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We propose a two-loop induced radiative neutrino model with hidden gauged U(1) symmetry, in which
dark matter of Dirac fermions arises. The relic density gets a contribution from annihilation and
semiannihilation due to a residual Z5 parity. After imposing the requirement of neutrino oscillation data
and lepton flavor violation bounds, we find that semiannihilation plays a crucial role in order to satisfy the

relic density constraint 0.117 < Qh* < 0.123, by proceeding near either one of two deconstructive scalar
resonances. Our numerical analysis demonstrates the allowed region for the DM-scalar coupling with the

DM mass in (80, 400) GeV.
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I. INTRODUCTION

Radiative seesaw neutrino models are one of the attrac-
tive scenarios to connect the neutrino sector with the dark
matter (DM) sector in a natural manner. These two sectors
certainly involve mysterious puzzles that are frequently
interpreted as physics beyond the Standard Model (SM).
When the neutrino masses are radiatively induced, the
magnitude of relevant couplings could reach O(1) com-
pared with the case where the neutrino mass is generated at
the tree level, so the mass hierarchy among the SM sector
and heavy fermion or scalar sectors is largely alleviated.
Furthermore, new particles that are accommodated in the
theory are at the O(TeV) energy scale and accessible by the
extensive search at the Large Hadron Collider (LHC). For
the radiative seesaw mechanism, a discrete symmetry is
essentially implemented in order to forbid the neutrino
mass at the tree level, and such symmetry will in turn
stabilize the lightest neutral particle as a DM candidate. As
a consequence, this type of theory provides interesting
phenomenologies, with the requirement to satisfy the
observed relic density of Qh? ~0.120 + 0.001 [1] and
other experimental constraints.

The simplest discrete symmetry can be Z,, as the
remnant of a broken U(1) symmetry, and a typical
DM-generated neutrino mass model at the one-loop
level is proposed in [2]. However, other enlarged
discrete symmetries are also possible to stabilize the
DM candidate, such as Z,, N > 2 discrete parity, which
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brings in semiannihilation in addition to annihilation for
the Lee-Weinberg scenario [3], allowing for an odd
number of DM particles appearing in a 2 — 2 process
[4-7]. Under the control of Z, discrete symmetry, any
field transforming as f; — w®f;, with @ = exp(i2z/N)
and a=1,...,N—1, could serve as the dark matter
candidate depending on the spectrum and interactions.
In this paper we consider a two-loop induced neutrino
mass model [8—13] with new particles charged under a
hidden U(1) symmetry [14-20], in which a Dirac
fermion type of Z; DM candidate arises, whose relic
density is dominantly explained by the s-channel of
semiannihilation modes. Note that in this model, it is
also possible for a complex scalar to behave as DM in
the inverse mass pattern. The discrete Z; symmetry
originates from the spontaneous breaking of U(1)
symmetry and plays an important role to ensure the
DM y does not decay while the reaction in the form of
xx — x'v; exits. We present how the DM and neutrino
mass are correlated by formulating each sector. In
particular, we perform an analysis to obtain the allowed
region which satisfies a set of necessary bounds,
including neutrino oscillation data, lepton flavor viola-
tions (LFVs), muon anomalous magnetic moments (Aa,,
ak.a. muon g —2), and the DM relic density.

This paper is organized as follows. In Sec. II, we show
the valid Lagrangian with charge assignments and formu-
late the scalar and neutrino sectors, along with the LFVs,
muon g — 2, Z — Z' mixing, and the bound of the electro-
weak precision test. In Sec. III, we analyze the Dirac
fermionic DM to explain the relic density with an emphasis
on the semiannihilation and a brief illustration of the
analytic derivation. In Sec. IV, we conduct a numerical
analysis and show the allowed region to satisfy all the
phenomenologies that we discuss above. Finally, we give
our conclusions and a discussion in Sec. IV.
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II. THE MODEL

The model is built by extending the SM with additional
scalars and vectorlike fermions, which are charged under a
hidden U(1) symmetry before some of the scalars obtain
vacuum expectation values (VEVs). The field contents and
their charge assignments are reported in Table 1. For the
fermion sector, an isospin doublet L' = [E', N']T plus two
isospin singlets y; and N;, with i = 1, 2, 3, are added. The
vectorlike nature of these extra fermions ensures that our
extension is anomaly-free. The quantum number assignment
for L', ¥, N under the two gauge groups of [U(1),, U(1)y]
are (—1/2,2x), (0, x), and (0, y), respectively. Here, we use
two arbitrary integers (x, y) with {x, y} # 0 to keep track of
the heavy fermions running in the outer and inner loops of
the neutrino mass diagram (see Fig. 1). As for new scalar
fields, we introduce four inert scalar fields s, #, s, n, where
(n,n') are SU(2), doublets and (s, s") are singlets. We can
see that, since (s,n) are charged under the U(1), as
(—2x,x), these two fields will only interact with new
fermions of L’ and y. On the other hand, the two prime
fields (s',n') are charged with (x +y,—2x+y) for the
hidden symmetry; thus, they are allowed to connect with the
exotic fermion N under the assumption of y # —x, y # 2x!
The two scalar fields (H, ¢) are needed in order to generate
the neutrino mass at the two-loop level, provided they mix
inert scalars (17, s) and (7, s’) inside each set. The symmetry
permits more scalar fields, like a doublet H' or a triplet A, to
induce the Z — Z' mixing for the LHC collider signature. In
the case of adding H’, the neutrino mass will be generated at
the one-loop level since the red dot in Fig. 1 can be
substituted by an interaction of L', xH'y; r. However,
in such case, the VEV of H’ should be very small (equivalent
to loop generated), so this one-loop radiative seesaw
mechanism may be able to reconcile the tension between
the neutrino mass and the relic density bound. Thus, we
focus on exploring the impact of a triplet A interplaying with
(H, @) via the scalar potential in the two-loop radiative
seesaw mechanism. For that purpose, the scalars H, A, and ¢
are required to develop nonzero VEVs, respectively sym-
bolized by (H) = vy/V2, (A) = va/V2, (@) =0v,/V2.
The valid renormalizable Lagrangian for the fermion sector
is given by

~Ly =ye, L Hex, + y;ﬁ,,S)Zia%L,, + }’;IZ,,;SJ&JR;;
+ Vo Lifier, + s, SLi, Ly, + vy Lr TN,
+ y;; bI:'Lﬁ/N Ry TV Ne e, s’ + y;;b Noii,s
+ My, Jr R, + My, Ny Ne, + My, Ly Ly,

+ H.c., (2.1)

'In fact, we can see that the gauged U(1)y is a linear
combination of two global U(1)s, which should be observed
individually in the unbroken phase.

<H>. L<p> <H>. R
) o,
n s s '
g, Xk NZ v X% N, NY NP
FIG. 1. Neutrino mass in the gauge basis at the two-loop level,

where the right plot represents the red dot in the left plot.

where i, a, b = 1, 2, 3 are the flavor indices for the SM and
exotic fermions, and # = io,n*, with o, being the second
Pauli matrix. For simplicity, we assume that all coefficients
are real and M,,, My, M are diagonal matrices. The first
term of L, generates the SM charged-lepton masses
my =ypvy/ V2, while the second to fourth terms are
responsible for the (semi)annihilations. The residual Zj
from the broken hidden symmetry makes the lightest neutral
states, with U(1),, charge of x or +2x, i.e., particles in the
set of (y;, N, n,s), our DM candidate. In this paper we are
interested in the mass pattern where y, actually plays the role
of DM. Referring to Table I, we can see that the two scalar
fields (A, ) carry a U(l), charge gy = —3x with x €
integer, so they will transform under the Abelian U(1)
symmetry as A — e~9#%A and @ — e '9#%p, for an arbi-
trary value of a before the spontaneous symmetry breaking.
However, after these two scalars obtain VEVs, the phase is
forced to be a =2x/3 for any integer x > 1; thus the
Lagrangian is still invariant under a discrete Z; symmetry.
The particles with x(2x) charge in U(1), have w=
¢'?7/3(w?) parity assignment under this Z.

A. The scalar potential
We explicitly write the nontrivial terms for the inert

scalar potential, which are invariant under the SU(2); x
U(1), x U(1), gauge symmetry:

Vi = (WH'ns* o + 2H™n's" ¢* + H.c.)
'7,'7 5.8
+ > Dug(HH)('9) + 2,4 (0" 0) (8 )]
¢

/ !

n.7.8.8

+Za (Hip) (¢ H) + Y 130" b+ Agld" o),
7
(22)
where we assume that these terms, like s, s2¢?,

7' ne?, vanish due to U(1), charges (e.g., x =y = 1).
Thus, no mass splitting occurs among the real and
imaginary parts of any inert field. The general potential
for the scalars (H, A) can be found in Refs. [21,22], and
we will modify it by adding interactions with a complex
singlet ¢,
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TABLE L.

Contents of fermion and scalar fields and their charge assignments under SU(2), x U(1), x U(1),
where all the new fields are singlets under SU(3) - and all the quark fields are neutral under U(1)

- Note that the H’

field is only present for the one-loop radiative seesaw mechanism.

Fermion fields

Scalar fields Inert scalar fields

L, e Lyg xuyr Ny H 2 H A @ s n s! i
su@), 2 1 2 1 1 2 2 3 1 1 2 1 2
T T
U(l)y 0 0 2x X y 0 -3x -3x -3x -2x x x+y =2x+vy
Y, = _H%{HTH+/1H(HTH)2 +M2Tr(A*A) In addition, the mass matrices in terms of (h, Ag, @g),
0 + A+ . . .
A2 A2 (G, Ay, @), and (GT, A™) can be diagonalized into a CP-
A (Tr(aT8))" + LTr((AA)7) even or odd spectrum by respective orthogonal matrices.
+ 3 (HTH)Tr(ATA) + 3, H'AATH — po* g Analogously, the inert bosons (s,7)g,; and (s, 1)/, are
+/1¢((P*(P)2 +/15H1'Hgo*(p +/16TF(ATA)(/)*¢ written as
+ [AaHTic,ATHep + H.c.]. (2.3)

The scalar fields, besides the inert ones, are explicitly
expressed as

N
Gt AT A+t
H = GO A= V2
v thtiGe o vatAptid, At |°
V2 R

_ U(p + Pr + Ly ’ (24)
V2

s \ 203
so the mass of the W boson is fixed to my = w

The minimum of the potential is determined by deriva-
tives 0V,/0vy =0, OV,/0v, =0, 0V, /0v, = 0, which
read as

A+ . As
2

—pig; + v + VI

2
A+4 A
<M2+ 32 202+ (A 4+ Ap)1A + §Ui>vA—/1Av%1vq,/2
X )

As
(‘ﬂ(zp +Ap05 + 2 Vit 5

> vw:lAvi,vA/Z.

(2.5)

As we argue in Sec. II D for Z — Z’ mixing, v, is very tiny
due to the p parameter; thus we focus on the limit of
vp < vy < v, Under the assumption of negligible mixing
between ¢ and (H, A), i.e., 15, 44 < 1, we obtain

N /IAUAH(/,—I—,M%I 1/2 N
ETTL ) Ty

Aaviv,

M2 + (23 + 24)v5y/2)’
U

Uy =t (2.6)

Sg+is;

’,I+
= ir s S = ,
n |"7R\'}‘£i| \/E

't s+ is)
R 1
n= l%ﬁm;l , s = N (2.7)
V2
They are rotated into the mass basis as follows:
A [ 2 T
VTl m%R ZOUHU</"|V _ mHl 0
a a ’
Fouv,  m, [ 0 i,
mz;q %UHU(/, 'mf{,l 0 7
1%} Vo = (2.8)
< 5 2 “ 0 m?
S VRV, "y L H) |
|:SR+iS1:| [ca —sa} {Hl—i—iAl]
e +ing ) Lsa co JLHa +iA )
|:S;Q+ISII:| |:Ca/ —Sa/:| |:H/1+1A/1:| (29)
7]9{ + ”7/] a So/ Co H/2 + lA/Z .

where we use short-hand notation of s ¢, = sin al), c 0 =
cosa') and the complex fields H; + iA;, H; + iAl,i=1,2
are mass eigenstates. Note that the semiannihilation exists
for the theory with Z5 parity, indicating that we need to
keep the degeneracy between H) ;) and A ;). The reason
is that a Z; parity assignment w = ¢>*/3 is valid for a
Dirac fermion or a complex scalar field, like H; = H,; + iA,
with i =1, 2. Under this specific potential we obtain

2 _ 0 2
My, = My, My = =m} W . Without loss of generality,

we can assume my, < mp, and My < my, by ordering the
mass eigenstates.
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FIG. 2. The Feynman diagrams for neutrino masses generated at the two-loop level in the mass eigenstate basis of inert scalars.

B. Neutrino mass matrix

In this model, the neutrino mass arises at the two-loop level. To facilitate the calculation, the Lagrangian should be

transformed into the mass basis:

Ve = Ve -
—Ly ~ %VL,-ZR,,(SaHl + coHy) — I%VL,-)(R,,(S(JAI + caA2)
L/R L/R
y)(a/b -C H H -y)(a/b =C A A
+ %XLU/RUXLLJ/& (ca 1~ Sa 2) + ZWXLH/R[L){La/Rb(CH 1~ Sa 2)
VSia - VS, -
+ \/EDL,»N}?“ (C(IHl - S(IHZ) t1 \/EVL,-N;?a(caAl - S{IAZ)
Vs — . s; —
+ —\ENRJ,%(C&,H’I —soHY) +i \/%NRH)(gb(carA’l — sgAb)
Yoo Vo
+ 22Ny € (coHY = soHY) + i =2 N, 7€ (cgAl — syAb)
N 1 2 2 AL 1 2
Yo, = i, =
+ \/E”N}QQNL})(SO,/H'1 +cyHS) —i \/%NQ?GNL;, (sg A + cyAb)
Yoo Yo
+ L NG N, (s0HY + coHy) — i—2 N, Ny, (sgA} + cpAy) + Hee. (2.10)

V2

V2

Here we assume that all the Yukawa couplings are real for simplicity. The active neutrino mass matrix m,, is generated at

two-loop level as shown in Fig. 2, with formulas given by

(my)y; = miy) 4+ mi)) + (ml)]7 + [mii]7 (2.11)
where mi’? and mi’i) respectively, correspond to the left and right plots in Fig. 2. The constraint on the neutrino matrix is

from the neutrino oscillation data since (m,)),;, has to be diago

nalized by the Pontecorvo-Maki-Nakagawa-Sakata mixing

matrix Vys (PMNS) [23] as (m,);; = (VI*\,[NSDDV;,INS)U with D, = diag(m,,,m,,,m,,). The PMNS matrix is para-

metrized as

C13C12
_ is
VMNs = | —€23812 — $23813¢2€"

is
$23812 — €23513C12€ —523C12 —

C13512

is
C23C 2 — §23813512€

sl3e—i5
sycp3 | diag(l, e, e (2.12)

i
C2381352€" C€23C13

with s;; = sin 6;; being three mixing angles. In the following analysis, we also neglect the Majorana CP violation phase a,,
and a3, as well as the Dirac CP violation phase d. By assuming the normal mass order m,; < m,, < m,3, the global fit of

the current experiments at 3¢ is given by [24]
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(a)

FIG. 3.

0.250 < 57, < 0.354,
0.019 < 575 < 0.024,
m2, —m2 = (2.45-2.69) x 1073 eV,
m2, —m?2, = (6.93-7.96) x 107> eV2.

0381 < s3; < 0.615,

(2.13)

Now we rewrite the neutrino mass matrix in terms of
Yukawa couplings and the form factors:

1
(mv)ij = (dn) ()’ﬂ;a [F;+ Fu}abyghj + s, [FT + Fsz]aby,f,,_,)
1
= G)? OneGan¥s, +75,Cand, ) (2.14)
where the factor —; comes from the loop integration and

(4n)t
the exact expressions for these form factors F;, F;; can
be found in Appendix A. The form factors exhibit an
interesting property, proportional to the product of mass
differences (mj;, — m%i,l)(mfl,,2 - mfi,l ). Thus the neutrino

mass can be easily accommodated in the sub-eV order if
either set of inert scalars is quasidegenerate without tuning
the Yukawa couplings. In particular, if we set mp, ~mpy;,
the LFV bound will not be influenced as H, do not
mediate these processes.

Because of the symmetric property, Eq. (2.14) can be
conveniently recast into a suitable form for the numerical
analysis:

[(Vl*lesDquvINs +Al(ys)~'G, (2.15)

N =

Yy =

where the A is an arbitrary antisymmetric matrix on the
order <10~ and of complex values if there is CP violation
[25]. Therefore, after we impose Eq. (2.15), the y, coupling
is no longer a free parameter but a function of yg and the
neutrino mass form factors. This parameter will be deter-
mined by the neutrino oscillation data up to an uncertainty.
Notice that y, < V/4r should be satisfied in the perturba-
tive limit.

(b)

Lepton flavor violation processes induced by heavy fermions and scalars.

C. LFV and muon g -2

In this radiative neutrino mass model, the existence of
charged scalars and vectorlike fermions contributes to
lepton flavor violation processes (see Fig. 3), which in
turn will severely constrain the Yukawa couplings and
masses of heavy scalars and fermions. The relevant
Lagrangian for LFV can be expressed as

_ 1 _
L==y, €10 xr, + EyS,-afL,-E;?ﬂ[(caRHl — SqpH>)

+i(cq, Ay — 54,42)] + Hec. (2.16)
We can calculate the branching ratio for the LFV decay
process £; — £y in terms of amplitude a; g, which

encodes the loop integration of the Feynman diagrams:

3
N 487° Ay

Br(¢; = ¢jy) NWCU(WLUP + lag, ), (2.17)

where Gg~ 1.166 x 107 GeV~2 is the Fermi constant,
Aem(myz) ~ 1/128.9 is the fine-structure constant [24],
Cy = 1, C33 =%0.1784, and C3, = 0.1736. In this specific
model ap is formulated as

mfi T _
aR’.f ~ (47[)2 [yrljayrlaiH(xa7 ’7 )

_ ys./ﬂygai
2
+ 2 H(A E,) + 52, H(Ay. E,)]].

(a,b)
1 1-x xy
= d d
A XA Yo+ (1= x)m

2mS + 3mym3; — 6mimy + m$ + 6mym3 log(Z—é)

12(m2 - m2)?

[z

H(Hlv E;) + S(leH(Hb E;)
(2.18)

mnim b

(2.19)

where we can see that the loop contributions from two
resources [Figs. 2(a) and 2(b)] are of opposite sign. And for
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the left-handed amplitude, a; is obtained by a mass
substitution: a;, = ag(my, — my,).

The couplings involved in those LFV processes are y,
and yg, which are strongly correlated with the neutrino
mass matrix. In particular, the magnitude of y,, along with
the masses my, and mey, ,» constrained by the LFV bound,
will influence the DM relic density as well. To find the
allowed parameter space for this model, the following
upper bounds are imposed [26,27],

Br(u — ey) < 4.2 x 1073(6 x 1014
Br(z — uy) <44 x 1078, Br(z — ey) <33 x 1078
(2.20)

where the upper bound from y — ey is the most stringent
one, with the value in parentheses indicating a future reach
of the MEG experiment [28].

The muon anomalous magnetic moment.—The muon
g —2 is a well-measured property, and a large 3.60 dis-
crepancy of Aa, between the SM theory and experimental
measurement was observed for a long time. For this model,
one can estimate the muon g — 2 through the amplitudes
formulated above:

Aaﬂ ~ —mﬂ(aL + aR)zz. (221)

The deviation from the SM prediction is Aa, = a,” —

asM = (2.74 +0.73) x 107 [24] with a positive value.
However, because our analysis shows that the muon g — 2
is too tiny after imposing other bounds, we just employ the
muon g — 2 as a model quality for reference.

D. Z -Z' mixing
The effect of the hidden Z’ at the TeV scale will actually
decouple from the dark matter physics, and we would like
to qualify this argument in this section. After the three
scalar fields develop VEVs, U(1), and electroweak sym-
metries are spontaneously broken so that the mass terms of
the neutral gauge boson are obtained,
(%)
Z ’

()
(2.22)

where ¢,, g;, and gy are gauge couplings of SU(2),,
U(1)y, and U(1),, respectively. The Z, and Z are the
gauge fields for U(1), and U(1), with the Z, mostly
composed of the SM Z boson. Here we assume that the
kinetic mixing between the two Abelian gauge bosons is
negligibly small for simplicity. In the case of x = 1, we
parametrize the mass matrix to be

2+ 2
) (03 + 43) 3x/G Bonth
V@ + Gomd 0G0 +12)

2+ 2
[%(vﬁ +413) 3G+ Bouvi
a/ﬂmﬂi 99%1(7]2A + UZ’)

2
€ 2¢€165€
:mg[ ! 12 3} (2.23)
2e16063 1463
.. 24+ ) (v2 4402
where we use the definition of mgz, :w

. The

Nz v v
ms = 3gyv,, €, =—2 and €, = 2, €3 = 2
7 9HVy> €1 " 2=, € ’—v§,+4v§
mass matrix can be diagonalized by an orthogonal trans-
formation to be Diag(m%. m2,), and in an approximation of
vy < vy S0, and gy = O(1), this gives

my = my (1 - 4e3€3), mZ, mmi(l+e3), (2.24)
Zz c s V4 -2
D) )
Z/ —Sz Cyz Z 1 + €5 —¢€
(2.25)

If we fix ¢} =g3/(g3 + g3) as the SM value, the p
parameter can be expressed as

2
2vy

(1+72)

Vh

(1+52)(1 - 4e3e3)

Po = (2.26)

The experimental constraint from the PDG is pge, =
1.00039 £ 0.00019 [24], which will translate into a
requirement of v, < 3.5 GeV. In this paper, we assume
the Z' boson mass to be above the TeV scale for
v, 2 350 GeV. According to Eq. (2.25), this results in
an extremely small |tan6,| < 10~ compared with the
Yukawa coupling with DM and the neutrino. Thus as long
as we prefer the DM mass in O(100) GeV, it will be safe to
neglect the impact of Z’ on either DM annihilation or DM-
nucleon scattering.

E. Bound of electroweak precision test

The electroweak precision test (EWPT) on low energy
observables can set limits for deviations from the SM. The
new physics effects are mainly encoded in the oblique
parameters S, T, and U, expressed in terms of the transverse
part of the gauge boson’s self-energy amplitudes. For this
model, since the U parameter is suppressed by an addi-
tional factor of v2/ M2, its effect is neglected. Due to the
vectorlike nature and degeneracy, the exotic particles of L’
have no impact on oblique parameters, i.e., AS; = % (131 —
t3R)2 =0 and AT, =0 [24]. However, the inert scalars
(1, 5) may cause notable deviation to S = —16zIT'(0)y,, 5

discuss their constraints on the mass splitting among
(my,+,my.) and the mixing angle sin(a). After evaluating

035006-6



RADIATIVE NEUTRINO MODEL WITH SEMIANNIHILATING ...

PHYS. REV. D 101, 035006 (2020)

400F — ~ ~ T~ T T T T T T T

P

300f S-T exclusion ]

my, =300 GeV ~ my=my,

200

100

(mp, —my,) GeV)

-100F .

—200f ]

Bl

—300[, M I P B PR | P I "
0.0 0.2 0.4 0.6 0.8 1.0

cos(@)

FIG. 4.

250 F T T T T ]
[ 1
[ cos(Q) = ——  Myp=my,
200 \/5 b
>
> L
Q1850 . _._._. .
U
£ Lo m
lN 100 - 4
jas} L
g
50 E
Ot . . . . =
100 200 300 400 500
my, (GeV)

In the left plot, the two white bands represent the region allowed by the S — 7 bound at the 16 C.L., while the red line is the 3¢

bound for my, = 300 GeV. The right plot shows the bound for (my, — my, ) and my, in the case of s, = ¢, = \/% (assuming my, >

my, and m,+ = my,), where the regions outside the contours of the red, green, and blue lines are excluded at 68% (1), 95% (20), and

99% (30) C.Ls.

the relevant self-energy correlations, we find that the effects
from the inert scalars are described by

AS = Tom [siG(mHI Sy M) 4 cﬁG(mHzmHz, )
+ 2cgng<mH1 s M, Myt )]
1 m? )
=5 [saln I;' +cZln ;{2
127 m2, o
" 7
_ 36385()((1111-11,?"1-12)} . (2.27)
1
AT = o [0 O ) G gy
— c2s2F (my, . my,)), (2.28)

where the loop functions G(my, my, ms), y(m;, m,), and
F(my, m,) are defined as

1 mim3
G(ml’mZom?a) :i |:ln< 142> _3)((m11m2):|7 (229)
m3
5(mt + m3) — 22m3m?
x(my,my) =
) =S e
S 4 m3) = m =
3(m2 — ml)? "2 )
1~ M 2
(2.30)

2 2 2

dmm2 2
F(my,m;) :m%+m%—mln<ﬁ), (2.31)
my—nm;  \m;

with y(m;,m,) and F(m;,m,) being symmetric for
m; <> m, and vanishing for equal masses, i.e.,
y(m,m) = F(m, m) = 0. During the calculation, the diver-
gences inherent in the two-point functions are properly
canceled.” In the case of the SM Higgs h barely mixing
with (A, @), the AT is exactly the wave-function renorm-
alization of the Goldstone bosons G*, G° with (n*, ((nz +
in;)/\/2), s) running inside the loops (refer to Appendix B
for details) [31]. However, for the AS, the function
G(my,my,mz) is related to dipz[Bzz(pz,m%,mz)—

21 (1—x)m?
B, 8,2 g = 4 J§ (1 = 2) [0

using the Passarino-Veltman function B,, defined in [32].

The bound for the S and 7" parameters is obtained from
the precision electroweak data, such as M, and I',, at the
1o deviation by fixing U = 0 [24]:

S =0.02£0.07 T=0.06+0.06 (2.32)

with an off-diagonal correlation of 92%. In Fig. 4, combin-
ing all the discussed parts, we translate the S-T y? fit into

the bounds of inert scalar masses and the mixing angle.
Since both AS and AT are symmetric functions of

*For the T parameter, if we calculate it in terms of the gauge
boson’s self-energy amplitudes, the divergence is fully captured
in the loop function Ag(m?) =L [ % [30] and should be
canceled after counting all the diagrams. The cancellation due to
the mixing of neutral inert scalars (g + in;)/v/2). s) [precisely
speaking, (H,,A,) in the mass basis] is demonstrated by the
following pattern: 2s§,A0(m%,I) + 26,2,A0(m%,2) - 2s§A0(m%,l )—
2cqA0(miy,) — 2¢555(Ao(miy, ) + Ag(mi;,)) = 0.

035006-7



HAIYING CAI

PHYS. REV. D 101, 035006 (2020)

(my,,my,), we focus on the case of m,+ = my, for
simplicity. The operation of switching H; <> H, is to shift
the mixing angle by « — (a —%). The 16 EWPT fit prefers
the mass splitting (my, —my ) > 0 in a small range of
0.92 < cosa < 1.0; i.e., Hy(A,) dominantly composed of
ng(n;) should be heavier. However, at the 3o fit, (my, —
my ) is permitted in either sign (+/-) for 0 < a < %, with
its magnitude decreasing with cosa. In the right plot, we
show that assuming my, > my,, the § — T bound requires
(my, —mpy ) C (30,120) GeV at lo and (my, —my, ) <
150 GeV at 3¢ for 100 < my < 500 GeV under the
condition specified in the caption.

III. DARK MATTER

The relic density for a DM species X is determined by its
energy density, x myny(T) in the present Universe, where
the number density ny is governed by the Boltzmann
equation during the decoupling phase plus the expansion
effect afterwards. For a Dirac fermion DM stabilized by a
Z; symmetry, semiannihilation modes, in addition to
annihilation, are expected to contribute. The Boltzmann
equation can be recast into an evolution in terms of a yield
by defining Yy = ny/s with s as the entropy density and
x = My/T where the temperature is scaled by the DM
mass. The redefined equation reads

dYy A ron 5 1Ag
—— =SV -SSR -y (31
= s S - vy ()
=1
/1i:4[3(()c )) (6va)n  i=A,S,
X =
272 2 M-
=1)="—g.M; Hx=1)=4/=—g. =~
se=1) = 75 9. My, (r=1) 907 M,
(3.2)

where A, S stand for annihilation and semiannihilation,
H(x =1) is the Hubble constant at 7 = My, g, is the
effective total number of relativistic degrees of freedom,

and My = 1.22 x 10"”[GeV] is the Planck mass. The J

factor in the second term of Eq. (3.1) is due to the identical
initial particles,” and (ow,) is the thermal average of the
velocity-weighted cross section, which represents the DM
interaction rate. This equation can be analytically solved in

3For the semiannihilation, considering the evolution of the
number density for one species X, we need to take into account
the processes of XX — Xv; and X X — X7;, where the number of
the species X is only depleted by 1 in the forward direction, which
is the same as in the particle-antiparticle annihilation. Thus, the
Boltzmann equation with only the semiannihilation mode should

be dder +3Hny = -1 <61}>Se‘mi [n% — nxniq] This is different from
the DM annihilation of Majorana fermions, where the depletion
number is 2, and it compensates the phase space factor % from

identical particles.

a proper approximation by matching the results from two
regions at the freeze-out point. A brief review for this
approach will be presented here in order to clarify the
missing 1/2 in some of the literature. We start by defining a
quality A =Yy — Y%\, so the original equation is trans-
formed into

1

da avy 2
E:—TX—X—’;[A2+2AY§‘*] 2x—2[A2+AY;q]

(3.3)

where the Maxwell-Boltzmann distribution will be used for
the yield in equilibrium so that Y§!(x) o x¥2e~*. For
X < Xy, We can obtain

€q
YX

A:/I eq As eq ’
Yy +4)+35 0% +4)

(3.4)

and for x > xy, the integration of the Boltzmann equation
gives

o Jy+1i2
YX(oo)z—/ dxAizzs.
Xr

X

(3.5)

Thus, the relic density at the present Universe is found as

1.07 x 10° GeV~!

Qh? = mysyYx(00)/p. ~2 . (3.6)
g*(xf)Mle(xf)
© 1
J(xf) — / dx <01}re1>A 1_22 <Gvrel>S , (37)
xr

where Qh? is rescaled by the critical density p. =
3H?/87G. We multiply by a factor 2 for the relic density
in order to count the contribution from the antiparticle X
and set g, (x;) = 100 at the point of freeze-out. Here (6v) 5
is the thermal average for annihilation, while (ov)g is for
semiannihilation. Then the freeze-out temperature x, is
determined by the boundary condition A(x;) = c¢¥y!(x;)

withc:\/i—las

MxM
xp~In [0.0380(0 +2)(ov), w]

\/g*xf

c+1 (av)s}
c+22(cv),]’

+1n [1 + (3.8)

which is up to a factor of 1/2 for the semiannihilation part
as given by [6], and we set g =2 for a fermion DM of
2 degrees of freedom without counting its antiparticle [33].

We can see that in order to estimate the relic density, one
has to calculate the thermal average of the cross section
times the relative velocity (ov,;). Generally, the thermal
average is approximated by an expansion on the order of
x™ ((v*) ~ % in the nonrelativistic limit). However, in our
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\./ \/ Y;{/AGX

H/Aa I ] I
/\ X
X Vi X l

() (b)

FIG. 5.
or A, with a =1, 2.

case, the dominant DM cross section proceeds through an
s-channel with one very narrow resonance I'y;/My < v
and one wider resonance I'y;/Mx ~ v,. In addition, for an
s-channel interaction mediated by a scalar, the s-wave is
vanishing for the velocity averaged cross section; thus the
expansion in terms of v2, is complicated for two resonances
interfering with each other We prefer to use the integration
approach to evaluate (ov,;), which is given by [34,35]

2[5 dscluy(s = 4M3) V5K (i )
(0Vre1) Z 5 1 2
— 8M3x~ 'K, (x)

. (3.9)

[z dsoyx(s = 4M3) V5K G x)
8M3x 'K, (x)?

<Uvrel>S = > (310)

where s = (k; + k,)? is a Mandelstam variable and K ,
are the modified Bessel functions of order 1 and 2,
respectively:

yml =

—L = \/i

PRX(S(IHI + C(1H2) —i—=

For the annihilation processes,

2 PRX(saAl + C{1A2)

V2

))(11 v ( y)(ll (
+==X"X(c H| — s, H>) +1 XX (c A
\/z (( 1 0 2) \/§ (( 1=

_ X X X
\./
- H/Aq | I H/Aq
v;
X V; Ch
(d) (e

Feynman diagrams for the annihilation (a, b) and semiannihilation processes (c)—(e), where the mediating scalar fields are H,,

: k| YL
Oy = [ dQIM?,  i=1,2,3;
xx 327%sy\/s —4M% M
s - M?
with |kj|=/o—m?, i=12 [k |=oXi=3,
4 Iy 24/s

(3.11)

Here o', is the cross section of the 2 — 2 process
(denoting k; as the 3-momentum of the first outgoing
particle) and with the amplitude squared | M, ,|* corre-
sponding to XX—H/,-IJJ- and XX — z,”,fj in Figs. 5(a)
and 5(b) and the third |M5|* standing for XX — Xu;,
i.e., the semiannihilation as depicted in Figs. 5(c)-5(e).

We derive the analytic expression for each amplitude
squared present in Eq. (3.11). Let us consider the case
where only the lightest flavor of y; is the DM candidate. By
defining X = y; and assuming y, = yX, the DM-scalar
interaction in this model is written as

Y £iPrXn™

sq4A2) +H.c. (3.12)

states and

summed for the final states. However, a special treatment is needed for |./\_/l3| because of the identical incoming particles. As
illustrated in Figs. 5(c)-5(e), the semiannihilation proceeds in S, 7, and U channels after counting the momentum exchange
for the identical initial particles. In particular, there is a symmetry factor 2 for the s-channel amplitude.4 Combining all
channels, we can arrive at the following analytic expressions:

52 2 2
M, ? = a -k - ky), 3.13
M, |* = E |)’n,1ym T —2p1 k +M§(—m%,2 “opk (P1-ki)(p2 - ka) (3.13)
3 2
v M zly J
Myl = " _"‘Zpl | (PR (2 ko). (3.14)

ij=1

*We need to consider the momentum exchange for the identical initial particles due to the phase space integration in the
thermal average. For semiannihilation X(p;)X(p,) + X(p2)X(p;) = X(k;)v;(ky), the s-channel amplitude is proportional to
[ (p1)u(pa) = u (p2)u(pi)][0(ki)u(ky)] = 2[5(p1)u(p)][5 (ki )u(ks)], where we use the identities u® = Cii" = v and 5(p,)u(p;) =
ul(p)C1CoT (p,) = —v(py)u(p,), with C = iy’y? being the charge conjugate operator. This is similar to the identical scalar case
¢¢ — H,; the symmetry factor is normally encoded in the vertex.
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™~

2

E a+le1nv

a=1

W2 = (suca)? ZwMIP{s L pa = M)k - k)

2
(p1- ki +M3%)(p2 - k) +2

2 2

—1)atue | (pa-ky +M3)p: - ks

MN

+2 ( 1>a+1Ta

mv

1

2
(DS Z( DT [(pr - p2) (ki - ko) = (py - k) (P2 k) + (py k) (P2 - ka)

a=1

- 3

+2

2 2
M3 (=p1 - ky + 2 ky = ki ko)) + 22(— ) S Z( D UL [(py - p2)(ky - ko)
a=1 a=1
—(p1 ki) (P2 ko) + (p1- ko) (p2 - ki) + M3 (=pa- ko + p1 - ky — ky - k)]
2

_Z(_ )T, Z( DUE (pr - k1) (2 - ko) = (P p2) (k- k) + (py - ko) (P2 ki)
a=1

a=1

+M3 (ki ko + p1-ky + pa - kz)}]- (3.15)

In the M; amphtude of semiannihilation, we define S¢ = 1/(s —m2+ im,I,), T¢, = 1/2M% —m2 —2p; - k),
U, =1/(M% —m2 —2p, - k,), and the index a = 1, 2 corresponds to H,(A,), H,(A,), respectively. The inner products
are given in Appendix C.

For the s-channel amplitude, the widths of inert scalars H;,(A;,) enter into the Breit-Wigner propagator S% , whose
magnitude near two on-shell poles my, = 2My or my, = 2My is determined by the I'y;, or I'y;,. Under this consideration,
we will only be interested in the parameter region my, < my, < min(mE/

Therefore, the decay widths of 'y, (=T,4,) and I'y, (=T,,) are formulated as

m,,,m ) to ensure a narrow resonance.

FHI = H(mHl —ZMx)F(Hl - XX—’-XX) +9(mH1 _MX)F(HI - X’U_l +X'I)i)

. my — AMR)?
I(H - XX+XX)= |y“|2cgu

4ﬂmi,
: (mfy, — M%)
_ S H
['(H, - Xv; + Xv;) = Z [V Vs |52 418 , (3.16)
i amy,

and for H,, one more decay channel H, — H,hy, with a coupling vertex of §gv,(c — 53) = sqco(ck — s2)(mF; —
m%{z) /vy and hg being the SM Higgs boson, will be open if it is permitted by kinematics,

Ty, = 0(my, —2Mx)I(Hy > XX + X X) + 0(my, — Mx)T'(Hy — Xv; + Xv;)
+ 9("1].12 — MH] — mho)l—'(Hz — tho)
(myy, — 4M5)**

[(Hy - XX +XX) =y, |*s>
aut e 47tm%,

s (mfy, = M%)
F(HZ g XD[ +XU Z ‘yi’]l]yrllz| 2

['(H, —» Hhy) = Zc’g‘,(cg - 53)
X [(m%-lz — (my, + mh0>2)(m12qz — (my, = mh0)2)}1/2 (3.17)

where the step function is defined as 6(x) = 1 only for x > 0 and otherwise it is zero.
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A. Relic density analysis

In this section, we show that the numerical analysis satis-
fies all the constraints discussed in Sec. II. We find that after
imposing the LFV bounds and neutrino oscillation data, one
DM-neutrino-scalar coupling y, —populates in the range of
(1073, 1.0), so the annihilation process in this model cannot
account for a correct relic density. However, a large enhance-
ment for (ov) could be achieved if the semiannihilation
proceeds through an s-channel and in the vicinity of one
narrow-width resonance. Since Eq. (3.15) indicates that two
resonances of complex scalars are deconstructive, the con-
dition 100 < (my, —mpy, ) < 150 GeV is imposed in the
analysis, with the upper limit from the 36 EWPT fit at

cosa = \/% Thus, for a given DM mass, only one resonance

can effectively be on shell. On the other hand, we require

my = mpy, i.e., quasidegenerate, in order to satisfy the

neutrino oscillation data. This condition can be easily
! oIk ok

fulfilled if we make the mixing term A)H'n's"** tiny. In
order to simplify the analysis, we adopt several assumptions:

/ /

y’?’ =Yy Yo = V¢
1

Cy =——.

o \/z

We set Mmye = My, which is consistent with the EWPT

bound, as shown in Fig. 4, and y,,.y), are taken to be

mrli = mHZ,

(3.18)

Sqg =S¢ = Cq =

diagonal matrices. Under these assumptions, a numerical
scan is conducted for the parameter space by imposing the
relevant neutrino and LFV bounds and limiting the relic
density tobe 0.117 < Qh? < 0.123. We explore the two on-
shell scenarios in two overlapping DM mass regions with
my, = 2My for 80 < My < 350 GeV and my, = 2My for
200 < My < 400 GeV. Furthermore, in order to work well

-9 10777
_ -9.15f ’ ]
‘?‘ .
>
8 : ree, R
T _esol ¢ SenTEE SR
8 F N SRR ot P
>
5
[*]

S
~9.25¢ ;
—930Lb——
~20 18 16 14 12 10

Log[o vann] (GeV~2)

under the Breit-Wigner narrow-width prescription, we
. . Ty T
remove the points with max (-, —"2) > (0.2. For the latter

my, ’ My,
case of mpy, =2My, we impose a smaller splitting
(my, —mpy )~ (115,125) GeV; thus my > my. This
condition will ensure I'y, << my, and avoid coannihilation
from scalars. From the left plot in Fig. 6, we can see that the
observed relic density dominantly comes from the semi-
annihilation. At the time of freeze-out, x; ~ 21.0 [calculated
by Eq. (3.8)], the thermal average of the cross section is
within the range of 5.98 x 10719 GeV~? < (6vgemi) <
8.83 x 10719 GeV~2, where the larger value normally cor-
responds to a larger DM mass. In the right plot, we show the
allowed region in the (MY, y,, ) plane with other parameters
randomly scanned. The plot demonstrates that a small DM
mass My < 200 GeV is more sensitive to the lighter H; +
iA, resonance and permits a DM Yukawa coupling
Yy, 2 0.1. However, for My > 200 GeV, our fitting analy-
sis indicates a larger DM coupling y,, 2 0.5, which is close

to the perturbative limit \/47z regardless of the lighter or
heavier resonance scenario.

Figure 7 presents the mass ranges for Mz (= M) and
My, which enter into the numerator of neutrino mass form
factors as well as values of |Aq,| versus My. The typical
value for the lightest vectorlike fermions L} lies in the range
0.5-2.5 TeV, but the degeneracy results in no effect on
EWPT. Also, this mass range of M is not sensitive to the
LHC bound for charged lepton pairs plus missing trans-
verse energy [36]. While after enforcing all the bounds, the
maximum value for |Ag,| is of order <107'%, and even
lower for most benchmark points, it is negligible compared
with the 3.6¢ deviation of order 10 as measured by the
experiment. Thus, this model cannot simultaneously
account for the large discrepancy in the muon g — 2.

Yaqq
L
Ld

05} ,

01}

100 150 200 250 300 350 400
My (GeV)

FIG. 6. The left plot shows the thermal average (v a,,;) for annihilation versus the thermal average (6vgep;) for semiannihilation at the
freeze-out temperature. The right plot illustrates the allowed region in the plane of (My, v, , ), with the red line signaling the perturbation

limit y,, < +/4z. The blue points represent the scenario of my = 2My (lighter resonance), and the magenta points stand for the
scenario of my, = 2My (heavier resonance). All points satisfy the LFV bounds, neutrino data, and Planck satellite measurement

0.117 < Qh? < 0.123 at the 30 confidence level.
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FIG.7. The left plot shows the lightest mass in M, i = 1,2, 3 versus the lightest mass in My . i = 1,2, 3. The right plot illustrates the
correlation of [Aa,| to the DM mass M. The blue points represent the scenario of = =M x> and the magenta points stand for the

scenario of my, = 2My. All points satisfy the LFV bounds, neutrino data, and Planck satellite measurement 0.117 < Qh? < 0.123 at

the 30 confidence level.

Direct detection—In our case, there are no direction
interactions between H,,/A;, and the quarks at the tree
level; therefore, the constraints of direct detection searches
should be satisfied without difficulty.

IV. CONCLUSIONS AND DISCUSSIONS

We have constructed a neutrino mass model based on
hidden local U(1), symmetry, which gives rise to a Dirac
fermion type of dark matter. The neutrino masses are
generated at the two-loop level due to the symmetry and
particle content. Furthermore, because the form factor of the
neutrino mass is proportional to the mass squared differences
of inert scalars, we require one set of inert scalars to be
quasidegenerate so that a sub-eV scale neutrino mass can be
achieved without large fine-tuning for the Yukawa cou-
plings. As a variation to this model, we illustrate that the
heavy Z’ associated with the U(1) will not impact the DM
annihilation because its mixing with the SM Z boson is
induced by a complex triplet field A, whose VEV is severely
constrained by the p parameter. Particularly, the presence of
inert scalars (7, s) gives rise to notable S and 7" deviations.
Note that the impact of singlet s on oblique parameters is via
the mixing with doublet #. The 36 EWPT fit prefers the mass
splitting of |my, —my | < 150 GeV, provided cosa = %
and m, = my,.

Our DM is the lightest neutral particle stabilized by a
discrete Z5 parity, which is a residual symmetry of U(1),

(J

after spontaneous symmetry breaking. Therefore, in addi-
tion to the standard DM annihilation process, DM semi-
annihilation is induced in this model. After imposing the
LFV bounds and neutrino oscillation data and assuming no
specific flavor structure in Yukawa couplings, we find that
the s-channel semiannihilation plays an important role to
determine the observed relic density with a DM mass of
O(100) GeV. Our analysis demonstrates that the lighter
and heavier resonances can contribute significantly when
either one is actually put on shell and the allowed DM-
scalar Yukawa coupling is in the range of (0.1—/4x),
depending on the DM mass region.
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APPENDIX A: LOOP FUNCTIONS FOR
NEUTRINO MASS

The neutrino mass in this radiative seesaw model is
generated by the two-loop Feynman diagrams in Fig. 2.
It is convenient to decompose the mass matrix as (m,);; =

B , ., [ dtky
y,,mysapyn;),,ysbisacasaca (2n)*

1 1
) (k% —m%i] _kz_mH > <(k1 )

ml(,”) + mf,{j” + [m£’} 7+ [m,(,lll)]T, with m,(,lj) and m,(,{f)
calculated as
|
d*k, ~My k5
2n)* (6 = M3, ) (G — M3, ) (3 — M3,
1 1
- , Al
)2—’"%1’1 k%_m%-l’z) Ay
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D T d'k; [ d*k, M, My My,
=YY Yy J’s,, SaCaSaCa 2 37,2 2 2 2 2 2
@n)* ) @n)* (8 = M) (3 — M3 ) (K = M3, )
1 1 1 1
% _ - . A2
<k§—m%,, k%—mz) (@ “kV = k%—mz) (A2

For clarity, we can redefine my// n = e yan 1/ H(H 12 HY %), ,,ygj by extracting out a loop factor and Yukawa couplings in
the outer loop of Feynman dlagrams fger imposing the Feynman parametrization, the two-loop functions F;;;(H, . H ;)

are given by

U _ T 2 2 2 2
Fi(Hi2, HY5)ap = ZYS/HPMN,,yn;,b(mHl —my,)(m'y, —m'y,)saCaSwCa

[dals[dalsa(b + c)

X , A3
/ [a(aM,sz + bm%{,] + cm%,z) +a(b+ c)(ﬁMfﬂ + yMz,b + pm%,] + O'm%lz)]z (A3)
FII(H127H12) p=2M ;/)MN y MN’ (m%], _mHZ)(m H, —m/%] )SaCaSel Cat
dals[da]sa® (b + ¢)?
X M2+ b2 2 b 12 Y 2 INER (A4)
[a(a N, T My + CmH'Z) +a(b+c)(pM;, +v a +pmy, + omy,)]
[
.. _ Il 1-b . 1
where we use the definitions [dal; = [} db [, 1_:1_; with e = 12 S (At 4 A2,
a=1-b-c, and [da]s= [}da [[=*dp [,"" dy x 2
l—a—p-y . S R
Jo dp with 6 =1 —a—f —y —p. Note that these m2, =l + ( RiigVh + A0+ M), (B4)

form factors are finite and will be numerically evaluated.

The following identities will hold for the mass eigenstates

APPENDIX B: T PARAMETER FROM and rotating angle:
MIXING INERT SCALARS 2 _ 2 cosat md sinta
Since the longitude modes of W, Z gauge bosons are ;R fl . 5 2H2 2
9,G*9, the T parameter is easily calculated from the wave- ne = Mg, SINT @ My, COSTa
function renormalization of Goldstone bosons. We show sin2a — AVRY, . (BS)
that the two approaches match with each other. The relevant m%il - m%,z

terms from the scalar potential are
Since dp = 0Zg+ — 6Z 0, the two-point self-energy dia-
VD —ujH'H + Ay(H'H)* + Ay, (H'H)(n"n) grams in Fig. 8 give us

+ Ay (H ) (" H) + A,y (0" H) (")

2
/ — +
1 as (HTH)(5%5) + Ay (0 9) (") aAT = 2(/1,1,,7 5 sina + 4 > cosa) flmpy, , my,:)
+ (AH™ps*e +H.c.) + + p2s*s. Bl v 2
(ol s )+ '+ (B1) —I—Z( Hy 2Hcosa /107s1na) f(mpy,.m,:)

Due to the Z?3 parity, there is no mass splitting among the -
imaginary and real parts of inert neutral scalars. The masses - 5’10 vpf (my, . mpy, ) (B6)
can be read off from Eq. (B1):

. with the function f(m, m,) = —i dl;;’iz) | =0, and & = %
m% = ui + 3 Aty v + Apyv3,). (B2)  The I(p?) is defined as
d*k 1
1/s r m%R L ovyv, s I p?) = /
(Y, () e T e @ P
2\ ngy1t 3A0VHY,, m, NR/1 s 1
= / 4/ dx ——— (B7)
with the diagonal parts (27)* Jo (k= A)
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G+ H;(A;) G*

FIG. 8.

with A = —p?(1 — x)x + xm? + (1 — x)m3. Thus, we can
obtain the analytic formula

2

1 mi—m3+2mim3log(73)

7
1672 2(m? —m3)?

f(my,my) = (B8)

Using Egs. (B2), (B4), and (B5), the coefficients in
Eq. (B6) are related as

2 2 )2
/ UH . v(/) 2 (mH| —m"+) 2
Hp—=-sina + Ag—-cosa | = sin“a

) 2 vy
2 2 )2
; Vg Uy . 2 (mH2 _m'7+) 2
Hn—=-cosa—Ay—=-sina| =-———5———cos'a
"2 2 vy
2 2 2
/12/02 o 4(mH1 - mHz)
0V — 2

X sin a?cos3a.

(B9)

Then, after substituting those identities back into Eq. (B6),
we obtain the AT expression in Eq. (2.28).

A2(H2)

GO H,(Ay) G°

Self-energy diagrams for wave-function renormalization.

APPENDIX C: INNER PRODUCTS FOR
THE AMPLITUDES

The inner products of incoming and outgoing momenta
are:

pk= /(s = m} = m3)? = dmim3) (s =% = n3)? — 4nind).

1
preki == IG5+ 3 = md)(5-+ nt =2) | = pheos),

1
pr-ka = (s =) s + 03 = )| + pkcoso),

1
P2k :£(|(s+m%—m%)(s+n%—n%)\ + pkcos@),

1
pa-ka == (|(s+m3 —m3)(s +n3 =n})| = pkcoso),
(C1)

where s=(p, + p,)* is the Mandelstam variable,
my,(p1o) are the initial state masses (momenta), and
ny,(ky,) are the final state masses (momenta).
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