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A comprehensive analysis on the photon self-energy, the fermion self-energy, and the fermion vertex
function is presented at one loop in the context of quantum electrodynamics (QED) with one extra
dimension. In five-dimensional theories, characterized by an infinite number of Kaluza-Klein fields, one-
loop amplitudes involve discrete as well as continuous sums,

P∞
n¼1

R
d4k, that could diverge. Using

dimensional regularization, we express such sums as products of gamma and Epstein functions, both
defined on the complex plane, with divergences arising from poles of these functions in the limit asD → 4.
Using the analytical properties of the Epstein function, we show that the ultraviolet divergences generated
by the Kaluza-Klein sums can be consistently renormalized, which means that the corresponding
renormalized quantities reduce to the usual ones of QED at the limit of a very large compactification
scale R−1. The main features of QED at the one-loop level were studied. We use the mass-dependent
μ-scheme to calculate, in QED with an arbitrary number n of extra dimensions, a beta function fulfilling all
desirable physical requirements. We argue that in these types of theories, with a large mass spectrum
covering a wide energy range, beta functions should not be calculated by using mass-independent
renormalization schemes. We show that the beta function is finite for any energy μ. In particular, it reduces
to the usual QED result e3=12π2 for m ≪ μ ≪ R−1 and vanishes for m ≫ μ, with m the usual fermion
mass. Throughout the work, the decoupling nature of all our results obtained from the analytical properties
of the Epstein function is stressed.

DOI: 10.1103/PhysRevD.101.035034

I. INTRODUCTION

Quantum field theories in more than four spacetime
dimensions became phenomenologically attractive since
Antoniadis, Arkani-Hamed, Dimopoulos, and Dvali
[1–3] argued that relatively large extra dimensions
could show up at the TeV scale. Shortly after, Randall
and Sundrum introduced the notion of warped extra
dimensions to tackle the hierarchy problem [4]. Another
well-known extra-dimensional approach is the so-called
universal extra dimensions (UED) [5], characterized
by the assumption that all the dynamic variables pro-
pagate in the compact dimensions. In the UED frame-
work, the starting point consists in formulating the
standard model (SM) in a flat spacetime manifold
M4þn ¼ M4 ×N n, where M4 is the usual Minkowski
space and N n is a n-dimensional Euclidean manifold.
In this stage, one assumes that distance scales in
consideration are so small compared with the size of
the extra dimensions that the SM in 4þ n dimensions
is correctly governed by the (4þ n)-dimensional
Poincaré group, ISOð1; 3þ nÞ, and by the gauge group

SUCð3;M4þnÞ × SULð2;M4þnÞ × UYð1;M4þnÞ.1 This is
an effective field theory in 4þ n spacetime dimensions
with an infinite number of Lagrangian terms, which
include a replica of the four-dimensional SM and the set
of all interactions of higher-than-four mass dimensions.
At lower energies, when the finite size of the manifold
N n is apparent, one needs to pass from the ISOð1; 3 þ
nÞ × SUCð3; M4þnÞ × SULð2; M4þnÞ × UYð1; M4þnÞ
description, suitable for 4þ n dimensions, to the standard
four-dimensional description, provided by ISOð1; 3Þ×
SUCð3;M4Þ × SULð2;M4Þ × UYð1;M4Þ, which is
achieved through an appropriate compactification scheme,
followed by two canonical transformations [6–8] that allow
us to map covariant objects of the extended groups into
covariant objects of the standard groups. The process of
hiding the extended symmetry into the standard symmetry
leads to an effective theory in which each SM field has an

1This extension of the usual SM group differs only in the
support spacetime manifold, meaning that M4þn is used instead
of M4.
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associated infinite set ofKaluza-Klein (KK)modes,which are
quantized in the standardway [8]. Symbolically,we start from
a finite set of fields fφaðx; x̄Þg (with x ∈ M4, x̄ ∈ N n and a
is a covariance index) governed by the extended groups, and
then we pass to a set of fields that comprises the four-
dimensional SM fields fφaðxÞg and an infinite number ofKK

fields fφðnÞ
a ðxÞg [with ðnÞ a collection of natural indices]

governed by the standard groups. Both descriptions are
equivalent because one passes from one to the other through
a canonical transformation. In this approach, conservation of
extra-dimensionalmomentum leads to an effective theory that
preserves KK parity, which introduces dynamical restrictions
between SM and KK particles. In particular, KK effects on
SM observables first arise at one loop, which show us the
importance of studying the one-loop structure of these types
of theories.
The phenomenological impact of one extra dimension on

observables sensitive to new-physics effects has been a
subject of interest in the literature. This is the case, for
instance, of Higgs physics [9], flavor physics [7,10], the
electroweak gauge sector [11], B physics [12], and collider
physics [13,14]. All these investigations show that the one-
loop contributions of the infinite number of KK modes lead
to amplitudes free of divergences. However, as far as we
know, no investigations addressing contributions from five-
dimensional field formulations to amplitudes sensitive to
ultraviolet (UV) divergences, such as self-energies or
vertex functions that require renormalization, exist. This
sets an unusual challenge, as one must consider the UV
divergencies from the one-loop contributions induced by an
infinite number of fields, which may be a source of a new
class of divergences. If the number of KK excitations were
finite, no matter how large, we would be in a conventional
scenario of calculating the one-loop contribution of a large,
but finite, number of particles to a given vertex function.
These types of scenarios are common in many extensions
of the SM. Nonetheless, in our case, where the number of
KK fields is infinite, the infinite sum involved in consid-
ering all these contributions may or may not converge. In
these types of theories, a typical one-loop amplitude will
involve, besides the usual continuous sum, a discrete
infinite KK-mode sum, that is,

P∞
n¼1

R
d4k. To handle

possible divergences, both continuous and discrete sums
must be regularized. As it is well known, the dimensional-
regularization scheme [15,16] has proven to be the best
known tool for handling short-distance effects in the usual
spacetime M4. In this scheme, the spacetime dimension is
promoted to D ¼ 4 − ϵ dimensions, being ϵ a complex
number. Divergences, if they exist, appear as poles of the
gamma function in the limit as ϵ → 0. In this paper, we
show that this scheme can be used to simultaneously
regularize both the discrete and continuous sums by using
the analytical properties of the Epstein zeta function [17],
which is a generalization of the Riemann zeta function [18].
We will show that one-loop amplitudes can naturally be

expressed as products of gamma functions and Epstein
functions, with the divergencies from continuous and
discrete sums appearing as the poles of the gamma
function and the Epstein function, respectively. The main
goal of this work is to develop this idea in the context of
quantum electrodynamics (QED) with one UED, which
we refer to by the acronym 5DQED. We focus on the one-
loop impact of KK fields on the three basic Green
functions of QED, namely, the fermion self-energy, the
photon self-energy, and the fermion vertex function. This
means that we must consider the one-loop contributions of
the infinite set of KK modes associated with the usual
spinor field and the gauge field that describe some charged
fermion and the photon in QED. One of the main
objectives of this work is to show how these types of
divergences can be regularized and consistently absorbed
by the parameters of the theory. Although we will focus
only in one extra dimension, some of the more relevant
results will be discussed in the broader context of an
arbitrary number of extra dimensions. In particular, we
will address aspects of vacuum polarization.
One of the main goals of this work is to show how

dimensional regularization allows us to control, through the
gamma function and the Epstein zeta function, the diver-
gences that can arise from continuous and discrete sums,
respectively. To show the internal consistence of our
approach, we study many of the well-known one-loop
properties of QED. Besides verification of the Ward
identity at one loop and the correction to the anomalous
magnetic dipole moment, we calculate the effective charge
[19] in the presence of an arbitrary number n of extra
dimensions and study some of its more important impli-
cations at the one-loop level, such as gauge independence,
the Thompson limit, and the correction to Coulomb’s Law.
The study of the beta function deserves special attention.
We discuss the disadvantages of using a mass-independent
renormalization scheme in the calculation of a beta function
in these types of theories. The reason is the presence of
massive particles in a wide range of energies. So, we show
that a physically acceptable beta function for these types of
theories can be obtained using the mass-dependent scheme
known as the μ-scheme, with μ the subtraction point. We
show that the beta function so calculated satisfies all
physical requirements and reduces to the well-known value
obtained in mass-independent schemes, such as MS or MS.
The decoupling nature of new-physics effects arising from
extra dimensions is shown to occur in all calculated one-
loop amplitudes.
The paper has been organized as follows. The basic

structure of 5DQED, including the Feynman rules needed
for our calculations, will be discussed in Sec. II. The one-
loop structure of the fermion self-energy, the photon
self-energy, the fermion vertex function, and the Ward-
Takahashi identity are studied in Sec. III. The impact of an
arbitrary number n of extra dimensions on the vacuum
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polarization is explored in Sec. IV. Finally, we will present
our conclusions in Sec. V.

II. QED WITH ONE EXTRA DIMENSION

First of all, we recall that there is no chirality in odd-
dimensional spinor formulations. This means that field
theories defined in spacetimes with an odd number of
dimensions are necessarily vectorlike. The construction of
the five-dimensional SM and, in particular, QED, requires
the symmetry dictated by the orbifold S1=Z2 (with S1 the
circle of radius R), used to dimensionally reduce the theory.
In five dimensions, as in the four-dimensional case, Dirac
fields are still objects with four components. The corre-
sponding generators are given by SMN ¼ i

4
½γM; γN �, with

γM ¼ γμ, iγ5 the standard Dirac matrices, which satisfy the
Clifford’s algebra fγM; γNg ¼ 2gMN . Throughout the paper
we will use a metric with negative signature, that
is, g ¼ diagðþ1;−1;−1;−1;−1Þ.
The generation of the mass terms for zero modes in

5DQED is somewhat subtle. The problem has been
addressed from two different, but equivalent, perspectives
[7,20,21]. In one of these approaches, we start from the fact
that QED is embedded in the electroweak theory and then
we generate the mass of the zero mode via the Higgs
mechanism [7,21]. This leads to a doubly mass-degenerate

KK spectrum ψ ðnÞ
ð1Þ and ψ ðnÞ

ð2Þ associated with the zero mode

fermion field ψ ð0Þ ≡ ψ . The other approach consists in
assuming QED as a self-contained theory, so the mass of
the zero mode is generated by introducing a set of mirror
fermions [20]. In this case, the zero mode ψ has associated
a mass-degenerate double KK spectrum. Both approaches
lead to the same dynamics of the charged fermion ψ , the

electromagnetic gauge field Að0Þ
μ ≡ Aμ, and their KK

excitations ðψ ðnÞ
ð1Þ , ψ ðnÞ

ð2ÞÞ and ðAðnÞ
μ ; AðnÞ

G Þ, respectively. A

comprehensive analysis on the matter is given in
Refs. [7,20,21], so we restrict ourselves to present those
results that are needed for our purposes. In the case of only
one extra dimension there are no physical scalar fields. The

only scalar field is the pseudo-Goldstone boson AðnÞ
G

associated with the gauge field AðnÞ
μ and emerged from

the KK mass-generation mechanism.
The four-dimensional effective KK Lagrangian is

given by

Leff QED ¼ LQED þ L0−KK þ LKK þ Ld>4; ð2:1Þ

with LQED the standard QED Lagrangian, given by

LQED ¼ ψ̄ði=D −mÞψ −
1

4
FμνFμν −

1

ξ
ð∂μAμÞ2; ð2:2Þ

where ξ is the gauge-fixing parameter. The Lagrangian
L0−KK plays a central role in our study because it contains
the interactions between KK zero modes and excited
modes. As it was anticipated, the KK excitations of ψ ,

ψ ðnÞ
ð1Þ , and ψ ðnÞ

ð2Þ are mass degenerate, being their masses

given by m2
ψ ðnÞ ¼m2þm2

ðnÞ, with m2
ðnÞ≡pðnÞ

5 pðnÞ
5 ¼ðn=RÞ2.

Here pðnÞ
5 is the component of the momentum along the

compact dimension. A mixing between ψ ðnÞ
ð1Þ and ψ ðnÞ

ð2Þ
arises, which is characterized by the angle

tan θψ ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mψ ðnÞ þmðnÞ
mψ ðnÞ −mðnÞ

s
: ð2:3Þ

The Lagrangian L0−KK is given by

L0−KK ¼
X∞
n¼1

½ψ̄ ðnÞ
ð1Þði=D −mψ ðnÞ Þψ ðnÞ

ð1Þ þ ψ̄ ðnÞ
ð2Þði=D −mψ ðnÞ Þψ ðnÞ

ð2Þ�

þQψe
X∞
n¼1

AðnÞ
μ ½ψ̄γμðsψ ðnÞPL þ cψ ðnÞPRÞψ ðnÞ

ð1Þ þ ψ̄ ðnÞ
ð1Þγ

μðsψ ðnÞPL þ cψ ðnÞPRÞψ

− ψ̄γμðcψ ðnÞPL þ sψ ðnÞPRÞψ ðnÞ
ð2Þ − ψ̄ ðnÞ

ð2Þγ
μðcψ ðnÞPL þ sψ ðnÞPRÞψ �

þ iQψe
X∞
n¼1

AðnÞ
G ½ψ̄ðsψ ðnÞPR − cψ ðnÞPLÞψ ðnÞ

ð1Þ − ψ̄ ðnÞ
ð1Þðsψ ðnÞPL − cψ ðnÞPRÞψ

þ ψ̄ðcψ ðnÞPR − sψ ðnÞPLÞψ ðnÞ
ð2Þ − ψ̄ ðnÞ

ð2Þðcψ ðnÞPL − sψ ðnÞPRÞψ �; ð2:4Þ

where sψ ðnÞ and cψ ðnÞ stand for the sine and the cosine of the mixing angle θψ ðnÞ . On the other hand, LKK represents
interactions only among KK excitations. In this case, we only display the quadratic parts, which is needed to define the
propagators of the KK excitations of the electromagnetic gauge field. Then, we have
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LKK ¼ −
1

4

X∞
n¼1

FðnÞ
μν FðnÞμν þ

X∞
n¼1

�
1

2
ð∂μA

ðnÞ
G Þð∂μAðnÞ

G Þ

þmðnÞA
ðnÞ
μ ð∂μAðnÞ

G Þ þ 1

2
AðnÞ
μ AðnÞμ

�

−
X∞
n¼1

1

2ξðnÞ
fðnÞfðnÞ þ � � � ð2:5Þ

where the last term, involving products fðnÞfðnÞ, represents
the gauge-fixing term for gauge invariance characterized
by the KK gauge parameters αðnÞ.2 The gauge-fixing
functions for excited gauge modes are given by fðnÞ ¼
∂μAðnÞμ − ξðnÞmðnÞA

ðnÞ
G , with ξðnÞ the gauge-fixing param-

eter. We stress that the Lagrangians displayed in Eqs. (2.2),
(2.4), and (2.5) contain only renormalizable interactions in
the sense that their canonical dimension is less than or equal
to 4. This is so because these interactions arise from the
compactification of the five-dimensional version of QED.
This fact has important consequences at the one-loop level.
Finally, Ld>4 contains all the interactions of canonical

dimension higher than four that are compatible with the
ISOð1; 3Þ × UQð1;M4Þ symmetry. These types of inter-
actions must be present in the four-dimensional KK theory
because the five-dimensional theory is nonrenormalizable,
according to power-counting criterion (Dyson’s criterion),
and thus must already be present even before compactifi-
cation. In this work we will not consider loop insertions
coming from this sector.
The Feynman rules needed for our calculations are

shown, in the Rξ gauge, in Figs. 1 and 2.

III. ONE-LOOP EFFECTS OF ONE EXTRA
DIMENSION IN QED

In this section, we study the one-loop structure of the
photon self-energy, the fermion self-energy, and the vertex
function ψ̄ψγ, in the context of QED with one extra
dimension.
As usual, we relate renormalized quantities fψ ; Aμ; eg

with bare quantities fψB; AμB; eBg through renormalization
factors as follows:

ψB¼
ffiffiffiffiffi
Z2

p
ψ ; AμB¼

ffiffiffiffiffi
Z3

p
Aμ; eB¼

�
Z1

Z2

�
Z
−1
2

3 e: ð3:1Þ

Although we will not consider vertex functions containing
external excited legs, we also define the corresponding
relations for the KK excited modes. In this case, we have

ψ ðnÞ
ð1Þ;ð2ÞB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZðnÞ
ð1Þ;ð2Þ2

q
ψ ðnÞ; AðnÞ

μB ¼
ffiffiffiffiffiffiffiffi
ZðnÞ
3

q
AðmÞ
μ ;

AðnÞ
GB ¼

ffiffiffiffiffiffiffiffi
ZðnÞ
G

q
AðnÞ
G : ð3:2Þ

Then, the bare Lagrangian can be written as

Lbare
eff QED ¼ LQED þ L0−KK þ LKK þ Ld>4

þ LQED
c:t: þ LKK

c:t: þ Ld>4
c:t: ; ð3:3Þ

where LQED, L0−KK, and LKK represent the renormalized
Lagrangians given by Eqs. (2.2), (2.4), and (2.5), respec-
tively, while Ld>4 contains the interactions of dimension
higher than four written in terms of renormalized quantities.
In addition, LQED

c:t: represents the standard or usual counter-
term of QED, which is given by

LQED
c:t: ¼ −

1

4
δ3FμνFμν þ ψ̄ðiδ2=∂ − δmÞψ þ eQψδ1ψ̄γ

μψAμ;

ð3:4Þ

where

δ3 ¼ Z3 − 1; δ2 ¼ Z2 − 1;

δ1 ¼ Z1 − 1; δm ¼ Z2mB −m: ð3:5Þ

In Eq. (3.3), LKK
c:t: and Ld>4

c:t: represent the counterterms
that contain interactions between standard and KK fields,
which we do not present in this section, since we will not
need them.

A. Fermion self-energy

The one-loop contribution to the fermion self-energy is
given by the Feynman diagrams shown in Fig. 3. The
renormalized self-energy can be written as follows:

−iΣ5DðpÞ ¼ −iΣðpÞ − iΣKKðpÞ − iΣc:t:ðpÞ; ð3:6Þ

where −iΣðpÞ, −iΣKKðpÞ, and −iΣc:t:ðpÞ represent the
standard one-loop contribution, the one-loop contribution

FIG. 1. Free propagators in the Rξ gauge. The calculations are
performed in the Feynman-’t Hooft gauge (ξ ¼ 1 and ξðnÞ ¼ 1).

2The five-dimensional gauge parameter αðx; x̄Þ is assumed to
be even under x̄ → −x̄, so it is Fourier expanded as αðx; x̄Þ ¼

1ffiffiffiffiffiffi
2πR

p αð0ÞðxÞ þP∞
n¼1

1ffiffiffiffiffi
πR

p cosðnx̄R ÞαðnÞðxÞ. The zero mode is iden-

tified as the standard gauge parameter α≡ αð0Þ.
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of the infinite number of KK modes, and the standard
counterterm, respectively. In the Feynman-’t Hooft gauge
(ξ ¼ 1 and ξðnÞ ¼ 1), the Feynman rules given in Figs. 1
and 2 lead to the following amplitudes:

−iΣðpÞ ¼ −e2Q2
ψðμ2Þ2−D

2

Z
dDk
ð2πÞD

×
γμð=kþmÞγμ

½k2 −m2�½ðk − pÞ2 −m2
γ �
; ð3:7aÞ

−iΣKKðpÞ ¼ −e2Q2
ψ ðμ2Þ2−D

2

X∞
n¼1

Z
dDk
ð2πÞD

×
TA þ TG

½k2 −m2
ψ ðnÞ �½ðk − pÞ2 −m2

ðnÞ�
; ð3:7bÞ

−iΣc:t:ðpÞ ¼ ið=pδ2 − δmÞ; ð3:7cÞ

where μ is the dimensional-regularization scale. In the
standard contribution, Eq. (3.7b), we have regularized the

infrared divergence by adding a small photon mass mγ .
In addition, the terms TA and TG in (3.7) stand for the

contributions of the gauge field AðnÞ
μ and its pseudo-

Goldstone boson AðnÞ
G , respectively. They are given by

TA ¼ γμð=kþmÞγμ; ð3:8aÞ

TG ¼ −=kþm; ð3:8bÞ

where in obtaining these results we have used the rela-
tion 2sψ ðnÞcψ ðnÞmψ ðnÞ ¼ m.
Using Feynman parametrization and shifting

k → kþ xp, the standard and KK contributions can be
written as

ΣðpÞ ¼ αQ2
ψ

4π

Z
1

0

dxð4πμ2Þ2−D
2
1

iπ
D
2

×
Z

dDk
−ðD − 2Þx=pþDm

ðk2 − Δ̂2
2FÞ2

; ð3:9aÞ

FIG. 3. Feynman diagrams contributing to the fermion self-energy in the Feynman-t’Hooft gauge. The counterterm diagram is also
shown.

FIG. 2. Vertices needed for the calculation of self-energies and vertex function in 5DQED.
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ΣKKðpÞ ¼
αQ2

ψ

4π

Z
1

0

dxð4πμ2Þ2−D
2

X∞
n¼1

1

iπ
D
2

×
Z

dDk
−ðD − 1Þx=pþ ðDþ 1Þm

ðk2 − Δ2
ðnÞFÞ2

; ð3:9bÞ

where Δ2
ðnÞF ¼ m2

ðnÞ þ Δ2
2F, with Δ2

2F ¼ ð1 − xÞm2−
xð1 − xÞp2, and Δ̂2

2F ¼ Δ2
2F þ xm2

γ . Note that the KK
contribution is free of infrared divergences. After solving
the integrals on k, we obtain

ΣðpÞ ¼ αQ2
ψ

4π

Z
1

0

dxfðpÞΓ
�
ϵ

2

��
Δ̂2

2F

4πμ2

�−ϵ
2

; ð3:10Þ

for the standard contribution, where fðpÞ ¼ −ð2 − ϵÞx=pþ
ð4 − ϵÞm. As far as the KK contribution is concerned,
we have

ΣKKðpÞ¼
αQ2

ψ

4π

Z
1

0

dxgðpÞΓ
�
ϵ

2

�X∞
n¼1

�Δ2
ðnÞF

4πμ2

�−ϵ
2

¼αQ2
ψ

4π

Z
1

0

dxgðpÞΓ
�
ϵ

2

��
R−2

4πμ2

�−ϵ
2X∞
n¼1

1

ðn2þc22FÞ
ϵ
2

¼αQ2
ψ

4π

Z
1

0

dxgðpÞΓ
�
ϵ

2

��
R−2

4πμ2

�−ϵ
2

E
c2
2F
1

�
ϵ

2

�
;

ð3:11Þ

where gðpÞ ¼ −ð3 − ϵÞx=pþ ð5 − ϵÞm. In the last step we
have introduced the one-dimensional Epstein zeta function,
which is defined as

Ec2
1 ðsÞ ¼

X∞
n¼1

1

ðn2 þ c2Þs : ð3:12Þ

This function is a generalization of the Riemann zeta
function,

ζðsÞ ¼
X∞
n¼1

1

ns
: ð3:13Þ

In our case, c22F ¼ Δ2
2F

R−2 and s ¼ ϵ=2. Note that both the
Gamma function and the Epstein function are defined on
the complex plane. Since the one-dimensional Epstein
function has simple poles at s ¼ 1

2
;− 1

2
;− 3

2
; � � � [22], it

is clear that E
c2
2F
1 ðϵ

2
Þ converges in the ϵ → 0 limit. This is a

remarkable result, which emerges as a consequence of the
analytical properties of the Epstein function.
From the above results, the one-loop contribution to the

self-energy of the fermion ψ can be written as follows:

Σ5DðpÞ ¼
αQ2

ψ

4π

Z
1

0

dxΓ
�
ϵ

2

��
fðpÞ

�
Δ̂2

2F

4πμ2

�−ϵ
2

þ gðpÞ
�
R−2

4πμ2

�−ϵ
2

E
c2
2F
1

�
ϵ

2

��
þ δm − =pδ2:

ð3:14Þ

To determine the counterterms δm and δ2 we use the on-
shell renormalization conditions

Σ5Dð=pÞj=p¼m ¼ 0; ð3:15aÞ

d
d=p

Σ5Dð=pÞj=p¼m ¼ 0: ð3:15bÞ

These renormalization conditions lead to

δ2 ¼
αQ2

ψ

4π

Z
1

0

dxΓ
�
ϵ

2

��� ¯̂Δ2
2F

4πμ2

�−ϵ
2
�
df̄
d=p

−
ϵ

2

�
2mf̄
¯̂Δ2
2F

��
d ¯̂Δ2

2F

dp2

��

þ
�
R−2

4πμ2

�−ϵ
2

�
dḡ
d=p

E
c̄2
2F
1

�
ϵ

2

�
−
ϵ

2
ð2mḡÞEc̄2

2F
1

�
1þ ϵ

2

��
dc̄22F
dp2

���
; ð3:16Þ

δm ¼ αQ2
ψ

4π

Z
1

0

dxΓ
�
ϵ

2

��� ¯̂Δ2
2F

4πμ2

�−ϵ
2
�
m
df̄
d=p

− f̄ −
ϵ

2

�
2m2f̄
¯̂Δ2
2F

��
d ¯̂Δ2

2F

dp2

��

þ
�
R−2

4πμ2

�−ϵ
2

��
m

dḡ
d=p

− ḡ

�
E
c̄2
2F
1

�
ϵ

2

�
−
ϵ

2
ð2m2ḡÞEc̄2

2F
1

�
1þ ϵ

2

��
dc̄22F
dp2

���
; ð3:17Þ

where we use the bar notation to indicate that the function under consideration has been evaluated at =p ¼ m, that is,
F̄ ¼ Fð=p ¼ mÞ. In addition, we have used the chain rule
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d
d=p

¼ 2=p
d

dp2
¼ 2=p

dc22F
dp2

d
dc22F

; ð3:18Þ

together with the fact that

dE
c2
2F
1 ðϵ

2
Þ

dc22F
¼ −

ϵ

2
E
c2
2F
1

�
1þ ϵ

2

�
: ð3:19Þ

It is worthwhile to write the divergent parts of counterterms
δ2 and δm, separating explicitly the contributions arising
from both the zero mode and the KK excitations. Keeping
only the part proportional to the pole of the gamma
function, we have

δ2 ¼ −
αQ2

ψ

4π

��
2

ϵ

�
|ffl{zffl}
SC

þ 3

2
ζð0Þ

�
2

ϵ

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

KKC

þ � � �
�
; ð3:20aÞ

δm ¼ −
αQ2

ψ

4π
m

�
4

�
2

ϵ

�
|fflffl{zfflffl}

SC

þ 5ζð0Þ
�
2

ϵ

�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

KKC

þ � � �
�
; ð3:20bÞ

where SC and KKC are acronyms for “standard contribu-
tion” and “KK contribution,” respectively. Note that
ζð0Þ ¼ −1=2. The importance of simultaneously regular-
izing discrete and continuous sums using the dimensional
regularization scheme can now be appreciated.
On the other hand, using the relations

fðpÞ þ ðm − =pÞ df̄
d=p

− f̄ ¼ 0; ð3:21aÞ

gðpÞ þ ðm − =pÞ dḡ
d=p

− ḡ ¼ 0; ð3:21bÞ

we can write the renormalized fermion self-energy as

Σ5DðpÞ ¼
αQ2

ψ

4π

Z
1

0

dxΓ
�
ϵ

2

��
fðpÞ

��
Δ̂2

2F

4πμ2

�−ϵ
2

−
� ¯̂Δ2

2F

4πμ2

�−ϵ
2
�
þ
�
R−2

4πμ2

�−ϵ
2

gðpÞ
�
E
c2
2F
1

�
ϵ

2

�
− E

c̄2
2F
1

�
ϵ

2

��

−
ϵ

2
ðm − =pÞ

��
2mf̄
¯̂Δ2
2F

�� ¯̂Δ2
2F

dp2

�
þ
�
R−2

4πμ2

�−ϵ
2ð2mḡÞEc̄2

2F
1

�
1þ ϵ

2

��
dc̄22F
dp2

���
: ð3:22Þ

In the above expressions, ¯̂Δ2
2F ¼ ð1 − xÞ2m2 þ xm2

γ and
c̄22F ¼ ð1 − xÞ2m2=R−2. In addition, f̄ ¼ 2ð2 − xÞm and
ḡ ¼ ð5 − 3xÞm. Now, the following relations

ΓðsÞ ¼ 1

s
− γE þOðsÞ; ð3:23aÞ

X−s ¼ 1 − s logðXÞ þOðs2Þ; ð3:23bÞ

Ec2
1 ðsÞ ¼ Ec2

1 ð0Þ þ
dEc2

1 ðsÞ
ds






s¼0

sþOðs2Þ

¼ ζð0Þ − s
X∞
n¼1

logðn2 þ c2Þ þOðs2Þ; ð3:23cÞ

valid near s ¼ 0, allow us to express the renormalized
fermion self-energy as

Σ5DðpÞ ¼
αQ2

ψ

4π

Z
1

0

dx

�
2ð2m − x=pÞ log

� ¯̂Δ2
2F

Δ̂2
2F

�
þ ðm − =pÞ

�
4xð1 − xÞð2 − xÞm2

ð1 − xÞ2m2 þ xm2
γ

�

þð5m − 3x=pÞ
X∞
n¼1

log

�Δ̄2
ðnÞF

Δ2
ðnÞF

�
þ ðm − =pÞ

�
2xð1 − xÞð5 − 3xÞ

�
m
R−1

�
2

E
c̄2
2F
1 ð1Þ

��
; ð3:24Þ

with the first line of the above expression corresponding to the standard contribution, and the second one corresponding to the
KK contribution. It is easy to show that effects from the extra dimension decouple in the limit as R−1 → ∞. On the other hand,

the multidimensional Epstein function can be expressed in power series of c2 [23,24], which in the case of E
c̄2
2F
1 ð1Þ becomes

E
c̄2
2F
1 ð1Þ ¼ ζð2Þ þ Fðc̄22FÞ; ð3:25Þ

where

Fðc̄22FÞ ¼
X∞
k¼1

ð−1Þkζð2kþ 2Þc̄2k2F: ð3:26Þ

Note that ζð2Þ ¼ π2

6
.
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B. Photon self-energy

We now proceed to calculate the one-loop contribution
from 5DQED to the photon self-energy. This contribution
is generated by the diagrams displayed in Fig. 4. Due to
gauge invariance, the amplitude must have the following
gauge structure: iΠμνðqÞ ¼ iðq2gμν − qμqνÞΠðq2Þ. The
one-loop contribution, including the counterterm, is
given by

iΠμν
5DðqÞ ¼ iΠμνðqÞ þ iΠμν

KKðqÞ þ iΠμν
c:t:ðqÞ; ð3:27Þ

with

iΠμνðqÞ ¼ −e2Q2
ψðμ2Þ2−D

2

Z
dDk
ð2πÞD

×
tr½γμð=kþmÞγνð=kþ =qþmÞ�
½k2 −m2�½ðkþ qÞ2 −m2� ; ð3:28aÞ

iΠμν
KKðqÞ ¼ −e2Q2

ψ ðμ2Þ2−D
22

X∞
n¼1

Z
dDk
ð2πÞD

×
tr½γμð=kþmψ ðnÞ Þγνð=kþ =qþmψ ðnÞ Þ�

½k2 −m2
ψ ðnÞ �½ðkþ qÞ2 −m2

ψ ðnÞ �
;

ð3:28bÞ

iΠμν
c:t:ðqÞ ¼ −iðq2gμν − qμqνÞδ3: ð3:28cÞ

In the KK contribution, iΠμν
KKðqÞ, a factor 2 has been

introduced to take into account the contribution from the

mass-degenerate pair of KK fermions ψ ðnÞ
ð1Þ and ψ ðnÞ

ð2Þ .
Once Feynman parametrization has been implemented,

we introduce the change of variables k → k − xq, and then
use the symmetry relation kμkν → k2gμν=D to obtain

iΠμνðqÞ ¼ −4e2Q2
ψðμ2Þ2−D

2

Z
1

0

dx
Z

dDk
ð2πÞD

½2D ð1 − D
2
Þk2 þm2 þ xð1 − xÞq2�gμν − 2xð1 − xÞqμqν

ðk2 − Δ2
2PÞ2

; ð3:29aÞ

iΠμν
KKðqÞ ¼ −4e2Q2

ψðμ2Þ2−D
22

X∞
n¼1

Z
1

0

dx
Z

dDk
ð2πÞD

½2D ð1 − D
2
Þk2 þm2

ψ ðnÞ þ xð1 − xÞq2�gμν − 2xð1 − xÞqμqν
ðk2 − Δ2

ðnÞPÞ2
; ð3:29bÞ

where Δ2
2P ¼ m2 − xð1 − xÞq2 and Δ2

ðnÞP ¼ m2
ðnÞ þ Δ2

2P. Due to gauge invariance, there is no quadratic divergence, as the

integral on k2 is proportional to ð1 − D
2
ÞΓð1 − D

2
Þ ¼ Γð2 − D

2
Þ. For the same reason, the dependence of both numerators on

the mass disappears. Consequently, we can write the one-loop polarization functions as

Πðq2Þ ¼ −
αQ2

ψ

4π

Z
1

0

dx fPðxÞΓ
�
ϵ

2

��
Δ2

2P

2πμ2

�−ϵ
2

; ð3:30aÞ

ΠKKðq2Þ ¼ −
αQ2

ψ

4π

Z
1

0

dx fPðxÞ2Γ
�
ϵ

2

�X∞
n¼1

�Δ2
ðnÞP

4πμ2

�−ϵ
2

¼ −
αQ2

ψ

4π

Z
1

0

dx fPðxÞ
�
R−2

4πμ2

�−ϵ
2

2Γ
�
ϵ

2

�
E
c2
2P
1

�
ϵ

2

�
; ð3:30bÞ

where fPðxÞ ¼ 8xð1 − xÞ and c22P ¼ Δ2
2P=R

−2. Then, the renormalized polarization function can be written as

Π5Dðq2Þ ¼ −
αQ2

ψ

4π

Z
1

0

dxfPðxÞΓ
�
ϵ

2

���
Δ2

2P

2πμ2

�−ϵ
2 þ

�
R−2

4πμ2

�−ϵ
2

2E
c2
2P
1

�
ϵ

2

��
− δ3: ð3:31Þ

To determine the counterterm, we impose the renormalization condition

FIG. 4. Feynman diagrams contributing to the photon self-energy. The counterterm diagram also is included.
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Π5Dð0Þ ¼ 0; ð3:32Þ

which leads to

δ3 ¼ −
αQ2

ψ

4π

Z
1

0

dx fPðxÞΓ
�
ϵ

2

���
Δ̄2

2P

2πμ2

�−ϵ
2

þ
�
R−2

4πμ2

�−ϵ
2

2E
c̄2
2P
1

�
ϵ

2

��
; ð3:33Þ

where Δ̄2
2P ¼ m2 and c̄22P ¼ m2=R−2. As in the case of the

fermion self-energy, it is worth analyzing the divergent part
of this counterterm. Keeping only the pole of the gamma
function, we have

δ3 ¼ −
αQ2

ψ

3π

��
2

ϵ

�
|ffl{zffl}
SC

þ 2ζð0Þ
�
2

ϵ

�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

KKC

þ � � �
�
: ð3:34Þ

Since ζð0Þ ¼ −1=2, the KK divergence exactly cancels the
standard divergence. This cancellation of the UV diver-
gences at the one-loop level is a consequence of the double
multiplicity of the KK excitations of the fermion ψ .
However, as we will see below, this cancellation no longer
occurs when there is more than one extra dimension.
Using the relations given by Eqs. (3.23a)–(3.23c), the

polarization function becomes

Π5Dðq2Þ ¼ −
αQ2

ψ

4π

Z
1

0

dx fPðxÞ
�
log

�
m2 − xð1 − xÞq2

m2

�

þ 2
X∞
n¼1

log

�m2
ψ ðnÞ − xð1 − xÞq2

m2
ψ ðnÞ

��
: ð3:35Þ

The structure of this result is quite suggestive and reflects
the consistency of our regularization scheme. In the first
term of the above expression we can recognize the usual
contribution of QED to the vacuum polarization [25], while
in the following term a replica of this contribution for each
KK excitation appears. While the standard contribution

arises essentially from terms of the form Γðϵ
2
ÞðΔ2

2P
2πμ2

Þ−
ϵ
2, the

KK contribution comes from terms of the form Γðϵ
2
ÞEc2

2P
1 ðϵ

2
Þ

[see Eqs. (3.23a)–(3.23c)]. Note that the KK contributions
vanish in the R−1 → ∞ limit.

C. The vertex

Up to one-loop level, the contribution of 5DQED to the
fermion vertex function ψ̄ψγ is given by the Feynman
diagrams shown in Fig. 5. The corresponding vertex
function can be written as follows:

ieQψΓ
μ
5Dðp0; pÞ ¼ ieQψγ

μ þ ieQψΓμðp0; pÞ þ ieQψΓ
μ
KKðp0; pÞ þ ieQψΓ

μ
c:t:ðp0; pÞ; ð3:36Þ

where

Γμðp0; pÞ ¼ −ie2Q2
ψ ðμ2Þ2−D

2

Z
dDk
ð2πÞD

Tμ

½k2 −m2
γ �½ðkþ pÞ2 −m2�½ðkþ p0Þ2 −m2� ; ð3:37aÞ

Γμ
KKðp0; pÞ ¼ −ie2Q2

ψðμ2Þ2−D
2

X∞
n¼1

Z
dDk
ð2πÞD

Tμ
A þ Tμ

G

½k2 −m2
ðnÞ�½ðkþ pÞ2 −m2

ψ ðnÞ �½ðkþ p0Þ2 −m2
ψ ðnÞ �

; ð3:37bÞ

Γμ
c:t:ðp0; pÞ ¼ δ1γ

μ; ð3:37cÞ

with

Tμ ¼ ð2 −DÞ=kγμ=kþ 4mðkþ pþ p0Þμ − 4m2γμ; ð3:38aÞ

Tμ
A ¼ ð2 −DÞ=kγμ=kþ 4mðkþ pþ p0Þμ − 2ðm2 þm2

ψ ðnÞ Þγμ; ð3:38bÞ

Tμ
G ¼ −=kγμ=k − 2ðpþ p0Þμ=kþ ½2ðpþ p0Þ · kþm2 − q2 −m2

ψ ðnÞ �γμ; ð3:38cÞ

with Tμ
A and Tμ

G representing the contributions, in the Feynman-’t Hooft gauge, of the gauge field AðnÞ
μ and its pseudo-

Goldstone boson AðnÞ
G , respectively. In obtaining the above results, the relation mψ ðnÞ ð2sψ ðnÞcψ ðnÞ Þ ¼ m was used.
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Using Feynman parametrization, Eqs. (3.37a) and (3.37) become

Γμðp0; pÞ ¼ −ie2Q2
ψðμ2Þ2−D

2 IPΓð3Þ
Z

dDk
ð2πÞD

T̂μ

½k2 − Δ̂2
3V �3

; ð3:39aÞ

Γμ
KKðp0; pÞ ¼ −ie2Q2

ψ ðμ2Þ2−D
2IPΓð3Þ

X∞
n¼1

Z
dDk
ð2πÞD

T̂μ
A þ T̂μ

G

½k2 − Δ2
ðnÞV �3

; ð3:39bÞ

where

IP ¼
Z

1

0

dx dy dz δðxþ yþ z − 1Þ: ð3:40Þ

In addition, Δ̂2
3V ¼ zm2

γ þ Δ2
3V , where Δ2

3V ¼ −xyq2 þ ð1 − zÞ2m2 and Δ2
ðnÞV ¼ m2

ðnÞ þ Δ2
3V . In the above expressions,

T̂μ ¼
�ð2 −DÞ2

D
k2 − 2ð1 − 4zþ z2Þm2 − 2ð1 − xÞð1 − yÞq2�γμ − ½4m2zð1 − zÞ� iσ

μνqν
2m

; ð3:41aÞ

T̂μ
A ¼

�ð2 −DÞ2
D

k2 − 2ð−4zþ z2Þm2 − 2m2
ψ ðnÞ − 2ð1 − xÞð1 − yÞq2

�
γμ − ½4m2zð1 − zÞ� iσ

μνqν
2m

; ð3:41bÞ

T̂μ
G ¼

�
−
ð2 −DÞ

D
k2 þ zð2 − zÞm2 −m2

ψ ðnÞ − xyq2
�
γμ þ ½2m2ð1 − zÞ2� iσ

μνqν
2m

; ð3:41cÞ

where the Gordon identity has been used to eliminate ðp0 þ pÞμ in favor of iσμνqν. It is convenient to write these results in
terms of electromagnetic form factors, that is,

Γμ
5Dðp0; pÞ ¼ F5D

1 ðq2Þγμ þ F5D
2 ðq2Þ iσ

μνqν
2m

; ð3:42Þ

where

F5D
1 ðq2Þ ¼ 1þ F1ðq2Þ þ FKK

1 ðq2Þ þ δ1; ð3:43aÞ

FIG. 5. Feynman diagrams contribution to the fermion vertex function in the Feynman-t’Hooft gauge. The counterterm diagram also is
displayed.
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F5D
2 ðq2Þ ¼ F2ðq2Þ þ FKK

2 ðq2Þ: ð3:43bÞ

From Eqs. (3.39a)–(3.41c), the one-loop contribution of
5DQED to the form factors F5D

1 ðq2Þ and F5D
2 ðq2Þ can be

written as follows:

F1ðq2Þ ¼
αQ2

ψ

4π
IP

�
2

�
1 −

ϵ

2

�
2

Γ
�
ϵ

2

��
Δ̂2

3V

4πμ2

�−ϵ
2 þ fV

Δ̂2
3V

�
;

ð3:44aÞ

F2ðq2Þ ¼
αQ2

ψ

4π
IP

4m2zð1 − zÞ
Δ̂2

3V

; ð3:44bÞ

FKK
1 ðq2Þ ¼ αQ2

ψ

4π
IP

�
3

�
1 −

ϵ

2

��
1 −

ϵ

3

�
Γ
�
ϵ

2

�

×

�
R−2

4πμ2

�−ϵ
2

E
c2
3V
1

�
ϵ

2

�
−

f̂
R−2 E

c2
3V
1 ð1Þ þ 3ζð0Þ

�
;

ð3:45aÞ

FKK
2 ðq2Þ ¼ αQ2

ψ

4π
IP2ð1 − 4zþ 3z2Þ

�
m
R−1

�
2

E
c2
3V
1 ð1Þ:

ð3:45bÞ

In the above expressions,

fV ¼ 2ð1 − 4zþ z2Þm2 þ 2ð1 − xÞð1 − yÞq2; ð3:46aÞ

f̂ ¼ 4zm2 − 2ðzþ 3xyÞq2: ð3:46bÞ

To determine the counterterm, we impose the on-shell
renormalization condition

Γμ
5Dð0Þ ¼ γμ; ð3:47Þ

which leads to

δ1 ¼ −F1ð0Þ − FKK
1 ð0Þ

¼ −
αQ2

ψ

4π
IP

�
Γ
�
ϵ

2

��
2

�
1 −

ϵ

2

�
2
� ¯̂Δ2

3V

4πμ2

�−ϵ
2

þ 3

�
1 −

ϵ

2

��
1 −

ϵ

3

��
R−2

4πμ2

�−ϵ
2

E
c̄2
3V
1

�
ϵ

2

��

þ f̄V
¯̂Δ2
3V

−
¯̂f

R−2 E
c̄2
3V
1 ð1Þ þ 3ζð0Þ

�
; ð3:48Þ

where Δ̄2
3V ¼Δ2

3Vðq2¼0Þ¼ð1−zÞ2m2, f̄V ¼fVðq2¼0Þ¼
2ð1−4zþz2Þm2, and ¯̂f ¼ f̂ðq2 ¼ 0Þ ¼ 4zm2. The diver-
gent part of this counterterm is given by

δ1 ¼ −
αQ2

ψ

4π

2
64�

2

ϵ

�
|ffl{zffl}
SC

þ 3

2
ζð0Þ

�
2

ϵ

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

KKC

þ � � �

3
75: ð3:49Þ

For comparison purposes, it is convenient to explicitly
write the renormalized form factor,

F5D
1 ðq2Þ ¼ 1þ αQ2

ψ

4π

Z
1

0

dx dy dz δðxþ yþ z − 1Þ
�
2 log

� ¯̂Δ2
3V

Δ̂2
3V

�
þ fV
Δ̂2

3V

−
f̄V
¯̂Δ2
3V

þ 3
X∞
n¼1

log

�m2
ðnÞ þ Δ̄2

3V

m2
ðnÞ þ Δ2

3V

�
þ
� ¯̂f
R−2

�
E
c̄2
3V
1 ð1Þ −

�
f̂
R−2

�
E
c2
3V
1 ð1Þ

�
; ð3:50Þ

where the first line corresponds to the standard contribution, while the second one is the KK contribution. As in the cases of
the fermion self-energy and of the photon self-energy, it is easy to show that the KK contribution disappears from the
expression (3.50) in the limit as R−1 → ∞.
As far as the form factor FKK

2 ðq2Þ is concerned, it can be written as follows:

FKK
2 ðq2Þ ¼ αQ2

ψ

4π

Z
1

0

dx dy dz δðxþ yþ z − 1Þ
�
4zð1 − zÞm2

Δ̂2
3V

þ 2ð1 − 4zþ 3z2Þm2

R−2 E
c2
3V
1 ð1Þ

�
: ð3:51Þ

As it occurs in QED, this form factor is free of both ultraviolet and infrared divergences, so FKK
2 ð0Þ is a physical quantity,

given by

FKK
2 ð0Þ ¼ αQ2

ψ

4π

Z
1

0

dzð1 − zÞ
�

4z
1 − z

þ 2ð1 − 4zþ 3z2Þ m
2

R−2 E
c̄2
3V
1 ð1Þ

�
¼ αQ2

ψ

4π
½2þ fðmRÞ�; ð3:52Þ

where
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fðmRÞ ¼
X∞
k¼0

ð−1Þk
�

2kþ 1

2k2 þ 7kþ 6

�
ζð2kþ 2ÞðmRÞ2kþ2:

ð3:53Þ

Then, the correction to the g-factor of the fermion ψ in
5DQED is

a5Dψ ¼ aψ

�
1þ 1

2
fðmRÞ

�
; ð3:54Þ

where aψ ¼ αQ2
ψ

2π is the standard g-factor. Note that the KK
contribution decouples from the QED prediction as powers
of mR. The impact of extra dimensions on the muon
anomalous magnetic moment has already been studied in
the context of the SM [26].

D. The Ward-Takahashi identity

In QED, the fermion vertex function fulfills the Ward-
Takahashi identity qμΓμ ¼ S−1ðp0Þ − S−1ðpÞ, with S−1 the
inverse of the fermion propagator. This identity is fulfilled
to all orders of perturbation theory and guarantees that
F1ð0Þ ¼ 1. At one loop, this identity implies that δ1 ¼ δ2 or
Z1 ¼ Z2. Now we proceed to prove that this occurs in
5DQED as well. Using the relations given by Eqs. (3.23a)–
(3.23c), implementing an integration by parts to remove
the standard contribution, and carrying out some algebra,
we get

δ2 − δ1 ¼
αQ2

ψ

4π

Z
1

0

dx

�
−3ð1 − 2xÞ

X∞
n¼1

logðn2 þ c̄2Þ

þ 6xð1 − xÞ2ðmRÞ2Ec̄2
1 ð1Þ

�
; ð3:55Þ

where c̄2 ≡ c̄22F ¼ c̄23V . Integrating by parts the first inte-
gral, we can see that the right-hand side of the above
equation vanishes, showing in this way that δ1 ¼ δ2, as it
happens in QED. The crucial step to prove this is

d
dx

X∞
n¼1

logðn2 þ c̄2Þ ¼ Ec̄2
1 ð1Þ

dc̄2

dx
: ð3:56Þ

The equation δ1 ¼ δ2 in turn implies, from (3.5), that Z1 ¼
Z2 and then, from (3.1), that eB ¼ Z

−1
2

3 e. Finally, from
(3.50), we can see that F5D

1 ð0Þ ¼ 1.

IV. VACUUM POLARIZATION IN ð4 + nÞDQED

In Sec. III B we have seen that the ultraviolet diver-
gence induced by the zero mode is canceled exactly by
the ultraviolet divergences that arise from its KK exci-
tations. This cancellation occurs as a result of the double
multiplicity of KK excitations associated with zero mode

[see Eq. (3.34)]. In this section, we study the photon self-
energy in QED with an arbitrary number n of extra
dimensions [ð4þ nÞDQED] and show that such cancel-
lation of ultraviolet divergences at one loop is exclusive
of 5DQED.

A. The renormalized vacuum polarization function

In the UED approach, the (4þ n)-dimensional high-
energy theory is governed by the extended group
ISOð1; 3þ nÞ × UQð1;M4þnÞ. In this case, the action of
the theory is a functional of the SOð1; 3þ nÞ spinorΨðx; x̄Þ
and the SOð1; 3þ nÞ-vector gauge field AMðx; x̄Þ. To
describe physical effects at distance scales comparable
to the size of the compact n-dimensional manifold, we
need to implement the two canonical maps described in
Secs. I and II, obtaining in this way an effective theory
governed by the standard group ISOð1; 3Þ × UQð1;M4Þ.
To simplify the analysis, we will assume an even number n
of extra dimensions, so there is chirality in this space. The
spinor Ψðx; x̄Þ of SOð1; 3þ nÞ is mapped into 2

n
2 Dirac

spinors ψðx; x̄Þ of SOð1; 3Þ; while the SOð1; 3þ nÞ vector
AMðx; x̄Þ is mapped into a vector Aμðx; x̄Þ of SOð1; 3Þ and
n scalars Aμ̄ðx; x̄Þ of SOð1; 3Þ (μ̄ ¼ 5;…; 4þ n). We
assume that each coordinate x̄i is coiled in a circle of
radius Ri and, as the case of one extra dimension, we
introduce the orbifold S1=Z2. Then, in the case of n extra
dimensions we assume a compact manifold made of n
copies of the S1=Z2 orbifold. It is assumed, for simplicity,
that all radii are equal, that is, R1 ¼ � � � ¼ Rn ≡ R. The
compactified ð4þ nÞDQED theory is made of the standard

fields ψ ð0ÞðxÞ≡ ψðxÞ and Að0Þ
μ ðxÞ≡ AμðxÞ, and their KK

excitations, namely, 2
n
2 KK Dirac spinors, ψ ðmÞðxÞ, the

gauge fields, AðmÞ
μ ðxÞ, and their associated pseudo-

Goldstone bosons AðmÞ
G ðxÞ, as well as n − 1 physical scalars

AðmÞ
n̄ ðxÞ (n̄ ¼ 1;…; n − 1). The masses of the KK spinors

are given by m2
ψ ðmÞ ¼ m2 þm2

ðmÞ, while the masses of the

KK gauge fields and scalar fields are given by m2
ðmÞ≡

pðmÞ
μ̄ pðmÞ

μ̄ . Here m2
ðmÞ ¼ R−2m2, with m2 ¼ m2

1 þ � � � þm2
n

any admissible combination of Fourier indices.
The ð4þ nÞDQED theory generates many couplings

among the diverse fields that compose it, but here we are
interested only in those couplings that involve the electro-
magnetic field. These couplings are Aμψ̄ψ and Aμψ̄

ðmÞψ ðmÞ,
whose Lorentz structure is dictated by the electromagnetic
gauge group. The Feynman diagrams which contribute to
the renormalized vacuum polarization functionΠð4þnÞDðq2Þ
are the same as those in Fig. 4, but now we have 2

n
2 KK

ψ ðmÞðxÞ fields circulating in the loop instead of the 2 spinor
fields that characterize the 5DQED theory. Then, the one-
loop contribution of ð4þ nÞDQED to the vacuum-polari-
zation function can be written as
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Πloop
ð4þnÞDðq2Þ ¼ −

αQ2
ψ

4π

Z
1

0

dx fPðxÞΓ
�
ϵ

2

���
Δ2

2P

4πμ̂2

�−ϵ
2 þ 2

n
2

X
ðmÞ

�Δ2
ðmÞP

4πμ̂2

�−ϵ
2
�
; ð4:1Þ

where, by reasons that will be clear below, from now on we will use the symbol μ̂ instead of μ to denote the scale of the
dimensional regularization scheme. In addition, Δ2

ðmÞP ¼ m2
ðmÞ þ Δ2

2P. In the above expression, the symbol
P

ðmÞ,

ðmÞ ≠ ð0Þ, summarizes a total of 2n − 1 different series and coincides with the notation
P0

used in Ref. [27]. In fact,

X
ðmÞ

TðmÞ ≔
X∞
m1¼1

Tðm1;0;…;0Þ þ
X∞
m2¼1

Tð0;m2;0;…;0Þ þ � � � þ
X∞
mn¼1

Tð0;…;mnÞ

þ
X∞

m1;m2¼1

Tðm1;m2;0;…;0Þ þ � � � þ
X∞

mn−1;mn¼1

Tð0;…;0;mn−1;mnÞ

..

.

þ
X∞

m1;…;mn¼1

Tðm1;…;mnÞ: ð4:2Þ

Whereas positions of Fourier indices in the entries of ðmÞ are not relevant, the number of occupied entries makes a
difference. So, in practice, one can use the following definition:

X
ðmÞ

¼
Xn
l¼1

�
n

l

� X∞
m1¼1

� � �
X∞
ml¼1

: ð4:3Þ

Then, Eq. (4.1) can be written as

Πloop
ð4þnÞDðq2Þ ¼ −

αQ2
ψ

4π

Z
1

0

dxfPðxÞΓ
�
ϵ

2

���
Δ2

2P

4πμ̂2

�−ϵ
2 þ 2

n
2

�
R−2

4πμ̂2

�−ϵ
2X
ðmÞ

ðm2 þ c22PÞ−
ϵ
2

�

¼ −
αQ2

ψ

4π

Z
1

0

dxfPðxÞ
�
Γ
�
ϵ

2

��
Δ2

2P

4πμ̂2

�−ϵ
2 þ 2

n
2

�
R−2

4πμ̂2

�−ϵ
2 Xn
l¼1

�
n

l

�
Γ
�
ϵ

2

�
E
c2
2P
l

�
ϵ

2

��
; ð4:4Þ

where we have introduced the l-dimensional Epstein zeta
function, which is defined as [22–24]

Ec2
l ðsÞ ¼

X∞
ðm1;…;mlÞ¼1

1

ðm2
1 þ � � � þm2

l þ c22PÞs
: ð4:5Þ

Since the l-dimensional Epstein function Ec2
l ðsÞ has poles

at s ¼ l
2
; l−1

2
;…;− 1

2
;− 3

2
; � � �, except zero [22], it is clear

that Ec2
l ðϵ2Þ converges for ϵ → 0. However, the way this

happens is subtle, which can be appreciated more clearly by
expressing the Epstein function in terms of the Riemann zeta
function, whose properties are well known in the literature.
One important result [24] express the l-dimensional Epstein
function in terms of the one-dimensional one:

Ec2
l ðsÞ¼

ð−1Þl−1
2l−1

Xl−1
p¼0

�
l−1

p

�
ð−1Þpπp

2

Γðs−p
2
Þ

ΓðsÞ Ec2
1

�
s−

p
2

�
:

ð4:6Þ

The reduction to the Riemann zeta function is given through
a power series in c2, which, in our case, means to assume

that c22P ¼ Δ2
2P

R−2 < 1, which is sufficient for our purposes,
since our effective theory is, by definition, valid only for
energies less than R−1. The pass from Ec2

1 ðsÞ to ζðsÞ is given
by [28]

Ec2
1 ðsÞ ¼

X∞
k¼0

ð−1Þk
k!

Γðkþ sÞ
ΓðsÞ ζð2kþ 2sÞc2k; ð4:7Þ

where the Riemman function is defined by

ζðsÞ ¼
X∞
n¼1

1

ns
; ð4:8Þ

which has a simple pole at s ¼ 1. We can see from Eqs. (4.6)
and (4.7) that finite terms which are the ratio of two
quantities that diverge when s tends to zero, as ζð1þsÞ

ΓðsÞ , arise
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for l > 1. This fact has nontrivial consequences when a product of the form ΓðsÞEc2
l ðsÞ, as the one appearing in Eq. (4.4), is

considered. Thus, case l > 1 must be treated with some care. Using the above results, we can write,

Xn
l¼1

�
n

l

�
Γ
�
ϵ

2

�
Ec2
l

�
ϵ

2

�
¼ 1

2n−1

Xn
r¼1

Xr
l¼1

�
n

l − 1

�
π

n−r
2

X∞
k¼0

ð−1Þk
k!

Γ
�
2kþ r − nþ ϵ

2

�
ζð2kþ r − nþ ϵÞc2k: ð4:9Þ

It is convenient to rewrite this expression so that its poles are evident. From the analytical properties of the gamma and
Riemann functions, we can see that divergences arise for 2kþ r − n an even integer less or qual to zero or for 2kþ r − n ¼ 1,
which, for a given n, determine the poles of the ΓðsÞ and ζðsÞ functions, respectively. Then, after some rearrangements,
Eq. (4.9) can be written as

Xn
l¼1

�
n

l

�
Γ
�
ϵ

2

�
Ec2
l

�
ϵ

2

�
¼ gð0ÞðnÞΓ

�
ϵ

2

�
ζðϵÞ þ Fð0ÞðnÞ þ

X½n2�
k¼1

�
fðkÞðnÞ

1ffiffiffi
π

p Γ
�
1þ ϵ

2

�
ζð1þ ϵÞ

þ gðkÞðnÞΓ
�
ϵ

2

�
ζðϵÞ þ FðkÞðnÞ

�
c2k þ Fðn; c2Þ; ð4:10Þ

where

gð0ÞðnÞ ¼ 2

�
1 −

1

2n

�
; ð4:11aÞ

Fð0ÞðnÞ ¼
1

2n−1

Xn−1
r¼1

Xr
l¼1

�
n

l − 1

�
π

n−r
2 Γ

�
r − n
2

�
ζðr − nÞ; n > 1 ð4:11bÞ

FðkÞðnÞ ¼
1

2n−1

� Xn
r≠n−ð2k−1Þ;n−2k

�Xr
l¼1

�
n

l − 1

�
π

r−n
2 Γ

�
2kþ r − n

2

�
ζð2kþ r − nÞ; n > 1 ð4:11cÞ

Fðn; c2Þ ¼ 1

2n−1

Xn
r¼1

Xr

l¼1

�
n

l − 1

�
π

n−r
2

X∞
k¼½n

2
�þ1

ð−1Þk
k!

Γ
�
2kþ r − n

2

�
ζð2kþ r − nÞc2k: ð4:11dÞ

In the above expressions, the symbol ½n
2
� means the floor

of n
2
, that is, the largest integer less than or equal to n

2
. On the

other hand, the fðkÞðnÞ and gðkÞðnÞ functions have the
following property:

fðkÞð1Þ ¼ � � � ¼ fðkÞð2k − 1Þ ¼ 0; ð4:12aÞ

gðkÞð1Þ ¼ � � � ¼ gðkÞð2kÞ ¼ 0: ð4:12bÞ

These relations imply that in the case of only one extra
dimension, there are no divergences associated with the
power series in q2, since in this case fðkÞð1Þ ¼ 0 and
gðkÞð1Þ ¼ 0 for all k ¼ 1; 2;…. In the case n ¼ 2, gðkÞð2Þ ¼
0 for all k, but fð1Þð2Þ ≠ 0 and fðkÞð2Þ ¼ 0 for k ¼ 2; 3;….
If n ¼ 3, besides fð1Þð3Þ ≠ 0, we have gð1Þð3Þ ≠ 0, but
fðkÞð3Þ ¼ 0 and gðkÞð3Þ ¼ 0 for all k ¼ 2; 3;…. Thus, for
n ¼ 2 and n ¼ 3 divergences arise only in the first term
(k ¼ 1) of the power series in q2. However, for the cases
n ¼ 4 and n ¼ 5, divergences arise in both the first (k ¼ 1)

and second (k ¼ 2) terms of the power series in q2; n ¼ 6

and n ¼ 7 implies divergences in the terms q2, ðq2Þ2, and
ðq2Þ3, and so on. Explicit expressions of these functions are
shown in Table I for k ¼ 1, 2, 3, 4.
From the expression (4.10), two types of divergences can

be identified, one of which depends neither on the external
moment nor on the compactification scale, which is
characterized by the coefficient gð0ÞðnÞ. Due to this, these
types of divergences can be identified as short distances
effects on the usual spacetime manifold M4, that is, they
are usual ultraviolet divergences that are associated with
divergences arising from the continuous sum

R
d4k in the

KK loop amplitudes. In contrast, the other type of diver-
gence we have in (4.10) depends on both the external
momenta and the compactification scale. By its own nature,
these types of divergences can be attributed to very high-
energy effects or, equivalently, to short distances effects on
the compact manifold N n. To see this, note that the one-
loop KK contributions behave like
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X
ðkÞ

Z
d4k

Tμν���
ðk2 − Δ2

ðkÞÞm

¼
X
ðkÞ

Z
d4k

Tμν���
ðk2 − k2ðkÞ − Δ2

ð0ÞÞm
; ð4:13Þ

where k2ðkÞ ¼ m2
ðkÞ is the squared of the discrete momenta,

that is, k2 − k2ðkÞ ¼ kMkM, with kM ¼ kμ þ kμ̄. The right

side of the above equation is quite suggestive, since it
clearly shows us that divergences can arise either for very
large kμ momenta or for very large discrete kμ̄ momenta,
which may eventually result in a divergent continuous
sum or in a divergent discrete sum, respectively. In fact, a
very large k2ðkÞ implies a short distance effect in the compact

manifold, since 1=k2ðkÞ ¼ R−2=k2 tends to zero for large

combinations of Fourier indices k2. From these consid-
erations, we can think of this new class of divergences as
genuine ultraviolet divergences that can be handled by
renormalization in a broader or modern sense, as is usually
done in the context of the effective field theories approach,
which are not renormalizable in the power counting
sense [29]. Our general effective Lagrangian is given by
Eq. (3.3), but we only need to specify those interactions of
canonical dimension higher than four needed to consis-
tently remove divergences that emerge proportionally to
powers of ðq2=R2Þ. Due to gauge invariance, the corre-
sponding bare Lagrangian must be of the form

Ld>4
Bγ ¼

X½n2�
k¼1

αðkÞ
ðR−2Þk ð∂α1 � � � ∂αkFμνÞð∂α1 � � � ∂αkFμνÞ

þ
X½n2�
k¼1

δðkÞ3

ðR−2Þk ð∂α1 � � � ∂αkFμνÞð∂α1 � � � ∂αkFμνÞ;

ð4:14Þ

where δðkÞ3 ≡ Z3αBðkÞ − 1. Then, the renormalized polari-

zation function can be written as follows:

Πð4þnÞDðq2Þ ¼
X½n2�
k¼1

αðkÞ

�
q2

R−2

�
k

þ Πloop
ð4þnÞDðq2Þ − δ3

þ
X½n2�
k¼1

δðkÞ3

�
q2

R−2

�
k

: ð4:15Þ

It is worth determining the counterterms using both a mass-
independent scheme and a mass-dependent scheme.

1. Mass-independent scheme

We use a MS-like scheme, in which the counterterm is
defined just to cancel the pole of the divergence plus some
constant quantities that do not involve energy scales. From
Eqs. (4.4), (4.10), and (4.15), we can find the following
counterterms:

δ3 ¼ −
αQ2

ψ

4π

�
4

3

��
2

ϵ
− γ þ logð4πÞ þ 2

n
2gð0ÞðnÞ

�
−
1

ϵ
−
1

2
log ð16π3Þ þ 1

2
γ

��
; ð4:16aÞ

δðkÞ3 ¼ αQ2
ψ

4π
2

n
2

�
4

3

�
2
n
2

�
½fðkÞðnÞ − gðkÞðnÞ�

1

ϵ
þ fðkÞðnÞ

�
γ þ 1

2
logð4πÞ þ 1

2
ψ ð0Þ

�
1

2

��
þ gðkÞ

�
1

2
γ −

1

2
logð16π3Þ

��
;

k ¼ 1;…;

�
n
2

�
; ð4:16bÞ

where ψ ð0Þð1
2
Þ is the polygamma function of order zero and γ is the Euler-Mascheroni constant. In this scheme, the

renormalized polarization function is given by

TABLE I. fðkÞðnÞ and gðkÞðnÞ as functions on the number n of extra dimensions for the first four powers of c2.

k fðkÞðnÞ gðkÞðnÞ
1 −2

ffiffiffi
π

p ð1 − nþ1
2n
Þ −2πð1 − n2þnþ2

2nþ1 Þ
2 π

3
2ð1 − n3þ5nþ6

3×2nþ1 Þ π2ð1 − n4−2n3þ11n2þ14nþ24
3×2nþ3 Þ

3 − π
5
2

3
ð1 − n5−5n4þ25n3þ5n2þ94nþ120

15×2nþ3 Þ − π3

3
ð1 − n6−9n5þ55n4−75n3þ304n2þ444nþ720

45×2nþ4 Þ
4 π

7
2

12
ð1 − n7−14n6þ112n5−350n4þ1099n3þ364n2þ3828nþ5040

315×2nþ4 Þ π4

12
ð1 − n8−20n7þ210n6−1064n5þ3969n4−4340n3þ15980n2þ25584nþ40320

315×2nþ7 Þ
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Πð4þnÞDðq2Þ ¼
αQ2

ψ

4π

Z
1

0

dx fPðxÞ
�
log

�
Δ2

2P

μ̂2

�
− 2

n
2

�
Fðn; c22PÞ − gð0ÞðnÞ log

�
R−2

μ̂2

��

þ
X½n2�
k¼1

�
αðkÞ

�
q2

R−2

�
k

− 2
n
2
−1ðfðkÞðnÞ − gðkÞðnÞÞ log

�
R−2

μ̂2

���
: ð4:17Þ

Note that this expression does not reduce to the usual one in
the R−1 → ∞ limit, which means that there is no decoupling
of the new physics effects. This result is not surprising, since
it is well known that in a mass-independent scheme the
decoupling of heavy physics is not manifest. Next, we
discuss a different renormalization scheme in which the
decoupling of heavy physics is manifest.

2. Mass-dependent scheme

The main feature of mass-independent schemes is that
they do not involve a kinematical subtraction point. In
contrast, mass-dependent schemes involve a subtraction
point. Here, we choose an arbitrary subtraction point
defined by q2 ¼ −μ2, with μ the kinematical scale or
subtraction scale. To determine the counterterms, we
impose on the polarization function the following ½n

2
� þ 1

renormalization conditions:

Πð4þnÞDðq2 ¼ −μ2Þ ¼ 0; ð4:18aÞ

d
dq2

Πð4þnÞDðq2Þjq2¼−μ2 ¼ 0; ð4:18bÞ

..

.

d½n2�

dðq2Þ½n2�Πð4þnÞDðq2Þjq2¼−μ2 ¼ 0: ð4:18cÞ

To illustrate this renormalization scheme, we will study in
detail the case n ¼ 2. In such case, we have ½n

2
� ¼ 1, so from

expression (4.15) we have only the counterterms δ3 and

δð1Þ3 . A direct calculation leads to

δ3 ¼ −
αQ2

ψ

4π

Z
1

0

dx fPðxÞ
�
Γ
�
ϵ

2

��
Δ̄2

2P

4πμ̂2

�−ϵ
2 þ xð1 − xÞμ2

Δ̄2
2P

þ 2

�
Að0Þð2; ϵÞ þ

�
m2

R−2

�
Âð1Þð2; ϵÞ

�

þ 2

�
Fð2; c̄22PÞ þ

�
m2

R−2 − c̄22P

�
dFð2; c̄22PÞ

dc̄22P

��
;

ð4:19aÞ

δð1Þ3 ¼ −αð1Þ − Að1Þð2; ϵÞ þ
αQ2

ψ

4π

Z
1

0

dx fPðxÞ

×

�
xð1 − xÞ

c̄22P
− 2xð1 − xÞ dFð2; ĉ

2
2PÞ

dc̄22P

�
; ð4:19bÞ

where

Að0Þð2; ϵÞ ¼
�
R−2

4πμ̂2

�−ϵ
2

gð0Þð2ÞΓ
�
ϵ

2

�
ζðϵÞ þ Fð0Þ; ð4:20aÞ

Âð1Þð2;ϵÞ¼
�
R−2

4πμ̂2

�−ϵ
2

fð1Þð2Þ
1ffiffiffi
π

p Γ
�
1þϵ

2

�
ζðϵÞþFð1Þð2Þ;

ð4:20bÞ

Að1Þð2; ϵÞ ¼
αQ2

ψ

4π

Z
1

0

dx fPðxÞ½xð1 − xÞ�Âð1Þð2; ϵÞ:

ð4:20cÞ

It is interesting to study more closely the divergent structure
of the counterterms. Keeping only the poles of the gamma
and zeta functions, we have for δ3

δ3¼−
αQ2

ψ

4π

�
4

3

�8<
:

�
2

ϵ

�
|ffl{zffl}
SC

þ3ζð0Þ
�
2

ϵ

�
−

ffiffiffi
π

p �
m2

R−2

��
1

ϵ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

KKC

9=
;;

ð4:21Þ

where the term divergent proportional to ðm2=R−2Þ corre-
sponds to a short distance effect in the compact manifold,
which arises from the pole of the zeta function. The other
two divergences correspond to short distances effects in the
usual spacetime manifold. Note that the term 3ζð0Þð2=ϵÞ ¼
3
P∞

k¼1ð2=ϵÞ ¼ −ð3=2Þð2=ϵÞ represents the contribution to
usual ultraviolet divergences of the infinite number of KK
fields. It can be appreciated from this expression that the
ultraviolet divergences induced by the KK excitations
cannot cancel the one generated by the standard fermion
for any n ¼ 2, as it occurs in the case n ¼ 1. It is easy to
show that this true for all n ¼ 2; 4;….

As far as the counterterm δð1Þ3 is concerned, its singular
part can be written as follows:

E. MARTÍNEZ-PASCUAL et al. PHYS. REV. D 101, 035034 (2020)

035034-16



δð1Þ3 ¼ −
αQ2

ψ

4π

�
4

3

�8<
: ffiffiffi

π
p �

1

ϵ

�
|fflfflfflffl{zfflfflfflffl}

KKC

9=
;; ð4:22Þ

which correspond to a short distance effect in the compact
manifold because it arises from expression (4.10) for the
Epstein function given as a power series in c22P or,
equivalently, in powers of the external momenta.
Substituting Eqs. (4.19a) and (4.19b) into Eq. (4.15), we

obtain the following renormalized polarization function:

Π6Dðq2Þ ¼ −
αQ2

ψ

4π

Z
1

0

dx fPðxÞ
�
log

�
Δ̄2

2P

Δ2
2P

�
þ xð1 − xÞq2

Δ̄2
2P

þ 2

�
Fð2; c22PÞ − Fð2; c̄22PÞ

þ ðc̄22P − c22PÞ
dFð2; c̄22PÞ

dc̄22P

��
: ð4:23Þ

In the above expressions, c̄22P ¼ c22Pjq2¼−μ2 ¼ m2þ
xð1 − xÞμ2. Note that for R−1 → ∞, the above expression
reduces to the usual one obtained in this renormalization
scheme, that is, the new physics effects decouple, as must
be. This low energy behavior of the polarization function
must be contrasted with that previously found in a mass-
independent scheme, in which there is no decoupling.

B. The effective charge

The vacuum polarization function allows us to define an
effective charge [19]:

αeffðq2Þ ¼
e2B
4π

1

1 − ΠBðq2Þ
¼ α

1 − Πðq2Þ ; ð4:24Þ

where ΠBðq2Þ and Πðq2Þ are the bare and renormalized
vacuum polarization functions, respectively. The effective
charge has the following properties: (i) it is gauge inde-
pendent, since the vacuum polarization function is gauge
independent to all orders; (ii) as a consequence of the
Ward identity discussed in Sec. III D, the effective charge
can be expressed in terms of bare quantities, so it is both
renormalization scale- and scheme-independent; (iii) at
q2 ¼ 0, it matches the fine structure constant αeffð0Þ ¼
α ¼ 1

137.035���; (iv) for
−q2
m2 ≪ 1, it gives the correction to the

Coulomb’s law for the interaction between two static heavy
charges; (v) the virtual contribution of a fermion f to
the renormalized one-loop vacuum polarization can be
reconstructed directly from the tree-level cross section
σðψ−ψþ → f−fþÞ. The last two points arise as a direct
consequence of the analytical properties of the polarization
function. It is important to mention that this is no longer
true when QED is embedded in the electroweak sector of

the SM, as the W gauge boson contribution leads to a
vacuum polarization which is gauge dependent.3

In our case, ð4þ nÞDQED predicts, at the one-loop
level, an effective charge given by

αð4þnÞD
eff ðq2Þ ¼ α

1 − Πð4þnÞDðq2Þ
; ð4:25Þ

with Πð4þnÞDðq2Þ given by Eq. (4.15). It should be noted
that the KK contribution has the same analytical structure
as the QED contribution. Because of this, one expects

αð4þnÞD
eff ðq2Þ to possess the same properties as αeffðq2Þ. In

fact, we can see that properties (i) to (iii) are clearly
fulfilled. We now proceed to analyze the modifications
introduced by extra dimensions on the properties (iv) and
(v). To simplify the analysis, we will consider only one
extra dimension.
We begin by studying the analytical structure of

Π5Dðq2Þ. We note that for q2 < 0, which corresponds to
the t- or u-channel, Π5Dðq2Þ is real and well defined.
However, when q2 > 0, which corresponds to the s-
channel, Π5Dðq2Þ can have an imaginary part. In this case,
the logarithms that define Π5Dðq2Þ can have branch cuts
when their arguments are negative. Since the xð1 − xÞ
factor is at most 1=4, the logarithms in Π5Dðq2Þ have
branch cuts beginning at

q2 ¼ 4m2; q2 ¼ 4m2
ψ ð1Þ ; q2 ¼ 4m2

ψ ð2Þ ; � � � : � � � :
ð4:26Þ

Assume that m2
ψ ðnÞ − xð1 − xÞq2 is negative up to a given

Fourier indexN, soΠ5Dðq2Þ have negative logarithms up to
the term m2

ψ ðNÞ − xð1 − xÞq2. This means that we have N

replicas of the QED case. The QED result is well known in
the literature (see, for instance, Ref. [25]), so we will just
present the prediction of 5DQED,

Im½Π5Dðq2Þ� ¼
αQ2

ψ

3

�
β

�
1þ 2m2

q2

�

þ 2
XN
n¼1

βðnÞ

�
1þ

2m2
ψ ðnÞ

q2

��
; ð4:27Þ

where β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=q2

p
and βðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

ψ ðnÞ=q2
q

.

The factor of 2 multiplying the KK contribution in

(4.27) is due to the two degenerate excitations ψ ðnÞ
ð1Þ and

ψ ðnÞ
ð2Þ . Equation (4.27) implies the well-known fact that the

3The possibility of extending the QED concept of effective
charge to the non-Abelian case has been studied [30] in the
context of the pinch technique [31].
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one-loop contribution of the ψ ðnÞ fermion to the vacuum
polarization determines the cross sector of the ψ̄ψ →
ψ̄ ðnÞψ ðnÞ process. Such a connection is given by

e2

q2
Im½Π5Dðq2Þ�βðnÞ ¼ σðψ̄ψ → ψ̄ ðnÞψ ðnÞÞ; ð4:28Þ

where the subscript βðnÞ in Im½Π5Dðq2Þ� indicates that only
the term proportional to βðnÞ is considered, as it is shown
in Fig. 6.
The imaginary part of Π5Dðq2Þ also induces a correction

on the Coulomb’s law, that is, VeffðrÞ ¼ VðrÞ þ δVðrÞ,
where VðrÞ is the classical potential and δVðrÞ the quantum
correction. Following Ref. [25], we obtain in our case:

δV5DðrÞ ≈ −
α2

4
ffiffiffi
π

p
r
e−2mr

ðmrÞ32
�
1þ 2

XN
n¼1

e−2nðrRÞ

ð1þ n
mRÞ

3
2

�
: ð4:29Þ

Note that the QED result is recovered in the limit as R → 0.

C. The beta function

The beta function measures the variation of the coupling
constant with energy. It is defined by

βðeÞ ¼ μ
de
dμ

; ð4:30Þ

where μ is an energy scale. The purpose of this section is to
calculate the beta function in the context of ð4þ nÞDQED.
In theories in which the particle masses can be ignored, the
calculation of the beta function is actually very simple if a
mass-independent subtraction scheme is used, such as MS
or MS, which does not involve a kinematical point to define
the counterterm. MS-like schemes have an disadvantage,
because heavy particles do not decouple at energies below
their masses, as required by the decoupling theorem [32].
Since the beta function is a physical quantity, effects of
extra dimensions must decouple at energies much smaller
than the compactification scale R−1. In our case, it is clear
that we should not use a MS-like scheme because the KK
mass spectrum comprises a wide range of energy. Due to
this, we will compute the beta function using a mass-
dependent scheme. In particular, we will use the μ-scheme
already introduced in this section. It is worth studying the
beta function in cases n ¼ 1 and n ¼ 2.

1. The case n = 1

Using the renormalization condition

Π5Dðq2 ¼ −μ2Þ ¼ 0; ð4:31Þ

we obtain the following counterterm:

δ3 ¼ −
α

4π

Z
1

0

dx fPðxÞ
�
Γ
�
ϵ

2

��
Δ̄2

2P

4πμ̂2

�−ϵ
2 þ 2

�
R−2

4πμ̂2

�−ϵ
2

Γ
�
ϵ

2

�
E
c̄2
2P
1 ð1Þ

�
; ð4:32Þ

where we have put Q2
ψ ¼ 1 for simplicity. This counterterm leads to the following beta function:

β5DðeÞ ¼ eμ2
∂δ3
∂μ2

¼ e3

ð4πÞ2
Z

1

0

dx fPðxÞ
�

xð1 − xÞμ2
m2 þ xð1 − xÞμ2 þ 2

X∞
k¼1

xð1 − xÞμ2
m2

ψ ðkÞ þ xð1 − xÞμ2
�

¼ e3

ð4πÞ2
Z

1

0

dx fPðxÞ
�

xð1 − xÞμ2
m2 þ xð1 − xÞμ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

μ

R−1 coth

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

μ

R−1

�
− 1

�
: ð4:33Þ

FIG. 6. The relation between the imaginary part of the ψ ðnÞ contribution to the one-loop vacuum polarization and the tree-level cross
section σðψ̄ψ → ψ̄ ðnÞψ ðnÞÞ in 5DQED.
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This beta function depends on the ratio of fermion masses
m, m2

ψ ðmÞ and the subtraction point μ. In particular, when
m ≪ μ the QED contribution approaches the value ob-
tained in the MS scheme, so

βðeÞ ¼ e3

12π2
þ e3

ð4πÞ2
Z

1

0

fPðxÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp
μ

R−1 coth

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

μ

R−1

�
− 1

�
: ð4:34Þ

If on the other hand, m ≪ μ ≪ R−1, we recover the QED
result

βðeÞ ¼ e3

12π2
: ð4:35Þ

This result shows us that the new physics effects are of
decoupling nature. Another interesting scenario is when
m ≫ μ, in which the beta function vanishes.

2. The case n = 2

In this case, there are two coupling constants, namely e
and αð1Þ, each with its associated beta function, but we will
limit ourselves to analyzing the usual beta function. From
Eq. (4.19a), a direct calculation leads to

β6DðeÞ ¼
e3

ð4πÞ2
Z

1

0

dxfPðxÞ
� ½xð1 − xÞμ2�2
½m2 þ xð1 − xÞμ2�2

þ 2xð1 − xÞ
�

μ2

R−2

�
c̄22P

d2Fð2; c̄22P
dðc̄22PÞ2

�
: ð4:36Þ

This expression can be rewritten in terms of Epstein
functions using the following identity:

d2Fð2; c̄22PÞ
dðc̄22PÞ2

¼ 2E
c̄2
2P
1 ð2Þ þ E

c̄2
2P
2 ð2Þ; ð4:37Þ

which arises from Eq. (4.9). Note that both E
c̄2
2P
1 ð2Þ and

E
c̄2
2P
2 ð2Þ Epstein functions are convergent. Introducing these

functions, one has

β6DðeÞ ¼
e3

ð4πÞ2
Z

1

0

dx fPðxÞ
� ½xð1 − xÞμ2�2
½m2 þ xð1 − xÞμ2�2

þ 2xð1 − xÞ
�

μ2

R−2

�
c̄22P½2Ec̄2

2P
1 ð2Þ þ E

c̄2
2P
2 ð2Þ�

�
:

ð4:38Þ

Thus, for m ≪ μ, we have the usual beta function obtained
in the MS scheme plus a new physics correction given by a
power series in μ=R−1,

β6DðeÞ ¼
e3

12π2
þ e3

ð4πÞ2
Z

1

0

dxfPðxÞ2ðc̄22PÞ2

× ½2Ec̄2
2P
1 ð2Þ þ E

c̄2
2P
2 ð2Þ�; ð4:39Þ

which is a behavior similar to the case of only one extra
dimension. The scenarios m ≪ μ ≪ R−1 and m ≫ μ are
also identical to the case of only one extra dimension.

V. SUMMARY

In this paper, we have comprehensively studied the one-
loop structure of the fermion self-energy, the photon self-
energy, and the vertex function in QED with one extra
dimension. The discrete and continuous sums that character-
ize the one-loop amplitudes in these types of theories were
regularized using the dimensional-regularization scheme. As
a consequence, the KK contribution to these one-loop
amplitudes is proportional to products of the gamma
function and the Epstein function, both depending on the
complex number ϵ ¼ 4 −D. Such contributions are propor-
tional to Γðϵ=2ÞEc2

1 ðϵ=2Þ. This expression tells us that the
role of the Ec2

1 ðϵ=2Þ function is to quantify the impact of
the ultraviolet divergences induced by the infinite number
of KK fields. However, the one-dimensional Epstein func-
tion Ec2

1 ðsÞ has poles at s ¼ 1=2;−1=2;−3=2;…, so this
infinite sum is convergent in the ϵ → 0 limit. Consequently,
Γðϵ=2ÞEc2

1 ðϵ=2Þ ¼ Γðϵ=2ÞEc2
1 ð0Þ ¼ Γðϵ=2Þζð0Þ, with the

Riemann zeta function having the value ζð0Þ ¼ P∞
n¼1 ¼

− 1
2
. Due to this property of the Epstein function, we were

able to define renormalized quantities that are reduced to the
usual ones of QED in the R−1 → ∞ limit. It was shown that
5DQED fulfills theWard identity satisfied by QED, which in

turn implies that eB ¼ Z
−1
2

3 e, this being the main feature of
Abelian gauge theories. In the case of the photon self-energy,
five-dimensional QED has a double multiplicity of KK
fermions, so their infinite number of excitations induce an
ultraviolet divergence proportional to 2ζð0Þ ¼ −1, which
cancels the ultraviolet divergence generated by the zero
mode. Nonetheless, this curious result is exclusive of QED
with only one extra dimension. The correction induced by
the extra dimension on the anomalous magnetic dipole
moment was calculated, showing that it is free of both
infrared and ultraviolet divergences and reduces to the usual
QED result in the R−1 → ∞ limit. Since any vertex function
of canonical dimension higher than four is proportional to
ΓðN þ ϵ=2ÞEc2

1 ðN þ ϵ=2Þ, with N an integer number, it is
clear that these types of products is free of divergences, so, at
the one-loop level, the only ultraviolet divergences in
5DQED are the usual ones of QED.
The photon self-energy was also explored in the context

of QED with an arbitrary even number n of extra dimen-
sions. It was shown that for n ≥ 2, two types of divergences
emerge from the Epstein functions appearing in the loop
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amplitudes through the sum of products
P

n
l¼1ðnlÞΓðϵ2Þ

Ec2
l ðϵ2Þ. These types of divergences arise as a consequence

of reducing multidimensional Epstein functions into the
one-dimensional one. For example, a two-dimensional

function breaks down as Ec2
2 ðϵ2Þ ¼ − 1

2
Ec2
1 ðϵ2Þ þ

ffiffi
π

p
2

Γð− 1
2
þ ϵ

2
Þ Ec2

1
ð−1

2
þϵ

2
Þ

Γðϵ
2
Þ . In the last term, Ec2

1 ð− 1
2
þ ϵ

2
Þ diverges

for ϵ → 0 but the pole is canceled by the gamma function,
so Ec2

2 ðϵ2Þ converges in this limit. However, when we

consider the product Γðϵ
2
ÞEc2

2 ðϵ2Þ, the result is the presence
of two types of divergences, one type associated with the
pole of the gamma function and the other from the pole of
the one-dimensional Epstein function. Since the one-
dimensional Epstein function is in turn expressed as a

power series in c2 ∼ q2

R−2, the divergences associated with it
emerge naturally as coefficients of powers of the external
momenta. We argued that the first types of divergences,
which do not involve the compactification scale, are usual
ultraviolet divergences in the sense that they correspond to
short distance effects in the usual spacetime manifold. On
the other hand, the second types of divergences, which

appear as coefficients of powers of q2

R−2, are also genuine
ultraviolet divergences since they arise from short distance
effects in the compact manifold, so they can be removed
from amplitudes through renormalization. To generate the
required counterterms, interactions of canonical dimension
higher than four must be introduced, which is not an
obstacle, since such interactions are already available in our
effective Lagrangian, which contains all interactions com-
patible with the ISOð1; 3Þ ×UQð1;M4Þ symmetry.
The way to implement renormalization in a modern

or broader sense in Kaluza-Klein theories was studied
in detail. The vacuum polarization function Πð4þnÞDðq2Þ

was calculated and used to study the properties of
the effective charge. Since the KK contributions to the
polarization function have the same analytical structure as
the zero mode contribution, the main properties of the
effective charge are automatically fulfilled. By way of
illustration, the relation between the imaginary part of
the ψ ðnÞ contribution to the one-loop vacuum polariza-
tion and its relation with the tree-level cross section
σðψ̄ψ → ψ̄ ðnÞψ ðnÞÞ was discussed in 5DQED. The contri-
bution from the quantum correction to Coulomb’s Law
was calculated in 5DQED.
One important contribution of our work is the study of

the beta function in the cases 5DQED and 6DQED. The
calculation of this function was performed using a mass-
dependent scheme, instead of mass-independent schemes
that are commonly used in QED, as MS-like schemes. The
reason for this is that KK theories have a mass spectrum
that covers a wide range of energies. Because of this, we
use the so called μ-scheme, with μ an arbitrary subtraction
point. The beta function so obtained fulfills all physical
requirements. In particular, for energies m ≪ μ ≪ R−1 it
reduces to the well-known result of QED obtained in a
mass-independent scheme. For m ≫ μ, both the zero
mode and KK excitations decouple, so the beta function
vanishes, as it occurs in QED. All these facts clearly
reflect that our beta function fulfills all desirable physical
requirements.
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