref. [42]
by shifting linearly the meson fields, a procedure that is
bound to fail beyond the tadpole terms. In particular, the
coupling ḡnΣ−Kþ is no longer enhanced by ms=ðmd −muÞ
over ḡnpπ, and while the latter is dominated by hπ0i all
VEVs contribute equally to the former. As a consequence
the logarithmic enhanced pion loops in Eq. (55) still
numerically dominate over the kaon mediated contribution
[Eq. (54)].
Similar considerations hold for ḡnΣ0K0 and ḡnΛK , while

for the isovector coupling ḡnnπ , relevant for the NLO pion
loop contributions, we confirm the result in [42]:

ḡnnπ ¼
4B0

Fπ

�
ð−b0ðmu þmdÞ − ðbD þ bFÞmdÞ

hπ0i
Fπ

þ ðb0ðmd −muÞ þ ðbD þ bFÞmdÞ

×

� hη8iffiffiffi
3

p
Fπ

þ
ffiffiffi
2

3

r
hη0i
F0

��
: ðD17Þ

When the LR scenario is endowed with a Peccei-Quinn
symmetry the topological θ-term can be rotated away by an
appropriate axion dependent chiral rotation of the quark
fields

qL → e−iαq=2qL; qR → eiαq=2qR; ðD18Þ
where αq depend on the axion field a as

αu ¼
mdms

mumd þmdms þmsmu

�
a
fa

þ θ̄

�

αd ¼
msmu

mumd þmdms þmsmu

�
a
fa

þ θ̄

�

αs ¼
mumd

mumd þmdms þmsmu

�
a
fa

þ θ̄

�
ðD19Þ

and fa denotes the axion decay constant. With the chosen
αq the axion does not mix with π0 and η8. By applying such
anUð3ÞA field transformation to Eq. (D1), the axion field is
included in the meson Lagrangian.
When only the leading ðC1ud − C1duÞ term is kept, the

vacuum is readily obtained as
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hπ0i
Fπ

≃
GFffiffiffi
2

p ðC1ud − C1duÞ
c3

B0F2
π

mu þmd þ 4ms

mumd þmdms þmsmu

hη8i
Fπ

≃
GFffiffiffi
2

p ðC1ud − C1duÞ
ffiffiffi
3

p
c3

B0F2
π

md −mu

mumd þmdms þmsmu

hai
fa

þ θ̄ ≃
GFffiffiffi
2

p ðC1ud − C1duÞ
2c3
B0F2

π

md −mu

mumd
: ðD20Þ

The meson VEVs above follow closely the pattern of
Eqs. (D6)–(D7), with hη0i ¼ 0, due to the dominance of the
a0 terms. Notice that the pion VEV is odd when exchanging
u and d, while the other VEVs are even as it must be. Due
to the presence of CP and chiral breaking effective LR
operators, the axion VEV no longer cancels the original θ̄
term, leaving a calculable θ̄eff [Eq. (D20)] that contributes
to the neutron EDM via an additional term in Eqs. (D15)–
(D7). We find

ḡθnpπ ¼ −4
ffiffiffi
2

p B0

Fπ
ðbD þ bFÞ

mumdmsθ̄eff
msmd þmsmu þmumd

;

ḡθnΣ−Kþ ¼ −4
ffiffiffi
2

p B0

Fπ
ðbD − bFÞ

mumdmsθ̄eff
msmd þmsmu þmumd

;

ðD21Þ

which numerically lead to a contribution to the nEDM in
good agreement with Eq. (49). It is noteworthy that by
inserting the meson VEVs of Eq. (D20) in Eq. (D21) the
ḡnpπ vanishes identically. On the other hand, when the Ous

1

is considered the ḡnΣ−Kþ coupling is in turn canceled, as
consistency requires. We have double checked this result
using the formalism of Ref. [103], which makes such a
cancellation more transparent.
In passing, let us note that also the axion mass is

modified with respect to the standard result by the presence

of the new CP and chiral breaking operators, but the
deviation turns out to be utterly small.

APPENDIX E: NUMERICAL ANALYSIS
FOR THE CASE OF P

For the case P there are 32 sign combinations
fsu; sc; st; sd; ssg, corresponding to any choice of them
being �1, after having conventionally set sb ¼ 1. They
give rise to different predictions for the VR phases θi, as
shown e.g., in Appendix A. As a consequence, the
numerical analysis has to be repeated separately for each
combination of signs.
For the ε0NP scenario, we find that one can accommodate

simultaneously the hε, hε0 and hdn constraints only for
sssd ¼ 1; this is needed to avoid a π shift which would lead
to a cancellation between the two terms in Eq. (57). By
inspection one finds also the condition sgnα ¼ sdst, so that
for numerical convenience one can restrict the analysis to
the “log”-variable a¼ tanh−1 ½ð2sdstα=πÞ−1�∈ ð−∞;∞Þ.
Finally, one finds that solutions exist only in four
cases: f1; 1; 1; 1; 1g, f1;1;1;−1;−1g, f−1;−1;−1;1;1g,
f−1;−1;−1;−1;−1g, the last two being just replicas of
the first two. The simultaneous experimental constraints
produce allowed regions in theMWR

-tβ-a space, depicted in
Fig. 6. The numerical analysis is carried out for central
values of the matrix elements as well as for the enlarged
conservative range, left and right frames of Fig. 6 respec-
tively. In this case solutions are found for four sign
combinations more. When the allowed volumes are pro-
jected on the MWR

-tβ plane, Fig. 5 is obtained.
A similar procedure is followed for the ε0SM scenario,

where all 32 sign choices and both sgnα ¼ �1 contribute.
Here the lowest bound on the LR scale is found in the
subset with scst ¼ 1, where the hε constraint is easier to
satisfy.

FIG. 6. Case of P: The allowed region in the MWR
-tβ-α space for the ε0NP scenario.
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