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I study supersymmetric models in which the QCD gauge group is the remnant diagonal subgroup from
the spontaneous breaking of an SUð3Þ × SUð3Þ gauge group at a multi-TeV scale. In renormalizable
models with soft supersymmetry breaking, the scalar potential is shown to have global minima with the
required gauge symmetry breaking pattern. In addition to a massive color octet vector boson, this
framework predicts three color octet spin-0 sgluons, and four color octet gluinos with both Dirac and
Majorana mass terms. One of the gluino mass eigenstates typically has a coupling to quark-squark pairs that
is at least as large as the prediction of minimal supersymmetry, but it need not be the lightest one.
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I. INTRODUCTION

The Large Hadron Collider (LHC) has discovered the
Higgs boson associated with electroweak symmetry break-
ing, but so far has not provided any insight into the
hierarchy problem. Instead, it has imposed significant
lower limits on the masses of supersymmetric particles,
and more generally on any new particles that could be
involved in symmetries or dynamics that might explain
why the electroweak scale is so much lighter than the
Planck scale and other high mass scales associated with
new physics. At the same time, a mass near 125 GeV for the
lightest Higgs boson, within the context of supersymmetric
extensions of the standard model, suggests that the top
squark and other superpartner masses could very well lie at
a characteristic scale MSUSY in the multi-TeV range,
beyond the reach of the 14 TeV LHC.
One possibility is that supersymmetry really is the

essential part of the explanation for the big hierarchy
problem M2

Z ≪ MPlanck, but that there is some other
subsidiary principle,1 not yet understood, that could explain
the little hierarchy problem M2

Z ≪ M2
SUSY. A common

feature to be expected in that case is that the minimal

supersymmetric standard model (MSSM) should be
extended beyond the minimal particle content in the
multi-TeV mass range or below. Attempts along these
lines are far too numerous to review here.
The MSSM already contains one vectorlike combination

of fields, the Higgs supermultiplets Hu and Hd, which
obtain a bare supersymmetry-preserving mass term, μ.
Whatever mechanism is responsible for ensuring that μ
is nonzero but also not far above the TeV scale could
plausibly also be responsible for placing other vectorlike
chiral supermultiplets at the TeV scale. In the same spirit,
one can also suppose that there are other gauge super-
multiplets that obtain masses at the TeV scale, where the
corresponding gauge symmetries are spontaneously bro-
ken. In this paper, I consider one such possibility that has
already been widely considered [1–22] in the nonsuper-
symmetric context: that the QCD SUð3ÞC gauge group of
the MSSM and the standard model is the remnant of a
spontaneous breaking of the type

SUð3ÞA × SUð3ÞB → SUð3ÞC: ð1:1Þ
The gauge bosons associated with the diagonal subgroup of
SUð3ÞA × SUð3ÞB are the massless gluons of the standard
model. The remaining eight vector bosons have been
variously referred to in the literature as axigluons [1–6],
topgluons [7–11] or colorons [12–22], depending on how
the standard model fermions are assigned to SUð3ÞA and
SUð3ÞB representations. Here, I study the possibility of
realizing this symmetry breaking consistently in a renor-
malizable softly broken supersymmetric model. This
requires the presence of two chiral superfields that trans-
form as the fundamental and antifundamental representa-
tions of both gauge groups, to be denoted in this paper as

Φk
j ∼ ð3; 3̄Þ; Φ̄j

k ∼ ð3̄; 3Þ: ð1:2Þ
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1It is also possible that the little hierarchy is just the result of a
coincidence. This should be taken seriously because it is
enormously less severe than the big hierarchy problem. However,
there is no objective, scientific way of deciding how much of a
coincidence is too severe; in my view this is a personal and
inherently subjective choice that scientists must nevertheless
make in order to decide how to allocate limited resources such
as time and money.
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A lowered index corresponds to a fundamental 3 repre-
sentation of SUð3Þ, and a raised index to an antifunda-
mental 3̄. Thus, in both instances in Eq. (1.2), j is an
SUð3ÞA index, and k is an SUð3ÞB index.
This supersymmetric model then predicts the existence

of, in addition the coloron vector boson X, four gluino mass
eigenstates (including an admixture of what can be
regarded as the MSSM gluino) with both Dirac and
Majorana mass contributions, three color octet scalars
(sgluons), two color singlet fermions (singlinos) and four
real scalar singlets, in addition to the usual superpartners of
the MSSM. Models with Dirac mass terms for gauginos
have a long history [23–44]. The present paper is an
alternative to models where Dirac gaugino masses arise
due to supersoft [28] supersymmetry breaking following
from D-term breaking and feature a continuous R sym-
metry [25,28,31], where the gauge supermultiplet sector
can be considered as N ¼ 2 supersymmetry multiplets.
Instead, the Dirac gluino mass parameters here arise from
an additional gauge group and the chiral fermions asso-
ciated with its breaking. There are also Majorana gluino
masses, so that the gluinos are mixed.
I now discuss some other conventions and notations to be

used below. Adjoint representation indices of SUð3Þ are
represented by letters a; b; c;…. The generators of the
fundamental representation are Tak

j , and obey the general
SUðNcÞ trace, commutator, anticommutator, and Fierz
identities,

Tr½TaTb� ¼ 1

2
δab; ð1:3Þ

½Ta; Tb�jk ¼ ifabcTck
j ; ð1:4Þ

fTa; Tbgjk ¼
1

Nc
δabδkj þ dabcTck

j ; ð1:5Þ

Tak
j Tam

l ¼ 1

2
δmj δ

k
l −

1

2Nc
δkjδ

m
l : ð1:6Þ

Here Eq. (1.3) establishes the usual normalization of the
generators, while Eq. (1.4) defines the antisymmetric
structure constants fabc and Eq. (1.5) defines the symmetric
anomaly coefficients dabc. There follows

Tr½TaTbTc� ¼ 1

4
ðdabc þ ifabcÞ; ð1:7Þ

Tak
j Tal

k ¼ N2
c − 1

2Nc
δlj: ð1:8Þ

Also, for Nc ¼ 3 only (as assumed from now on), there are
the antisymmetric tensor invariant symbols ϵjkl and ϵjkl,
which by convention are taken here to have

ϵ123 ¼ ϵ123 ¼ 1: ð1:9Þ

Then one also has the useful identity

ϵjlmϵ
knpTal

n Tbm
p ¼ dabcTck

j −
1

6
δabδkj : ð1:10Þ

The notations and conventions for supersymmetry and two-
component fermions follow those in [45].
For an appropriate choice of potential parameters, as

demonstrated below, the scalar components of Φ and Φ̄
acquire vacuum expectation values (VEVs) of the form

hϕk
ji ¼ δkjv; hϕ̄k

ji ¼ δkj v̄: ð1:11Þ

In that case, the massless gluon field G and the massive
color octet vector field X are related to the SUð3ÞA and
SUð3ÞB gauge vector fields by

�
Ga

μ

Xa
μ

�
¼

�
cos θ sin θ

− sin θ cos θ

��
Aa
μ

Ba
μ

�
; ð1:12Þ

where

sinθ¼ gA=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2Aþg2B

q
; cosθ¼ gB=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2Aþg2B

q
; ð1:13Þ

and X obtains a squared mass,

M2
X ¼ ðg2A þ g2BÞðjvj2 þ jv̄j2Þ: ð1:14Þ

The QCD coupling is related to the original gauge
couplings by

g3 ¼ gAgB=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2A þ g2B

q
; ð1:15Þ

and fields that transform as ðRA; RBÞ under SUð3ÞA ×
SUð3ÞB transform as the (reducible, in general) representa-
tion RA × RB of SUð3ÞC. In particular, for quarks originally
in the fundamental 3 representation of the SUð3ÞA gauge
group, the covariant derivative is

Dμqj ¼ð∂μqj− ig3Ga
μTak

j qkÞþ ig3 tanθXa
μTak

j qk: ð1:16Þ

On the other hand, for quarks originally in the fundamental
representation of SUð3ÞB, we then have

Dμqj ¼ð∂μqj− ig3Ga
μTak

j qkÞ− ig3 cotθXa
μTak

j qk: ð1:17Þ

In the following, I assume that all of the standard model
quarks and their superpartners live in the fundamental
representation of SUð3ÞA, although this is not inevitable.
There can also be additional vectorlike quarks and squarks
transforming under SUð3ÞB, and these indeed play a role in
Sec. IV. These can mix with the usual quarks by Yukawa
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couplings to theΦ and Φ̄ fields, breaking flavor symmetries
and thus allowing the vectorlike quarks to decay. For
simplicity, it is assumed that these Yukawa couplings are
nonzero but very small, as is technically natural.
In the remainder of this paper, I explore one possible

supersymmetric setup that is renormalizable and avoids
fundamental singlets (with potentially dangerous tadpoles).
I show that the symmetry breaking pattern given above can
indeed be realized in a stable vacuum that is the global
minimum of the potential. In similar nonsupersymmetric
models, the minimization of the potential has been ana-
lyzed in Ref. [19]. However, the softly broken super-
symmetric case is quite different because two Higgsing
fields Φ, Φ̄ are required by the anomaly cancellation
associated with the fermionic components, and because
the structure of the dimensionless couplings in the scalar
potential is constrained as dictated by supersymmetry. The
resulting theory naturally includes Dirac masses for the
MSSM gluinos along with the usual Majorana masses.
The lightest of the mixed gluino states can be significantly
lighter than the color octet vectors X and the spin-0
sgluons. There are also inevitably new color singlet scalars
and fermions. The phenomenology of these states is briefly
considered in Sec. V.

II. SUPERSYMMETRIC MODELS
WITH SUð3ÞA × SUð3ÞB → SUð3ÞC

Consider a model consisting of the MSSM and the fields
Φ and Φ̄. The most general renormalizable superpotential
of this theory is

W ¼ 1

6
ϵjklϵmnpðyΦm

j Φn
kΦ

p
l þ ȳΦ̄m

j Φ̄n
kΦ̄

p
l Þ

− μΦΦk
jΦ̄

j
k þWMSSM; ð2:1Þ

where y and ȳ are Yukawa couplings and μΦ is a mass term,
which is analogous to the μ term of the MSSM, and can be
presumed to have the same sort of origin. As a very rough
estimate, μΦ can therefore be taken to be of the order of a
multi-TeV scale. The existence of y and ȳ relies on the fact
that the gauge groups are SUð3Þ, because only in this case
among the special unitary groups does the invariant symbol
ϵjkl exist, corresponding to the group theory fact that the
antisymmetric product of fundamental representations
3 × 3 × 3 contains a singlet. As a convention, y and ȳ
can be taken as real and positive without loss of generality;
then the phase of μΦ is physical. The soft supersymmetry
breaking Lagrangian is

Lsoft ¼
�
−
1

2
MAλ

a
Aλ

a
A −

1

2
MBλ

a
Bλ

a
B −

1

6
ϵjklϵmnpðaϕm

j ϕ
n
kϕ

p
l þ āϕ̄m

j ϕ̄
n
kϕ̄

p
l Þ þ bϕϕk

j ϕ̄
j
k

�
þ c:c:

−m2ðϕk
jÞ�ϕk

j − m̄2ðϕ̄k
jÞ�ϕ̄k

j ; ð2:2Þ

where λaA and λaB are the gauginos for the SUð3ÞA and
SUð3ÞB gauge groups, respectively.
One can now expand the scalar fields around diagonal

VEVs,

ϕk
j ¼ δkj

�
vþ ϕ0ffiffiffi

3
p

�
þ

ffiffiffi
2

p
Tak
j ϕa; ð2:3Þ

ϕ̄k
j ¼ δkj

�
v̄þ ϕ̄0ffiffiffi

3
p

�
þ

ffiffiffi
2

p
Tak
j ϕ̄a; ð2:4Þ

where ϕ0, ϕ̄0 and ϕa, ϕ̄a are complex scalar fields with
canonically normalized kinetic terms, which live in the

singlet and adjoint representations of SUð3ÞC. Similarly,
the fermionic components of Φ and Φ̄ can be expanded as

ψk
j ¼

1ffiffiffi
3

p δkjψ0 þ
ffiffiffi
2

p
Tak
j ψa; ð2:5Þ

ψ̄k
j ¼

1ffiffiffi
3

p δkj ψ̄0 þ
ffiffiffi
2

p
Tak
j ψ̄a; ð2:6Þ

where ψ0 and ψa and ψ̄0 and ψ̄a are two-component
fermion fields with canonically normalized kinetic terms.
The interactions of the new fermions with the scalars and

their VEVs are

L ¼
�
ðv̄þ ϕ̄0=

ffiffiffi
3

p
Þ�ðgAλaAψ̄a − gBλaBψ̄

aÞ þ ðvþ ϕ0=
ffiffiffi
3

p
Þ�ðgBλaBψa − gAλaAψ

aÞ

þ 1ffiffiffi
2

p ðdabc þ ifabcÞðgAϕ̄a�ψ̄bλcA − gAϕa�λbAψ
c þ gBϕa�ψbλcB − gBϕ̄a�λbBψ̄

cÞ

þ gAffiffiffi
3

p ðϕ̄a�λaAψ̄0 − ϕa�λaAψ0Þ þ
gBffiffiffi
3

p ðϕa�λaBψ0 − ϕ̄a�λaBψ̄0Þ
�
þ c:c: ð2:7Þ
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from gaugino-fermion-scalar interactions, and

L ¼
�
y

�
−ðvþ ϕ0=

ffiffiffi
3

p
Þψ0ψ0 þ

1

2
ðvþ ϕ0=

ffiffiffi
3

p
Þψaψa þ 1ffiffiffi

3
p ϕaψ0ψ

a −
1ffiffiffi
2

p dabcϕaψbψc

�

þ ȳ

�
−ðv̄þ ϕ̄0=

ffiffiffi
3

p
Þψ̄0ψ̄0 þ

1

2
ðv̄þ ϕ̄0=

ffiffiffi
3

p
Þψ̄aψ̄a þ 1ffiffiffi

3
p ϕ̄aψ̄0ψ̄

a −
1ffiffiffi
2

p dabcϕ̄aψ̄bψ̄c

�

þ μΦ½ψ0ψ̄0 þ ψaψ̄a�
�
þ c:c: ð2:8Þ

from the superpotential. The mass eigenstates are then
obtained as follows. There are four two-component
SUð3ÞC-octet fermions (gluinos), with mass matrix in
the basis g̃a ¼ ðλaA; λaB;ψa; ψ̄aÞ,

Mg̃ ¼

0
BBB@

MA 0 gAv� −gAv̄�

0 MB −gBv� gBv̄�

gAv� −gBv� −yv −μΦ
−gAv̄� gBv̄� −μΦ −ȳ v̄

1
CCCA: ð2:9Þ

This can be diagonalized by a unitary matrixU to obtain the
mass eigenvalues,

Mdiag
g̃ ¼ U�Mg̃U†: ð2:10Þ

There are also two gauge-singlet two-component fermions,
which in the basis χ̃ ¼ ðψ0; ψ̄0Þ have a mass matrix

Mχ̃ ¼
�

2yv −μΦ
−μΦ 2ȳ v̄

�
; ð2:11Þ

with squared mass eigenvalues

jμΦj2 þ 2jyvj2 þ 2jȳ v̄ j2

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jyvμ�Φ þ ȳ�v̄�μΦj2 þ ðjyvj2 − jȳ v̄ j2Þ2

q
: ð2:12Þ

In order to obtain the new scalar mass eigenvalues, one
can proceed by first obtaining the scalar potential

V ¼ VD þ VF þ Vsoft ð2:13Þ
as a function of the canonically normalized fields. The
supersymmetric D-term contribution is

VD ¼ 1

2
ðDa

AD
a
A þDa

BD
a
BÞ; ð2:14Þ

where

Da
A ¼ gAffiffiffi

2
p

�
ðv̄þ ϕ̄0=

ffiffiffi
3

p
Þϕ̄a� þ ðv̄þ ϕ̄0=

ffiffiffi
3

p
Þ�ϕ̄a

− ðvþ ϕ0=
ffiffiffi
3

p
Þϕa� − ðvþ ϕ0=

ffiffiffi
3

p
Þ�ϕa

þ 1ffiffiffi
2

p ðdabc þ ifabcÞðϕ̄b�ϕ̄c − ϕbϕc�Þ
�
; ð2:15Þ

Da
B ¼ gBffiffiffi

2
p

�
ðvþ ϕ0=

ffiffiffi
3

p
Þϕa� þ ðvþ ϕ0=

ffiffiffi
3

p
Þ�ϕa

− ðv̄þ ϕ̄0=
ffiffiffi
3

p
Þϕ̄a� − ðv̄þ ϕ̄0=

ffiffiffi
3

p
Þ�ϕ̄a

þ 1ffiffiffi
2

p ðdabc þ ifabcÞðϕb�ϕc − ϕ̄bϕ̄c�Þ
�
: ð2:16Þ

The supersymmetric F-term contribution is

VF ¼ jF0j2 þ jFaj2 þ jF̄0j2 þ jF̄aj2; ð2:17Þ

where

F�
0 ¼ μΦð

ffiffiffi
3

p
v̄þ ϕ̄0Þ − yð

ffiffiffi
3

p
vþ ϕ0Þ2=

ffiffiffi
3

p
þ yϕaϕa=2

ffiffiffi
3

p
;

ð2:18Þ

F̄�
0 ¼ μΦð

ffiffiffi
3

p
vþ ϕ0Þ − ȳð

ffiffiffi
3

p
v̄þ ϕ̄0Þ2=

ffiffiffi
3

p
þ ȳϕ̄aϕ̄a=2

ffiffiffi
3

p
;

ð2:19Þ

Fa� ¼ μΦϕ̄
aþyðvþϕ0=

ffiffiffi
3

p
Þϕa−ydabcϕbϕc=

ffiffiffi
2

p
; ð2:20Þ

F̄a� ¼ μΦϕ
aþ ȳðv̄þ ϕ̄0=

ffiffiffi
3

p
Þϕ̄a− ȳdabcϕ̄bϕ̄c=

ffiffiffi
2

p
: ð2:21Þ

Finally, the expansion of the soft supersymmetry breaking
part Vsoft is

Vsoft ¼
�
a

�
ðvþ ϕ0=

ffiffiffi
3

p
Þ3 − 1

2
ðvþ ϕ0=

ffiffiffi
3

p
Þϕaϕa þ 1

3
ffiffiffi
2

p dabcϕaϕbϕc

�

þ ā

�
ðv̄þ ϕ̄0=

ffiffiffi
3

p
Þ3 − 1

2
ðv̄þ ϕ̄0=

ffiffiffi
3

p
Þϕ̄aϕ̄a þ 1

3
ffiffiffi
2

p dabcϕ̄aϕ̄bϕ̄c

�
− bϕ½ð

ffiffiffi
3

p
vþ ϕ0Þð

ffiffiffi
3

p
v̄þ ϕ̄0Þ þ ϕaϕ̄a�

�
þ c:c:

þm2ðj
ffiffiffi
3

p
vþ ϕ0j2 þ jϕaj2Þ þ m̄2ðj

ffiffiffi
3

p
v̄þ ϕ̄0j2 þ jϕ̄aj2Þ: ð2:22Þ
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Isolating the quadratic parts of V, the squared masses for the real scalar fields in Φ, Φ̄ are as follows. Writing ϕa ¼
ðRa þ iIaÞ= ffiffiffi

2
p

and ϕ̄a ¼ ðR̄a þ iĪaÞ= ffiffiffi
2

p
and ϕ0 ¼ ðR0 þ iI0Þ=

ffiffiffi
2

p
and ϕ̄0 ¼ ðR̄0 þ iĪ0Þ=

ffiffiffi
2

p
, the singlet spin-0 squared

mass matrix in the basis φ ¼ ðR0; R̄0; I0; Ī0Þ is

M2
φ ¼

0
BBBBB@

U þ 4jyvj2 − 2X1 −2X2 − Re½bϕ� 2Y1 −2Y2 þ Im½bϕ�
−2X2 − Re½bϕ� Ū þ 4jȳ v̄ j2 − 2X̄1 2Y2 þ Im½bϕ� 2Ȳ1

2Y1 2Y2 þ Im½bϕ� U þ 4jyvj2 þ 2X1 −2X2 þ Re½bϕ�
−2Y2 þ Im½bϕ� 2Ȳ1 −2X2 þ Re½bϕ� Ū þ 4jȳ v̄ j2 þ 2X̄1

1
CCCCCA
; ð2:23Þ

where

U ¼ jμj2 þm2; Ū ¼ jμj2 þ m̄2; ð2:24Þ

X1 þ iY1 ¼ yðμv̄ − yv2Þ� − av; ð2:25Þ

X̄1 þ iȲ1 ¼ ȳðμv − ȳv̄2Þ� − ā v̄; ð2:26Þ

X2 ¼ Re½μ�ðyvþ ȳ v̄Þ�; Y2 ¼ Im½μ�ðyv − ȳ v̄Þ�; ð2:27Þ

and the octet spin-0 (sgluon) squared mass matrix in the basis Sa ¼ ðRa; R̄a; Ia; ĪaÞ is

M2
S ¼

0
BBBBB@

U þ jyvj2 þ X1 X2 − Re½bϕ� −Y1 Y2 þ Im½bϕ�
X2 − Re½bϕ� Ū þ jȳ v̄ j2 þ X̄1 −Y2 þ Im½bϕ� −Ȳ1

−Y1 −Y2 þ Im½bϕ� U þ jyvj2 − X1 X2 þ Re½bϕ�
Y2 þ Im½bϕ� −Ȳ1 X2 þ Re½bϕ� Ū þ jȳ v̄ j2 − X̄1

1
CCCCCA

þ ðg2A þ g2BÞ

0
BBB@

v2R −vRv̄R vRvI −vRv̄I
−vRv̄R v̄2R −v̄RvI v̄Rv̄I
vRvI −v̄RvI v2I −vIv̄I
−vRv̄I v̄Rv̄I −vIv̄I v̄2I

1
CCCA; ð2:28Þ

where

vR þ ivI ¼ v; v̄R þ iv̄I ¼ v̄: ð2:29Þ

The real symmetric squared mass matrices M2
S and M2

φ can
be diagonalized by orthogonal transformations to obtain the
squared mass eigenvalues for the real color octet and singlet
spin-0 particles. One of the octet spin-0 eigenvectors is the
would-be Goldstone boson of the symmetry breaking,
which is absorbed as the longitudinal mode of the massive
vector. In the limit of vanishing vI , v̄I , Im½bϕ�, Y1, and Y2

(i.e., no CP-violating phases), the diagonalizations separate
into 2 × 2 blocks corresponding to scalar and pseudoscalar
states. In that case, there are two scalar and one pseudo-
scalar sgluons, and two scalar and two pseudoscalar
singlets.

III. MINIMIZATION OF THE SCALAR
POTENTIAL

A. The supersymmetric limit

As a warm-up example and a useful limiting case,
consider the supersymmetric limit in which the soft
parameters a, ā, bϕ, m2, and m̄2 are all set to 0. Then
the scalar potential as a function of v and v̄ becomes simply

Vðv; v̄Þ ¼ 3jyv2 − μΦv̄j2 þ 3jȳv̄2 − μΦvj2; ð3:1Þ
as this is a D-flat direction. This has distinct minima at
v ¼ v̄ ¼ 0, where the gauge symmetry is unbroken, and at

v ¼ μΦ=ðy2ȳÞ1=3; v̄ ¼ μΦ=ðyȳ2Þ1=3; ð3:2Þ
where the gauge symmetry is broken to SUð3ÞC. These are
degenerate global minima, with V ¼ 0 in both cases, so that
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supersymmetry is not spontaneously broken. They can be
checked to beminima of the full potential Eqs. (2.13)–(2.22),
by evaluating the scalar squared masses and noting that they
are non-negative, other than the octet of vanishing eigen-
values corresponding to the would-be Goldstone bosons of
the spontaneously broken gauge symmetry in the case of
Eq. (3.2). Themass spectrumof the theory contains amassive
vector supermultiplet, consisting of the vector bosons, a
Dirac fermion (two two-component fermions), and a real
scalar, all of which are octets of SUð3ÞC with squaredmasses
M2

X ¼ ðg2A þ g2BÞðjvj2 þ jv̄j2Þ. There is also a massive color
octet chiral supermultiplet (one two-component fermion and
a complex scalar) with squared masses

M2
octet ¼ R2jμΦj2; ð3:3Þ

and two singlet chiral supermultiplets with squared masses

M2
singlets ¼

	
2R2 − 3� 2R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 3

p 

jμΦj2; ð3:4Þ

where

R ¼ jy=ȳj1=3 þ jȳ=yj1=3: ð3:5Þ

Because R ≥ 2 (with equality if jȳj ¼ jyj), these squared
masses are always positive. One of the singlet chiral super-
multiplets is always lighter, and one always heavier, than the
octet chiral supermultiplet. There is also an SUð3ÞC octet
massless vector supermultiplet (the MSSM gluon and
gluino), and one massless SUð3ÞC octet real scalar would-
be Goldstone boson which is absorbed by the massive color
octet vector boson, becoming its longitudinal mode.

B. Realistic examples with supersymmetry breaking

Now consider the realistic case that supersymmetry
breaking is included. It is useful to take a more general
form for the possible scalar field expectation values, to
include the possibility that the remnant gauge symmetry is
not SUð3ÞC,

hϕk
ji ¼ δkjvþ δj3δ

k3 s; hϕ̄k
ji ¼ δkj v̄þ δj3δ

k3s̄: ð3:6Þ

Now if s ¼ s̄ ¼ 0 and v; v̄ are nonzero, the unbroken
gauge symmetry is SUð3ÞC. If v ¼ v̄ ¼ 0 and s; s̄
are nonzero, then the unbroken gauge symmetry is
SUð2Þ × SUð2Þ ×Uð1Þ. For general v; v̄; s; s̄, the unbro-
ken gauge symmetry would be SUð2Þ ×Uð1Þ. I do not
consider even more general VEVs, for which the unbroken
gauge symmetry would be even smaller. This is because
both the D-term and F-term contributions to the potential
are non-negative, and they favor the larger unbroken
symmetries SUð3ÞC or SUð2Þ × SUð2Þ ×Uð1Þ. As found
[19] in the nonsupersymmetric case with one ð3; 3̄Þ scalar
field, no local minimum is expected in the case of a

SUð2Þ × Uð1Þ or smaller residual symmetry, and I have
confirmed this in numerical examples, although I have not
attempted a formal or general proof.
The scalar potential D-term, F-term, and soft contribu-

tions are then

VD¼ 1

6
ðg2Aþg2BÞðjvþ sj2− jv̄þ s̄j2− jvj2þjv̄jÞ2; ð3:7Þ

VF ¼ jyv2−μΦðv̄þ s̄Þj2þjȳv̄2−μΦðvþ sÞj2
þ2jyvðvþ sÞ−μΦv̄j2þ2jȳ v̄ðv̄þ s̄Þ−μΦvj2; ð3:8Þ

Vsoft¼ðav2ðvþsÞþ āv̄2ðv̄þ s̄Þ
−bϕ½ðvþsÞðv̄þ s̄Þþ2vv̄�Þþc:c:

þm2ðjvþsj2þ2jvj2Þþm̄2ðjv̄þ s̄j2þ2jv̄j2Þ: ð3:9Þ

There is a D-flat direction js̄j ¼ jsj when v̄ ¼ v ¼ 0. This
is unaffected by the y, ȳ, a, ā couplings, but it is lifted by
the F-term contribution V ¼ jμΦj2ðjsj2 þ js̄j2Þ, so it is not a
minimum of the supersymmetric limit of the previous
section. However, it can be favored by the soft supersym-
metry breaking squared mass terms, leading to a runaway
unbounded from below (UFB) direction, in which js̄j ¼ jsj
becomes arbitrarily large and the phase of ss̄ is the same as
that of b�ϕ. This occurs unless

jbϕj < jμΦj2 þ ðm2 þ m̄2Þ=2: ð3:10Þ

This UFB solution can be separated by a barrier from other
local minima with nonzero v, v̄, which could therefore in
principle be viable if the tunneling rate is small enough.
Next, take the possibility that v ¼ v̄ ¼ 0 with jsj ≠ js̄j,

which would lead to the symmetry breaking pattern
SUð3ÞA×SUð3ÞB→SUð2Þ×SUð2Þ×Uð1Þ, and consider

Vðs; s̄Þ ¼ 1

6
ðg2A þ g2BÞðjsj2 − js̄j2Þ2 þ ðm2 þ jμΦj2Þjsj2

þ ðm̄2 þ jμΦj2Þjs̄j2 − ðbϕss̄þ c:c:Þ: ð3:11Þ

Assuming m2 ≤ m̄2 without loss of generality [otherwise
the discussion goes through with ðs;m2Þ ↔ ðs̄; m̄2Þ�, the
possible nontrivial stable minimum of Vðs; s̄Þ is at

jsj2 ¼ 3

4ðg2A þ g2BÞd
½ðjμΦj2 þ m̄2Þ2 − ðjμΦj2 þm2 þ dÞ2�;

ð3:12Þ

js̄j2 ¼ 3

4ðg2A þ g2BÞd
½ðjμΦj2 þ m̄2 − dÞ2 − ðjμΦj2 þm2Þ2�;

ð3:13Þ

where
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d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jμΦj2 þm2 þ m̄2Þ2 − 4jbϕj2

q
: ð3:14Þ

To satisfy the necessary conditions that d and jsj2 and js̄j2
are real and positive, jbϕj must satisfy

ðjμΦj2 þm2ÞðjμΦj2 þ m̄2Þ < jbϕj2

< ðjμΦj2 þm2ÞðjμΦj2 þ m̄2Þ þ 1

4
ðm2 − m̄2Þ2; ð3:15Þ

where the right inequality coincides with the no-UFB
condition Eq. (3.10), and the left inequality coincides with
the destabilization of the trivial vacuum with s ¼ s̄ ¼ 0. In
practice, this is usually a very narrow range of allowed jbϕj;
in particular, it vanishes in the limit m2 ¼ m̄2. Also, while
the condition Eq. (3.15) is necessary and sufficient for a
nontrivial minimum of Vðs; s̄Þ, it is far from sufficient to
guarantee that Eqs. (3.12)–(3.14) provide a local minimum
of the whole potential (not restricted to the s; s̄ subspace).
The sufficient conditions follow from also requiring the
positivity of the 36 − 9 ¼ 27 non-Goldstone squared mass
eigenvalues, of which eight are distinct. These depend on
the other parameters in a more complicated way, and can be
evaluated on a case-by-case basis.
Now consider the D-flat direction defined by s̄ ¼ s ¼ 0

and nonzero v; v̄, which gives SUð3ÞA × SUð3ÞB →
SUð3ÞC as desired. For simplicity, consider first a special
case that has Φ ↔ Φ̄ and CP symmetries, where ȳ ¼ y is
real and positive by convention, μΦ is chosen to be real and
positive, b and ā ¼ a are chosen to be real but not
necessarily positive, and2 m̄2 ¼ m2, which must be real
(by the reality of the Lagrangian) but not necessarily
positive. For convenience, define real dimensionless super-
symmetry breaking parameters,

A ¼ a=ðyμΦÞ; ð3:16Þ

B ¼ b=μ2Φ; ð3:17Þ

C ¼ m2=μ2Φ; ð3:18Þ

in terms of which Eq. (3.10) becomes the requirement

jBj < 1þ C ð3:19Þ

to avoid an UFB runaway solution. Then one can look for
minima,

v ¼ ðμΦ=yÞxeiα; v̄ ¼ ðμΦ=yÞxeiβ; ð3:20Þ

where x is real, non-negative, and dimensionless, and α and
β are phases. By examining the first derivatives of the

potential, one finds that a minimumwith x ≠ 0 that satisfies
Eq. (3.19) must have β ¼ α. The potential then becomes
simply

Vðx; αÞ ¼ 6μ4Φ
y2

x2
�
x2 þ

��
8

3
cos2α − 2

�
A − 2

�
x cos α

þ Bð1 − 2cos2αÞ þ Cþ 1

�
: ð3:21Þ

Minimizing the restricted potential Vðx; αÞ gives a neces-
sary condition, but one must also check using the full scalar
potential that at any putative local minimum, all of the 36
real scalar squared masses are non-negative, including an
octet of vanishing scalar squared masses for the would-be
Goldstone bosons.
For A ¼ B ¼ C ¼ 0, one recovers the supersymmetric

limit of the previous section, with a minimum at x ¼ 1,
α ¼ 0. More generally, the supersymmetric part of the
scalar potential clearly favors α ¼ 0 when x ≠ 0. The A
term also favors α ¼ 0 for large negative A. However, for
large positive A, the A term part favors symmetry breaking
with cos2 α ¼ 1=2. The B term favors α ¼ 0 if B < 0, but
α ¼ π if B > 0. The tension between these contributions
means that even though all potential parameters were
chosen to be real, the VEV can be forced to be complex
at a local minimum if A is positive and sufficiently large.
This spontaneous CP violation could provide a constraint
on the model parameter space through an electric dipole
moment for the neutron. There are thus two types of
possible local symmetry breaking minima, which from now
on are parametrized by xeiα ¼ xR þ ixI. Without loss of
generality, one can take xI to be non-negative.
For the first type, the VEV is real and satisfies the

stationary condition

2x2R þ ðA − 3ÞxR þ 1þ C − B ¼ 0; ð3:22Þ

leading to

xR ¼
3−A
4

	
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8ðB−C−1Þ=ð3−AÞ2

q 

; ð3:23Þ

xI ¼ 0; ð3:24Þ

For this to be a local minimum, it is necessary but not
sufficient that the argument of the square root is positive,

ð3 − AÞ2 > 8ð1 − Bþ CÞ: ð3:25Þ

From requiring positivity of the 36 − 8 ¼ 28 non-Goldstone
scalar squared masses, one finds the other necessary
conditions,

ð1þ nxRÞ2 þ C > jBþ nxRðAþ xR − 1Þj; ð3:26Þ
2This choice precludes the possibility of a SUð2Þ × SUð2Þ×

Uð1Þ-preserving minimum, as just discussed.
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to be imposed for each of n ¼ 1; 2;−2, and

ðg2A þ g2BÞx2R þ ð1 − xRÞ2 > −C: ð3:27Þ

Together, the five conditions (3.25)–(3.27) are sufficient to
guarantee the existence of this local minimum. The con-
straint (3.27) is the only one that depends on the gauge
couplings, and it rarely comes into play; it is automatic
unless C < 0, and even then it is always satisfied for
sufficiently large gauge couplings. If the no-UFB condition
Eq. (3.19) is also imposed, then the three conditions of
Eq. (3.26) can be simplified to

2xR þ B > 0; ð3:28Þ

ð1 − 3AÞxR þ 2B > 0; ð3:29Þ

ð11 − AÞxR − 2þ 4B − 2C > 0: ð3:30Þ

For Eq. (3.23) to be the global minimum, it is necessary but
not sufficient (because of the possibility of the second type
of solution below) that Eq. (3.19) is also satisfied as well as
V ≤ 0, which yields

ð3 − AÞ2 ≥ 9ð1 − Bþ CÞ; ð3:31Þ

which is slightly stronger than Eq. (3.25).
The second type of local minimum has a complex VEV,

with stationary conditions

x2I þ x2R − ð1þ AÞxR þ ð1þ Bþ CÞ=2 ¼ 0; ð3:32Þ

4Ax2R − ½ð1þ AÞ2 þ 2B�xR þ ð1þ AÞð1þ Bþ CÞ=2 ¼ 0;

ð3:33Þ

leading to

xR ¼ ð1þ AÞ2 þ 2B
8A

h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Að1þ AÞð1þ Bþ CÞ=½ð1þ AÞ2 þ 2B�2

q i
; ð3:34Þ

xI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xRð1þ A − xRÞ − ð1þ Bþ CÞ=2

p
: ð3:35Þ

As necessary but not sufficient requirements, both square roots must have positive argument, so

½ð1þ AÞ2 þ 2B�2 > 8Að1þ AÞð1þ Bþ CÞ; ð3:36Þ
2xRð1þ A − xRÞ > 1þ Bþ C: ð3:37Þ

The remaining necessary conditions, coming from positivity of the four distinct non-Goldstone scalar boson squared mass
eigenvalues, are

ð1þ nxRÞ2 þ n2x2I þ C >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½B − nx2I þ nxRðAþ xR − 1Þ�2 þ n2x2I ð1þ A − 2xRÞ2

q
; ð3:38Þ

again for each of n ¼ 1; 2;−2, and

ðg2A þ g2BÞðx2I þ x2RÞ þ ð1 − xRÞ2 þ x2I > −C: ð3:39Þ

Together, the six conditions Eqs. (3.36)–(3.39) are suffi-
cient to guarantee the existence of this local minimum.
Again, Eq. (3.39) can only come into play if C < 0, and
even then it is automatically satisfied if the gauge couplings
are sufficiently large. For a local minimum of this type to be
the global minimum, it is necessary but not sufficient
(because of the possibility of the first type of solution
described above) that Eq. (3.19) is satisfied as well as
V ≤ 0, a constraint that can be written as

ðx2R þ x2I Þ2 þ ð2B − 8AxR=3Þx2R ≥ 0: ð3:40Þ

The implications of the preceding results are illustrated
in Fig. 1, which shows a phase diagram for symmetry

breaking in the B ¼ bϕ=μ2Φ vs A ¼ a=yμΦ ¼ ā=ȳμΦ plane,
for the choices C ¼ m2=μ2Φ ¼ m̄2=μ2Φ ¼ 0 (left panel) and
0.5 (right panel). As noted above, there can be no
SUð2Þ × SUð2Þ ×Uð1Þ-preserving vacuum here, because
of the choice m2 ¼ m̄2. The red shaded regions on the left
and right sides of each plot have UFB runaway solutions
because jBj is too large. In the central unshaded regions,
there are no symmetry breaking local minima. The green
region shows the points where the global minimum of the
potential breaks SUð3ÞA × SUð3ÞB → SUð3ÞC, and the
blue region shows where there is at least one such local
minimum with no UFB runaway. These are the regions that
could be our world. At A ¼ B ¼ C ¼ 0, the supersym-
metric limit is realized, so that this point is on the border
between the local and global minimum regions in the left
panel. A dotted curve separates the region where the lowest
symmetry breaking local minimum has a real VEV from
the region where it has a complex VEV (which occurs for A

STEPHEN P. MARTIN PHYS. REV. D 101, 035019 (2020)

035019-8



positive and not too small), given our choice of all real
input parameters.
In view of the rather complicated set of requirements

given above even in the simplifying case of assumed real
parameters with a Φ ↔ Φ̄ symmetry in the Lagrangian, I
have not attempted to characterize the necessary and
sufficient conditions in the general case. However, using
numerical methods I have checked that in generic cases, for
large areas in a general parameter space, there are global
minima that realize the SUð3ÞA × SUð3ÞB → SUð3ÞC
breaking. For example, Fig. 2 shows phase diagrams for
the case that there is no symmetry between Φ and Φ̄, for
ȳ ¼ 0.5y real and positive and with m2 ¼ 0, m̄2 ¼ 0.5μ2Φ
(left panel) and with m2 ¼ 0.25μ2Φ, m̄

2 ¼ μ2Φ (right panel).
The axes of the plots are bϕ=μ2Φ and a=yμΦ ¼ ā=ȳμΦ,
which are assumed to be real but can have either sign. In
this example, because m2 ≠ m̄2, there are very small
regions where minima with unbroken gauge group
SUð2Þ × SUð2Þ ×Uð1Þ can exist, depending on the other
parameters. From Eq. (3.15), these occur within the narrow
ranges adjacent to the UFB region, 1.2247 < jBj < 1.25
(left panel) and 1.5811 < jBj < 1.625 (right panel). The
exact extents of these small regions depend on other
parameters besides the plot axes, so they are not shown.
I have also checked in other examples that global minima
with unbroken gauge group SUð3ÞC do occur in large

regions of generic parameter space, including where μΦ and
the soft input parameters are allowed to have complex
phases, and that smaller residual gauge symmetries like
SUð2Þ × Uð1Þ generally do not occur.

IV. MODEL REALIZATION WITH GAUGE
COUPLING UNIFICATION

A. Renormalization group running

One aspect of low-energy supersymmetry that has often
been touted as an attractive feature is the apparent uni-
fication of gauge couplings above 1016 GeV. In the case
that SUð3ÞC is the remnant of two independent SUð3Þ
gauge groups, this is certainly no longer automatic (but as
we see it can at least be accommodated). Furthermore,
given the standard model value of αS, the formula
Eq. (1.15) implies that both gA and gB must be fairly
strong at the multi-TeV scale, since g3 is necessarily smaller
than both of them, and if they were equal, g3 ≈ gA=

ffiffiffi
2

p
.

Assuming that the MSSM quark supermultiplets live in the
SUð3ÞA representation, then the presence of six additional
triplets Φ and Φ̄ means that the one-loop β function for
SUð3ÞA must be non-negative, and the two-loop β function
is positive, so that gA cannot be asymptotically free as in the
MSSM. To unify with gB, additional fields charged under
SUð3ÞB must be included.

FIG. 1. Phase diagrams for symmetry breaking in the case ȳ ¼ y and ā ¼ a, for m2 ¼ m̄2 ¼ 0 (left panel) and m2 ¼ m̄2 ¼ 0.5μ2Φ
(right panel), with the input parameters μΦ and y real and positive, and a; bϕ chosen real, so that the discussion of Eqs. (3.19)–(3.40)
applies to the minimization of the scalar potential. In the red shaded regions on the left and right sides of each plot, the scalar potential
has an unbounded from below direction. In the unshaded central region, the SUð3ÞA × SUð3ÞB gauge symmetry is not broken at any
local minimum of the potential. The symmetry breaking SUð3ÞA × SUð3ÞB → SUð3ÞC occurs at a global minimum of the potential in
the large green shaded regions, and at only a local minimum in the thin blue shaded regions. The supersymmetric limit occurs at the
origin ðbϕ; aÞ ¼ ð0; 0Þ in the left panel; there the local symmetry breaking minimum is degenerate with the local nonsymmetry breaking
minimum. In each panel, the lowest SUð3ÞC-symmetric minimum has complex v ¼ v̄ above the dotted curve.
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There are many ways to include chiral superfield
representations that are charged under SUð3ÞB. Suppose
that there are additional vectorlike quark and lepton super-
multiplets in representations (and their conjugates) as in the
MSSM, but with color charges only under SUð3ÞB. This
ensures that the new fields are not exotic and none of
them need be stable, since they can decay by mixing with
MSSM states. In particular, consider possible chiral super-
multiplets in the following vectorlike representations of
SUð3ÞA × SUð3ÞB × SUð2ÞL ×Uð1ÞY :

nQ ×

��
1; 3; 2;

1

6

�
þ
�
1; 3̄; 2;−

1

6

��
; ð4:1Þ

nd ×

��
1; 3; 1;−

1

3

�
þ
�
1; 3̄; 1;

1

3

��
; ð4:2Þ

nu ×

��
1; 3; 1;

2

3

�
þ
�
1; 3̄; 1;−

2

3

��
; ð4:3Þ

nL ×

��
1; 1; 2;−

1

2

�
þ
�
1; 1; 2;

1

2

��
; ð4:4Þ

ne × ½ð1; 1; 1;−1Þ þ ð1; 1; 1; 1Þ�; ð4:5Þ

for integers nQ, nd, nu, nL, and ne. These fields are
supposed to have weak isosinglet bare masses in the
multi-TeV range, due to whatever mechanism also provides
for the MSSM μ term. They can also mix with the MSSM
quarks and leptons, in the case of quarks through Yukawa
couplings to Φ and Φ̄. That mixing is assumed here to be
too small to affect anything else significantly. In the
following, beta functions are denoted in the general loop
expansion form

βX ¼
X
n≥1

1

ð16π2Þn β
ðnÞ
X : ð4:6Þ

Then at two-loop order,3 the gauge couplings in a grand
unified theory normalization have beta functions,

βð1ÞgA ¼ 0; ð4:7Þ

FIG. 2. Phase diagrams for symmetry breaking in the case ȳ ¼ 0.5y real and positive, with m2 ¼ 0, m̄2 ¼ 0.5μ2Φ (left panel) and with
m2 ¼ 0.25μ2Φ, m̄

2 ¼ μ2Φ (right panel). The axes are B ¼ bϕ=μ2Φ and A ¼ a=yμΦ ¼ ā=ȳμΦ, which are assumed to be real but can have
either sign. In the red shaded regions on the left and right sides of each plot, the scalar potential has an unbounded from below direction.
In the unshaded central region, the SUð3ÞA × SUð3ÞB gauge symmetry is not broken at any local minimum of the potential. The
symmetry breaking SUð3ÞA × SUð3ÞB → SUð3ÞC occurs at a global minimum of the potential in the large green shaded regions, and at
only a local minimum in the thinner blue shaded regions. In each panel, the lowest SUð3ÞC-symmetric minimum has complex VEVs v
and v̄ above the dotted curve. Minima with unbroken gauge group SUð2Þ × SUð2Þ × Uð1Þ can also occur, but only in very small regions
that are subsets of thin strips adjacent to the UFB region, namely 1.2247 < jBj < 1.25 (left panel) and 1.5811 < jBj < 1.625 (right
panel). These small regions are not shown because they depend on the other parameters.

3In all numerical results below, the full three-loop beta
functions are used to run all supersymmetric parameters and
the two-loop results are used for soft parameters. These can be
straightforwardly obtained from the general expressions in
Refs. [46–60], so only the partial two-loop or one-loop formulas
are shown here for illustration.
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βð2ÞgA ¼ g3A

�
48g2A þ 16g2B þ 9g22 þ

11

5
g21 − 6y2 − 6ȳ2 − 4y2t − 4y2b

�
; ð4:8Þ

βð1ÞgB ¼ g3Bð−6þ 2nQ þ nu þ ndÞ; ð4:9Þ

βð2ÞgB ¼ g3B

��
−20þ 34

3
ð2nQ þ nd þ nuÞ

�
g2B þ 16g2A þ 6nQg22 þ

2

15
½nQ þ 2nd þ 8nu�g21 − 6y2 − 6ȳ2

�
; ð4:10Þ

βð1Þg2 ¼ g32ð1þ 3nQ þ nLÞ; ð4:11Þ

βð2Þg2 ¼ g32

�
24g2A þ 16nQg2B þ ½25þ 21nQ þ 7nL�g22 þ

1

5
½9þ nQ þ 3nL�g21 − 6y2t − 6y2b − 2y2τ

�
; ð4:12Þ

βð1Þg1 ¼ g31
5
ð33þ nQ þ 2nd þ 8nu þ 3nL þ 6n3Þ; ð4:13Þ

βð2Þg1 ¼ g31
5

�
88g2A þ 16

3
½nQ þ 2nd þ 8nu�g2B þ ½27þ 3nQ þ 9nL�g22

þ g21
15

½597þ nQ þ 8nd þ 128nu þ 27nL þ 216ne� − 26y2t − 14y2b − 18y2τ

�
: ð4:14Þ

The SUð3ÞA coupling does not run in the one-loop approximation, but this is an accident, violated by two-loop effects. The
Yukawa couplings y and ȳ are assumed not to be small in the following, and so their running is important, and given by

βð1Þy ¼ yð6y2 − 8g2A − 8g2BÞ; ð4:15Þ

βð2Þy ¼ 8y

�
8

3
g4A þ 16

3
g2Ag

2
B þ

�
2nQ þ nd þ nu −

10

3

�
g4B þ 2ðg2A þ g2BÞy2 − 3y4

�
; ð4:16Þ

with the same equations for y → ȳ. The beta functions for
the top-quark, bottom-quark, and tau-lepton Yukawa cou-
plings are obtained from the MSSM results with the
replacement g3 → gA.
There are several choices for the integers nQ, nd, nu, nL,

and ne that can lead to approximate gauge coupling uni-
fication. In the following, I simply choose one that seems
interesting, with no claim or expectation of uniqueness:

nQ¼ 1; nd ¼ 3; nu ¼ 0; nL ¼ 0; ne¼ 1: ð4:17Þ

It is also possible, for example, to include a chiral super-
multiplet which would transform as an octet under SUð3ÞB;
this would also lead to three new possible Yukawa cou-
plings. One reason for the choice made here is that one can
arrange for gauge coupling unification at high scales while
having gB > gA at the symmetry breaking scale, with g3
being consistent with the standard model QCD coupling.
Since βð1ÞgA ¼ 0 and βð1ÞgB ¼ −g2B are both accidentally

small in magnitude due to the choice of chiral superfield

representations, and βð2ÞgA and βð2ÞgB both have large positive
contributions, the renormalization group (RG) running can
have a character similar to the Caswell-Banks-Zaks infrared
fixed point [61,62], although here the conformal regime is
not actually reached. In the following, I consider a case that
realizes approximate gauge coupling unification through y
and ȳ that are large at the TeV scale. This is natural in the
sense that the negative contributions proportional to g2A and
g2B in Eq. (4.15) drive y and ȳ to be larger in the infrared,
since the SUð3Þ gauge couplings are necessarily large.
However, when y and ȳ themselves become sufficiently
large, the terms proportional to y2 in Eq. (4.15) and
proportional to ȳ2 in its counterpart for ȳ put the brakes
on, leading to a quasifixed point behavior. (This is not a true
fixed point, because gA and gB are still running, and thus
provide a moving target.)
As an illustration, Fig. 3 shows a sample three-loop RG

trajectory, starting with an assumption that at the low-
energy threshold scale Q ¼ 7.5 TeV, where they are taken
to match onto the standard model,
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gB=gA ¼ 1.5; g3 ¼ 0.96171; ð4:18Þ

g2 ¼ 0.628645; g1 ¼ 0.366436; ð4:19Þ

y ¼ ȳ ¼ 2.38; ð4:20Þ

yt¼0.783363; yb¼0.012305; yτ¼0.010205; ð4:21Þ

with the standard model Yukawa couplings chosen to
correspond to tan β ¼ 10. In the left panel, the gauge
couplings are seen to nearly unify at a scale
7.1 × 1017 GeV, much closer to the reduced Planck scale
than the unification scale found in the MSSM. The SUð3ÞB
coupling increases in strength in the infrared, but does not
hit a pole, with αB ¼ 0.239 at Q ¼ 7.5 TeV; this is
comparable to αS evaluated at 3.5 GeV in the standard
model. The chosen value of y ¼ ȳ is near the three-loop
quasifixed point value for the RG equation system. This is
illustrated in the right panel of Fig. 3, which shows the
running for a variety of different input values. Note that
even if y and ȳ start at much lower values (say, of order 0.1)
at the apparent unification scale, they are efficiently
driven with power-lawlike running in the infrared to the
quasifixed point regime due to the influence of the large,
and slowly running, gauge couplings gA and especially gB.
[Nevertheless, the parameters y, ȳ, a, ā could in principle
be small at the low scale, which would lead to enhanced

VEVs and an approximate Uð1Þ symmetry in the low-
energy theory.]
The beta functions for dimensionful parameters can also

be obtained from the general results in Refs. [46–60]. For
the supersymmetric parameter μΦ, one has

βð1ÞμΦ ¼ μΦ

�
2y2 þ 2ȳ2 −

16

3
ðg2A þ g2BÞ

�
; ð4:22Þ

βð2ÞμΦ ¼ μΦ

�
128

9
g4A þ 256

9
g2Ag

2
B

þ
�
−
160

9
þ 16

3
½2nQ þ nu þ nd�

�
g4B

þ 16

3
ðg2A þ g2BÞðy2 þ ȳ2Þ − 8y4 − 8ȳ4

�
: ð4:23Þ

As long as y and ȳ are small, this provides for μΦ to grow
rapidly in the infrared, but this running slows as y and ȳ
approach the quasifixed point regime. This makes it
plausible that if μΦ has an origin similar to that of the
MSSM μ parameter, then μΦ should be larger than μ at the
low scale. In any case, it is technically natural for it to have
any value; in the following it is assumed to be of the same
order of magnitude as the soft supersymmetry breaking
masses, as could follow for example from the Kim-Nilles
[63] or Giudice-Masiero [64] mechanisms. For the gaugino
masses,
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FIG. 3. Three-loop renormalization group running of supersymmetric couplings for the example model defined by Eqs. (4.18)–(4.21)
and (4.37)–(4.41), as a function of the renormalization scale Q. The inverses of the gauge couplings αa ¼ g2a=4π are shown in the left
panel. The right panel shows a variety of renormalization group trajectories for the Yukawa coupling y ¼ ȳ, obtained by taking different
boundary conditions at the unification scale, illustrating the strongly attractive infrared quasifixed point behavior, with power-lawlike
running for small y due to the influence of large gA and especially gB.
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βð1ÞMA
¼ 0; ð4:24Þ

βð2ÞMA
¼ g2A

�
½192g2A − 12y2 − 12ȳ2 − 8y2t − 8y2b�MA þ 32g2B½MA þMB� þ 18g22½MA þM2�

þ 22

5
g21½MA þM1� þ 12ayþ 12ayþ 16atyt þ 16abyb

�
; ð4:25Þ

βð1ÞMB
¼ ð−12þ 4nQ þ 2nd þ 2nuÞg2BMB; ð4:26Þ

βð2ÞMB
¼ g2B

�
f−80þ 136ð2nQ þ nd þ nuÞ=3�g2B − 12y2 − 12ȳ2gMB þ 32g2A½MA þMB�

þ 12nQg22½M2 þMB� þ
4

15
ðnQ þ 2nd þ 8nuÞg21½M1 þMB� þ 12ayþ 12ay

�
; ð4:27Þ

βð1ÞM2
¼ ð2þ 6nQ þ 2nLÞg22M2; ð4:28Þ

βð2ÞM2
¼ g22

�
½ð100þ 84nQ þ 28nLÞg22 − 12y2t − 12y2b − 4y2τ �M2 þ 48g2A½M2 þMA�

þ 32nQg2B½M2 þMB� þ
2

5
ð9þ nQ þ 3nLÞg21½M2 þM1� þ 24atyt þ 24abyb þ 8aτyτ

�
; ð4:29Þ

βð1ÞM1
¼ 2g31

5
ð33þ nQ þ 2nd þ 8nu þ 3nL þ 6n3ÞM1; ð4:30Þ

βð2ÞM1
¼ g21

5

���
796

5
þ 4

15
nQ þ 32

15
nd þ

512

15
nu þ

36

5
nL þ 288

5
ne

�
g21 − 52y2t − 28y2b − 36y2τ

�
M1

þ 176g2A½M1 þMA� þ
32

3
g2BðnQ þ 2nd þ 8nuÞ½M1 þMB�

þ ð54þ 6nQ þ 18nLÞg22½M1 þM2� þ 104atyt þ 56abyb þ 72aτyτ

�
; ð4:31Þ

and for the soft supersymmetry breaking parameters
associated with the Φ; Φ̄ sector,

βð1Þa ¼ 18y2aþ8g2Að2yMA−aÞþ8g2Bð2yMB−aÞ; ð4:32Þ

βð1Þā ¼ 18ȳ2āþ8g2Að2ȳMA− āÞþ8g2Bð2ȳMB− āÞ; ð4:33Þ

βð1Þbϕ
¼ 2bϕ

�
y2 þ ȳ2 −

8

3
ðg2A þ g2BÞ

�

þ 4μΦ

�
ayþ ā ȳþ 8

3
ðg2AMA þ g2BMBÞ

�
; ð4:34Þ

βð1Þ
m2 ¼ 12y2 m2þ4jaj2−32

3
ðg2AjMAj2þg2BjMBj2Þ; ð4:35Þ

βð1Þ
m̄2 ¼ 12ȳ2m̄2þ4jāj2−32

3
ðg2AjMAj2þg2BjMBj2Þ: ð4:36Þ

A consequence of these results is that if the gaugino masses
are taken to be positive and large, then a=y, ā=ȳ, and b=μΦ
tend to run to negative values in the conventions used here.
The special case that is adopted as an example here is the

“no-scale” limit, which presumes that at very high scales
the supersymmetry breaking is dominated by gaugino
masses, with all other soft supersymmetry breaking param-
eters arising from them due to renormalization group
running. A nice feature of this limit is that it automatically
provides for nearly flavor-blind first and second family
squark and slepton masses, due to the observed fact that the
corresponding Yukawa couplings are small. As an illus-
tration, Fig. 4 shows the running of the gaugino masses and
the MSSM squark and slepton masses as a function of the
renormalization scale Q, for the case of a common gaugino
mass m1=2 at the apparent unification scale. Note that all of
the sleptons are significantly heavier than the wino and
bino, in contrast to the no-scale limit of the usual MSSM.
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This is due to the couplings g1 and g2 being much larger at
high RG scales than is the case in the MSSM. It is also
worth noting that the one-loop approximation is not very
good, notably for MA, which has an accidentally vanishing
beta function at one-loop order, but is seen to decrease
significantly in the infrared due to two-loop and higher
order effects. The squark masses are larger than both MA
and MB, again in contrast to the no-scale limit in the
MSSM. Of course, these expectations could easily be
modified if the high-scale boundary conditions are differ-
ent, for example due to nonuniversal gaugino masses.

B. Mass spectrum for an example model line

As an illustration of the possibilities for masses in the
SUð3ÞA × SUð3ÞB gauge/gaugino and Φ, Φ̄ sector, con-
sider an example model defined by the parameters of
Eqs. (4.18)–(4.21) and the results following from renorm-
alization group evolution as described in the previous
subsection starting with a universal gaugino mass param-
eter m1=2,

a ¼ ā ¼ −2.381m1=2; ð4:37Þ

bϕ ¼ −0.6669m1=2μΦ; ð4:38Þ

m2 ¼ m̄2 ¼ ð0.30806m1=2Þ2; ð4:39Þ

MA ¼ 0.5467m1=2; ð4:40Þ

MB ¼ 1.1156m1=2; ð4:41Þ

where μΦ is the value at the low renormalization scale.
Although these values were obtained at Q ¼ 7.5 TeV, I do
not commit to a particular overall mass scale for the
superpartners or the new states in the results shown below,
but instead show mass ratios normalized to the octet vector
boson mass.
The potential minimization is then found to be of the

type with a real VEV given by Eq. (3.23), with v ¼ v̄ ¼ xR,
where xR then depends on the ratio r ¼ μΦ=m1=2. This
avoids spontaneous CP violation and a potentially danger-
ously large contribution to the electric dipole moment of the
neutron. I vary this ratio to obtain a one-parameter model
line. The numerical values of the dimensionless supersym-
metry breaking parameters defined in Eqs. (3.16)–(3.18)
are A¼−1.00034=r, B¼−0.6669=r, C¼0.0949=r2. These
obey each of the constraints in Eqs. (3.25)–(3.31) for all r,
and therefore yield a global minimum of the potential at
which the breaking SUð3ÞA × SUð3ÞB → SUð3ÞC occurs,
except for the range 0.2058<r<0.4611 where it is only
a local minimum due to a UFB solution; see Eq. (3.19).
Even in that range of r, the SUð3ÞC-preserving vacuum is
separated from the UFB by a barrier, making it potentially
viable despite the UFB, if the tunneling rate is acceptably
small. In any case, that range of r is included in the
following plots, for the sake of continuity. [Note that a
slight decrease in jBj would ensure that the whole range of
r would be a global minimum for the SUð3ÞC-preserving
vacuum.] In Fig. 5, I show the masses of the four gluinos
(spin-1=2 color octets), the three sgluons (real spin-0
octets), the two singlinos (spin-1=2 color singlets) and
the four spin-0 color singlets, all normalized to the vector
(coloron) mass MX. Note that large r ¼ μΦ=m1=2 corre-
sponds to the supersymmetric limit, in which one gluino is
much lighter than the other new states whose masses are
then given by Eqs. (1.14), and (3.2)–(3.5), with R ¼ 2 in
the present case, which leads toMsinglets ¼ μΦ and 3μΦ and

Moctets¼2μΦ, where μΦ ¼ yMX=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðg2Aþg2BÞ

p
≈0.808MX.

In the opposite limit of small μΦ=m1=2, the lightest of the
new particles is the pseudoscalar sgluon. This is because in
the limit of small μΦ and bϕ, the quadratic part of the scalar
potential is invariant under an approximateOð2Þ symmetry
that makes the color octet pseudoscalar almost degenerate
with the massless would-be Goldstone scalars. More
generally, everywhere along the model line there is always
at least one gluino state and one sgluon state and one
singlet scalar with mass below or close to the octet vector
boson mass.
In Fig. 6, for each of the four gluino mass eigenstates (g̃j,

j ¼ 1, 2, 3, 4, in increasing order of mass) I show the
square of the ratio of the coupling to MSSM squark/quark
pairs to the corresponding coupling that occurs in the
MSSM. This is given by jUj1gA=g3j2, in terms of the
unitary matrix U defined in Eq. (2.10) and the gauge
couplings gA and g3, governed by Eq. (1.15). The result is
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FIG. 4. Renormalization group running gaugino masses (solid
lines) and MSSM squark and slepton masses (dashed lines), as a
function of the renormalization scale Q, for the example model
defined by Eqs. (4.18)–(4.21) and (4.37)–(4.41), with vanishing
scalar masses and unified gaugino masses m1=2 at the high scale.
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that there is always a gluino mass eigenstate with coupling
to quark/squark pairs at least as large as in the MSSM, with
the ratio of couplings for the lightest gluino approaching 1
in the supersymmetric limit. However, if μΦ=m1=2 is small,
then the lightest gluino mass eigenstate is not MSSM
gauginolike and has essentially no tree-level coupling to
quark-squark pairs. The second lightest gluino state in that
regime does couple to quark-squark states, but with a strong

suppression. The MSSM-gluinolike state that has enhanced
couplings to quark/squark pairs can be up to about 1.6
times heavier than the lightest gluino state, and 1.3 times
heavier than the X vector boson. Also, in that case of small
μΦ=m1=2, the lightest new state by far is one of the sgluons;
it is possible that this would be the first new particle
discovered. In contrast, along this model line, none of the
singlinos and singlet scalars are ever much lighter than the
massive vector boson. For all values of the ratio μΦ=m1=2,
a gluino or a sgluon is the lightest of the non-MSSM states.
Of course, the above results hold for a very specific set of
assumptions about the RG boundary conditions and vector-
like supermultiplet content, but I have checked that they are
qualitatively typical at least for a (certainly nonexhaustive)
variety of modifications of the above assumptions.

V. COMMENTS ON COLLIDER
PHENOMENOLOGY

The collider phenomenologyof colorons,Dirac andmixed
Majorana/Dirac gluinos, and sgluons has already been the
subject ofmanypapers; seeRefs. [9,12–18,21,22,65,66], and
[67–73], and [74–79], respectively. A detailed discussion of
the LHC phenomenology is beyond the scope of the present
paper, but a few brief comments are in order, with emphasis
on qualitative issueswhere themodel described above differs
from the situation encountered in previous studies based on
pureDirac gluinos from supersoft and hybridmodels with an
N ¼ 2 gauge sector. In this section, the particle mass
eigenstates beyond those of the MSSM4 are denoted
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FIG. 5. The ratios of fermion and scalar masses to the mass of the color octet vector boson MX, as a function of μΦ=m1=2, for the
example model line defined by Eqs. (4.18)–(4.21) and (4.37)–(4.41). The left panel shows the masses of the gluinos (octet fermions) and
sgluons (octet scalars). The right panel shows the masses of the color-singlet scalars and fermions from theΦ and Φ̄multiplets. The right
side of each plot approaches the supersymmetric limit, with masses as discussed in Sec. III A with R ¼ 2.
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FIG. 6. The ratio of the squared magnitude of the coupling of
each gluino mass eigenstate g̃j to quark/squark pairs to the
corresponding MSSM coupling, jUj1gA=g3j2, as a function of
μΦ=m1=2, for the example model line defined by Eqs. (4.18)–
(4.21) and (4.37)–(4.41) in the text. The right side of the plot
approaches the supersymmetric limit. There is always a gluino
mass eigenstate with coupling to quark/squark pairs at least as
large as in the MSSM, with the ratio of couplings for the lightest
gluino approaching 1 in the supersymmetric limit.

4One of the g̃j corresponds to the MSSM gluino. The vector-
like quarks and leptons introduced for their renormalization
group running contributions in Sec. IVA are not discussed;
assume they are heavier.

MIXED GLUINOS AND SGLUONS FROM A NEW SUð3Þ … PHYS. REV. D 101, 035019 (2020)

035019-15



X ¼ color octet massive vector; ð5:1Þ

g̃j ¼ color octet gluinos ðj ¼ 1; 2; 3; 4Þ; ð5:2Þ

χ̃j ¼ color singlet fermion singlinos ðj ¼ 1; 2Þ; ð5:3Þ

Sj ¼ color octet real scalar sgluons ðj ¼ 1; 2; 3Þ; ð5:4Þ

φj ¼ color singlet real scalars ðj ¼ 1; 2; 3; 4Þ; ð5:5Þ

where the ordering is in increasing mass. In the example
model of the previous section, the lightest of these is either g̃1
or S1. If R-parity is conserved, then the bosons have even
R-parity and the fermions have odd R-parity.
A stringent experimental constraint comes from the fact

that the color octet vectors X (colorons) have tree-level
couplings to ordinary quarks, and so can be detected in dijet
events at hadron colliders. They have a partial width

ΓX ¼ g4A
24πðg2Aþg2BÞ

MX to each flavor of quark-antiquark pair,

but can also in principle have loop-induced decays to gluon
pairs. In particular, they can be produced singly as dijet
resonances via qq̄ → X → qq̄, resulting in the most recent
LHC bound of MX > 6.6 TeV assuming gA ¼ gB [80–85].
However, in the context of the present paper the bounds are
somewhat weaker if gA < gB, as in the example model of
the previous section. The experimental limits also assume
that the dijet decays of X dominate. If kinematically
allowed, they could also in principle decay to squark-
antisquark q̃q̃� or gluino pairs g̃jg̃k or sgluon pairs SjSk.
They could even decay to Sjφk (for a related study see [22])
or χ̃ g̃, although these are kinematically forbidden through-
out most of the example model line of the previous section.
The gluinos g̃j are pair produced in gluon-gluon and

quark-antiquark fusion, as is familiar from standard super-
symmetry. Just as in the MSSM, they can always decay to
quark-squark final states if kinematically allowed, and in
the alternative through virtual squarks to qq̄ Ñ or qq̄0C̃,
where Ñ and C̃ are ordinary neutralinos and charginos. If
kinematically allowed, they can also decay in a variety of
two-body modes at tree level, to g̃kX or χ̃kX or g̃kS or χ̃kS or

g̃kφl (if g̃k is a lighter gluino). The couplings Sg̃ g̃ and
Sg̃ χ̃ and φg̃ g̃ needed for the last three decays arise from
both supersymmetric gauge interactions (scalar-fermion-
gaugino) and the y; ȳ Yukawa couplings. As in the MSSM,
the final states of pair-produced gluino decays always lead
to at least four jets plus missing transverse energy sig-
natures, sometimes with leptons from chargino or neutra-
lino decays, and often with bottom jets from the kinematic
enhancement of lighter bottom and top squarks in the
cascade decays. As noted in the previous section, one of the
gluinos is likely to have an enhanced coupling to quark-
squark pairs compared to the MSSM, unlike the case in
models with pure or mostly Dirac gluinos. However, the
gluino with enhanced couplings may not be the lightest
gluino g̃1. In the example model of the previous section,
when g̃1 is not gauginolike and has essentially no couplings
to quark-squark pairs, it is accompanied by a much lighter
sgluon.
The sgluons S can also be pair produced in gluon-gluon

and quark-antiquark fusion, but can also be singly pro-
duced due to one-loop effective couplings. The diagrams
leading to an effective Sgg vertex are shown in Fig. 7. Here,
I note a difference compared to the sgluon models
previously analyzed in Refs. [74,75]. In those cases, the
gluino-loop contribution to the Sgg vertex (and, more
generally, the one-loop gluino-induced effective couplings
of S to any number of gluons) was found to vanish, because
the Sjg̃kg̃l vertex in the one-loop diagram was proportional
to fabc, which then requires k ≠ l, causing the effective Sgg
coupling to vanish, since the gluon couples only diagonally
to gluino mass eigenstates due to the unbroken QCD gauge
invariance. However, in the model considered in the present
paper, there are also Sjg̃kg̃k couplings proportional to the
symmetric factor dabc, both from the gauge couplings gA
and gB as can be seen from Eq. (2.7) and from the Yukawa
couplings y and ȳ as seen in Eq. (2.8). This coupling does
not vanish when inserted in the first of the loop diagrams in
Fig. 7, although there is a gluino mixing factor suppression.
There is also a contribution from sgluons in the loop, in
addition to the ordinary squarks, as seen in the second and
third diagrams of Fig. 7. Another difference from the

FIG. 7. Feynman diagrams leading to effective sgluon-gluon-gluon (top row) and sgluon-quark-antiquark (bottom row) couplings,
which provide for single production and two-body decays of sgluons.
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models analyzed in Refs. [74,75] is that massive vector
loops can contribute to the effective Sgg vertex, as shown in
the last two diagrams in the first row of Eq. (7). The SXX
vertex appearing here is proportional to dabc; it vanishes for
the pseudoscalar sgluon if CP is conserved. These effects
mean that the loop-induced Sgg vertices can be significant,
and single production of S due to gluon fusion can be larger
than considered previously.
There are also loop-induced contributions to the Sqq̄

vertex, as shown in the second row of Fig. 7, although this
effective coupling is helicity suppressed by the correspond-
ing quark mass, as in [74,75]. At tree level the sgluons
could also decay to MSSM squark-antisquark pairs if
kinematically allowed, through the coupling inherited from
the D-term contribution to the scalar potential. Other two-
body decays that can occur at tree level, if kinematically
allowed, are g̃ g̃, and χ̃ g̃, and XS, and Xφ, and φS, and SS.
The lightest sgluon mass eigenstate can therefore be

produced in gluon fusion and decay to gg (or to tt̄), leading
to a dijet signature for which LHC searches [80–85] exist.
However, signal/background interference effects can be
very large [86] for heavy scalar digluon resonances, so that
if the digluon production and decay dominate, the reso-
nance may manifest as a dip/peak or step-function invariant
mass distribution rather than a pure resonance peak. These
interference effects have not been included in the exper-
imental limits, which could be quite significantly modified
if they were taken into account.
The singlet scalars φ can likewise have loop-induced

couplings to gluon and quark antiquark. They can therefore
also be singly produced at the LHC, and would decay to jet
pairs, where the same comments just made about dijet
searches apply. If kinematically allowed, they could also
decay to g̃ g̃, χ̃ χ̃, φφ, SS, or XS final states.
The singlino fermions χ̃ from the Φ; Φ̄ supermultiplets

are a new feature of the model considered here. They have
tree-level couplings χ̃ g̃ S and χ̃ g̃ X (proportional to gauge
couplings) and χ̃ χ̃ φ (proportional to Yukawa couplings
y and ȳ), which allows for them to decay to other odd
R-parity final states, with decay chains that eventually
terminate in the MSSM lightest supersymmetric particle.
They can always decay in this way, through off-shell
intermediate states if necessary, so they are not stable
unless χ̃1 is the lightest supersymmetric particle. However,
they cannot be singly produced due to their R-parity, and
cannot even be pair produced at tree level at colliders due to
the lack of couplings to gluons or quarks. Therefore it
seems unlikely that they could be part of a discovery, unless

through the cascade decays of the other states mentioned
above. This also seems quite unlikely due to kinematics, at
least for the mass spectra along the sample model line
considered in the previous section.

VI. OUTLOOK

If supersymmetric particles exist at a multi-TeV scale, as
suggested by the tension between the big hierarchy
problem and the 125 GeV Higgs scalar boson mass, it is
sensible to consider extensions of the minimal supersym-
metric framework, including even radical ones that would
not be viable at lower mass scales. In this paper, I have
considered the possibility that the color gauge group is
extended to SUð3Þ × SUð3Þ. This symmetry breaking
pattern was shown to be easy to attain in the case of the
most general renormalizable and softly broken potential
that can be constructed using the minimal field content with
the necessary order parameters. Indeed, other possible
remnant groups of the symmetry breaking were found to
be highly disfavored. The model predicts several new color
octets of spin 1, 1=2, and 0, and new spin 1=2 and spin 0
singlets, all with masses that are presumably at multi-TeV
scales. In an example model framework motivated by
gauge coupling unification with an infrared quasifixed
point for the Yukawa couplings, gaugino-mass-dominated
supersymmetry breaking leads to weakly interacting super-
partners that are relatively light, and still could be discov-
ered at the LHC. The phenomenology of these models at
future colliders (including a high-energy LHC) will involve
multiple gluino and sgluon states, in addition to a coloron
vector boson, all of which could be lighter than the ordinary
squarks. The lightest gluino could have either enhanced or
highly suppressed couplings to quarks and squarks. The
phenomenology can differ from that found in previous
studies of Dirac and mixed gluinos and sgluons that occur
in supersoft models and models with an N ¼ 2 gauge
sector. Although not explored here, it should also be
possible to realize the same gauge symmetry breaking
pattern by introducing new singlet or octet chiral super-
fields. It is also possible to enlarge the gauge group that
breaks down to SUð3ÞC in various ways.
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