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A comprehensive analysis on the photon self-energy, the fermion self-energy, and the fermion vertex
function is presented at one loop in the context of quantum electrodynamics (QED) with one extra
dimension. In five-dimensional theories, characterized by an infinite number of Kaluza-Klein fields, one-
loop amplitudes involve discrete as well as continuous sums, > %, [d*k, that could diverge. Using
dimensional regularization, we express such sums as products of gamma and Epstein functions, both
defined on the complex plane, with divergences arising from poles of these functions in the limit as D — 4.
Using the analytical properties of the Epstein function, we show that the ultraviolet divergences generated
by the Kaluza-Klein sums can be consistently renormalized, which means that the corresponding
renormalized quantities reduce to the usual ones of QED at the limit of a very large compactification
scale R~!. The main features of QED at the one-loop level were studied. We use the mass-dependent
u-scheme to calculate, in QED with an arbitrary number n of extra dimensions, a beta function fulfilling all
desirable physical requirements. We argue that in these types of theories, with a large mass spectrum
covering a wide energy range, beta functions should not be calculated by using mass-independent
renormalization schemes. We show that the beta function is finite for any energy . In particular, it reduces
to the usual QED result e3/127% for m < u < R~ and vanishes for m > u, with m the usual fermion
mass. Throughout the work, the decoupling nature of all our results obtained from the analytical properties

of the Epstein function is stressed.
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I. INTRODUCTION

Quantum field theories in more than four spacetime
dimensions became phenomenologically attractive since
Antoniadis, Arkani-Hamed, Dimopoulos, and Dvali
[1-3] argued that relatively large extra dimensions
could show up at the TeV scale. Shortly after, Randall
and Sundrum introduced the notion of warped extra
dimensions to tackle the hierarchy problem [4]. Another
well-known extra-dimensional approach is the so-called
universal extra dimensions (UED) [5], characterized
by the assumption that all the dynamic variables pro-
pagate in the compact dimensions. In the UED frame-
work, the starting point consists in formulating the
standard model (SM) in a flat spacetime manifold
M = M* x N, where M* is the usual Minkowski
space and N is a n-dimensional Euclidean manifold.
In this stage, one assumes that distance scales in
consideration are so small compared with the size of
the extra dimensions that the SM in 4 + n dimensions
is correctly governed by the (4 + n)-dimensional
Poincaré group, ISO(1,3 + n), and by the gauge group
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SUC(3, M*) x SU, (2, M*H7) x Uy (1, M*7)." This is
an effective field theory in 4 + n spacetime dimensions
with an infinite number of Lagrangian terms, which
include a replica of the four-dimensional SM and the set
of all interactions of higher-than-four mass dimensions.
At lower energies, when the finite size of the manifold
N™ is apparent, one needs to pass from the ISO(1, 3 +
n) x SUc(3, M*) x SU, (2, M**) x Uy(1, M*+)
description, suitable for 4 + n dimensions, to the standard
four-dimensional description, provided by ISO(1,3)x
SU(3, M*) x SU, (2, M*) x Uy(1, M*),  which s
achieved through an appropriate compactification scheme,
followed by two canonical transformations [6-8] that allow
us to map covariant objects of the extended groups into
covariant objects of the standard groups. The process of
hiding the extended symmetry into the standard symmetry
leads to an effective theory in which each SM field has an

"This extension of the usual SM group differs only in the
support spacetime manifold, meaning that M**" is used instead

of M*.
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associated infinite set of Kaluza-Klein (KK) modes, which are
quantized in the standard way [8]. Symbolically, we start from
a finite set of fields {¢, (x, x)} (withx € M* ¥ € N" and a
is a covariance index) governed by the extended groups, and
then we pass to a set of fields that comprises the four-
dimensional SM fields { ¢, (x) } and an infinite number of KK

fields {qogﬂ) (x)} [with (n) a collection of natural indices]
governed by the standard groups. Both descriptions are
equivalent because one passes from one to the other through
a canonical transformation. In this approach, conservation of
extra-dimensional momentum leads to an effective theory that
preserves KK parity, which introduces dynamical restrictions
between SM and KK particles. In particular, KK effects on
SM observables first arise at one loop, which show us the
importance of studying the one-loop structure of these types
of theories.

The phenomenological impact of one extra dimension on
observables sensitive to new-physics effects has been a
subject of interest in the literature. This is the case, for
instance, of Higgs physics [9], flavor physics [7,10], the
electroweak gauge sector [11], B physics [12], and collider
physics [13,14]. All these investigations show that the one-
loop contributions of the infinite number of KK modes lead
to amplitudes free of divergences. However, as far as we
know, no investigations addressing contributions from five-
dimensional field formulations to amplitudes sensitive to
ultraviolet (UV) divergences, such as self-energies or
vertex functions that require renormalization, exist. This
sets an unusual challenge, as one must consider the UV
divergencies from the one-loop contributions induced by an
infinite number of fields, which may be a source of a new
class of divergences. If the number of KK excitations were
finite, no matter how large, we would be in a conventional
scenario of calculating the one-loop contribution of a large,
but finite, number of particles to a given vertex function.
These types of scenarios are common in many extensions
of the SM. Nonetheless, in our case, where the number of
KK fields is infinite, the infinite sum involved in consid-
ering all these contributions may or may not converge. In
these types of theories, a typical one-loop amplitude will
involve, besides the usual continuous sum, a discrete
infinite KK-mode sum, that is, >.®, [d*k. To handle
possible divergences, both continuous and discrete sums
must be regularized. As it is well known, the dimensional-
regularization scheme [15,16] has proven to be the best
known tool for handling short-distance effects in the usual
spacetime M*. In this scheme, the spacetime dimension is
promoted to D =4 — e dimensions, being € a complex
number. Divergences, if they exist, appear as poles of the
gamma function in the limit as ¢ — 0. In this paper, we
show that this scheme can be used to simultaneously
regularize both the discrete and continuous sums by using
the analytical properties of the Epstein zeta function [17],
which is a generalization of the Riemann zeta function [18].
We will show that one-loop amplitudes can naturally be

expressed as products of gamma functions and Epstein
functions, with the divergencies from continuous and
discrete sums appearing as the poles of the gamma
function and the Epstein function, respectively. The main
goal of this work is to develop this idea in the context of
quantum electrodynamics (QED) with one UED, which
we refer to by the acronym SDQED. We focus on the one-
loop impact of KK fields on the three basic Green
functions of QED, namely, the fermion self-energy, the
photon self-energy, and the fermion vertex function. This
means that we must consider the one-loop contributions of
the infinite set of KK modes associated with the usual
spinor field and the gauge field that describe some charged
fermion and the photon in QED. One of the main
objectives of this work is to show how these types of
divergences can be regularized and consistently absorbed
by the parameters of the theory. Although we will focus
only in one extra dimension, some of the more relevant
results will be discussed in the broader context of an
arbitrary number of extra dimensions. In particular, we
will address aspects of vacuum polarization.

One of the main goals of this work is to show how
dimensional regularization allows us to control, through the
gamma function and the Epstein zeta function, the diver-
gences that can arise from continuous and discrete sums,
respectively. To show the internal consistence of our
approach, we study many of the well-known one-loop
properties of QED. Besides verification of the Ward
identity at one loop and the correction to the anomalous
magnetic dipole moment, we calculate the effective charge
[19] in the presence of an arbitrary number n of extra
dimensions and study some of its more important impli-
cations at the one-loop level, such as gauge independence,
the Thompson limit, and the correction to Coulomb’s Law.
The study of the beta function deserves special attention.
We discuss the disadvantages of using a mass-independent
renormalization scheme in the calculation of a beta function
in these types of theories. The reason is the presence of
massive particles in a wide range of energies. So, we show
that a physically acceptable beta function for these types of
theories can be obtained using the mass-dependent scheme
known as the u-scheme, with u the subtraction point. We
show that the beta function so calculated satisfies all
physical requirements and reduces to the well-known value
obtained in mass-independent schemes, such as MS or MS.
The decoupling nature of new-physics effects arising from
extra dimensions is shown to occur in all calculated one-
loop amplitudes.

The paper has been organized as follows. The basic
structure of SDQED, including the Feynman rules needed
for our calculations, will be discussed in Sec. II. The one-
loop structure of the fermion self-energy, the photon
self-energy, the fermion vertex function, and the Ward-
Takahashi identity are studied in Sec. III. The impact of an
arbitrary number n of extra dimensions on the vacuum
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polarization is explored in Sec. IV. Finally, we will present
our conclusions in Sec. V.

II. QED WITH ONE EXTRA DIMENSION

First of all, we recall that there is no chirality in odd-
dimensional spinor formulations. This means that field
theories defined in spacetimes with an odd number of
dimensions are necessarily vectorlike. The construction of
the five-dimensional SM and, in particular, QED, requires
the symmetry dictated by the orbifold S'/Z, (with S' the
circle of radius R), used to dimensionally reduce the theory.
In five dimensions, as in the four-dimensional case, Dirac
fields are still objects with four components. The corre-
sponding generators are given by SMN = £[yM N with
y™ = y#, iy’ the standard Dirac matrices, which satisfy the
Clifford’s algebra {y™,yV} = 2¢M". Throughout the paper
we will use a metric with negative signature, that
is, g = diag(+1,-1,-1,-1,-1).

The generation of the mass terms for zero modes in
SDQED is somewhat subtle. The problem has been
addressed from two different, but equivalent, perspectives
[7,20,21]. In one of these approaches, we start from the fact
that QED is embedded in the electroweak theory and then
we generate the mass of the zero mode via the Higgs
mechanism [7,21]. This leads to a doubly mass-degenerate
KK spectrum 1//2'11)) and ‘/’g)) associated with the zero mode
fermion field y(®) = . The other approach consists in
assuming QED as a self-contained theory, so the mass of
the zero mode is generated by introducing a set of mirror
fermions [20]. In this case, the zero mode y has associated
a mass-degenerate double KK spectrum. Both approaches
lead to the same dynamics of the charged fermion v, the

4> and their KK

excitations (1//8‘; I/IE;;) and (AJY, A", respectively. A
!

electromagnetic gauge field A,(,()) =A

0

comprehensive analysis on the matter is given in
Refs. [7,20,21], so we restrict ourselves to present those
results that are needed for our purposes. In the case of only

one extra dimension there are no physical scalar fields. The

only scalar field is the pseudo-Goldstone boson Ag)

associated with the gauge field A,(,")

the KK mass-generation mechanism.
The four-dimensional effective KK Lagrangian is
given by

and emerged from

Letrgep = Loep + Lo-kk + Lxk + La=4,  (2.1)

with Lopp the standard QED Lagrangian, given by

_ . 1 1
‘CQED = W(lp - m)l// _ZFWFW - E (8/4A”)27

(2.2)
where £ is the gauge-fixing parameter. The Lagrangian
Lo_xk plays a central role in our study because it contains
the interactions between KK zero modes and excited

modes. As it was anticipated, the KK excitations of y,

(n (n
Wiy and )

given by mi(n) =m? —l—m%n), with m(2n> = pg")pgn> =(n/R)%.
(n)

are mass degenerate, being their masses

Lok = Z [WE?; (ip - mw<n>)w5'f)) + ‘I_’EZ)) (ip - mw<~>)l//§§)> ]

n=1

+ Qe ZAW [y (s, mPr + ¢, PR)WE?)) + w7 (s,m P+ ¢ o Pr)y
n=1

— 7 (cym PL + 5,0 PRy =

+ iQWe ZAgl> [I/_I(SW(,,) Pr— CII/(")PL)WETS - J/ET; (SU/WPL = Cyn) Py
n=1

(n)

+ l/_/(CW(n)PR - Sw(n)PL)l//(;l> - l//(z

Here p;’ is the component of the momentum along the
compact dimension. A mixing between 1/15'1’; and y/g;))
arises, which is characterized by the angle
m,m + mg,
tan 6,0 = | |, (2.3)
My ) = M)
The Lagrangian Ly_gg is given by
- (n)
(gy"(cw@) PL + Sx//<”) PR)W]
(cywPr = s,mPRY], (2.4)

where s, ) and ¢, stand for the sine and the cosine of the mixing angle Hy,(n). On the other hand, Lk represents

W "

interactions only among KK excitations. In this case, we only display the quadratic parts, which is needed to define the
propagators of the KK excitations of the electromagnetic gauge field. Then, we have
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LS~ 70 pn )
‘CKK:_Z;F/H/ " +Z[ (aA 8"A )

1 o
+mAL (A )+§A,§ )A(”)”}
ey LU 2.5
=1 26
where the last term, involving products £ (") represents

the gauge-fixing term for gauge invariance characterized
by the KK gauge parameters a®? The gauge-fixing
functions for excited gauge modes are given by f(") =
8”A(">” - f(n)m(n)Ag’), with &,y the gauge-fixing param-
eter. We stress that the Lagrangians displayed in Egs. (2.2),
(2.4), and (2.5) contain only renormalizable interactions in
the sense that their canonical dimension is less than or equal
to 4. This is so because these interactions arise from the
compactification of the five-dimensional version of QED.
This fact has important consequences at the one-loop level.

Finally, L£4.4 contains all the interactions of canonical
dimension higher than four that are compatible with the
ISO(1,3) x Upy(1, M*) symmetry. These types of inter-
actions must be present in the four-dimensional KK theory
because the five-dimensional theory is nonrenormalizable,
according to power-counting criterion (Dyson’s criterion),
and thus must already be present even before compactifi-
cation. In this work we will not consider loop insertions
coming from this sector.

The Feynman rules needed for our calculations are
shown, in the R; gauge, in Figs. 1 and 2.

III. ONE-LOOP EFFECTS OF ONE EXTRA
DIMENSION IN QED

In this section, we study the one-loop structure of the
photon self-energy, the fermion self-energy, and the vertex
function pyy, in the context of QED with one extra
dimension.

As usual, we relate renormalized quantities {, A, e}
with bare quantities {y, A,5. eg} through renormalization
factors as follows:

Z _1
W=\ 2y, Aip=1\/2Z3A,, eB:<Z_;>Z3Z€- (3.1)

Although we will not consider vertex functions containing
external excited legs, we also define the corresponding
relations for the KK excited modes. In this case, we have

>The five-dimensional gauge parameter a(x, x) is assumed to
be even under X — —%, so it is Fourier expanded as a(x,X) =
\/ﬁa(oj (x)+>°, \/—cos(’”)a<") (x). The zero mode is iden-

tified as the standard gauge parameter a = a(©).

Au

EAAAPAN ¥ = il — (1= %]

A
RAVAVAVAVAVAVE S

kyky
; ]

m [g/w -(1- 5(77))1@2 Em)™Min)

Al _
1

- = > - = B R
k 1"2*5(77,)777@)

FIG. 1.  Free propagators in the R: gauge. The calculations are
performed in the Feynman-"t Hooft gauge (§ = 1 and &(,) = 1).

W wn = V2R 0. Al = ZA,
Aby =\ 25'Ag (3.2)
Then, the bare Lagrangian can be written as
’C]ejffreQED Laoep + Lo-kk + Lxk + La-4
+ L&D + LK+ L8, (3.3)

where Logp, Lo-xk, and Lgyk represent the renormalized
Lagrangians given by Egs. (2.2), (2.4), and (2.5), respec-
tively, while £9>4 contains the interactions of dimension
higher than four written in terms of renormalized quantities.

In addition, ESF_‘D represents the standard or usual counter-
term of QED, which is given by

1 _ . _
ﬁ?FD = _153F;wFlw + l//(l52¢7 - 5m)l// + erléll//}/ﬂl//Aw

(3.4)

where

63223—1, 6222
51221—1, 6m

2_17

=Zymg — m. (3.5)
In Eq. (3.3), £XK and £3;* represent the counterterms
that contain interactions between standard and KK fields,
which we do not present in this section, since we will not
need them.

A. Fermion self-energy

The one-loop contribution to the fermion self-energy is
given by the Feynman diagrams shown in Fig. 3. The
renormalized self-energy can be written as follows:

—iZsp(p) = —iZ(p) — iZkk (P) — iZcr (D). (3.6)
where —iX(p), —iZgk(p), and —iZ., (p) represent the
standard one-loop contribution, the one-loop contribution
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1
1
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L A + &
+ ) o P) P hed )
FIG. 3. Feynman diagrams contributing to the fermion self-energy in the Feynman-t’'Hooft gauge. The counterterm diagram is also
shown.

of the infinite number of KK modes, and the standard
counterterm, respectively. In the Feynman-’t Hooft gauge
(6 =1 and £(,) = 1), the Feynman rules given in Figs. 1
and 2 lead to the following amplitudes:

i) =-caiers [ £
. nyfzﬁ[k(: _mlz;;l — (7

— S (p) = — 5/(”2)2_%"2/ de
—iZe (p) = i(p6, = 8,), (37¢)

where p is the dimensional-regularization scale. In the
standard contribution, Eq. (3.7b), we have regularized the

infrared divergence by adding a small photon mass m,.

In addition, the terms 7,4 and T in (3.7) stand for the

contributions of the gauge field A,(,")

Goldstone boson Agl ), respectively. They are given by

and its pseudo-

Ty =y, K+ m)y" (3.8a)

¢ =—K+m, (3.8b)
where in obtaining these results we have used the rela-

tion st(n) Cym My ) = M.
Using Feynman  parametrization and  shifting
k — k + xp, the standard and KK contributions can be

written as

5(p) = 2% [ axtamept

4 i
—(D=2)xp + Dm
X/de (kZ_AZ )2
2F

S

. (3.9a)
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aQZ -2
Zkk(p) = / dx(4mp*)? Zm—z
—(D-1)xp+(D+1)m
x [ dPk ,

/ (k - A(271)F)2

(3.9b)

where A7, =mi, +A3p, with Ay = (1-x)m’-
x(1—x)p?, and A3, = A3, + xm?. Note that the KK
contribution is free of infrared divergences. After solving
the integrals on k, we obtain

20 =2 [avor($) (25). 60

for the standard contribution, where f(p) = —(2 — €)xp+
(4 —€)m. As far as the KK contribution is concerned,
we have

aQy, [1 e\ [R32\"% 2 (e
=20 [ e g(pr (€ ES(£),
| o (5) (5z) 5 (5)

where g(p) = —(3 — €)xp + (5 — €)m. In the last step we
have introduced the one-dimensional Epstein zeta function,
which is defined as

[Se]

T (3.12)

n=1

5 —%/ ot <2>{<4
) T )
et [ ()] (B -

R™2\ 5 dg _\ 2,
(i) |(mg=2)2(

€ 2o\ o

This function is a generalization of the Riemann zeta
function,

(3.13)

A2
In our case, ¢35, = =% and s = ¢/2. Note that both the

Gamma function and the Epstein function are defined on
the complex plane. Since the one—dimensional Epstein
function has simple poles at s =1, -1, -3 ... [22], it
is clear that E| o (5) converges in the € — 0 limit. This is a
remarkable result which emerges as a consequence of the
analytical properties of the Epstein function.

From the above results, the one-loop contribution to the
self-energy of the fermion y can be written as follows:

2 1 Az —£
Zo(p) =g [ air (5) 700 (325)
R\ 2 (e
+g(p) <W> E, (§>] + 6, — P56,

(3.14)

To determine the counterterms §,, and 6, we use the on-
shell renormalization conditions

ESD(P(H/:,,, =0, (3.15a)

d

Pl = (3.15b)

These renormalization conditions lead to

5) Vf (D))
dy 2\ A2,/ \ dp?
e u decs
seme’ (1+5) ()]}

(3.16)

)
&)

m

(3.17)

N |

where we use the bar notation to indicate that the function under consideration has been evaluated at p = m, that is,

= F(y = m). In addition, we have used the chain rule
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2 2
4oy, ey d_ (3.18) Sy ——af:/m[4<§> +5¢(0) <§> +} (3.20b)
N N —

dy dp? dp? dc3

. Ne KKC
together with the fact that

2 where SC and KKC are acronyms for “standard contribu-
dE (%) __€ Ec%,, 1+ € (3.19) tion” and “KK contribution,” respectively. Note that
de3, 2! 2)° ' ¢(0) = —1/2. The importance of simultaneously regular-
izing discrete and continuous sums using the dimensional
regularization scheme can now be appreciated.
On the other hand, using the relations

It is worthwhile to write the divergent parts of counterterms
0, and 9,,, separating explicitly the contributions arising
from both the zero mode and the KK excitations. Keeping

only the part proportional to the pole of the gamma df
function, we have f(p) + (m—p) @—f 0, (3.21a)
aQ 3 2 g _
5y = — e z 2 gp)+(m—-p)——-5=0, 3.21b
-2 (3 3co() e eam () + (=95 (321b)
M~~~ —
sC KKC we can write the renormalized fermion self-energy as

|
=22 () ()"~ (52) )+ () o () 0)
e[ ()5 (52) o ) (55

In the above expressions, AZF = (1 —x)?*m? + xm? and " 2
&3 = (1=x)*m?/R72. In addition, f=2(2 - x)m and E{ (s) = E{ (0) +
g = (5—-3x)m. Now, the following relations

CZ
7dE1 (s) s+ 0(s?)
s=0

1 ={(0)—s iojlog(n2 +¢?) 4+ 0(s?), (3.23¢)
['(s) = ST VE + O(s), (3.23a) =

valid near s =0, allow us to express the renormalized
X5 =1-slog(X) + O(s?), (3.23b)  fermion self-energy as
|

%@(?%MPmimm@a+mﬁﬁmﬁmﬁW]

n 3 (1 =x)>m?* + xm?

2

+(5m — 3xp) Zlog (A%>

with the first line of the above expression corresponding to the standard contribution, and the second one corresponding to the
KK contribution. It is easy to show that effects from the extra dimension decouple in the limit as R~' — 0. On the other hand,

>+(m 7 {2x(1 —x)(5=3x) (Rm> E”(l)]}, (3.24)

=2
the multidimensional Epstein function can be expressed in power series of ¢ [23,24], which in the case of Ei” (1) becomes

E{r(1) = £(2) + F(&,), (3.25)
where

0

—1)%¢(2k + 2)c3k. 3.26
o
k:l

Note that {(2) =%
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k k
H v H v H v
= +
q q q q q q
k—q k—q
© v
BENAVAVAVAN CYAVAVAVAV:
q q

FIG. 4. Feynman diagrams contributing to the photon self-energy. The counterterm diagram also is included.

B. Photon self-energy

© D
We now proceed to calculate the one-loop contribution Mk (q) = —nggl (ﬂ2)2—%)2 Z / d_kD
from SDQED to the photon self-energy. This contribution

is gene.rated. by the diagrams displayed in Fig. 4. Due. to tr[y ( -+ myo) )y (K + o + mym)]
gauge invariance, the amplitude must have the following [k2 2 Tk + )2 — 2 ] )
gauge structure: il1*(q) = i(q*¢" — ¢"¢*)11(¢*). The ™ 1 y®

one-loop contribution, including the counterterm, is (3,28b)
given by
i (q) = i (q) + il (q) + i (g),  (3.27) i (q) = —i(¢°g™ — 4"4*) 3. (3.28¢)
with In the KK contribution, iTgy(q), a factor 2 has been
D introduced to take into account the contribution from the
Ty 202 (,2)\2-2 d”k : : (n) (n)
i (q) = —e*Q, (u°)"2 W mass-degenerate pair of KK fermions ;) and ;).
4

) ) Once Feynman parametrization has been implemented,
x iy (k+ m)r (K + f + m)] (3.28a)  Wwe introduce the change of variables k — k — xg, and then

[k —m?][(k +q)* —=m?] use the symmetry relation k*k* — k*¢**/D to obtain
|
. 2 de [2(1 =) 4+ m* + x(1 = x)g*]¢" — 2x(1 — x)q"¢*
i (q) = —4e*Qy (u / dx / ol @A) . (3.29)

/d / de [5(1 =3k +m,, +x(1-x)g°|g" = 2x(1 - x)g"q"
X
(27

=2,y |

ik (q) = —4¢>Qy (u

(3.29b)

where A3, = m? —x(1 - x)¢* and A}, = m},, + A3,. Due to gauge invariance, there is no quadratic divergence, as the

integral on k? is proportional to (1 —£)I'(1 —2) = I'(2 — 2). For the same reason, the dependence of both numerators on
the mass disappears. Consequently, we can write the one-loop polarization functions as

; A\
(q*) = —% /0 1 dxfp(x)FG) (27;’2) : (3.30a)

() = =22 [ a0 (i)i(i@/j)— e [Nacsp () ar(5)e (5). @

where fp(x) = 8x(1 —x) and ¢3, = A3,/R2. Then, the renormalized polarization function can be written as

2 1 A2 -5 R—2 - 2
o) = =2 [Masroor (5) | (32) + (1) 267 (5)] - 33

To determine the counterterm, we impose the renormalization condition
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I5p(0) =0, (3.32)
which leads to
 aQ} e\ [( A2, \
o= [ aor(](55)
R2 2, (€
() ()] a3

where A3, = m? and €2, = m?>/R™2. As in the case of the
fermion self-energy, it is worth analyzing the divergent part
of this counterterm. Keeping only the pole of the gamma
function, we have

SC KKC

(3.34)

Since £(0) = —1/2, the KK divergence exactly cancels the
standard divergence. This cancellation of the UV diver-
gences at the one-loop level is a consequence of the double
multiplicity of the KK excitations of the fermion .
However, as we will see below, this cancellation no longer
occurs when there is more than one extra dimension.

Using the relations given by Egs. (3.23a)—(3.23c), the
polarization function becomes

2 2 _ — 2
Mio(a?) = =2 [ an 09 { g |07

2

P gl )

(3.35)

The structure of this result is quite suggestive and reflects
the consistency of our regularization scheme. In the first
term of the above expression we can recognize the usual
contribution of QED to the vacuum polarization [25], while
in the following term a replica of this contribution for each

KK excitation appears. While the standard contribution

. . A2, =%
arises essentially from terms of the form I'(£) (2”2;2) *, the

2
KK contribution comes from terms of the form I'($) E}*" (§)
[see Eqgs. (3.23a)—(3.23c¢)]. Note that the KK contributions
vanish in the R~' — oo limit.

C. The vertex

Up to one-loop level, the contribution of SDQED to the
fermion vertex function yyy is given by the Feynman
diagrams shown in Fig. 5. The corresponding vertex
function can be written as follows:

ieQ, U5 (p', p) = ieQyr* +ieQ, T¥(p', p) +ieQ, Uik (', p) + ieQ, Tt (P, p), (3.36)

where

de "
“(p', p) = —ie* Oy (u / , 3.37a
vl w2+ P =P l(k & ) =] (337
= de Th+ T4
Dk (P, p) = =ie? Q3 (42)~* / , (3.37b)
KK " <mw+pf—m e+ PP =m2,]
Ieu(p'.p) = airt, (3.37¢)
with

TH = (2 — D)y} + dm(k + p + p')F — 4m>p*, (3.38a)
Ty = (2= D)y +4m(k + p + p') = 2(m* + m. ) )r". (3.38b)
TG =—kr'k=2(p+ PV, +2(p+ p') - k+m* =g —m] ]y, (3.38¢)

with 7% and T7; representing the contributions, in the Feynman-"t Hooft gauge, of the gauge field A,/

(n)

Goldstone boson Ag", respectively. In obtaining the above results, the relation n,,) (2sw<n>c

™ and its pseudo-

w(’”) = m was used.
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q

FIG.5. Feynman diagrams contribution to the fermion vertex function in the Feynman-t’Hooft gauge. The counterterm diagram also is
displayed.

Using Feynman parametrization, Eqgs. (3.37a) and (3.37) become

) = i34, [k T (3:39)
__ °° dPk T" + T
Tl (P!, p) = —ie? Q2 (42> 21,0 (3 Zl/ Sy (3.39b)
where
1
IP:/ dxdydzé(x+y+z-1). (3.40)
0
In addition, A3y = zm} + A3, where A3, = —xyg® + (1 —z)>m? and AP, = m, + A3y. In the above expressions,
5 2-D) , 2),.2 2 2 i0"q,
™= Tk =21 =4z+z)m* =2(1 = x)(1 = y)g*]y* — [dm?z(1 — Z)]W7 (3.41a)
A 2-D)? oMY
= (B =2tz 2 = 2 =20 =01 - (1 - ) T )
) 2-D g,
= [FE52e e - -+ (1 -2 (3.41¢)

where the Gordon identity has been used to eliminate (p’ + p)* in favor of ic**q,. It is convenient to write these results in
terms of electromagnetic form factors, that is,

ioq,
Dl (0, p) = FP(@)r + FP () 52, (342)

where
FP(¢*) =1+ Fi(¢*) + F¥%(¢*) + 5. (3.43a)
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F3P(q%) = Fa(q?) + F§5(¢%). (3.43b) F=4zm* = 2(z + 3xy)q>. (3.46b)

From Egs. (3.39a)~(3.41c¢), the one-loop contribution of To determine the counterterm, we impose the on-shell
5DQED to the form factors F3P(g?) and F3°(g*) can be  renormalization condition
written as follows:

2 2 A2\ -5 I5p(0) = 77, (3.47)
le) = %IP P(l - §> F<§> (“A;lrz) 2 * g%v\j ’ which leads to
(3.44a) 5, = —F,(0) — FKK(0)
#3(1=5) (-5 () 2 6]
FiX¢?) = “fj’lp {3 (1 ‘%) <1 —§>r g) N gzv RJ_‘ZE (1) + 35(0)}’ (3.48)
W

R2\7 av € -]AC Gy
() 5 (5) - @ 30 shere 83, =83, (¢° =0)= (1 =2, T =1 (¢*=0) =

(3.45a) 2(1—4z+272)m?, and f = f(¢* = 0) = 4zm?>. The diver-
gent part of this counterterm is given by

' aQ2 | (2 3 2
(3.45b) 51:—4—];” (E) +§g(0)(g>+--~ ) (3.49)
SC KKC

In the above expressions,

o ) For comparison purposes, it is convenient to explicitly
fr=2(1-4z+2")m* +2(1 —x)(1 —y)g*. (3.462)  write the renormalized form factor,
|

2
FP(q?) = 1—1—% dxdydzéi(x—ky—i—z—1){2105;(A

)fv fv

3V A3 A%V
)+ A%y 7\ e 7\ e
+3Zlog< ) + <%)E13V(1) - (%)EIW(I)}, (3.50)
m T

where the first line corresponds to the standard contribution, while the second one is the KK contribution. As in the cases of
the fermion self-energy and of the photon self-energy, it is easy to show that the KK contribution disappears from the
expression (3.50) in the limit as R~' — oo.

As far as the form factor FX¥(4?) is concerned, it can be written as follows:

aQ;,

T

! 4z(1 - )m®  2(1 -4z +32)m?
/dxdydzé(x+y+z—1)[z( Azz)m ( it Z)m
0 A3y R

FKK(g?) = EP (1), (3.51)

As it occurs in QED, this form factor is free of both ultraviolet and infrared divergences, so FXX(0) is a physical quantity,
given by

e aQ,
FE<(0) = £ ()| =5

2 [N ae1- o[ 420 - 42430 1 2+ fmR) (3:52)
. ), EU=al— 2+32) 2 7,: mR)], :

where
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FmR) =3 (-1)¢

< 2k + 1
k=0

_ T ) e(2k + 2) (mR)PH2,
2k2+7k+6>€( +2)(mR)

(3.53)

Then, the correction to the g-factor of the fermion y in
SDQED is

1
aS/D = a(// |:1 + f(mR):| ’

5 (3.54)

— 9

where a,, = —* is the standard g-factor. Note that the KK
contribution decouples from the QED prediction as powers
of mR. The impact of extra dimensions on the muon
anomalous magnetic moment has already been studied in
the context of the SM [26].

D. The Ward-Takahashi identity

In QED, the fermion vertex function fulfills the Ward-
Takahashi identity ¢, I* = $7!(p) — S~'(p), with S~! the
inverse of the fermion propagator. This identity is fulfilled
to all orders of perturbation theory and guarantees that
F(0) = 1. Atone loop, this identity implies that 5, = &, or
Z, =27Z,. Now we proceed to prove that this occurs in
SDQED as well. Using the relations given by Eqs. (3.23a)-
(3.23c), implementing an integration by parts to remove
the standard contribution, and carrying out some algebra,
we get

an, -

1
52 - 51 = ﬂ/o d.X' |:—3(1 - Z.X) Zlog(nz + 52)

n=1

+ 6x(1 — x)z(mR)zEfz(l)] : (3.55)

where ¢ = ¢3, = ¢3,. Integrating by parts the first inte-
gral, we can see that the right-hand side of the above
equation vanishes, showing in this way that §; = &,, as it
happens in QED. The crucial step to prove this is

L . dec?

d S 2 =2 C
E;log(n +2%) = E{ (1) (3.56)

The equation §; = &, in turn implies, from (3.5), that Z; =

Z, and then, from (3.1), that e, = Z;’e. Finally, from
(3.50), we can see that F3P(0) = 1.

IV. VACUUM POLARIZATION IN (4+nr)DQED

In Sec. III B we have seen that the ultraviolet diver-
gence induced by the zero mode is canceled exactly by
the ultraviolet divergences that arise from its KK exci-
tations. This cancellation occurs as a result of the double
multiplicity of KK excitations associated with zero mode

[see Eq. (3.34)]. In this section, we study the photon self-
energy in QED with an arbitrary number n of extra
dimensions [(4 + n)DQED] and show that such cancel-
lation of ultraviolet divergences at one loop is exclusive
of SDQED.

A. The renormalized vacuum polarization function

In the UED approach, the (4 + n)-dimensional high-
energy theory is governed by the extended group
ISO(1,3 + n) x Uy(1, M*™). In this case, the action of
the theory is a functional of the SO(1, 3 + n) spinor ¥(x, )
and the SO(1,3 + n)-vector gauge field Ay (x,x). To
describe physical effects at distance scales comparable
to the size of the compact n-dimensional manifold, we
need to implement the two canonical maps described in
Secs. I and II, obtaining in this way an effective theory
governed by the standard group ISO(1,3) x Uy (1, M*).
To simplify the analysis, we will assume an even number n
of extra dimensions, so there is chirality in this space. The
spinor ¥(x,x) of SO(1,3 + n) is mapped into 2> Dirac
spinors w(x, X) of SO(1,3); while the SO(1,3 + n) vector
Ay (x, %) is mapped into a vector A, (x, X) of SO(1,3) and
n scalars .A,;(x,)'c) of SO(1,3) (u=5,...,4+n). We
assume that each coordinate X; is coiled in a circle of
radius R; and, as the case of one extra dimension, we
introduce the orbifold S'/Z,. Then, in the case of n extra
dimensions we assume a compact manifold made of n
copies of the S'/Z, orbifold. It is assumed, for simplicity,
that all radii are equal, that is, Ry =--- =R, = R. The
compactified (4 + n)DQED theory is made of the standard

fields (@ (x) = w(x) and ALY (x) = A, (x), and their KK

excitations, namely, 28 KK Dirac spinors, y")(x), the

gauge fields, A,(,m) (x), and their associated pseudo-

Goldstone bosons Aém) (x), as well as n — 1 physical scalars
A (x) (@ =1,...,n—1). The masses of the KK spinors

n
are given by mi@ =m?+ m%m), while the masses of the

KK gauge fields and scalar fields are given by m%m)z

pl(-lm)pf-lﬂ). Here m%m) = R?m?, with m*> = m? + - + m?
any admissible combination of Fourier indices.

The (4 + n)DQED theory generates many couplings
among the diverse fields that compose it, but here we are
interested only in those couplings that involve the electro-
magnetic field. These couplings are A,y and Auz/'/(ﬂ)w@),
whose Lorentz structure is dictated by the electromagnetic
gauge group. The Feynman diagrams which contribute to

the renormalized vacuum polarization function IT4 ,)p (q%)
are the same as those in Fig. 4, but now we have 27 KK
w( (x) fields circulating in the loop instead of the 2 spinor
fields that characterize the SDQED theory. Then, the one-
loop contribution of (4 + n)DQED to the vacuum-polari-
zation function can be written as
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loo
G n(a?) =

% I dep(X)F<—

(4.1)

AP\ A%m)P E
2 — ,
){(4@2) B 2%(4@2

where, by reasons that will be clear below, from now on we will use the symbol /i instead of 4 to denote the scale of the

dimensional regularization scheme. In addition, A%m) P

m%m) + A3,

. In the above expression, the symbol Z@),

(m) # (0), summarizes a total of 2" — 1 different series and coincides with the notation Z/ used in Ref. [27]. In fact,

o0

T(m) = T(m1~0 ..... 0) + c T(O,mz,O ..... 0)++ T(O ..... m,)
AP L > >

m;=1

+ Z T(ml,mz,O ..... O)+

my,my=1

S i | T(O ..... 0,m,,_y,m,)

My—1,My=

(4.2)

Whereas positions of Fourier indices in the entries of (m) are not relevant, the number of occupied entries makes a
difference. So, in practice, one can use the following definition:

>-%(0)

Then, Eq. (4.1) can be written as

loo
H(4an)D(‘12) =

where we have introduced the /-dimensional Epstein zeta
function, which is defined as [22-24]

= 1
. 4.5
2 it rmray

Since the I-dimensional Epstein function E¢ (s) has poles

at s :%,%, ...,—%,—%,-~-, except zero [22], it is clear
that Elc2 (§) converges for € — 0. However, the way this

happens is subtle, which can be appreciated more clearly by
expressing the Epstein function in terms of the Riemann zeta
function, whose properties are well known in the literature.
One important result [24] express the /-dimensional Epstein
function in terms of the one-dimensional one:

:%LX_;(Z;])(‘l)p”gr(rS@)g)Ef (+-5)

(4.6)

Ef (s)

aQy [ € Adp
_I=v rl(s
i Jy B p(¥) <2) Kampﬂ

QZ 1 A2
-2 [l ()

£ 3
my=1 m=1

>_€ ( ) %%): m* + c3p) %]

G )L

|

The reduction to the Riemann zeta function is given through

a power series in ¢%, which, in our case, means to assume
A2 L .

that (:%P = R—Eﬁ < 1, which is sufficient for our purposes,

since our effective theory is, by definition, valid only for

energies less than R~!. The pass from Efz (s) to C(s) is given
by [28]

2 = ['(k —|— s)
ES(s) = Z k‘ 2 (2k + 25)c* (4.7)
k=0
where the Riemman function is defined by
= 1
=) - (4.8)

n=1

which has a simple pole at s = 1. We can see from Egs. (4.6)
and (4.7) that finite terms which are the ratio of two

quantities that diverge when s tends to zero, as é(l(+)&)

arise

035034-13



E. MARTINEZ-PASCUAL et al. PHYS. REV. D 101, 035034 (2020)

for [ > 1. This fact has nontrivial consequences when a product of the form l“(s)ElCZ (s), as the one appearing in Eq. (4.4), is
considered. Thus, case [ > 1 must be treated with some care. Using the above results, we can write,

€ 2 € 1 & ! n n—r
- |ES | z) == 7
)65 () )

It is convenient to rewrite this expression so that its poles are evident. From the analytical properties of the gamma and
Riemann functions, we can see that divergences arise for 2k + r — n an even integer less or qual to zero or for 2k +r —n =1,
which, for a given n, determine the poles of the I'(s) and {(s) functions, respectively. Then, after some rearrangements,

(s

D

k=0

200

=1

(—l)kr<2k+r—n+e

_ 2%
i 3 )C(Zk—i—r n+e)c*.  (4.9)

Eq. (4.9) can be written as

" /n , Bl 1 1+
S-(7)r(5)e (5) = swr (5)eter+ o+ X[t r (e o
+g(k)(n)F<§ C(€)+F(k)(n)} c* + F(n,c?), (4.10)
where
1
gmxn)—-2<1—§?>, (4.11a)
1 n—-1 r n . r n
F)(n) =z ( )ﬂTF< )C(r—n), n>1 (4.11b)
2 r=1 I=1 [-1
Fuo(n) = il( 3 ) r( " }ﬁ%(%+*‘”)a%+¢—ny > 1 (4.11¢)
r#n—(2k—1),n=2k7 =1 [=1 2
IR n s = (=1)k <2k+r—n> o
F(n,c)—zn_I;;<l_l>ﬂ k%:ﬂ T 5 C(2k + r—n)c-. (4.11d)

In the above expressions, the symbol [5] means the floor
of 7, that is, the largest integer less than or equal to 5. On the
other hand, the f(n) and g (n) functions have the
following property:

Fuy(1) (4.12a)

Iy (1) = = gw(2k) = 0.

= fy(2k=1) =0,
(4.12b)

These relations imply that in the case of only one extra
dimension, there are no divergences associated with the
power series in ¢*, since in this case f(1) =0 and
guw(l) =0forallk = 1,2,....Inthe case n = 2, g()(2) =
0 for all k, but f(1)(2) # 0 and f;)(2) =0 fork = 2,3, ....
If n =3, besides f(;)(3) #0, we have g)(3) # 0, but
fw(3) =0and gy)(3) =0 for all k= 2,3, .... Thus, for
n =2 and n = 3 divergences arise only in the first term
(k = 1) of the power series in g>. However, for the cases
n =4 and n =5, divergences arise in both the first (k = 1)

|

and second (k = 2) terms of the power series in ¢*; n = 6
and n = 7 implies divergences in the terms ¢, (¢*)?, and
(¢*)?, and so on. Explicit expressions of these functions are
shown in Table I for k =1, 2, 3, 4.

From the expression (4.10), two types of divergences can
be identified, one of which depends neither on the external
moment nor on the compactification scale, which is
characterized by the coefficient g(g)(,). Due to this, these
types of divergences can be identified as short distances
effects on the usual spacetime manifold M?*, that is, they
are usual ultraviolet divergences that are associated with
divergences arising from the continuous sum [ d*k in the
KK loop amplitudes. In contrast, the other type of diver-
gence we have in (4.10) depends on both the external
momenta and the compactification scale. By its own nature,
these types of divergences can be attributed to very high-
energy effects or, equivalently, to short distances effects on
the compact manifold M. To see this, note that the one-
loop KK contributions behave like
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TABLE L. f;)(n) and g (n) as functions on the number n of extra dimensions for the first four powers of ¢2.
k fw(n) 9 (n)
2
1 _2\/‘( n+l) _2”(1 _n ;2#2)
m+5n+6 2 nt=2m3 L1102 414424

2 ”Z(I_M—”“) d (l_m—"ﬂ)

5
3 _n (1 _ n5—5n4+25n3+5n2+94n+120) _ (1 _ nﬁ—9n5+55n4—75n3+304n2+444n+720)

3 15%2+3 3 45%2n+4
4 é ( 1— n’—14n°+1 12115—350n4+1099n3+364n2+3828n+5040) z ( 1— n8—2on7+210n6—1064n5+3969n4—4340n3+15980n2+25584n+40320)

12 315x2"+ 12 315x2"+7

d4k7'
Z&:/ - Af)"
_Z/auk - W;A2))m’

where k%k) = m%k) is the squared of the discrete momenta,

that is, k> — k%,_c) = ky kM, with ky = k, + k. The right
side of the above equation is quite suggestive, since it
clearly shows us that divergences can arise either for very
large k, momenta or for very large discrete k; momenta,
which may eventually result in a divergent continuous
sum or in a divergent discrete sum, respectively. In fact, a

very large k%&) implies a short distance effect in the compact

(4.13)

manifold, since 1/ k%,_c) = R72/k* tends to zero for large

combinations of Fourier indices k>. From these consid-
erations, we can think of this new class of divergences as
genuine ultraviolet divergences that can be handled by
renormalization in a broader or modern sense, as is usually
done in the context of the effective field theories approach,
which are not renormalizable in the power counting
sense [29]. Our general effective Lagrangian is given by
Eq. (3.3), but we only need to specify those interactions of
canonical dimension higher than four needed to consis-
tently remove divergences that emerge proportionally to
powers of (g?/R?). Due to gauge invariance, the corre-
sponding bare Lagrangian must be of the form

5:
3 ra

4 1 1
&y = a47:/ 2 <§> 27{ [f o (n) = gy (n)] ot fuy(n) [7 +5log

n
=1,....|=
k ) ) |:2:|7

1

aQ;, (5) {__},Hog@ﬂ) + 22gi0) (n) {_é_%log(l&ﬁ) +%y”,

>4 (k) . —
E%y4 B ; (R—Z)k (am : a”k ﬂb)(a e Q% FH )
LI
+ E (5‘&1 . aakF U)(aal . aakF,w)’
= (R 2 #

(4.14)

where 5ng = Z3ap() — 1. Then, the renormalized polari-

zation function can be written as follows:

3 7 \* .
Mol = Y- o (5] + T o(a?) =0
1

(4.15)

It is worth determining the counterterms using both a mass-
independent scheme and a mass-dependent scheme.

1. Mass-independent scheme

We use a MS-like scheme, in which the counterterm is
defined just to cancel the pole of the divergence plus some
constant quantities that do not involve energy scales. From
Egs. (4.4), (4.10), and (4.15), we can find the following
counterterms:

(4.16a)

(47) + %w‘o) Gﬂ + 9w By - %log(l&fﬂ }

(4.16b)

where () (5) is the polygamma function of order zero and y is the Euler-Mascheroni constant. In this scheme, the

renormalized polarization function is given by
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ag@

My np(q?) =

Note that this expression does not reduce to the usual one in
the R~! — oo limit, which means that there is no decoupling
of the new physics effects. This result is not surprising, since
it is well known that in a mass-independent scheme the
decoupling of heavy physics is not manifest. Next, we
discuss a different renormalization scheme in which the
decoupling of heavy physics is manifest.

2. Mass-dependent scheme

The main feature of mass-independent schemes is that
they do not involve a kinematical subtraction point. In
contrast, mass-dependent schemes involve a subtraction
point. Here, we choose an arbitrary subtraction point
defined by ¢*> = —u?, with u the kinematical scale or
subtraction scale. To determine the counterterms, we
impose on the polarization function the following [5] + 1
renormalization conditions:

Mgmp(q® = —u?) =0, (4.18a)
d 2
dT}gn(Hn)D(CI M= =0, (4.18b)
d¥ )
d(q )[n] —— i np(q°)| =2 = 0. (4.18c¢)

To illustrate this renormalization scheme, we will study in
detail the case n = 2. In such case, we have [5] = 1, so from

expression (4.15) we have only the counterterms §; and

5g1>. A direct calculation leads to

[l ()5
+2 {Am) (2,€) + <Rm—_2)2x(1)(2,e)]

+ 2{F(2, &p) + <Rm__22_ 55P> 512 CZP)] }

(4.19)

%)
3
|

2 [ arinfm(F) -t -miom(5)
' k[i]l {% <Rq_‘22) - (fo (1) = gy (n)) log <RM—_22)} }

(4.17)
|
2
&Y = —agy — A (2.¢€) +%/ dx fp(x)
y {x(%)‘)_zx(l ) %} (4.19b)
2p 2p

where

R\

T

hoe= (1) Tw@ (5 )@+ R,
(4.20b)

an//

T

m(2.€) =

/ dx fp(x)[x(1 = A (2.).
(4.20¢)

It is interesting to study more closely the divergent structure
of the counterterms. Keeping only the poles of the gamma
and zeta functions, we have for 9;

()] () w0 ()0

SC KKC

(4.21)

where the term divergent proportional to (m?/R~?) corre-
sponds to a short distance effect in the compact manifold,
which arises from the pole of the zeta function. The other
two divergences correspond to short distances effects in the
usual spacetime manifold. Note that the term 3£(0)(2/¢) =
3> % ,(2/€) = —(3/2)(2/¢) represents the contribution to
usual ultraviolet divergences of the infinite number of KK
fields. It can be appreciated from this expression that the
ultraviolet divergences induced by the KK excitations
cannot cancel the one generated by the standard fermion
for any n = 2, as it occurs in the case n = 1. It is easy to
show that this true for all n = 2,4, ....

As far as the counterterm égl)
part can be written as follows:

is concerned, its singular

035034-16



IMPLICATIONS OF EXTRA DIMENSIONS ON THE EFFECTIVE ...

PHYS. REV. D 101, 035034 (2020)

m _ _aQy (4 1

ST e R
N—_——

KKC

which correspond to a short distance effect in the compact
manifold because it arises from expression (4.10) for the
Epstein function given as a power series in c3, or,
equivalently, in powers of the external momenta.
Substituting Eqs. (4.192a) and (4.19b) into Eq. (4.15), we
obtain the following renormalized polarization function:

aQi [ A2\ x(1-x)g?
% [y 1 Sl 2
4r A XfP(X){ Og(A%P> i A3p

+2[F<2,c§,>>—F<2,e§p>
+ (@ - ) ﬁf e

In the above expressions, &3, = c3p| P = m*+
x(1 = x)u?. Note that for R™! — oo, the above expression
reduces to the usual one obtained in this renormalization
scheme, that is, the new physics effects decouple, as must
be. This low energy behavior of the polarization function
must be contrasted with that previously found in a mass-
independent scheme, in which there is no decoupling.

Tep(q*) =

(4.23)

B. The effective charge

The vacuum polarization function allows us to define an
effective charge [19]:

) =B (424
R D I B 1T
where Tlz(g?) and T1(g?) are the bare and renormalized

vacuum polarization functions, respectively. The effective
charge has the following properties: (i) it is gauge inde-
pendent, since the vacuum polarization function is gauge
independent to all orders; (ii) as a consequence of the
Ward identity discussed in Sec. III D, the effective charge
can be expressed in terms of bare quantities, so it is both
renormalization scale- and scheme-independent; (iii) at
g* = 0, it matches the fine structure constant a.x(0) =

m, (iv) for —- << 1, it gives the correction to the

Coulomb’s law for the interaction between two static heavy
charges; (v) the virtual contribution of a fermion f to
the renormalized one-loop vacuum polarization can be
reconstructed directly from the tree-level cross section
oy yw™ = f7f"). The last two points arise as a direct
consequence of the analytical properties of the polarization
function. It is important to mention that this is no longer
true when QED is embedded in the electroweak sector of

o =

the SM, as the W gauge boson contribution leads to a
vacuum polarization which is gauge dependent.3

In our case, (4+ n)DQED predicts, at the one-loop
level, an effective charge given by
a

(4+n)D (qg) _

eff 2\’ (425)

1- H(4+H)D(q )

with I14,)p(¢*) given by Eq. (4.15). It should be noted
that the KK contribution has the same analytical structure

as the QED contribution. Because of this, one expects
(4+n)D

age " (g*) to possess the same properties as @ (g?). In
fact, we can see that properties (i) to (iii) are clearly
fulfilled. We now proceed to analyze the modifications
introduced by extra dimensions on the properties (iv) and
(v). To simplify the analysis, we will consider only one
extra dimension.

We begin by studying the analytical structure of
I55(g?). We note that for g> < 0, which corresponds to
the - or u-channel, Tlsp(g?) is real and well defined.
However, when ¢> > 0, which corresponds to the s-
channel, 15y (¢g?) can have an imaginary part. In this case,
the logarithms that define Ilsp(g?) can have branch cuts
when their arguments are negative. Since the x(1 — x)
factor is at most 1/4, the logarithms in Ilsp(g?) have
branch cuts beginning at

2 42 2 4,2
q- = 4m~, q *4mw<|>» q 74mv/<2)"“'“"

Assume that mi/ w —x(1 = x)g* is negative up to a given
Fourier index N, so ITsp (¢?) have negative logarithms up to
the term m?,, —x(1 —x)q*. This means that we have N
replicas of the QED case. The QED result is well known in
the literature (see, for instance, Ref. [25]), so we will just
present the prediction of SDQED,

2 2
Im{TT3 ()] = 72 [ﬁ(l +2)
2m2
+ZZ/3 (1+=5)) e
where f=+/1-4m?/q*> and ﬂ(n):1/1—4m3,<,,>/q2.

The factor of 2 multiplying the KK contribution in
(4.27) is due to the two degenerate excitations y/E’l‘)) and

y/E;‘; Equation (4.27) implies the well-known fact that the

The possibility of extending the QED concept of effective
charge to the non-Abelian case has been studied [30] in the
context of the pinch technique [31].
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- 2

FIG. 6. The relation between the imaginary part of the y(") contribution to the one-loop vacuum polarization and the tree-level cross

section (g — wy) in SDQED.

one-loop contribution of the ") fermion to the vacuum
polarization determines the cross sector of the py —
"y process. Such a connection is given by

2
%Im[nw@znﬂ(,,) = oy — W), (4.28)
where the subscript 3, in Im[I1s(¢?)] indicates that only
the term proportional to f,) is considered, as it is shown
in Fig. 6.

The imaginary part of I1sy(g?) also induces a correction
on the Coulomb’s law, that is, V(r) = V(r) + 6V(r),
where V(r) is the classical potential and 6V (r) the quantum
correction. Following Ref. [25], we obtain in our case:

] (4.29)

Note that the QED result is recovered in the limitas R — 0.

C. The beta function

The beta function measures the variation of the coupling
constant with energy. It is defined by

where p is an energy scale. The purpose of this section is to
calculate the beta function in the context of (4 4+ n)DQED.
In theories in which the particle masses can be ignored, the
calculation of the beta function is actually very simple if a
mass-independent subtraction scheme is used, such as MS
or MS, which does not involve a kinematical point to define
the counterterm. MS-like schemes have an disadvantage,
because heavy particles do not decouple at energies below
their masses, as required by the decoupling theorem [32].
Since the beta function is a physical quantity, effects of
extra dimensions must decouple at energies much smaller
than the compactification scale R~!. In our case, it is clear
that we should not use a MS-like scheme because the KK
mass spectrum comprises a wide range of energy. Due to
this, we will compute the beta function using a mass-
dependent scheme. In particular, we will use the u-scheme
already introduced in this section. It is worth studying the
beta function in cases n = 1 and n = 2.

1. The case n=1

Using the renormalization condition

sp(q* = —u*) = 0, (4.31)
de
ple) = u—, 4.30
(©) du ( ) we obtain the following counterterm:
|
a A2\ 2 R2\"%_[€e\ =
8 =— 'd 2P 2(—=) T(=)EX )], 4.32
v==5e ) o (5) (538) " +2(am) TE)E ) .
where we have put Q,,, = 1 for simplicity. This counterterm leads to the following beta function:
, 06
ﬁSD( )_ /4 B i
e [l x(1 = x)p? & x(1 = x)u? }
=—— | difp(x)|5V——F7—"—5+2
(4;7)% ft )[mz +x(1 = x)u’ ;m;k) +x(1 = x)p?
3 1 1 —x)u? V(= Vx(1 =
_6_2/ dx fo(x)| T VA= (VL0 (4.33)
(4x)* Jo m*+ x(1—x)u R R
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This beta function depends on the ratio of fermion masses
m, mi w and the subtraction point x. In particular, when
m < u the QED contribution approaches the value ob-
tained in the MS scheme, so

i [ o

1=
X <7X(R‘] x),u> - 1].
If on the other hand, m < yu < R™!, we recover the QED
result

ple) =

(4.34)

3

Ble) = o2 (4.35)

This result shows us that the new physics effects are of
decoupling nature. Another interesting scenario is when
m > u, in which the beta function vanishes.

2. The case n=2

In this case, there are two coupling constants, namely e
and ), each with its associated beta function, but we will

limit ourselves to analyzing the usual beta function. From
Eq. (4.19a), a direct calculation leads to

A LD G OOt il
ﬂ6D(3)—(4”)2/) dxfp( ){[ 2+x(l— )ﬂz]z
H

+2X(1—X)<R >C2PW

d’F(2, CZP}
This expression can be rewritten in terms of Epstein
functions using the following identity:

(4.36)

d’F(2.¢3p)

ay RO,

(4.37)

which arises from Eq. (4.9). Note that both Eié”(Z) and

)
E5" (2) Epstein functions are convergent. Introducing these
functions, one has

G LRI )
/}GD(e) - (471_)2\/0 d fP( ){[m2+x<1_x)”2}2

+2x(1 = x) (”—_> 2L RE7(2) + B (2)] }

R 2
(4.38)
Thus, for m < pu, we have the usual beta function obtained

in the MS scheme plus a new physics correction given by a
power series in u/R7!,

e’ e’

:Tﬂz‘i‘w/ dfo( ) (CZP)2
x RE(2) + E2*(2),

Pep(e)
(4.39)

which is a behavior similar to the case of only one extra
dimension. The scenarios m < y < R~! and m > p are
also identical to the case of only one extra dimension.

V. SUMMARY

In this paper, we have comprehensively studied the one-
loop structure of the fermion self-energy, the photon self-
energy, and the vertex function in QED with one extra
dimension. The discrete and continuous sums that character-
ize the one-loop amplitudes in these types of theories were
regularized using the dimensional-regularization scheme. As
a consequence, the KK contribution to these one-loop
amplitudes is proportional to products of the gamma
function and the Epstein function, both depending on the
complex number € = 4 — D. Such contributions are propor-

tional to ['(e/2)ES’ (e/2). This expression tells us that the

role of the Efz (e/2) function is to quantify the impact of
the ultraviolet divergences induced by the infinite number
of KK fields. However, the one-dimensional Epstein func-
tion Ei’z(s) has poles at s = 1/2,—1/2,-3/2, ..., so this
infinite sum is convergent in the € — 0 limit. Consequently,
[(e/2)ES (€/2) = T(e/2)ES (0) = T(e/2)£(0), with the
Riemann zeta function having the value {(0) = > % =
—%. Due to this property of the Epstein function, we were
able to define renormalized quantities that are reduced to the
usual ones of QED in the R~' — oo limit. It was shown that
SDQED fulfills the Ward identity satisfied by QED, which in

turn implies that ep = Z;%e, this being the main feature of
Abelian gauge theories. In the case of the photon self-energy,
five-dimensional QED has a double multiplicity of KK
fermions, so their infinite number of excitations induce an
ultraviolet divergence proportional to 2£(0) = —1, which
cancels the ultraviolet divergence generated by the zero
mode. Nonetheless, this curious result is exclusive of QED
with only one extra dimension. The correction induced by
the extra dimension on the anomalous magnetic dipole
moment was calculated, showing that it is free of both
infrared and ultraviolet divergences and reduces to the usual
QED result in the R~! — co limit. Since any vertex function
of canonical dimension higher than four is proportional to
[(N 4 €/2)ES (N + ¢/2), with N an integer number, it is
clear that these types of products is free of divergences, so, at
the one-loop level, the only ultraviolet divergences in
SDQED are the usual ones of QED.

The photon self-energy was also explored in the context
of QED with an arbitrary even number n of extra dimen-
sions. It was shown that for n > 2, two types of divergences
emerge from the Epstein functions appearing in the loop
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amplitudes through the sum of products > 7, (1)I'(5)

Efz (5)- These types of divergences arise as a consequence

of reducing multidimensional Epstein functions into the

one-dimensional one. For example, a two-dimensional
. 2 1 2

function breaks down as E§(§) =—3E{ (%) +4
1, e B (49

=+

for € — 0 but the pole is canceled by the gamma function,

2 . . . .
so ES (5) converges in this limit. However, when we

consider the product F(g)Egz (5), the result is the presence
of two types of divergences, one type associated with the
pole of the gamma function and the other from the pole of
the one-dimensional Epstein function. Since the one-
dimensional Epstein function is in turn expressed as a
power series in ¢ ~ 1?—,22, the divergences associated with it
emerge naturally as coefficients of powers of the external
momenta. We argued that the first types of divergences,
which do not involve the compactification scale, are usual
ultraviolet divergences in the sense that they correspond to
short distance effects in the usual spacetime manifold. On

the other hand, the second types of divergences, which

. In the last term, E5 (=1 +€) diverges

appear as coefficients of powers of Rq—_Zz, are also genuine
ultraviolet divergences since they arise from short distance
effects in the compact manifold, so they can be removed
from amplitudes through renormalization. To generate the
required counterterms, interactions of canonical dimension
higher than four must be introduced, which is not an
obstacle, since such interactions are already available in our
effective Lagrangian, which contains all interactions com-
patible with the ISO(1,3) x Uy(1, M*) symmetry.

The way to implement renormalization in a modern
or broader sense in Kaluza-Klein theories was studied

in detail. The vacuum polarization function I +,,)D(q2)

was calculated and used to study the properties of
the effective charge. Since the KK contributions to the
polarization function have the same analytical structure as
the zero mode contribution, the main properties of the
effective charge are automatically fulfilled. By way of
illustration, the relation between the imaginary part of
the w( contribution to the one-loop vacuum polariza-
tion and its relation with the tree-level cross section
o(py — Wy) was discussed in SDQED. The contri-
bution from the quantum correction to Coulomb’s Law
was calculated in SDQED.

One important contribution of our work is the study of
the beta function in the cases SDQED and 6DQED. The
calculation of this function was performed using a mass-
dependent scheme, instead of mass-independent schemes
that are commonly used in QED, as MS-like schemes. The
reason for this is that KK theories have a mass spectrum
that covers a wide range of energies. Because of this, we
use the so called pu-scheme, with y an arbitrary subtraction
point. The beta function so obtained fulfills all physical
requirements. In particular, for energies m < u < R7! it
reduces to the well-known result of QED obtained in a
mass-independent scheme. For m > yu, both the zero
mode and KK excitations decouple, so the beta function
vanishes, as it occurs in QED. All these facts clearly
reflect that our beta function fulfills all desirable physical
requirements.
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