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An axionlike particle (ALP) offers a new direction in electroweak baryogenesis because the periodic
nature enables it to trigger a strong first-order phase transition insensitively to the decay constant f. For f
much above TeV, the ALP-induced electroweak phase transition is approximately described by adiabatic
processes, distinguishing our scenario for electroweak baryogenesis from the conventional ones. We show
that, coupled to the electroweak anomaly, the ALP can naturally realize spontaneous electroweak
baryogenesis to solve the matter-antimatter asymmetry problem for f in the range between about 105 and
107 GeV. In such an ALP window, the CP violation for baryogenesis is totally free from the experimental
constraints, especially from the recently improved limit on the electron electric dipole moment. Future
searches for ALPs could probe our scenario while revealing the connection between electroweak symmetry
breaking and baryogenesis.
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I. INTRODUCTION

The observed matter-antimatter asymmetry in the
Universe is one of the pieces of strong evidence for physics
beyond the Standard Model (SM). The rapid sphaleron
transitions in the symmetric phase provide a large violation
of baryon number, indicating that the baryon asymmetry
may have been generated at the electroweak (EW) epoch.
This scenario of electroweak baryogenesis (EWBG) looks
quite natural and attractive as it invokes SM baryon number
violations and is implemented at low temperatures. Viable
EWBG is achievable in an extension of the SM in which the
electroweak phase transition (EWPT) is sufficiently strong
and CP violation is large during the phase transition.
Recently, the ACME II Collaboration improved the limit

on the electric dipole moment (EDM) of the electron by
about 1 order of magnitude relative to the previous one [1].
Although there would still remain an allowed parameter
region in the conventional scenarios of EWBG, the improved
limit motivates us to consider an orthogonal direction free
from the EDM constraints. Along this direction, the EDM
is no longer a hint for EWBG, and other experimental

searches are required to probe the connection between
EWPT and baryogenesis. For example, if the electron
EDM is suppressed in a model for EWBG due to a
cancellation among different contributions, the associated
particles may exhibit a specific pattern of masses and
couplings [2]. In other models, EWBG may be related with
dark matter phenomenology ifCP violation for baryogenesis
comes from a dark sector [3]. To avoid EDM constraints, one
may instead implement EWBG at a much higher temperature
than in the conventional scenarios through tachyonic thermal
masses [4], for which EWBG yields gravitational waves of
much higher frequencies.
In Ref. [5], we have noticed that the axionic extended

Higgs sector

V ¼ VðjHj2; sinðϕ=fÞ; cosðϕ=fÞÞ ð1Þ
provides a simple example of EWBG compatible with the
electron EDM bound for f above a few TeV if the axionlike
particle (ALP) ϕ couples to the top quark Yukawa operator.
Here, H is the SM Higgs doublet, and f is the ALP decay
constant. For f above a few TeV, ALP searches at colliders
can give an interesting implication for the origin of the
matter-antimatter asymmetry [6–9]. In this scenario, f is
restricted to be below about 10 TeV because the bubble
wall gets thicker with f, suppressing the charge transport in
plasma after scattering off a propagating wall. In the
context of the standard EWBG, a thick wall seems
problematic since baryon asymmetry is mostly produced
nonlocally through the diffusion of CP asymmetry in front
of the bubble wall and the B-violating sphaleron process
active in the symmetric phase region away from the wall.
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In this paper, we extend our previous work in Ref. [5] to
explore the viability of EWBG at f much above TeVand its
connection to ALP searches. As a source of CP violation,
we consider an ALP-dependent EW theta term

αW
4π

ΘEWWaμνW̃a
μν; ð2Þ

with

ΘEW ¼ ϕ

f
: ð3Þ

The above coupling can be induced easily, for instance,
through loops of extra heavy leptons charged under the
ALP shift symmetry, ϕ → ϕþ ðconstantÞ. It turns out that
the standard nonlocal production of baryon asymmetry is
highly suppressed, but instead sizable baryon asymmetry
can be generated locally as a result of B- and CP-violating
processes occurring simultaneously near and across the
bubble wall. This way, the ALP implements so-called local
spontaneous EWBG.
During EWPT, the ALP field changes its value as

Δϕ ¼ OðfÞ, and thus the time derivative of ΘEW acts as
a source for the chemical potential of the Chern-Simons
(CS) number at a given spatial point. This leads to the
generation of baryon number through the EW anomaly:

dnB
dt

≈
Ng

2

Γsph

T
dΘEW

dt
− ΓBnB; ð4Þ

with Ng ¼ 3 being the number of generations. Here, Γsph

is the sphaleron transition rate per unit volume, and ΓB ¼
ð13Ng=4ÞΓsph=T3 is the rate of the sphaleron-induced
relaxation of baryon asymmetry [10,11].
Local spontaneous EWBG has been studied intensively

in the early stage of the development of EWBG [12–17].
However, it was noted that the CP-odd scalar in a two-
Higgs doublet model cannot give sufficient CP violation
for baryogenesis without diffusion effects [14–16]. At that
time, there was also a large uncertainty in the baryon
asymmetry estimation due to the lack of numerical under-
standing of how Γsph changes with the Higgs vacuum
expectation value. Furthermore, the realistic bubble wall is
not so thick in the usual EWBG models, for which the out-
of-equilibrium process and charge transport are quite
important and most of the baryon asymmetry is produced
ahead of the bubble wall. The situation is quite different for
EWPT triggered by the ALP because the bubble wall width
is much larger than the diffusion length scale in thermal
bath. This implies that baryogenesis occurs in the adiabatic
limit. The recent lattice calculation of the sphaleron rate
shows the dependence on temperature and the Higgs
vacuum expectation value [18].
On one hand, an EW theta term varying during EWPThas

been studied before, for instance, see Refs. [19,20], but
mostly in the context of cold baryogenesis [21]. Those
models rely on efficient production of Higgs winding

numbers, which could be achieved through a preheating
stage with an inflaton coupled the Higgs sector [21], or a
delayed first-order phase transition induced by conformal
symmetry breaking and subsequent bubble collisions
[22,23]. Such a violent environment can generate unstable
Higgs winding numbers which are large enough to decay
through the production of CP-violating CS numbers.
Another way to induce a time-dependent EW theta term is
to considerCPviolation fromanaxion anomalously coupled
to a confininghiddengaugegroup, and its transmission to the
SM via messengers [24]. Then, assuming some mechanism
for a strong first-order EWPT, EWBG would be realized in
the parameter space where the axion slowly rolls and the
messenger masses significantly change during EWPT.
In our scenario, the ALP plays the essential role in both

EWPT and baryogenesis. We also note that there is no
violent out-of-equilibrium process, and all stages of baryo-
genesis proceed nearly smoothly. This allows us to make a
concrete prediction for the baryon asymmetry while estab-
lishing an interesting and meaningful relation between
EWBG and ALP searches. We find that, feebly coupled
to the Higgs sector and EWanomaly, the ALP can naturally
solve the puzzle of the matter-antimatter asymmetry in the
Universe. Successful baryogenesis is achieved for f below
108 GeV, and the model is totally free from the EDM
constraints for f much above TeV. The viable window is
f between about 105 and 107 GeV, or equivalently the ALP
mass roughly equal to m2

W=f, i.e., in the MeV to GeV
range, once the constraints on ALP-Higgs mixing from
various experiments are imposed. Our scenario therefore
encourages experimental searches for ALPs in the indicated
window of parameter space, which would otherwise fall
short of strong theoretical interest.
This paper is organized as follows. In Sec. II, we show

that a strong first-order phase transition is achievable in the
Higgs potential modified by the ALP even in the weakly
coupled regime with f much above TeV and then discuss
essential features of the ALP-induced EWPT. In Sec. III,
we examine spontaneous EWBG naturally realized by
the ALP via its coupling to the EW anomaly. The ALP
is subject to various experimental constraints because it
mixes with the Higgs boson. We summarize the constraints
on the ALP properties in Sec. IV. Section V is devoted to
the conclusions.

II. ELECTROWEAK PHASE TRANSITION

In this section, we discuss how a strong first-order phase
transition is achieved in the Higgs potential modified by the
ALP. For an explicit model, we consider the case in which
the ALP ϕ couples to the mass squared operator of the
Higgs field H,

V ¼ λjHj4 þ μ2HðθÞjHj2 þ V0ðθÞ þ ΔVTH; ð5Þ

for θ≡ ϕ=f, with
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μ2HðθÞ ¼ μ2 −M2 cosðθ þ αÞ;
V0ðθÞ ¼ −Λ4 cos θ þ constant; ð6Þ

under the assumption that f is above the EW scale while
other mass parameters Λ, μ, andM are around or below the
EW scale. Here, α is a constant phase, and ΔVTH includes
thermal corrections. It is worth noticing that the ALP-
dependent terms are generated in a controllable way if the
ALP shift symmetry is broken solely by nonperturbative
effects [5,25].
At a temperature much below f but around or above the

EW scale, thermal corrections to V from the SM plasma are
still sizable, while those due to the ALP interactions are
suppressed by powers of T=f. This implies

ΔVTH ≃ ΔVSM
TH ðjHj2Þ; ð7Þ

where ΔVSM
TH includes thermal corrections only from the

SM particles. The thermal evolution of the scalar fields is
thus described as follows. In phase transition, the most
important role is played by the contribution of ΔVSM

TH to the
Higgs quadratic term. The thermal corrected Higgs mass
squared is approximately given by

μ2HTðθÞ ≃ μ2 −M2 cosðθ þ αÞ þ chT2; ð8Þ

for a positive coefficient ch determined by SM couplings.
For sufficiently high temperatures, μ2HT is positive for all
values of θ, making V develop a unique minimum at
ðθ; HÞ ¼ ð0; 0Þ. For M2 > μ2, it is clear that μ2HT becomes
negative in a certain range of θ if the temperature drops
sufficiently, implying that there appears an additional local
minimum at θ ≠ 0 and H ≠ 0. The two minima are
degenerate when the Universe cools down to T ¼ Tc,
and then a phase transition happens from the symmetric
phase to the broken one at a temperature below Tc. After
the phase transition, the scalar fields roll toward the true
vacuum.
For the scalar potential (5), ϕ and h form two mass

eigenstates φL and φH with temperature-dependent masses
mL and mH, respectively, where h ¼ ffiffiffi

2
p jH0j denotes the

neutral Higgs scalar. For f much above the EW scale,
the light scalar φL is mostly the ALP and has a mass,
mL ∼m2

H=f. As can be deduced from such a large mass
hierarchy, the field evolution occurs mainly along the
direction of the light ALP-like field, and the fluctuation
along the direction of the heavy Higgs-like field is quickly
damped within the timescale of order 1=mH. This feature
has been explicitly shown in Appendixes A and B. One can
thus examine the structure of phase transition within an
effective theory constructed by integrating out the heavy
Higgs field via the equation of motion

∂V
∂h

����
h¼ĥðϕÞ

¼ 0; ð9Þ

where the solution ĥ is found to be

ĥðϕÞ ≃
8<
:

0 for μ2HTðϕÞ ≥ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1

λ μ
2
HTðϕÞ

q
for μ2HTðϕÞ < 0

: ð10Þ

We note that a more precise solution is obtained if one
includes contributions from ΔVSM

TH to the Higgs cubic and
quartic terms. At a temperature at which V develops two
minima, the effect of such contributions is to make the EW
minimum deeper and farther from h ¼ 0, because thermal
corrections are Boltzmann suppressed at Higgs field
values larger than T. Therefore, with the precise solution,
one would find that the suppression of sphaleron proc-
esses in the broken phase is strengthened as preferred for
EWBG. Keeping this in mind, we take Eq. (10) as a good
approximation.
It is straightforward to see that the effective potential of

the light field reads

VeffðϕÞ ¼ Λ4ðcos θ0 − cos θÞ − λ

4
ðĥ4ðϕÞ − v40Þ; ð11Þ

where the true minimum at T ¼ 0 is located at ðθ; hÞ ¼
ðθ0; v0Þ. Figure 1 in Ref. [5] illustrates how VeffðϕÞ
changes with T and how it is projected from the full
potential VðH;ϕÞ. In what follows, we will parametrize the
potential in terms of three dimensionless parameters

α; ϵ≡
ffiffiffiffiffi
2λ

p
Λ2

M2
; r≡

ffiffiffi
2

p
Λ2ffiffiffi
λ

p
v20

; ð12Þ

by imposing the condition v0 ¼ 246 GeV and the observed
Higgs boson mass to fix λ and μ. From the scalar potential,
one finds

sin θ0 ¼
− sin αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2rϵ cos αþ r2ϵ2
p ; ð13Þ

where the overall sign of cos θ0 is fixed by the minimization
condition.
Let us briefly illustrate the procedure of a first-order

phase transition driven by the ALP. At high temperatures,
the minimum of Veff is located at θ ¼ 0 because large
thermal corrections lead to ĥðθÞ ¼ 0 in the whole range of
θ. The initial position of the ALP at a high temperature is
generally displaced from the potential minimum θ ¼ 0, but
its effect on the phase transition can be safely ignored as
long as the ALP potential is developed at a temperature
much above the weak scale. For instance, if generated by
hidden QCD [5], the ALP mass grows according to
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mϕðTÞ ∝
�
Λc

T

�
l
; ð14Þ

as the Universe cools down for T > Λc, and it reaches the
value equal to Λ2=f at T around the hidden confinement
scale Λc. Here, l ¼ ð11Nc þ NfÞ=6 − 2 and Λ4 ¼ mNΛ3

c

for a confining SUðNcÞ with Nf vectorlike quarks having
masses mN ≪ Λc. The ALP starts coherent oscillations at
T ¼ Tosc when the Hubble expansion rate becomes com-
parable to the ALP mass. Note that Tosc can be well above
the weak scale because Λc is higher than Λ. In the case with
Nc ¼ 3 and Nf ¼ 1, oscillation starts at

Tosc ≃ 25 TeV

�
Λ2=f

10 MeV

�
3=17

�
Λc

TeV

�
11=17

; ð15Þ

and its amplitude is given by

θoscðTÞ ≃ θini

�
mϕðToscÞ
mϕðTÞ

�
1=2

�
T
Tosc

�
3=2

¼ 2.7 × 10−6θini

�
T
Λc

�
3=2

�
Λc

TeV

�
20=17

; ð16Þ

since the ALP number density scales as T3 during coherent
oscillations. Here, θini is the initial misalignment angle of
the ALP. The above shows that θosc becomes negligibly
small at the time of EWPT if the hidden QCD confines at a
scale above the weak scale.
When the Universe sufficiently cools down, there

appears a region of θ with nonvanishing ĥ, which is around
θ ¼ ϵ − α. For α ≠ 0, Veff develops two degenerate minima
separated by a barrier at the critical temperature T ¼ Tc.
Then, EW bubbles of the broken phase are nucleated and
expand. The EW minimum gets deeper than the symmetric
one as T decreases, and the bubble nucleation rate per unit
volume exceeds the Hubble expansion rate at T ¼ Tn.
Finally, the potential barrier between two minima disap-
pears at T ¼ T2,

T2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r
ϵ
ðcosðθ0 þ αÞ − cos αÞ

r
TSM
c ; ð17Þ

where TSM
c ¼ ffiffiffiffiffiffiffiffiffi

λ=ch
p

v0 ≃ 150 GeV is the critical temper-
ature for the SM Higgs sector. The phase transition is thus
first order and is strong if vc=Tc > 1 with vc being the
Higgs vacuum expectation value at Tc. Interestingly, a
strong first-order phase transition is achievable even for f
much above the EW scale, i.e., in the weakly coupled limit,
which distinguishes our model from the conventional
approaches.
Figure 1 illustrates how EWPT takes place depending on

α and ϵ for the case with Λ ¼ 130 GeV, which corresponds
to r ≃ 1.1. A first-order phase transition is achieved in the
white and red regions, and it is strong in the white region.

In the region of a first-order phase transition, we also show
the constant contours of T2 by blue lines and those of Tc by
red lines. The blue region leads to an EW minimum higher
than the symmetric minimum, while the orange region is
excluded because the vacuum transition rate to the EW
minimum is highly suppressed for f above TeV due to a
barrier remaining at T ¼ 0. In the green region, the phase
transition is not first order as in the SM. We note that the
indicated lines and regions in the figure change only
slightly with f because the potential for fixed θ does not
rely on it at the tree level. Let us shortly discuss the generic
behavior for a different value of r ∝ Λ2. If one increases r,
a strong first-order phase transition occurs at smaller values
of ϵ for a given α because it requires sizable sin θ0. Thus,
the white region in Fig. 1 moves to the bottom right. In the
opposite case with a smaller value of r, it moves to the top
left. The remaining qualitative behaviors are the same as
before.
Let us examine the phase transition in more detail. The

bubble nucleation rate is given by T4e−S3=T, where S3 is the
Euclidean action of an Oð3Þ symmetric critical bubble. For
f above TeV, the contribution to S3 from Higgs kinetic
terms is highly suppressed, and tunneling occurs domi-
nantly along the ALP direction. Interestingly, combined
with the insensitivity of the scalar potential to f for given θ,
this leads to the approximate scaling laws

S3 ∝ f3; Rc ∝ f; ð18Þ

where Rc is the radius of the critical bubble. See
Appendix A for the details. At temperatures around Tn,
one can thus take an approximation,

FIG. 1. EWPT in the Higgs sector modified by the ALP for
r ¼ 1.1. A strong first-order phase transition occurs in the white
region, insensitively to the value of f. The red and blue lines show
the critical and bubble disappearing temperatures in the GeVunit,
respectively.
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S3
T

∝ ðT − T2Þnf3; ð19Þ

for a positive constant n of order unity, where we have used
that S3 ¼ 0 at T ¼ T2 because there is no potential barrier.
Thus, there are characteristic features specific to our
scenario. One is that the bubble nucleation temperature,
which is determined by S3=T ≈ 130, is close to the barrier
disappearing temperature

Tn ∼ T2; ð20Þ

where the difference between the two is suppressed by a
factor of f−3=n. Another distinctive feature is that bubbles
are formed with a thick wall roughly proportional to f, and
the phase transition proceeds rather smoothly with nucle-
ation of bubbles. This implies that the phase transition is
approximately adiabatic during baryogenesis, and diffusion
through the bubble wall is not efficient for large f.
It follows from the scaling behavior of S3 that the

duration of phase transition decreases with f as

ΔtPT ≃
6

−dðS3=TÞ=dtjTn

∝
1

f3=n
: ð21Þ

For r of order unity, a numerical analysis shows

ΔtPT ∼
10−2

H

�
1 TeV

f

�
3=n

; ð22Þ

with 1≲ n≲ 2, in the parameter region of a first-order
phase transition. Here, H is the Hubble expansion rate
at T ¼ Tn.
On the other hand, the wall width in the rest frame of a

bubble wall can be regarded as the size of the critical
bubble, and it is given by

Lw ∼

ffiffiffiffiffiffiffiffiffiffi
ΔΦ2

c

ΔVc

s
∼

f
Λ2

; ð23Þ

where ΔΦc is the field variation during tunneling and
ΔVc ∼ Λ4ðΔΦc=fÞ2 is the height of the potential barrier.
One can see that the bubble wall is thick, Lw ≳ 100=Tn, for
f above 104 GeV and Tn around 50 GeV. This corresponds
to the adiabatic regime, in which nonthermal enhancement
of baryon production is expected neither from particle
diffusion [15,16] nor the classical dynamics of fast Higgs
quenching [22].
If f is even larger to give Lw > vwΔtPT with vw being the

wall velocity, the phase transition proceeds via bubble
nucleation but without substantial expansion of bubbles.
This happens when f ≳ 106 GeV for n ¼ 1 and f ≳
108 GeV for n ¼ 2, where we have taken vw ∼ 0.1. It is
also important to note that bubble nucleation is followed by
rolling of the ALP toward the true minimum of the potential

after tunneling. The phase transition looks smooth for Tn
close to T2, but it is definitely distinguishable from a
second-order one because its large mass makes the ALP
evolve much more quickly compared to the cooling rate of
the Universe.
For a final remark in this section, we note that a singlet

scalar can play a similar role in EWPT as the ALP in our
model under certain conditions on its couplings. Let us
consider an extension with a real scalar s:

V ¼ λjHj4 þ μ2HðsÞjHj2 þ V0ðsÞ: ð24Þ

For the scalar feebly coupled to H, a first-order phase
transition is still possible if μ2H is negative in a finite range
of s and V0 is bounded from below and has a single
minimum lying in the region where μ2H is negative. Here,
V0 should not be too steep around the minimum so that the
high temperature potential can properly develop symmetric
and EW minima separated by a barrier. For a simple
example, we consider

μ2H ¼ −μ2 þ λhsðs − μsÞ2;

V0 ¼
X4
n¼1

λnμ
4−n
s sn; ð25Þ

for a positive coupling λhs ≪ 1. Under the assumption for
simplicity that V0 has a single minimum at s ¼ 0, the
conditions for a first-order phase transition read

0 < −μ2Hðs ¼ 0Þ ∼ v20;

V0ðs ¼ μsÞ − V0ðs ¼ 0Þ < μ4

4λ
∼ v40; ð26Þ

implying λhs ∼ ðv0=μsÞ2 and
P

n λn ≲ ðv0=μsÞ4. Such a
hierarchical structure of singlet couplings would indicate
some underlying symmetry. An ALP is therefore a natural
candidate because its couplings are controlled by the
associated shift symmetry. In this case, μs corresponds
to the ALP decay constant. An important feature of the
ALP extension is that one can control separately the
strength of couplings and the strength of EWPT since
the latter is insensitive to the decay constant. Furthermore,
the periodic nature allows us to avoid the instability
problem of the scalar potential independently of the details
of the model.

III. BARYOGENESIS

Coupled to the Higgs mass squared operator, the ALP
makes EWPT strongly first order in a wide range of
parameter space including the weakly coupled regime with
large f. Furthermore, its coupling to the EW anomaly
provides a sizable chemical potential for the CS number
during phase transition. As a result, the ALP naturally
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realizes spontaneous EWBG to solve the matter-antimatter
asymmetry problem.
A distinctive feature of ALP-induced EWPT is that it is

approximately adiabatic for f above 10 TeV. Then, a thick
bubble wall makes diffusion effects inefficient, implying
that nonlocal baryon production can be neglected for large
f, where the wall gets thicker proportional to f as discussed
in Sec. II. The ALP induces local baryon production by
providing a CS chemical potential. Another intriguing
feature, which will be discussed below, is that baryogenesis
proceeds almost isothermally if Tn is above about 30 GeV.
This makes the situation simple to analyze.
Let us now examine the ALP evolution during phase

transition. The ALP undergoes an underdamped oscillation
inside bubbles following the equation of motion

ϕ̈þ ð3H þϒeff
ϕ Þ _ϕþ dVeff

dϕ
¼ 0; ð27Þ

where the dot denotes a derivative with respect to time t and
ϒeff

ϕ is the effective energy transfer rate from the ALP field
to other particles and bubbles. For f above about 10 TeV,
the typical timescale characterizing the dynamics of SM
thermal plasma, which is roughly 1=ðα2sTnÞ, is much shorter
than the timescale of the field variations approximately
1=mϕ. The baryon asymmetry can then be numerically
calculated by solving Eqs. (4) and (27) as shown in Fig. 2.
On the other hand, it is also possible to analytically

understand how baryogenesis proceeds. The solution to
Eq. (4) can be written in the integral form:

nBðtÞ ¼
Z

t

0

dt0
3Γsph

2T
_θExp

�
−
Z

t

t0
dt00

39Γsph

4T3

�
: ð28Þ

It is convenient to separate the ALP evolution into two
parts, the first falling toward the potential minimum and

later oscillations. It is during the first falling that baryon
asymmetry is efficiently created while passing the region
with small v where sphalerons are active. The relaxation
of baryon asymmetry is negligible at this stage. On the
contrary, the effect of later oscillations is only to wash out
the baryon asymmetry because a cancellation occurs
between baryon and antibaryon numbers produced by
the CS chemical potential at each oscillation. Using the
fact that the first falling and later oscillations of the ALP
play different roles in baryogenesis, one can reduce the
solution of the integral form to1

nB ¼ n0e−Kϕ ; ð29Þ

in which n0 is determined by the baryon asymmetry
produced during the first falling

n0 ≃ 27α5WT
3
nΔθ; ð30Þ

and the exponential factor represents the washout during
oscillations,

Kϕ ≃
351α5WTn

2

�
Δt0 þ 2

XNosc

i¼1

Δti
�
: ð31Þ

Here, Δt0 is the duration of the first falling, and Nosc counts
the number of oscillations such that sphalerons are unsup-
pressed during ti − Δti < t < ti þ Δti around the peak of
the ith oscillation. The interval of θ where ĥðθÞ is smaller
than vcut during the first falling is estimated to be

FIG. 2. Evolutions of the Higgs background field value (left) and baryon number density (right) in the case with α ¼ 1.4, ϵ ¼ 0.95,
and r ¼ 1.1 for different values of f as indicated in the figure. Here, mϕ is the ALP mass. The Higgs background field value oscillates
about the potential minimum v ¼ vn, and sphalerons are active for v smaller than vcut. The right panel shows that baryon asymmetry is
efficiently produced during the first falling toward v ¼ vn, and then it is washed out by later oscillations if the oscillation reaches the
region with v≲ vcut.

1More generally, the ALP coupling to the EW anomaly reads
ΘEW ¼ NEWϕ=f, where an integer NEW is model dependent. We
shall take NEW ¼ 1 throughout the paper, but one can consider a
different value to enhance the baryon asymmetry.

JEONG, JUNG, and SHIN PHYS. REV. D 101, 035009 (2020)

035009-6



Δθ ≃
ϵ

r sin α
v2cut
v20

; ð32Þ

where we have used that the phaleron rate reads
Γsph ≈ 18α5WT

4 if the Higgs background field value is
smaller than vcut ≃ 0.5T, and it is exponentially sup-
pressed otherwise [18].
The correct baryon asymmetry is obtained if the ALP

evolution does not cause strong washout. Let us examine
the conditions for this. The temperature is kept near Tn
during all stages of baryogenesis, and thus one needs

vn
Tn

≳ 1; ð33Þ

which is slightly weaker than the condition for a strong
first-order phase transition illustrated in Fig. 1. Here, vn is
the Higgs vacuum expectation value at Tn. In addition, the
friction term should quickly reduce the ALP oscillation
amplitude so that the Higgs background field value

vðtÞ≡ ĥðθðtÞÞ ð34Þ

is smaller than vcut afterward. This requires

f < 108 GeV; ð35Þ

because the ALP dissipates energy into the background
plasma through interactions with SM particles induced by
scalar mixing. For f in the opposite region, bubbles do not
expand substantially during the phase transition, and so the
friction comes dominantly from thermal dissipation from
the coupling to the top quarks through the ALP-Higgs
mixing [26,27],

ϒeff
ϕ ∼

(
y2tΓthsin2δðtÞ for ytvðtÞ ≲ Γth

y2t
ðytvðtÞÞ2

Γth
sin2δðtÞ for ytvðtÞ ≳ Γth

; ð36Þ

with the thermal width Γth ≃ 0.1T determined by the top
quark Yukawa coupling yt and the QCD gauge coupling.
Here, the ALP-Higgs mixing angle δ changes with time as
vðtÞ does. See Appendix B for more discussion on the
evolution of Higgs and ALP fields including other sources
of dissipation. In the numerical analysis, we neglect the
contribution of Oðg2i Þ in the denominator. During the time
when the ALP passes the region with v larger than Tn, the
top quark decouples from thermal equilibrium, and dis-
sipation gets suppressed by the Yukawa couplings of other
light fermions. For f around and above 108 GeV, the
exponent Kϕ is larger than order unity and scales roughly
with 1=f2, and thus it corresponds to the strong washout
regime. Note that the ALP decay is highly suppressed, but
occurs well before nucleosynthesis for f below 108 GeV.

The estimation of baryon asymmetry also requires
knowing how much temperature changes during baryo-
genesis. After the phase transition, the ALP settles down to
the potential minimum, and the Universe heats up to the
temperature T ¼ Treh with Treh determined by�

Treh

Tn

�
4

≃ 1þ 0.1

�
ΔV

ð80 GeVÞ4
��

60 GeV
Tn

�
4

; ð37Þ

taking g� ¼ 100. Here, ΔV is the difference of vacuum
energy densities of the symmetric and broken phases at
Treh, and so it is a fraction of the former, Veffðθ ¼ 0Þ. The
above relation indicates that extra entropy production is
negligible, i.e.,

Treh ≃ Tn; ð38Þ

unless Tn is lower than about 30 GeV.
Finally, taking into account the effects discussed so far,

we find the baryon-to-entropy ratio to be

nB
s
≃

1

Δ
2.6ϵ × 10−10

r sin α

�
Tn

60 GeV

�
2

; ð39Þ

where we have taken g� ¼ 100 and Δ ≃ ðTreh=TnÞ3eKϕ

describes the dilution of baryon number. The above relation
shows that spontaneous EWBG induced by the ALP
can account for the observed baryon asymmetry, nB=s ≃
8.6 × 10−11, if Δ lies in the range

1 ≤ Δ≲ 10; ð40Þ

which is the case for Tn above about 30 GeV and f below
108 GeV. The dilution factor exponentially increases for
larger f or in the region with vn=Tn < 1. It should be noted
that Tn is close to T2, and the dependence of f of the
baryon asymmetry comes in through the washout factor.
Thus, in the small washout regime with Δ below about 10,
the baryon asymmetry becomes not very dependent on f.
Let us show the evolutions of relevant physical quantities

on figures. In the left panel of Fig. 2, the curves show how
the Higgs background field value evolves for f between
106 and 107 GeV in the case with

α ¼ 1.4; ϵ ¼ 0.95; r ¼ 1.1; ð41Þ

for which T2 ≃ 84 GeV. The scalar potential is asymmetric
about the minimum v ¼ vn for nonzero α and ϵ, and
sphalerons are active only in the region below the lower
horizontal dashed line, where v < vcut. One can see that the
number of relevant oscillations decreases with f. The right
panel shows the evolution of the baryon number. The
baryon number is produced at the first falling, and then is
washed out if later oscillations pass the region of rapid
sphaleron transitions.
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We close this section by examining the viable region of
parameter space for the case with

r ¼ 1.1; f ¼ 106 GeV: ð42Þ

The blue shaded region in Fig. 3 leads to the correct baryon
asymmetry, and the color gradient represents the required
value of dilution factor Δ. Note that sizable dilution is
obtained for f above 107 GeV. Here, we have used that Tn
is close to T2, which does not depend on f, and that the
region for a first-order phase transition with vn=Tn > 1
does not change much with f because VeffðθÞ relies on f
only via small radiative corrections. This also indicates that
the viable region would remain almost the same if one
considers smaller f.

IV. EXPERIMENTAL CONSTRAINTS

In this section, we summarize experimental constraints
on the ALP. The coupling to the Higgs mass squared
operator makes the ALP mix with the Higgs boson, and
thus there are various constraints depending on the mixing
angle

sin δ ≃
r2 sin θ0

2
×
v0
f
; ð43Þ

and its mass

mϕ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðsin αþ r3ϵ sin3 θ0Þ

4 sinðθ0 þ αÞ

s
×
v0mh

f
; ð44Þ

where mh ≃ 125 GeV is the Higgs boson mass. First, the
ALP is subject to the bound on the EDM because its
coupling to EW anomaly violates CP symmetry in the
presence of mixing with the Higgs boson. The electron
EDM is radiatively generated as [28]

de ≃
8e3

ð4πÞ4
me

v0

sin δ
f

ln

�
mh

mϕ

�

∼ 10−34 e cm ×

�
106 GeV

f

�
2

; ð45Þ

where me is the electron mass. If f is larger than about
5 TeV, the above contribution is below the latest exper-
imental bound from ACME II in the region of parameter
space for a strong first-order phase transition. One may
naively expect that such a large f would also suppress
CP-violating effects on baryogenesis since the ALP is
responsible for the CS chemical potential. However, as
shown in Sec. III, the baryon asymmetry is generated
depending on how rapidly ϕ=f changes during EWPT. The
ALP excursion Δϕ is of the order of αf during EWPT, and
thus spontaneous EWBG can work at f much above TeV
while being free from the EDM constraints. On the other
hand, other EWBG scenarios generally suffer from the
EDM constraints because the Higgs sector is modified by a
singlet scalar significantly coupled to it to induce a strong
first-order phase transition. For instance, another simple
candidate for a time-dependent EW theta would be ΘEW ¼
jHj2=Λ2

cut, where Λcut is the cutoff scale of the effective
coupling. Then, baryon asymmetry is produced during
phase transition according to nB ∝ v2cut=Λ2

cut in the adia-
batic limit. The correct baryon asymmetry requires Λcut
lower than 0.5 TeV if the phase transition occurs around the
EW scale. However, the latest bound on electron EDM
from ACME II excludes Λcut below about 6 × 105 GeV.
Our scenario solves the matter-antimatter asymmetry

problem while avoiding the electron EDM bound in the
weakly coupled regime with f between about 5 TeV and
108 GeV. This corresponds to the ALP mass in the range
between sub-MeV and 5 GeV, for which stringent con-
straints come from rare meson decays and also from beam-
dump ALP searches [29]. In addition, if lighter than about
20 MeV, which is roughly the supernova temperature,
ALPs can be produced in supernovae. Supernova cooling is
accelerated if the produced ALPs efficiently escape from it,
implying that the ALP-Higgs mixing should lie in a certain
range to avoid conflict with the observation.
Let us describe the experimental constraints from meson

decays in more detail. If the ALP has a mass in the range
between 2mμ and mB −mK, where mi denotes the mass of
the indicated particle, the mixing should be suppressed to
be consistent with the limit on the decay rate for B → Kϕ →
Kμþμ− obtained at Belle and LHCb [30–34]. The electron
channel, B → Kϕ → Keþe−, gives weaker constraint than

FIG. 3. Spontaneous EWBG realized by the ALP in the case
with r ¼ 1.1 and f ¼ 106 GeV. The gradient represents the relic
baryon number density normalized by the observed value. The
correct baryon asymmetry is obtained in the blue shaded region
for an appropriate dilution factor. Sizable dilution requires f
above 107 GeV, below which the baryon asymmetry becomes
insensitive to f.
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the muonic one. On the other hand, in the case with mϕ <
mK −mϕ, the mixing is constrainedmainly by rareK meson
decays. Especially, if mϕ < 2mμ, the ALP is subject to a
stringent bound imposed by the searches for invisible K
meson decays at BNL E787 and E949 experiments [35,36].
In Fig. 4, we summarize the current experimental con-

straints on the ALP properties for 1 MeV≲mϕ ≲ 5 GeV.
The dark purple and cyan regions are excluded by rare K
and Bmeson decays, respectively. The sky blue region leads
to too rapid supernova cooling, while the red region is
excluded by the beam-dumpALP searches at CHARM [37].
One can see that the viable window is

10−9 ≲ sin2 δ≲ 3 × 10−7; ð46Þ

for 1 MeV≲mϕ ≲ 0.2 GeV, while it is

Brðϕ → μþμ−Þ × sin2 δ≲ 6 × 10−7; ð47Þ

for 0.3 GeV≲mϕ ≲ 5 GeV, where Brðϕ → μþμ−Þ is the
branching ratio for the ALP decay into a muon pair. Here,
we have assumed that the ALP does not decay into hidden
sector particles. If allowed, the constraint from B meson
decays will be weakened. In our scenario, the approximate
relation

mϕ ∼mh sin δ; ð48Þ

holds between the ALP mass and mixing angle. The gray
band shows such a relation for r ¼ 1.1 in the parameter
space, 0.1 ≤ α ≤ 1.4 and 0.14 ≤ ϵ ≤ 0.8. Thus, a viable
region appears for mϕ in the MeV to GeV scale, or
equivalently f in the range between about 105 and
107 GeV. We also plot the constant contours of f on the
band by black dotted lines. It is interesting to note that the
light blue and brown regionswill be probed by experiments
at SHiP [38] and NA62, respectively.

V. CONCLUSIONS

In this paper, we have shown that an ALP provides a
simple and natural framework for EWBG in a wide range of
f owing to its periodic nature. In particular, for f much
above TeV, it offers a new direction in which the EDM and
the LHC are no longer a probe of EWBG. Instead, ALP
searches would reveal the interesting connection between
EW symmetry breaking and baryogenesis established in
our scenario. A part of the parameter space is already
constrained by the existing results from ALP searches.
The ALP triggers a strong first-order phase transition

insensitively to the value of f and leads to the adiabatic
regime at f above 10 TeV, where thick bubble walls prevent
nonlocal baryon production from particle diffusion.
Nonetheless, coupled to the EW anomaly, the ALP can
naturally realize local spontaneous EWBG to solve thematter-
antimatter asymmetry problem for f below 108 GeV while
avoiding strong washout. Interestingly, the phase transition
occurs smoothly because the bubble nucleation temperature
is close to the bubble disappearing temperature, and baryo-
genesis proceeds almost isothermally.
Using that the ALP-Higgs mixing is constrained by

various experiments, we find the viable window to be f
from about 105 to 107 GeV, which corresponds to ALP
mass in the MeV to GeV scale. In such a weakly coupled
regime, our scenario is completely safe not only from the
EDM constraints, especially from the bound on the electron
EDM recently improved by ACME II, but also from Higgs
precision measurements. These are the features distinguish-
able from the conventional scenarios of EWBG. The
indicated ALP window, which has suffered from the lack
of strong theoretical interest, could be probed in future
beam-dump experiments such as SHiP.
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FIG. 4. Experimental constraints on the ALP properties from
rare meson decays, supernova cooling, and beam-dump ALP
searches [29]. Here, δ is the ALP-Higgs mixing angle, and the
ALP is assumed not to decay into hidden particles. The light blue
and purple regions will be reached in future experiments. The
gray band shows the relation between the ALP mass and mixing
for r ¼ 1.1 by taking 0.1 ≤ α ≤ 1.4 and 0.14 ≤ ϵ ≤ 0.8. The
black dotted lines on the band are the contours of f.
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APPENDIX A: BOUNCE SOLUTION

In this Appendix, we analyze the structure of the bounce
solution in more detail and discuss how the tunneling
proceeds. The Higgs and ALP fields are fixed at the
symmetric false vacuum, ðϕ; hÞ ¼ ð0; 0Þ, at high temper-
atures. As temperature drops, the potential develops a new
minimum at ðϕ; hÞ ≠ ð0; 0Þ, and the false vacuum can
decay via nucleation of critical bubbles of the broken phase
if it has a higher free energy than the EW vacuum. The
nucleation rate per unit volume is

Γ ∝ T4e−S3=T; ðA1Þ

where the Euclidean action for the bounce is given by

S3 ¼ 4π

Z
∞

0

drr2
�
1

2

�
dh
dr

�
2

þ 1

2

�
dϕ
dr

�
2

þ V

�
; ðA2Þ

for the scalar potential V at a temperature T. Here, we have
set V ¼ 0 at the symmetric vacuum. The bounce field
configuration can be found from

d2φ
dr2

þ 2

r
dφ
dr

¼ ∂φV; ðA3Þ

under the boundary conditions, dφ=dr ¼ 0 at r ¼ 0 and
φ ¼ 0 at r ¼ ∞, where φ ¼ fϕ; hg.
It is usually the case that one needs to take numerical

calculations to find the bounce solution. However, in our
scenario, a large f allows an analytic approach because
bubble nucleation occurs mostly along the light field
direction and the potential is insensitive to f for a given
θ, where θ ¼ ϕ=f. This feature becomes transparent when
the action is written in the form

S3 ¼ 4πf3
Z

∞

0

dxx2
�
h02

2f2
þ θ02

2
þ Vðh; θÞ

�
; ðA4Þ

where x≡ r=f and the prime is the derivative with respect
to x. The equations of motion then read

1

f2

�
h00 þ 2

x
h0
�

¼ ∂hV;

θ00 þ 2

x
θ0 ¼ ∂θV: ðA5Þ

For the potential (5), field variations over the critical bubble
are roughly given by Δh ∼ Λ and Δθ ∼ α. Using the
equation of motion for θ, one can estimate the size of
the bubble to be Δx ∼ 1=Λ2 because the insensitivity of
Vðh; θÞ to f implies

Δθ∂θV ∼ αΛ4: ðA6Þ

Combined with these relations, the equation of motion for h
leads to

Δh∂hV ∼
�
Λ
f

�
2

Λ4: ðA7Þ

Therefore, for Λ ≪ f, the Higgs trajectory for the bounce is
effectively fixed by ∂hV ¼ 0, making the ALP feel a
potential along it. This justifies why the tunneling can
be examined within the effective theory of the light ALP
constructed by integrating out the heavy field h,

S3 ≃ 4πf3
Z

∞

0

dx x2
�
θ02

2
þ VeffðθÞ

�
; ðA8Þ

where VeffðθÞ ¼ VðĥðθÞ; θÞ for the Higgs field value h ¼
ĥðθÞ satisfying ∂hV ¼ 0. The bounce solution is obtained
from

θ00 þ 2

x
θ0 ¼ ∂θVeff ; ðA9Þ

under the boundary conditions, θ0 ¼ 0 at x ¼ 0 and θ ¼ 0
at x ¼ ∞. Note that the equation of motion is independent
of f, implying S3 ∝ f3 for a given temperature.
Bubble nucleation happens within a Hubble time if

S3=T ≲ 140. In our scheme, because of the large prefactor
f3 in S3, the nucleation starts when the Universe cools
down close to T ¼ T2 so that the barrier of the potential is
low enough. Here, T2 is the temperature at which the
barrier between minima of Veff disappears. At a temper-
ature near T2, the effective potential around θ ¼ 0 can be
approximated as

2Veff

Λ4
¼

�
θ2 þOðθ4Þ for θ > −θ�
θ2 − κ2ðθ þ θ�Þ2 þOðθ3Þ for θ < −θ�

ðA10Þ

for κ and θ� depending on T and the model parameters.
Here, κ is larger than unity, and θ� is small and proportional
to ðT=T2 − 1Þ sin α. It then follows that the curvature of the
potential changes sign at θ ¼ −θ�. For T > T2, one also
finds that Veff ¼ 0 at θ ¼ 0 and θ ¼ −κθ�=ðκ − 1Þ, and
there is a potential barrier lying between the two points.
Let us now examine the bounce solution, which relies on

the potential shape between the two points giving Veff ¼ 0
at T > T2. The equation of motion can be solved analyti-
cally because ∂hVeff is approximately linear in θ in the
relevant region. Introducing a dimensionless variable for
simplicity

ρ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − 1

p
Λ2x; ðA11Þ

we find that the solution is written
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θ̃≡ θ

θ�
≃

8>>><
>>>:

κ2

κ2−1 þ c1
sin ρ
ρ for ρ < ρ0

1 for ρ ¼ ρ0

c2
expð−ρ=

ffiffiffiffiffiffiffi
κ2−1

p
Þ

ρ for ρ > ρ0

; ðA12Þ

where the coefficients c1 and c2 are given by

c1 ¼
κ2ðρ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − 1

p
Þ

ðκ2 − 1Þð
ffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − 1

p
cos ρ0 þ sin ρ0Þ

;

c2 ¼
κ2 expð ρ0ffiffiffiffiffiffiffi

κ2−1
p Þðρ0 cos ρ0 − sin ρ0Þ

ðκ2 − 1Þ cos ρ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − 1

p
sin ρ0

; ðA13Þ

which follows from the fact that θ and its derivative are
continuous at ρ ¼ ρ0 with ρ0 fixed by the condition

κ2ðρ0 cos ρ0 − sin ρ0Þ
ðκ2 − 1Þρ0 cos ρ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − 1

p
ρ0 sin ρ0

¼ 1: ðA14Þ

Note that ρ0 is about 1.43π in the limit κ → 1, and it
monotonically decreases with κ while approaching to π.
For instance, ρ0 ≃ 1.18π at κ ¼ ffiffiffi

2
p

.
Figure 5 illustrates the profile of θ̃ as a function of ρ.

As one can see in the figure, the critical bubble has a thick
wall because the field varies smoothly within the bubble
of radius

Rc ¼
fffiffiffiffiffiffiffiffiffiffiffiffi

κ2 − 1
p

Λ2
ρ0 ∼

πffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − 1

p f
Λ2

: ðA15Þ

The radius of the critical bubble in the real space can be
regarded as the bubble wall width Lw in the rest frame of
the expanding bubble wall, i.e., Lw ∼ Rc.
Finally, using the results obtained so far, one can

estimate the bounce exponent around T ¼ T2 to be

S3
T

≃ cðκÞ 4πf
3θ2�

T2Λ2
; ðA16Þ

where cðκÞ is numerically calculable for a given κ, which
is typically of order unity. For instance, cð ffiffiffi

2
p Þ ≃ 23,

cð2 ffiffiffi
2

p Þ ≃ 1.5 and cð7Þ ≃ 0.33. It is important to notify

that S3=T is proportional to ðT − T2Þ2f3 because
θ� ∝ ðT=T2 − 1Þ. Thus, in Eq. (19), n is equal to 2.

APPENDIX B: RESIDUAL FIELD OSCILLATIONS
INSIDE A BUBBLE

The EW vacuum ðϕ; hÞ ¼ ðϕT; vTÞ at T, which is
determined by ∂ϕV ¼ ∂hV ¼ 0, has

−αf ≲ ϕT < 0; 0 < vT ≲ Λ ðB1Þ
and becomes the true vacuum when T drops down below
the critical temperature. Just after a critical bubble is
formed at the nucleation temperature T ¼ Tn, the Higgs
and ALP fields take values

ϕðtnÞ ∼ θ�ðtnÞf and hðtnÞ ≪ vT; ðB2Þ
inside the bubble, and they are initially located far from the
true vacuum. Here, we have used the fact that θ�ðtnÞ is
much smaller than α in size because θ� is proportional to
ðT=T2 − 1Þ sin α and Tn is close to T2. Therefore, as the
bubble expands, the fields classically roll toward the true
vacuum while oscillating about it. Their evolution can be
understood by looking deep inside the bubble, where the
effect of spatial gradients are small. For a timescale much
shorter than the Hubble time, the field evolution can be
approximated by

ḧþϒh
_hþ ∂hV ¼ 0;

ϕ̈þϒϕ
_ϕþ ∂ϕV ¼ 0; ðB3Þ

where the thermal dissipation rate ϒh is determined by
Higgs interactions to the background thermal plasma
especially from top quark contribution [27],

ϒh ∼

(
y2tΓth for yth≲ Γth

y2t
ðythÞ2
Γth

for yth≳ Γth

; ðB4Þ

which includes an uncertainty of order unity due to the
complicated dispersion relation for the top quark [26]. Note
also that the weak gauge bosons give important contribu-
tions when the Higgs background field value h is sizable.
On the other hand, the anomalous coupling in Eq. (2) acts
as a friction term, dissipating the ALP energy nonpertur-
batively with [18,39,40]

ϒϕ ¼ Γsph

Tf2
∼ 10−6

T3

f2
; ðB5Þ

for T > Esph, and

ϒϕ ∼ 10−5
T3

f2

�
2mW

αWT

�
7

e−
Esph
T ; ðB6Þ

for T < Esph, where the mass of the weak gauge boson and
the sphaleron energy depend on the Higgs background field

FIG. 5. Bounce solution for κ ¼ ffiffiffi
2

p
(red) and 2

ffiffiffi
2

p
(blue).
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value as mW ¼ gh=2 and Esph ≃ 4πh=g, respectively. The
trilinear ALP-Higgs-Higgs coupling can also give a sizable
contribution to ϒϕ during the period when the Higgs boson
mass is comparable to or smaller than the temperature.
Subject to large thermal friction, the Higgs field is

expected to be quickly frozen to the vacuum value vT
within a timescale 1=ϒh ∼ 1=T. However, there is a
residual oscillation induced by its mixing with the ALP,
which is sizable even for a tiny mixing because the ALP
has a large field excursion during its evolution. To examine
qualitatively the field evolution, we take a quadratic
approximation of the potential around the true vacuum

V ≃
m2

L

2
φ2
L þm2

H

2
φ2
H; ðB7Þ

for the light and heavy mass eigenstates given by

φL ¼ Δϕ cos δþ Δh sin δ;

φR ¼ Δh cos δ − Δϕ sin δ; ðB8Þ

which respectively have masses mL ≃mϕ ∼ Λ2=f and
mH ≃mh ∼ Λ at a given temperature. Here, Δh≡ h − vT
and Δϕ≡ ϕ − ϕT are the displacements from the true
vacuum, and the mixing angle is roughly given by
sin δ ∼mϕ=mh. It is straightforward to obtain the equations
of motion in the canonical basis

�
d2

dt2
þϒh sin2 δ

d
dt

þm2
L

�
φL ≃ −

sin 2δ
2

ϒh _φH;�
d2

dt2
þϒh cos2 δ

d
dt

þm2
H

�
φH ≃ −

sin 2δ
2

ϒh _φL; ðB9Þ

with the initial conditions

φLðtiÞ ≃ −ϕT cos δ − vT sin δ ∼ f;

φHðtiÞ ≃ −vT cos δþ ϕT sin δ ∼ −Λ: ðB10Þ

Here, we have ignored the effect of the anomalous coupling
on the motion of φL because ϒϕ, which is smaller than
about 10−6T3=f2, is much suppressed compared to the
mixing-induced friction term ϒh sin2 δ ∼ Tv2=f2 in the
whole range of h we are interested in. In the equation of

motion for the heavy field φH, the term proportional to _φL

is much smaller than Λ3 in size and so can be neglected
until φH gets close to its vacuum value. The thermal friction
term thus quickly freezes φH to the vacuum value within
a timescale 1=T. For a timescale much shorter than the
Hubble time, the solutions are approximated to be

φL ≈ ϕTe−δ
2ϒht=2 cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − δ4ϒ2
h

q
tþ βL

�
;

φH ≈ vTe−ϒht=2 cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h −ϒ2
h

q
tþ βH

�
; ðB11Þ

at temperatures below Tn, where βL and βH are constant
phases. We have numerically confirmed the above
approximations. Note also that the Higgs field evolves
according to

hðtÞ ≈ vT − ϕT sin δ × e−δ
2ϒht=2 cosðmϕtþ βLÞ; ðB12Þ

which follows from Δh ≃ φL sin δ for t ≫ 1=T. Because
ϕT sin δ ∼ Λ, the residual oscillation of the Higgs field
can be sizable for a timescale less than about 1=ðδ2TÞ.
Figure 2, which is obtained via a numerical calculation,
illustrates such a feature.
The results above can be understood more easily by

replacing the heavy Higgs field h with ĥðϕÞ because the
rapid damping φH → 0 means ∂V=∂h → 0 for a given
value of ϕ. In such constructed effective theory, the ALP
oscillates about the true minimum ϕ ¼ ϕT after tunneling,
and accordingly, the Higgs background field value changes
because it is given by vðtÞ ¼ ĥðϕðtÞÞ. Note also that the
ALP effectively couples to SM particles with a coupling
proportional to ∂ĥ=∂ϕjϕT

, and thus its oscillating energy is
thermally dissipated.
For a final remark, we note that the real situation is more

complicated because the mixing angle is field dependent,
and self-interactions during bubble expansion are also
important. Our point here is that there can be sizable
Higgs oscillations, which would then wash out the baryon
asymmetry. In the analysis, we have taken into account
such effects to obtain a conservative estimation of the final
baryon abundance.
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