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Spontaneously breaking non-Abelian gauge symmetry
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We generalize our previous formulation of gauge-invariant P7 -symmetric field theories to include
models with non-Abelian symmetries and discuss the extension to such models of the Englert-Brout-Higgs-
Kibble mechanism for generating masses for vector bosons. As in the Abelian case, the non-Abelian gauge
fields are coupled to nonconserved currents. We present a consistent scheme for gauge fixing,
demonstrating Becchi-Rouet-Stora-Tyutin invariance, and show that the particle spectrum and interactions
are gauge invariant. We exhibit the masses that gauge bosons in the simplest two-doublet SU(2) x U(1)
model acquire when certain scalar fields develop vacuum expectation values: they and scalar masses
depend quartically on the non-Hermitian mass parameter p. The bosonic mass spectrum differs
substantially from that in a Hermitian two-doublet model. This non-Hermitian extension of the Standard
Model opens a new direction for particle model building, with distinctive predictions to be explored further.
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I. INTRODUCTION

Recent years have seen increasing interest in quantum-
mechanical models with non-Hermitian, PP7 -symmetric
Hamiltonians [1-3], which have been shown to possess
real energy spectra that are bounded below, and have
extensive applications in photonics and other fields [4-6].
This interest has extended to P7 -symmetric quantum field
theories with non-Hermitian Lagrangians, such as a scalar
field theory with an i¢)® interaction [7—10], which has been
shown to possess a physically meaningful effective poten-
tial, a P7 -symmetric —¢* scalar field theory [11], and a
fermionic model with a non-Hermitian mass term «yysy
that is unitary and has a conserved current [12,13]. Such
non-Hermitian quantum field theories have been applied to
describe neutrino masses and oscillations [14—17] (for a
similar lattice fermion model, see Ref. [18]), and have also
been considered in connection with dark matter [19] and
decays of the Higgs boson [20]. We also note that effective
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non-Hermitian Hamiltonians can also be used to describe
unstable systems with particle mixing [21].

The formulation of P7 -symmetric quantum field theo-
ries was extended in Refs. [15,22] to include an Abelian
gauge symmetry. A particularity of this formulation is that
the gauge field is coupled to a nonconserved current. The
next step was to study spontaneous symmetry breaking and
the Goldstone theorem [23—-25] in a non-Hermitian, P7 -
symmetric quantum field theory, which was done in
Ref. [26] (cf. the alternative approach of Refs. [27,28]),
where we exhibited a specific example with two complex
scalar fields and a non-Hermitian bilinear scalar coupling
u?, in which there is a massless boson at both the tree and
one-loop levels." We note that physical observables depend
only on x* and are therefore independent of the ambiguity
in the sign of x? that arises from the non-Hermiticity of the
model. We subsequently explored in Ref. [29] the PT7 -
symmetric extension of the Englert-Brout-Higgs mecha-
nism [30,31] for generating a mass for the Abelian gauge
boson in a manner consistent with renormalizability of the
quantum field theory. For a summary of these works,
see Ref. [32].

In this paper, we further develop the formulation of P7 -
symmetric gauge theories to include a non-Abelian gauge
symmetry and Kibble’s non-Abelian generalization [33] of
the Englert-Brout-Higgs mechanism. We study a minimal

"The behaviors of Goldstone modes in different phases of P7°
symmetry have also been studied in Ref. [28].
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extension of the model considered in Refs. [26,29] that
contains two complex scalar doublets and admits the same
SU(2) x U(1) gauge symmetry as the Standard Model.
We show how the gauge can be fixed in a consistent
manner and demonstrate Becchi-Rouet-Stora-Tyutin (BRST)
invariance [34]. We explore the scalar vacuum expectation
values (VEVs) and tree-level spectra of the gauge and scalar
boson masses in a simple version of the model with a single
quartic coupling. They depend quartically on the non-
Hermitian coupling x> and differ significantly from the
masses in the conventional Hermitian two-Higgs-doublet
model (2HDM, see Ref. [35]). Thus, this non-Hermitian
extension of the Standard Model offers prospects for dis-
tinctive experimental predictions that may be explored further
in a systematic program of P7 -symmetric phenomenology.

II. SCALAR LAGRANGIAN

In this section, we extend the non-Hermitian model of
Ref. [22] to include two complex scalar doublets, giving the
non-Hermitian 2HDM on which we base the discussion
of non-Abelian gauge symmetry and its breaking in the
next section.

A. Lagrangian

Here we follow similar steps to those described in
Ref. [22], starting with the Lagrangian

L = 0,00, + 0,0,0°0, — m}|®, > — m3|d, >
; ; K
— 1A (®] @, — DID,) _4_1|(D1|4’ (1)
where ®; are complex doublets
(I),-z(d)i”), i=12, (2)
bip

and u is a non-Hermitian mass parameter. This system
is invariant under P7 symmetry, acting on the c-number
fields as

PT: @(t,x) > D) (—t,—x) = Dj(t,x),
Dy (t,x) » Dy (—t,—x) = —D5(r,x), (3)
under which ®; is a scalar doublet whereas ®, is a

pseudoscalar doublet. The eigenvalues of the squared mass
matrix

2 2 1
My =T - B -t ()
are real provided the following inequality holds:

; (5)

2

2| < |mf—m

which is assumed throughout the first two sections of this
work. Note that the eigenvalues become degenerate at
|u?| = |m3 — m3|/2. This marks the exceptional point,
which lies at the boundary between the regions of unbroken
and broken P7 symmetry. At this point, the squared mass
matrix becomes defective and we lose an eigenvector. We
discuss these exceptional points further in Sec. IV D.

Because of the non-Hermitian mass term proportional
to u?, the equations of motion one obtains by varying the
action with respect to ®; or to dﬁ are not equivalent for
nontrivial solutions, i.e.,

oS oL oL

5 oL oL
—= o 80, =
5o 0o “9(0,®))

50, 00, 90,9,
(6)

These two sets of equations of motion are related by P7°
symmetry though or, equivalently, by a change in the sign
of u?. As can be seen from the eigenvalues (4), observables
depend on y* only, so these two sets of equations of motion
are physically equivalent. This is also valid at the quantum
level (see Ref. [29]), as can be derived from the reality of
the partition function, provided the sources for the scalar
fields satisfy appropriate P7 properties.

We choose here the equations of motion provided by the

variation of the action with respect to <I>j:

0 =00, +mi®; + p*®, + g @ [*®;,  (7a)
0 = 0D, + mi®, — p*®,, (7b)
together with their Hermitian conjugates
0 = 00! + m®] + 42} +§\CD]|2(I>T, (8a)
0 = O®) + mi®) — 2o, (8b)

We note that this formulation differs from that suggested in
Ref. [27], where the author introduced a similarity trans-
formation that transforms the non-Hermitian Lagrangian £
to a Hermitian one L'. The difference in approach is
reflected in differences in the masses of the gauge fields,
which we discuss in Sec. IV D.

B. Conserved currents

The Lagrangian (1) is invariant under the U(1) trans-
formations

(I)l - e_i%ﬂoq)l, (93)

D, — e‘i%ﬂod)z, (9b)
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which correspond to the current

/
1% = i (0] (0°®;) - (0] )]

+[@}(9°®,) — (9°D;)Ps)) (10)

and also invariant under the SU(2) transformations

@, - P, (11a)
®, —» P, (11b)
which correspond to the current
Tt = i ([@]7(0"®,) - (0] )7
+ [@37(8°D,) — (0"D3)7D,)), (12)

where 7 = (7, 7,,73) is composed of the Pauli matrices.
The equations of motion (7) show, however, that these
currents are not conserved,

Dol = ig 1 (DJD) — B D,), (13a)

DoJ = ign? (@0, — 70,),  (13b)
except at the Hermitian point x> = 0. The fact that
symmetries of the Lagrangian do not correspond to con-
served currents for non-Hermitian theories is a direct
consequence of the fact that the two functional variations
in Eq. (6) cannot vanish simultaneously for nontrivial
solutions. Instead, a careful treatment of Noether’s original
derivation [36] shows that there still exist conserved
currents for non-Hermitian theories, but these correspond
to transformations that do not leave the Lagrangian
invariant [22] (see also Ref. [37] for a summary).

In the present model, we find that the conserved currents
are, in fact,

/

19 = i ([0} (")) - (@)@

— [@}(8°®,) — (9°®})D,)), (14a)
Jr = ig ([@]7(0°®,) — (0°®])7®,]

— [@]7(0°®,) — (0°®))7®,)), (14b)

Liin = [De®,]'D*®| + [D,D,]' D*®,

which correspond to the following transformations:

D, - e"%ﬁﬂbl, (15a)

D, - e*"%ﬂo(l)z, (15b)
and

®, - e PiD,, (16a)

D, > "D, (16b)

The relative sign between the charge assignments of the
two fields reflects the usual interpretation of viable P7 -
symmetric theories as systems with coupled gain and loss.

III. GAUGING THE SCALAR MODEL

Since the conserved currents do not correspond to the
usual Noether currents, gauging the model (1) is nontrivial,
as we describe in this section, generalizing the approach
taken in Ref. [29] to the non-Abelian case. We refer to the
nonconserved currents corresponding to symmetries of the
Lagrangian as Noether currents, but note that the conserved
currents are in fact those consistent with Noether’s original
derivation (see Ref. [22]).

A. Coupling to the Noether currents
We introduce an Abelian gauge field B* and an SU(2)

gauge field W?, together with the SU(2) x U(1) gauge
transformations

D; - e‘i%ﬁue_i%ﬁ'?q)i’ (172)
W W g x W)+ 0 = W+ DG, (170)
BY — B 4 aaﬁo’ (17C)

where D”’ﬁ = aa/? - g(ﬁ/a X ,E) In order to write a gauge-
invariant theory, one should couple the gauge fields to
the Noether currents, such that the scalar kinetic terms are
given by

= 0,9]0°®; + 0,0}, + %&}DT (¢B* + g7 - W*)®; — %dﬂ (¢B* + g7 - W*)0,®; + %80,@3(9’8“ + g7 W)@,

J o a 1 RS 1 R
S OYGB + g7 W0, 4 Dl(gB + g7 WYy + L Bh(gB + g7 W)y, (18)
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where D, is given by the usual minimal-coupling prescription, i.e.,

ig i9 - a
Da(bi = a"CI)i + 78{1®i + E [T . W ](Dl (19)

As in the Standard Model, we rotate the gauge fields as
B* = cos OwA* — sin Oy Z°, (20a)

we WaT we — Wa’r
W = LR W4 = sin OwA® + cos Oy Z%, ~ W4 = iT

V2

(where Oy, is the weak mixing angle) to obtain
4 J(l + l'J(l J{l — l'J(l
Lign = 0,D10°D, + §,D,0°0, — W, {%} - W {%

2
— AGJ% sin Oy + 1% cos O] + % Wiwa(|®, > + |@,)?)

(20b)

] — Z,[J% 5 c08 Oy — 14 sin Oy/]

1
+ ZZ(,Z”ZQDZT([g’ZsinzGW + g?cos?Oy |1 — 294 cos Oy, sin Oy 13)D;

1
+ ZAaA“ZCD,T([g’ZCOSZHW + ¢*sinOw ]l + 2g¢ cos Oy, sin O3 )D;

1

1
+7Z,A%Y D[ ([(¢? — g?) sin 260yl + 294 cos 20y3])P;
i

4
| . T+ i1 T —iTy
= OwAY —sinOyZ?)Y O ( W, |——=2| + W, ®,. 21
+2_gg(COS W Sin Ow )ZI: 1( a|: \/§ :|+ (l|: \/z i ( )
Also as in the Standard Model, the Lagrangian for the B. Consistent field equations

gauge fields is Since the gauge fields are coupled to currents that are not

conserved, additional terms need to be added to the
I _ l W WP _l B .B% Lagrangian in order to have consistent field equations
gauge — aff aff e .

4 4 [29]. For this, it is enough to consider the usual gauge-
fixing terms, which must be added to the classical
equations of motion in the non-Hermitian case (not just
at the quantum level in order to define the path integral, as
with in the Hermitian case). The gauge-fixing terms in the

1 1 1
_ o o 1 o
= —ZFaﬂF —Zzaﬂz P —Ewaﬂw b (22)

Lagrangian involve ghost fields 7 and ﬁ, taking the form
u_}/aﬂ = 3ﬂﬁ/a - aaWﬁ + Q(Wa X Wﬁ)v (233)

B, 1 .y
Lo =040 D7) =5 [(0.B)* + |0, W*?]

Bys = 0pBy — 04By, (23b) 28
=07 ([07 + ig(sinOwA* + cosOwZ*) |y —igWn3)
Wap = [0p + ig(sinOwAy + cos OwZy) W, +0,7([0% — ig(sinOwA* + cos O Z%) |y +igW* n3)
— [aa —+ lg(sm HWA(, -+ cos GWZ(,)]Wﬁ, (230) +aa’7]3 (aans + l.g[Wa)(+ _ Wa')‘)(])
1
S a\2 )2 al2
Fop = Opg — D,A + igsin Oy [WLW, — Wiw,],  (23d) 22 1(0aA%)"+(0a27)"+2{0.W[, (24)

Zyp = 0pZy— 0uZ + igeos O [WEWs = WiW, ] (23e) 1o
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=

7 1~ i ;(Em_i’h

V2 V2
The equations of motion for the full Lagrangian are then
given by

(25)

K
0= D,D®| + mi®, + u’®, + 5 |®,|?®,, (26a)
0= D(lDaq)z + m%(bz - ﬂzq)l, (26b)
“ba et 1 g = —
0=D,W" + 7% - Eaaaﬁw,, — (07 x 7). (26¢)
1
0 — 8ﬂBﬁa + Ii - E(‘?a@ﬂBﬂ, (26d)
0 = 0,D“q, (26e)
0 = D, 0. (26f)
together with their Hermitian conjugates, where
72 = 1% ([0} (De®,) - (DD, ) @
¢ =i (](D°®)) - (D)) )]
+ [0}(D*®,) — (D"®,) ), (27a)
Fa -9 2( DA a =
T = li([‘b;f(D @) - (D*®,) 7]
+ [@17(D*®,) — (D*®,) 7D,]). (27b)

Taking into account the current divergences (13), the
derivatives of the above equations of motion lead to the
constraints

1 - o o = -
ED(,aaaﬂWﬂ = ig? (D7D, — ®|7®,) — g0 X D, i,

(28a)

1 N .

EDa/’Bﬂ = ig u* (DJD, — D] D,), (28b)
which must be satisfied in order for the field equations to
be consistent. As explained in the next subsection, BRST

symmetry allows one to write the latter constraints inde-
pendently of the ghost fields as

1 ool e i
ED(la(laﬁW/} = T (q)ZTq)l - ¢lfq)2), (293)

1 , . .
Ema/’Bﬂ = ig u* (DLD, — D] D,). (29b)

We can summarize our approach as follows. In order to
respect gauge invariance, we need to couple the gauge

fields to the Noether currents. However, because these
currents are not conserved, we need to introduce gauge-
fixing terms, which restrict gauge invariance, but imply
consistent field equations. The residual gauge invariance is
enough to ensure that gauge fields remain massless in the
absence of spontaneous symmetry breaking (SSB), and it is

defined by the gauge functions f, E satisfying

8,D%f =0, (30a)

B, = 0. (30b)

We therefore obtain a consistent gauge theory with a non-
Hermitian scalar sector, as in the Abelian case [29].

C. BRST transformation

In this subsection, we derive the gauge constraint (29) for

Wﬂ using the BRST transformation, which is a residual
symmetry of the Lagrangian after gauge fixing. In order to

define it, one can introduce an auxiliary field T to write the
gauge-fixing Lagrangian (24) in the alternative form

1
2¢

and the original Lagrangian (24) can be recovered after

EGanaﬁ'Daﬁ+§|f|2_f'aawa_ <8aBa)2’ (31)

integrating out T. The BRST transformations are defined as

6 = =i 50 ). (322)

SW* = 6D, (32b)

5B =0, (32¢)

i = —0T, (32d)
_Ypn =

o1 = 5 677 % 17) (32¢)

5T =0, (32f)

where 6 is an infinitesimal Grassmann parameter. The
gauge-invariant terms (18) and (22) in the Lagrangian are
invariant under the BRST transformation, and the gauge-
fixing Lagrangian (31) transforms as a total derivative, so
the action is invariant under this BRST transformation.

Using the auxiliary field T, the equation of motion (26¢) for
the gauge field W* can be written in the form

0=DyW"™ + 7% - 0°T — g0 x i), (33)

and a covariant derivative leads to
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DT = igu? (D70, — ®IZ®,) — g7 x Dyij.  (34)

A BRST transformation of Eq. (26f) leads to the
relation

0 = 8(Da0"i7) = =0(D, 0T — gd,ii x Dif), (35)

so that
D,0°T = g, x D", (36)
which, together with Eq. (34), leads to
=g -
Daa"’T = T ((I)ZT(DI —_ ¢1T(I)2). (37)

Since, from the equations of motion for 7", one finds

1 -

T =-9,W° (38)
¢
one finally obtains the expected constraint
1 a Hf T lgﬂz T T2
EDaa 8 W/} = T((DZT(DI - (leq)z), (39)

which, unlike Eq. (28a), is independent of the ghost fields.

For further discussions of BRST (and anti-BRST)
symmetries in the context of non-Hermitian field theories,
see Ref. [38].

IV. SPONTANEOUS SYMMETRY BREAKING

SSB is possible if the sign of m? in the Lagrangian (1)
is changed, and here we study the corresponding scalar
vacuum expectation values and vector masses.

A. Vacuum expectation value

With this change of sign, the Lagrangian (1) has a
symmetry-breaking vacuum that is given by

K

@0 =mi =1 (40a)
2
(®y) = —(Py), (40b)
m;
which is physical as long as
mim3 > u*. (41)

The vacuum is defined up to a SU(2) x U(1) transforma-
tion, and it can be chosen so that

w=(0) w2

(43)

With this choice, the vacuum expectation value is unbroken
by the transformation

y eiebo ()
(@) = e ) (@) = 0 1 (®;) = (D)),

(44)
such that the Abelian subgroup of SU(2) x U(1) generated
by o =1+ 73 remains unbroken. This subgroup corre-
sponds to the electromagnetic interaction, with Noether
current
a ie o gyt
0" = 5[‘1)16(8 ®;) - (0"®})od]
ie o a gyt
+ 2 [@36(0°®,) — (0°D,)0D,]

e e
=l I (45)

From Eq. (21), we see that the gauge field A# couples to the
current I cos Oy + J9 5sin 6y, which can be identified
with the current (45) if
e = ¢ cos Oy = gsinOy. (46)
The U(1)gy charge is conserved at the tree level, although
the Noether current is in general not conserved. An
exploration of the possibility of charge nonconservation
beyond the tree level lies beyond the scope of this paper.
Its existence and observability would in principle depend
upon the completion of the bosonic model considered
here to include fermions, which is also a topic for future
work.
We can then express the scalar Lagrangian in terms of
fluctuations around the vacuum (42) as

PPN aroa 2t
ﬁscal = aaq)lraaq)l =+ aaq?;aaqb + ’:2 (V{q)l)
2

4
N N 'l,l N
—2m3(Vid,) — m3|d,? + = |, 2
n;
K, ia ot A PN
= (Vid, + V)2 — 12(d]d, — dld))

K . R R K
_E(VI(DI +<I>IV1)|<I>1|2 _Zlq)'|4’ (47)

035008-6



SPONTANEOUSLY BREAKING NON-ABELIAN GAUGE ...

PHYS. REV. D 101, 035008 (2020)

where

(Di - (Abi + Vi - < (483.)

b/ )
v +pi iy

q;;zci)j+vi:< /i . ) (48b)
Vit pi—y;

We note that the terms linear in fluctuations are a
consequence of the non-Hermitian nature of the system.
However, they do not play a role in the equations of motion

6S/5dA)lT = 0, since they depend on Ci)i only. These equa-
tions of motion are

A 7NN K A A A
0=0b -, Jri(vjq)l + &IV )V, +u2d,
2
K, a K N A N K, 2 A~
+§\c1>,|zv, +§(V{<1>1 +&lv))d, +§|c1>,|2<1>1,
(49a)
0 =0, + mid, — 2d,. (49b)

The massless Goldstone modes consist of charged and
neutral fields:

1
Gt = ﬁ(vﬁbli — 0ahy ). (50a)
o0
1
G= o (Vw1 — vawa). (50b)

v —v;

The remaining fields consist of a charged field and three
neutral fields. The charged fields are given by

(g —udd) (D)

2
-0y

H* =

and one neutral field is given by

1
) (52)
vy =03

D =

with degenerate squared mass

2 4

2

vy — 0
=00 E (53)
V10 m5

Finally, we can express the last two neutral fields as
H = p, cosha — p, sinha, (54a)
h = p; sinha — p, cosha, (54b)

with masses

1
=1 (mg o = 3 i

— (@ = md = 3 ) 4ﬂ4)

Acosh(f — a)
— (2 a2\
= (v1 —13) |:/1 Sinh(f — a) :| ; (55a)
o (5 2 47,2
MH:E m5 + 2my = 3u*/m3
+ \/(2’"? —mj3 = 3pt /m3)* — 4ﬂ4>
Asinh(f — a)
= (13 = 13) |4 ——Fr— 2, 55b
03 - a- o) (550)
where
tanhat = —5——, (56a)
(M3, —m3)
U2
tanh f = —, (56b)
Uy
and
A = kcosh*f3, (57a)
A= gsinh 2 cosh2p. (57b)

It is not obvious that M? is positive or that M7, and M3, are
real, and we derive the corresponding conditions on y? in
the next section.

The eigenvectors of non-Hermitian matrices are not
orthogonal with respect to the Hermitian inner product

b)) = / 0. (58)

In the case of P7-symmetric theories, however, the
eigenmodes of the non-Hermitian Hamiltonian are orthogo-
nal with respect to the P7 inner product

b Py = / )T, (59)

and we have normalized the fields G*, G, H*, D, H, and h
accordingly. These eigenmodes are nontrivial linear com-
binations of the scalar components of @ and the pseudo-
scalar components of ®, and, as such, they cannot be
eigenstates of P. Instead, the P transformation relates the
left and right eigenmodes, which are distinct for a non-
Hermitian Hamiltonian.
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Conditions on y*

2 3 4

m3/mj

FIG. 1. The excluded regions for the parameter u*, corresponding to the constraints I, I, and I11, plotted as functions of m3/m?. Region
I corresponds to the symmetric phase of the SU(2) x U(1) symmetry [see Eq. (61)], region II corresponds to the broken phase of PT
symmetry [see Eq. (62)] in which M? is negative, and region III corresponds to the broken phase of P7” symmetry in which M7 and M7,
[see Eq. (63)] are complex. The unshaded region corresponds to a physical SSB phase for the SU(2) x U(1) symmetry. For
m3/m?} < 1/3, the allowed region is determined only by Condition II. For m?/3 < m3 < 3m3, the allowed region is determined by
Conditions T and TII. Last, in the region m3 > 3m?, the allowed region is determined only by Condition III. At the point A, all the

conditions become equivalent.

We remark that the P7 norm used for the modes G, G*,
D, and H* in Egs. (50), (51), and (52) diverges when
u* =m3 (v = 1v3). At this point—the zero exceptional
point described in Ref. [28]—we lose three eigendirections:
DxG and H* « G*. On the other hand, when
,u4 = TH(h)’ where

mZ
Tap = 72 <6m? —mj + (=)24/2m3(3m7 — m2)> ,

(60)

|a| = oo and the P7 norm of 4 and H in Eq. (54) diverges.
In this case, we lose one eigendirection: H « h. We discuss
these exceptional points further in Sec. IV D.

B. Conditions on p?

Ensuring that we are in a physical regime of spontaneous
symmetry breaking leads to a number of constraints on the
parameter u’:

(I) In order for the symmetry to be broken [see

Egs. (40a)—(40b)], we require that

ut < mims. (61)

(II) In order to ensure that the squared mass M? [defined
in Eq. (53)] remains positive, we require that

ut < ms. (62)

() In order for the squared masses M3 and M?, [defined
in Egs. (55a2)—(55b)] to be real, we require that

3 4\ 2
4ut < <2m% -m3 - L) . (63)
m

We remark that in the region 4u* > (2m? —m3 —%)2
2

the squared mass matrix cannot be brought to a
Hermitian form by a similarity transformation [27].
These constraints on the parameter y* are plotted in
Fig. 1. The unshaded regions correspond to values of u*
consistent with a physical spontaneous symmetry-breaking
phase, satisfying all of the previously mentioned condi-
tions. The various constraints on x* can be summarized as
follows: 5
(1) If m <%, then u* < m3 (Condition II).
@) If % < m2 < m?, then u* < T}, (Condition III).
(3) If m? < m} < 3m3, then u* < T, (Condition III) or
Ty < p* < m3m3 (Conditions I and III).
(4) If 3m? < m3, then p* < m3m3 (Condition I).

035008-8



SPONTANEOUSLY BREAKING NON-ABELIAN GAUGE ... PHYS. REV. D 101, 035008 (2020)

C. Equations of motion after SSB
After expressing the full Lagrangian in terms of fluctuations around the VEVs as done in Egs. (48a)-(48b), we
can express the equations of motion after symmetry breaking in terms of the gauge fields Z*, W?, and A“. Introducing the
notations

J{l — l’J{l
ce E%, K% = J% 5 co8 Oy — 1% sin Oy,
(64)
and
2 . 2 . .
73C08° Oy — sin“Oy T — i1y 7| + i1y
EH B = ) = ’ - = ’ 65
c=1+1; @ cos O T, 7 T 7 (65)
the equations of motion read as follows.
Scalar fields:
_ ad ig a ig a 4 T HT 24 Kié 12
O = DaD @1 +Da 3Z (l)—i-EW T_ V —m—q)l + (qu)l +®1V1)V1 +ﬂ q)z +§|q)1| V]
2
K, +a o - K & 1ha
+§(V{‘D1 +®V))d, +§|¢1|2®17 (66a)
0= D,D*®, + D, (% Z%0 + % W“T_) V, + m3d, — 20, (66b)

Z“ gauge field:

0 = 05Z% + igcos HW(W;W/}“ - Wiew ) + Ea‘laﬂzﬁ + (|V1 >+ |V2|})Z% — K% + igcos Ow (0% y — 0%x")

2co

+= Z(éja)zéi +[Vid, +d[v,)) + = A”‘X:CI)T o)d; — —s1n QWZ ([®fz_V]W? + [Viz, & W)

i

g
2
99 0 CI> O, )W + ;| Wt 67
75111 WZ O] [ 174 ;] )- (67)
A% gauge field:
1 . PPN
0 = 94F% + igsin Oy (WWPe — Wiaw,) + EéwaﬂA,, — Q% + igsin Ow (07 y — ") + A7) D[od;
+4 Z“ZCI)T wo)d; + gz bl b, |We 4 [z, &)W 4 [DIz_V,]W? + [Vie b )W), (68)
W gauge fields:
. 1 o ?
0 = 8ﬂW"‘ﬁ + igWﬁ(Sln QwFﬂ“ 4+ cos QWZﬁa) + g@aaﬂWﬂ - lg(Sln QWAﬂ + cos HWZﬂ)Wﬂa + % Wa(|V1 |2 + |V2|2>

2
— C% + ig(0%ms — Oay) + %W“Z(V@i + OV, 4 B ) + g (eA” — g sin OwZ%)) (D7, d; + Vi b))
i i

(69)

From these equations, we can see that the gauge field masses are
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v%+v2

My =g 2 —cosOyM, and M, =0, (70)

as in the Hermitian 2HDM.

D. Comments on the exceptional points

At the zero exceptional points u?> = +m3, the VEVs
become

2
I S S O
n=n="v —;(”ﬁ—mz)’ (71)
which vanish in the degenerate limit m} = m3. For

m? # m3, though, the gauge boson masses at the excep-
tional points are

M3, = ¢*v* = cos’OwM% # 0, (72)
remaining physical and nonzero.

In order to make sense of this, in spite of the
divergence of the P7 norm and the apparent non-
normalizability of the Goldstone modes (see Sec. IVA),
it is helpful to reconsider the behavior of the non-Hermitian
theory at the exceptional point. As an example, let us
consider the following 2 x 2 squared mass matrix of the
noninteracting theory [22]:

e (MR
-\ qu m2 )’
2

For m? > m3, the eigenvectors of this mass matrix are

(73)

1—+/1-#?
e+—N< 772 )and e_—N< ’7),
V1-n-1 -
(74)
where
2u?
=—7 75
L (75)

(not to be confused with the ghost field appearing earlier).
The eigenvectors are not orthogonal with respect to the
usual Hermitian inner product,

el -e_ :2N2n<1—\/1—n2>,

except in the Hermitian limit 4 — 0 (y — 0). They are,
however, orthogonal with respect to the P7 inner product,
and orthonormality fixes

(76)

-1/2
N=<2112—2+2 1—172> . (77)

The exceptional point of this mass matrix occurs when
n — 1, at which point the normalization of the eigenvectors

diverges. This signals that the mass matrix has become
defective, having the Jordan normal form

2 (7 +m3)/2
M ‘11—»1 = 0

and we lose an eigenvector. In fact, we see that in the limit
n — 1 the eigenvectors e and e_ become parallel to each
other. However, the issue of the nonorthogonality of these
eigenvectors is then moot, and we can normalize them with
respect to the Hermitian inner product, fixing

1 ) (78)
(m}+m3)/2)

1
75.

In other words, at the exceptional point the system behaves
like a Hermitian theory with one fewer degree of freedom.

Returning to the case of spontaneously broken gauge
symmetries at the zero exceptional point, the explanation
for the nonvanishing masses of the gauge bosons is that
the Goldstone modes must be normalized with respect to
Hermitian conjugation and not P7 conjugation (which has
become ill defined). The discontinuity in the behavior of
the system as we approach such exceptional points means
that we must treat these particular points in parameter space
separately.

Thus, our conclusion is that it is also possible to give
masses to gauge bosons in a gauge-invariant way through
SSB for non-Hermitian theories, even at the exceptional
points. At these points, however, the counting of eigendir-
ections must allow for the fact that the Hamiltonian has
become defective.

We note that different results were derived in Ref. [27],
which is based on an alternative interpretation of a similar
(Abelian) non-Hermitian theory, and where the gauge
boson masses are zero at the zero exceptional point. The
difference in our results can be traced back to differing
interpretations of the complex conjugate: we take complex
conjugation to act linearly on the fields, whereas in
Ref. [27] it was taken to act antilinearly on one of the
fields (as motivated by a similarity transformation to a
Hermitian theory). This has the effect of interchanging
v% - —v% in the expression for the gauge boson masses,
such that they then vanish at the zero exceptional point,
when v} = 3. It was then argued that this is consistent
with the fact that the Goldstone modes cannot be normal-
ized with respect to the P7 norm, which diverges at
exceptional points, and these modes therefore cannot be
“eaten” by the gauge field. This then led Ref. [27] to
conclude that it is possible to spontaneously break the
gauge symmetry of a non-Hermitian model without giving
a mass to the gauge bosons. Our conclusion is different: the
gauge boson remains massive in the symmetry-broken
phase, even at the zero exceptional point.

Ny = (79)
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m?} > 3m3
—_ M2
Qm% 4 R M%I
o m
m3
0
0 1
m? < m3 < 3m?
m3 ]
2m? 4
—_— M2
M
- M}
0 4 0
f f %2\
0 B B LY
my
tanh?(3)

m} < 3m3 < 3m}

2m? 4 Y
M
M
m3
0 f
0 Bn 1
m3 > 3m?
m% A\
2m% A\
—_ M2
of—
%2
tanh?(3)

FIG.2. The masses of the physical scalar bosons as functions of tanh? 3 in different parameter regions. Unphysical parameter regions are
shaded grey. The upper left panel shows the region where m? > 3m2, the upper right panel shows the region where m? < 3m% < 3m?, the
lower left panel shows the region where m? < m3 < 3m?, and the lower right panel shows the region where m3 > 3m?.

V. MASSES IN THE NON-HERMITIAN MODEL
COMPARED WITH THE HERMITIAN MODEL

In this section, we discuss the dependences of the scalar
and vector masses in the non-Hermitian 2HDM on the
non-Hermitian mixing parameter y>. These dependences
are shown in Figs. 2 and 3 for the scalar and vector bosons,
respectively, wherein we have introduced the notation
Brm = Trmny/ m‘z‘. In addition, we make a comparison with
the dependence of the scalar and vector masses on a Hermitian
mixing parameter in the corresponding Hermitian 2HDM.

We note the following features from each panel of Fig. 2:

(1) In the region m? > 3m3, the mass M? goes to zero at

the exceptional point y> = m3. If y> were to become
larger then m3, then M? would become negative and
we would enter the phase of broken P7 symmetry.

(2) In the region m?/3 < m3 < m?3, the masses M% and

M? become equal at the point tanh® = f3,. For
larger values of u?, both M7, and M3 would become
complex.

(3) For m? < m3 <3m3, the masses Mz and M;
become equal at the point tanh?f = f3, or tanh?8 =
Pu. Between these points, M% and M2 become
complex. When tanh?g > m?/m3, the mass M%
becomes negative. The unshaded regions correspond
to physical masses.

(4) For m3 > 3m3, the masses are all real and positive as

long as tanh?f < m?}/m3.
We note in the lower right panel of Fig. 3 that the gauge-
boson masses vanish at the point u* = m3m3, where the
symmetry is restored, as we would expect.

It is interesting to compare the masses in this P7 -
symmetric non-Hermitian model with those in a similar
Hermitian 2HDM with the following Lagrangian, involving
a Hermitian mass-mixing term:

L = 0,0,0°0, + 9,DL0°D, + m?|®, > — m3|D,|?
K
+mb, (DD, + DID;) — 1 @y (80)
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m? > 3m3
mi 4
ME,
9
ms + - 9
0
0 1
m? < mi < 3m?
2
T M2,
g
m?
0
: : AN
2

0 b Bu m
tanh?(3)

my

FIG. 3.
Unphysical parameter regions are shaded grey.

The vacuum expectation values for this Lagrangian are

@i = () =vte = () =ve 6
i >
with
4 m 2 m?
2 E I _(m%+_122>
2 m; || K 2

—

82)

After expressing the Lagrangian in terms of the shifted
field é)i, where

oF
O, =@, +VH = ( ' > (83a)
Ly tpit+
q>,:q>j+v{f:< u /i ) (83b)
Ui +pi—

m} < 3m3 < 3m?

mi 4
ME,
9
£ 2
m3 0
9
f
0 On 1
m3 > 3m?
. M2,
2 | iv
mi i
g

tanh? (3)

The masses of the charged and neutral gauge bosons as functions of tanh?# in the same parameter regions as in Fig. 2.

we can calculate the eigenvalues. As in the non-Hermitian
model, the massless states consist of massless charged
scalar and pseudoscalar Goldstone fields

1

Gr=—
(v1)* + (03)

(vi'gi +0vi'¢7),  (84a)

1

G=—
() + (03

(vilwy + vy,).  (84Db)

The normalizations of the eigenmodes should be compared
with those in Sec. IVA. We remark that this Hermitian
model is not P7 symmetric if ®; and @, transform as a
scalar and a pseudoscalar, respectively. It is, however, P7
symmetric if both ®; and ®, transform as scalars or
pseudoscalars, and the Hermitian and 7?7 norms coincide,
as is expected for a Hermitian, P7 -symmetric theory.

The remaining massive fields include a charged scalar, a
neutral pseudoscalar, and two neutral scalar fields. The
charged scalars are
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2 2
2my > mj

(e}

tan? (3)

2
2m? < m3

ms

2
2my

tan® (3)

FIG. 4. The masses of the scalar fields in the Hermitian 2HDM as functions of tan?f in the parameter ranges 2m? > m3 (left panel) and

2m? < m3 (right panel).

1
H* = NCIERCIE (05 gy —vilpy).  (85)
1 2

and the pseudoscalar is

1
D= W(”?% - vily,), (86)
1 2

with degenerate squared mass

(2 (o)

mi,.
H,H 12
AR

M (87)

Last, we can express the neutral scalar boson fields as

H = —p,cosa — p,sina, (88a)
h = p;sina—p, cosa, (88b)
with squared masses
Acos(ff — a)
M2 — ((H)2 HY\2Y |7 _
F= (2 e - S] eoa
Asin(f — a)
M2 — H\2 H\2 ) 89b
R CRI R il NCED
where
2
-m
vy
tanff = o (90Db)

and

A = kcos*, (91a)

i= gsin 2 cos2p. (91b)
The squared masses for this Hermitian model are plotted
in Fig. 4 in the parameter ranges 2m? > m3 (left panel)
and 2m? < m3 (right panel). We see that the mass spectra
are completely different from the non-Hermitian, P7 -
symmetric case, offering distinctive phenomenological
possibilities.

Before concluding, we remark that, by comparing the
expressions above with those in Sec. [V A, we can see that
the non-Hermitian 2HDM that we have considered in this
work is an analytic continuation of the Hermitian 2HDM,
obtained by taking m}, — —u*. In other words, the
Hermitian 2HDM lies in the fourth quadrant of the
(m3/m3, u*/m?) plane (not shown in Fig. 1).

VI. CONCLUSION

In this paper, we have exhibited a consistent description
of a non-Abelian two-Higgs-doublet model with a non-
Hermitian scalar mass-mixing term, which generalizes the
non-Hermitian extension of the Abelian Higgs model given
in Refs. [26,29]. As in Ref. [29], the main point that
led to a consistent model in the present article consists of
restricting gauge invariance to a subclass of gauge field
configurations. The corresponding constraint plays the role
of a conventional gauge-fixing condition, but which must
be taken into account at the classical level already, in order
to find consistent field equations. Within this framework,
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we have described the realization of SSB and compared its
features with the Hermitian case.

An interesting question is the significance of the excep-
tional points. As explained in this paper, the number of
eigendirections is reduced there, so that this limit is not
continuous. It is indeed easy to see that, in the non-
interacting model, one can write a unique equation of
motion for @, + @, only, with mass (m? + m3)/2, when
taking the exceptional limit |u?| - |m? —m3|/2,
cf. Eq. (78). The introduction of gauge or self-interactions
does not allow this though, and one can therefore question
the stability of the exceptional points under quantum
corrections, which appear as soon as interactions are
switched on. However, the treatment of radiative correc-
tions and further study of the exceptional points goes
beyond the scope of the present paper.

We have noted that physical observables depend
on y*, and thus not on the set of equations of motion we
choose. This can also be checked with the masses of scalar
excitations and gauge bosons: the transformation y> — —p?
leads to changes in the signs of @ and £ [see Eq. (56)], such

that the masses obtained after SSB are not modified. It was
shown in Ref. [29] that the quantum theory also depends on
u* only, and we expect the same to be valid here, since this
feature is based on the scalar sector properties of the partition
function, which is very similar here.

Finally, we note that the scalar boson mass spectrum
in the non-Abelian non-Hermitian model differs signifi-
cantly from that in the Hermitian version. This shows that
the non-Hermitian model opens up new phenomenological
perspectives, which merit a subsequent, more detailed
discussion.
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