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We propose a two-loop induced radiative neutrino model with hidden gauged Uð1Þ symmetry, in which
dark matter of Dirac fermions arises. The relic density gets a contribution from annihilation and
semiannihilation due to a residual Z3 parity. After imposing the requirement of neutrino oscillation data
and lepton flavor violation bounds, we find that semiannihilation plays a crucial role in order to satisfy the
relic density constraint 0.117 < Ωh2 < 0.123, by proceeding near either one of two deconstructive scalar
resonances. Our numerical analysis demonstrates the allowed region for the DM-scalar coupling with the
DM mass in (80, 400) GeV.
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I. INTRODUCTION

Radiative seesaw neutrino models are one of the attrac-
tive scenarios to connect the neutrino sector with the dark
matter (DM) sector in a natural manner. These two sectors
certainly involve mysterious puzzles that are frequently
interpreted as physics beyond the Standard Model (SM).
When the neutrino masses are radiatively induced, the
magnitude of relevant couplings could reach Oð1Þ com-
pared with the case where the neutrino mass is generated at
the tree level, so the mass hierarchy among the SM sector
and heavy fermion or scalar sectors is largely alleviated.
Furthermore, new particles that are accommodated in the
theory are at theOðTeVÞ energy scale and accessible by the
extensive search at the Large Hadron Collider (LHC). For
the radiative seesaw mechanism, a discrete symmetry is
essentially implemented in order to forbid the neutrino
mass at the tree level, and such symmetry will in turn
stabilize the lightest neutral particle as a DM candidate. As
a consequence, this type of theory provides interesting
phenomenologies, with the requirement to satisfy the
observed relic density of Ωh2 ≈ 0.120� 0.001 [1] and
other experimental constraints.
The simplest discrete symmetry can be Z2, as the

remnant of a broken Uð1Þ symmetry, and a typical
DM-generated neutrino mass model at the one-loop
level is proposed in [2]. However, other enlarged
discrete symmetries are also possible to stabilize the
DM candidate, such as ZN , N > 2 discrete parity, which

brings in semiannihilation in addition to annihilation for
the Lee-Weinberg scenario [3], allowing for an odd
number of DM particles appearing in a 2 → 2 process
[4–7]. Under the control of ZN discrete symmetry, any
field transforming as fi → ωafi, with ω ¼ expði2π=NÞ
and a ¼ 1;…; N − 1, could serve as the dark matter
candidate depending on the spectrum and interactions.
In this paper we consider a two-loop induced neutrino
mass model [8–13] with new particles charged under a
hidden Uð1Þ symmetry [14–20], in which a Dirac
fermion type of Z3 DM candidate arises, whose relic
density is dominantly explained by the s-channel of
semiannihilation modes. Note that in this model, it is
also possible for a complex scalar to behave as DM in
the inverse mass pattern. The discrete Z3 symmetry
originates from the spontaneous breaking of Uð1Þ
symmetry and plays an important role to ensure the
DM χ does not decay while the reaction in the form of
χχ → χ†vi exits. We present how the DM and neutrino
mass are correlated by formulating each sector. In
particular, we perform an analysis to obtain the allowed
region which satisfies a set of necessary bounds,
including neutrino oscillation data, lepton flavor viola-
tions (LFVs), muon anomalous magnetic moments (Δaμ,
a.k.a. muon g − 2), and the DM relic density.
This paper is organized as follows. In Sec. II, we show

the valid Lagrangian with charge assignments and formu-
late the scalar and neutrino sectors, along with the LFVs,
muon g − 2, Z − Z0 mixing, and the bound of the electro-
weak precision test. In Sec. III, we analyze the Dirac
fermionic DM to explain the relic density with an emphasis
on the semiannihilation and a brief illustration of the
analytic derivation. In Sec. IV, we conduct a numerical
analysis and show the allowed region to satisfy all the
phenomenologies that we discuss above. Finally, we give
our conclusions and a discussion in Sec. IV.
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II. THE MODEL

The model is built by extending the SM with additional
scalars and vectorlike fermions, which are charged under a
hidden Uð1Þ symmetry before some of the scalars obtain
vacuum expectation values (VEVs). The field contents and
their charge assignments are reported in Table I. For the
fermion sector, an isospin doublet L0 ≡ ½E0; N0�Ti plus two
isospin singlets χi and Ni, with i ¼ 1, 2, 3, are added. The
vectorlike nature of these extra fermions ensures that our
extension is anomaly-free. The quantum number assignment
for L0, χ, N under the two gauge groups of ½Uð1ÞY; Uð1ÞH�
are ð−1=2; 2xÞ, (0; x), and (0; y), respectively. Here, we use
two arbitrary integers (x; y) with fx; yg ≠ 0 to keep track of
the heavy fermions running in the outer and inner loops of
the neutrino mass diagram (see Fig. 1). As for new scalar
fields, we introduce four inert scalar fields s, η, s0, η0, where
ðη; η0Þ are SUð2ÞL doublets and ðs; s0Þ are singlets. We can
see that, since (s; η) are charged under the Uð1ÞH as
ð−2x; xÞ, these two fields will only interact with new
fermions of L0 and χ. On the other hand, the two prime
fields ðs0; η0Þ are charged with ðxþ y;−2xþ yÞ for the
hidden symmetry; thus, they are allowed to connect with the
exotic fermion N under the assumption of y ≠ −x, y ≠ 2x.1

The two scalar fields (H;φ) are needed in order to generate
the neutrino mass at the two-loop level, provided they mix
inert scalars (η; s) and ðη0; s0Þ inside each set. The symmetry
permits more scalar fields, like a doubletH0 or a triplet Δ, to
induce the Z − Z0 mixing for the LHC collider signature. In
the case of addingH0, the neutrino mass will be generated at
the one-loop level since the red dot in Fig. 1 can be
substituted by an interaction of L0c

L=RH0χL=R. However,
in such case, the VEVofH0 should be very small (equivalent
to loop generated), so this one-loop radiative seesaw
mechanism may be able to reconcile the tension between
the neutrino mass and the relic density bound. Thus, we
focus on exploring the impact of a tripletΔ interplaying with
(H;φ) via the scalar potential in the two-loop radiative
seesawmechanism. For that purpose, the scalarsH,Δ, and φ
are required to develop nonzero VEVs, respectively sym-
bolized by hHi≡ vH=

ffiffiffi
2

p
, hΔi≡ vΔ=

ffiffiffi
2

p
, hφi≡ vφ=

ffiffiffi
2

p
.

The valid renormalizable Lagrangian for the fermion sector
is given by

−LY ¼ ylii L̄Li
HeRi

þ yLχabsχ̄
c
La
χLb

þ yRχabsχ̄
c
Ra
χRb

þ yηia L̄Li
η̃χRa

þ ySiasL̄Li
L0
Ra

þ yη0ab L̄
0
Ra
η̃0NLb

þ y0η0ab L̄
0
La
η̃0NRb

þ ys0abN̄Ra
χcRb

s0 þ y0s0abN̄La
χcLb

s0

þMχaa χ̄La
χRa

þMNaa
N̄La

NRa
þMN0

aa
L̄0
La
L0
Ra

þ H:c:; ð2:1Þ

where i, a, b ¼ 1, 2, 3 are the flavor indices for the SM and
exotic fermions, and η̃≡ iσ2η�, with σ2 being the second
Pauli matrix. For simplicity, we assume that all coefficients
are real and Mχ , MN , MN0 are diagonal matrices. The first
term of LY generates the SM charged-lepton masses
mli ≡ ylivH=

ffiffiffi
2

p
, while the second to fourth terms are

responsible for the (semi)annihilations. The residual Z3

from the broken hidden symmetry makes the lightest neutral
states, with Uð1ÞH charge of x or �2x, i.e., particles in the
set of ðχi; N0

i; η; sÞ, our DM candidate. In this paper we are
interested in the mass pattern where χ1 actually plays the role
of DM. Referring to Table I, we can see that the two scalar
fields (Δ;φ) carry a Uð1ÞH charge qH ¼ −3x with x ∈
integer, so they will transform under the Abelian Uð1Þ
symmetry as Δ → e−iqHαΔ and φ → e−iqHαφ, for an arbi-
trary value of α before the spontaneous symmetry breaking.
However, after these two scalars obtain VEVs, the phase is
forced to be α ¼ 2π=3 for any integer x ≥ 1; thus the
Lagrangian is still invariant under a discrete Z3 symmetry.
The particles with xð2xÞ charge in Uð1ÞH have w ¼
ei2π=3ðw2Þ parity assignment under this Z3.

A. The scalar potential

We explicitly write the nontrivial terms for the inert
scalar potential, which are invariant under the SUð2ÞL ×
Uð1ÞY ×Uð1ÞH gauge symmetry:

V1 ¼ ðλ0H†ηs�φþ λ00H
†η0s0�φ� þ H:c:Þ

þ
Xη;η0;s;s0
ϕ

½λHϕðH†HÞðϕ†ϕÞ þ λφϕðφ†φÞðϕ†ϕÞ�

þ
Xη;η0
ϕ

λ0HϕðH†ϕÞðϕ†HÞ þ
Xη;η0;s;s0
ϕ

½μ2ϕϕ†ϕþ λϕjϕ†ϕj2�;

ð2:2Þ

where we assume that these terms, like s02φð�Þ, s02φ2,
η0†ηφ2, vanish due to Uð1ÞH charges (e.g., x ¼ y ¼ 1).
Thus, no mass splitting occurs among the real and
imaginary parts of any inert field. The general potential
for the scalars (H;Δ) can be found in Refs. [21,22], and
we will modify it by adding interactions with a complex
singlet φ,

FIG. 1. Neutrino mass in the gauge basis at the two-loop level,
where the right plot represents the red dot in the left plot.

1In fact, we can see that the gauged Uð1ÞH is a linear
combination of two global Uð1Þs, which should be observed
individually in the unbroken phase.
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V2 ¼ −μ2HH†H þ λHðH†HÞ2 þM2TrðΔ†ΔÞ
þ λ1ðTrðΔ†ΔÞÞ2 þ λ2TrððΔ†ΔÞ2Þ
þ λ3ðH†HÞTrðΔ†ΔÞ þ λ4H†ΔΔ†H − μ2φφ

�φ

þ λφðφ�φÞ2 þ λ5H†Hφ�φþ λ6TrðΔ†ΔÞφ�φ

þ ½λΔHTiσ2ΔþHφþ H:c:�: ð2:3Þ

The scalar fields, besides the inert ones, are explicitly
expressed as

H ¼
� Gþ
vHþhþiG0ffiffi

2
p

�
; Δ ¼

2
64 Δþffiffi

2
p Δþþ

vΔþΔRþiΔIffiffi
2

p − Δþffiffi
2

p

3
75;

φ ¼ vφ þ φR þ iφIffiffiffi
2

p ; ð2:4Þ

so the mass of the W boson is fixed to mW ¼ g2
ffiffiffiffiffiffiffiffiffiffiffiffi
v2Hþ2v2Δ

p
2

.
The minimum of the potential is determined by deriva-
tives ∂V2=∂vH ¼ 0, ∂V2=∂vΔ ¼ 0, ∂V2=∂vφ ¼ 0, which
read as

−μ2H þ λHv2H þ λ3þ λ4
2

v2Δþ
λ5
2
v2φ ¼ λΔvΔvφ�

M2þ λ3þ λ4
2

v2H þðλ1þ λ2Þv2Δþ
λ6
2
v2φ

�
vΔ ¼ λΔv2Hvφ=2�

−μ2φþ λφv2φþ
λ5
2
v2H þþλ6

2
v2Δ

�
vφ ¼ λΔv2HvΔ=2:

ð2:5Þ

As we argue in Sec. II D for Z − Z0 mixing, vΔ is very tiny
due to the ρ parameter; thus we focus on the limit of
vΔ ≪ vH ≲ vφ. Under the assumption of negligible mixing
between φ and (H;Δ), i.e., λ5, λ6 ≪ 1, we obtain

vH ≃
�
λΔvΔvφ þ μ2H

λH

�
1=2

; vΔ ≃
λΔv2Hvφ

2ðM2 þ ðλ3 þ λ4Þv2H=2Þ
;

vφ ≃
μφ

λ1=2φ

: ð2:6Þ

In addition, the mass matrices in terms of ðh;ΔR;φRÞ,
ðG0;ΔI;φIÞ, and ðGþ;ΔþÞ can be diagonalized into a CP-
even or odd spectrum by respective orthogonal matrices.
Analogously, the inert bosons ðs; ηÞR=I and ðs0; η0ÞR=I are
written as

η ¼
"

ηþ
ηRþiηIffiffi

2
p

#
; s ¼ sR þ isIffiffiffi

2
p ;

η0 ¼
"

η0þ

η0Rþiη0Iffiffi
2

p

#
; s0 ¼ s0R þ is0Iffiffiffi

2
p : ð2:7Þ

They are rotated into the mass basis as follows:

VT
α

"
m2

sR
λ0
2
vHvφ

λ0
2
vHvφ m2

ηR

#
Vα ¼

"
m2

H1
0

0 m2
H2

#
;

VT
α0

2
64 m2

s0R

λ0
0

2
vHvφ

λ0
0

2
vHvφ m2

η0R

3
75Vα0 ¼

"
m2

H0
1

0

0 m2
H0

2

#
ð2:8Þ

�
sR þ isI
ηR þ iηI

�
¼

�
cα −sα
sα cα

��
H1 þ iA1

H2 þ iA2

�
;

�
s0R þ is0I
η0R þ iη0I

�
¼

�
cα0 −sα0
sα0 cα0

��
H0

1 þ iA0
1

H0
2 þ iA0

2

�
ð2:9Þ

where we use short-hand notation of sαð0Þ ¼ sin αð0Þ, cαð0Þ ¼
cos αð0Þ and the complex fields Hi þ iAi, H0

i þ iA0
i, i ¼ 1, 2

are mass eigenstates. Note that the semiannihilation exists
for the theory with Z3 parity, indicating that we need to
keep the degeneracy between H1;ð2Þ and A1;ð2Þ. The reason
is that a Z3 parity assignment w ¼ ei2π=3 is valid for a
Dirac fermion or a complex scalar field, like H̃i ¼ Hi þ iAi
with i ¼ 1, 2. Under this specific potential we obtain
m2

H1;2
¼ m2

A1;2
, m2

H0
1;2

¼ m2
A0
1;2
. Without loss of generality,

we can assumemH1
< mH2

andmH0
1
< mH0

2
by ordering the

mass eigenstates.

TABLE I. Contents of fermion and scalar fields and their charge assignments under SUð2ÞL ×Uð1ÞY × Uð1ÞH,
where all the new fields are singlets under SUð3ÞC and all the quark fields are neutral under Uð1ÞH. Note that the H0

field is only present for the one-loop radiative seesaw mechanism.

Fermion fields Scalar fields Inert scalar fields

LL eR L0
L=R χL=R NL=R H H0 Δ φ s η s0 η0

SUð2ÞL 2 1 2 1 1 2 2 3 1 1 2 1 2
Uð1ÞY − 1

2
−1 − 1

2
0 0 1

2
1
2

1 0 0 1
2

0 1
2

Uð1ÞH 0 0 2x x y 0 −3x −3x −3x −2x x xþ y −2xþ y
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B. Neutrino mass matrix

In this model, the neutrino mass arises at the two-loop level. To facilitate the calculation, the Lagrangian should be
transformed into the mass basis:

−LY ∼
yηiaffiffiffi
2

p ν̄Li
χRa

ðsαH1 þ cαH2Þ − i
yηiaffiffiffi
2

p ν̄Li
χRa

ðsαA1 þ cαA2Þ

þ yL=Rχabffiffiffi
2

p χ̄CLa=Ra
χLa=Rb

ðcαH1 − sαH2Þ þ i
yL=Rχabffiffiffi

2
p χ̄CLa=Ra

χLa=Rb
ðcαA1 − sαA2Þ

þ ySiaffiffiffi
2

p ν̄Li
N0

Ra
ðcαH1 − sαH2Þ þ i

ySiaffiffiffi
2

p ν̄Li
N0

Ra
ðcαA1 − sαA2Þ

þ ys0abffiffiffi
2

p N̄Ra
χCRb

ðcα0H0
1 − sα0H0

2Þ þ i
ys0abffiffiffi
2

p N̄Ra
χCRb

ðcα0A0
1 − sα0A0

2Þ

þ
y0s0abffiffiffi
2

p N̄La
χCLb

ðcα0H0
1 − sα0H0

2Þ þ i
y0s0abffiffiffi
2

p N̄La
χCLb

ðcα0A0
1 − sα0A0

2Þ

þ yη0abffiffiffi
2

p N̄0
Ra
NLb

ðsα0H0
1 þ cα0H0

2Þ − i
yη0abffiffiffi
2

p N̄0
Ra
NLb

ðsα0A0
1 þ cα0A0

2Þ

þ
y0η0abffiffiffi
2

p N̄0
La
NRb

ðsα0H0
1 þ cα0H0

2Þ − i
y0η0abffiffiffi
2

p N̄0
La
NRb

ðsα0A0
1 þ cα0A0

2Þ þ H:c: ð2:10Þ

Here we assume that all the Yukawa couplings are real for simplicity. The active neutrino mass matrix mνij is generated at
two-loop level as shown in Fig. 2, with formulas given by

ðmνÞij ¼ mðIÞ
νij þmðIIÞ

νij þ ½mðIÞ
νij �T þ ½mðIIÞ

νij �T; ð2:11Þ

where mðIÞ
νab and mðIIÞ

νab , respectively, correspond to the left and right plots in Fig. 2. The constraint on the neutrino matrix is
from the neutrino oscillation data since ðmνÞab has to be diagonalized by the Pontecorvo-Maki-Nakagawa-Sakata mixing
matrix VMNS (PMNS) [23] as ðmνÞij ¼ ðV�

MNSDνV
†
MNSÞij with Dν ¼ diagðmν1 ; mν2 ; mν3Þ. The PMNS matrix is para-

metrized as

VMNS ¼

2
64

c13c12 c13s12 s13e−iδ

−c23s12 − s23s13c12eiδ c23c12 − s23s13s12eiδ s23c13
s23s12 − c23s13c12eiδ −s23c12 − c23s13s12eiδ c23c13

3
75diagð1; eiα212 ; eiα312 Þ ð2:12Þ

with sij ¼ sin θij being three mixing angles. In the following analysis, we also neglect the Majorana CP violation phase α21
and α31 as well as the Dirac CP violation phase δ. By assuming the normal mass order mν1 ≪ mν2 < mν3, the global fit of
the current experiments at 3σ is given by [24]

FIG. 2. The Feynman diagrams for neutrino masses generated at the two-loop level in the mass eigenstate basis of inert scalars.
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0.250 ≤ s212 ≤ 0.354; 0.381 ≤ s223 ≤ 0.615;

0.019 ≤ s213 ≤ 0.024;

m2
ν3 −m2

ν1 ¼ ð2.45–2.69Þ × 10−3 eV2;

m2
ν2 −m2

ν1 ¼ ð6.93–7.96Þ × 10−5 eV2: ð2:13Þ

Now we rewrite the neutrino mass matrix in terms of
Yukawa couplings and the form factors:

ðmνÞij ≡ 1

ð4πÞ4 ðyηia ½FI þFII�abyTSbj þ ySja ½FT
I þFT

II�abyTηbjÞ

≡ 1

ð4πÞ4 ðyηiaGabyTSbj þ ySjaG
T
aby

T
ηbjÞ; ð2:14Þ

where the factor 1
ð4πÞ4 comes from the loop integration and

the exact expressions for these form factors FI , FII can
be found in Appendix A. The form factors exhibit an
interesting property, proportional to the product of mass
differences ðm2

H2
−m2

H1
Þðm2

H0
2
−m2

H0
1
Þ. Thus the neutrino

mass can be easily accommodated in the sub-eV order if
either set of inert scalars is quasidegenerate without tuning
the Yukawa couplings. In particular, if we set mH0

1
≃mH0

2
,

the LFV bound will not be influenced as H0
1;2 do not

mediate these processes.
Because of the symmetric property, Eq. (2.14) can be

conveniently recast into a suitable form for the numerical
analysis:

yη ¼
1

2
½ðV�

MNSDνV
†
MNS þ A�ðyTSÞ−1G−1; ð2:15Þ

where the A is an arbitrary antisymmetric matrix on the
order ≲10−9 and of complex values if there is CP violation
[25]. Therefore, after we impose Eq. (2.15), the yη coupling
is no longer a free parameter but a function of yS and the
neutrino mass form factors. This parameter will be deter-
mined by the neutrino oscillation data up to an uncertainty.
Notice that yη ≲

ffiffiffiffiffiffi
4π

p
should be satisfied in the perturba-

tive limit.

C. LFV and muon g− 2
In this radiative neutrino mass model, the existence of

charged scalars and vectorlike fermions contributes to
lepton flavor violation processes (see Fig. 3), which in
turn will severely constrain the Yukawa couplings and
masses of heavy scalars and fermions. The relevant
Lagrangian for LFV can be expressed as

L ¼ −yηia l̄Li
η−χRa

þ 1ffiffiffi
2

p ySia l̄Li
E0
Ra
½ðcαRH1 − sαRH2Þ

þ iðcαIA1 − sαIA2Þ� þ H:c: ð2:16Þ

We can calculate the branching ratio for the LFV decay
process li → ljγ in terms of amplitude aL=R, which
encodes the loop integration of the Feynman diagrams:

Brðli → ljγÞ ≈
48π3αem
G2

Fm
2
li

CijðjaLij
j2 þ jaRij

j2Þ; ð2:17Þ

where GF ≈ 1.166 × 10−5 GeV−2 is the Fermi constant,
αemðmZÞ ≈ 1=128.9 is the fine-structure constant [24],
C21 ≈ 1, C31 ≈ 0.1784, and C32 ≈ 0.1736. In this specific
model aR is formulated as

aRij
≈

mli

ð4πÞ2 ½yηjay
†
ηaiHðχa; η−Þ

−
ySjay

†
Sai

2
½c2αRHðH1; E0

aÞ þ s2αRHðH2; E0
aÞ

þ c2αIHðA1; E0
aÞ þ s2αIHðA2; E0

aÞ��; ð2:18Þ
Hða; bÞ

¼
Z

1

0

dx
Z

1−x

0

dy
xy

xm2
a þ ð1 − xÞm2

b

¼ma≠mb
2m6

a þ 3m4
am2

b − 6m2
am4

b þm6
b þ 6m4

am2
b logðm

2
b

m2
a
Þ

12ðm2
a −m2

bÞ4
ð2:19Þ

where we can see that the loop contributions from two
resources [Figs. 2(a) and 2(b)] are of opposite sign. And for

 (a)  (b)

FIG. 3. Lepton flavor violation processes induced by heavy fermions and scalars.
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the left-handed amplitude, aL is obtained by a mass
substitution: aL ¼ aRðmli → mljÞ.
The couplings involved in those LFV processes are yη

and yS, which are strongly correlated with the neutrino
mass matrix. In particular, the magnitude of yη, along with
the masses mχ1 and mH1;2

, constrained by the LFV bound,
will influence the DM relic density as well. To find the
allowed parameter space for this model, the following
upper bounds are imposed [26,27],

Brðμ → eγÞ ≤ 4.2 × 10−13ð6 × 10−14Þ
Brðτ → μγÞ ≤ 4.4 × 10−8; Brðτ → eγÞ ≤ 3.3 × 10−8

ð2:20Þ

where the upper bound from μ → eγ is the most stringent
one, with the value in parentheses indicating a future reach
of the MEG experiment [28].
The muon anomalous magnetic moment.—The muon

g − 2 is a well-measured property, and a large 3.6σ dis-
crepancy of Δaμ between the SM theory and experimental
measurement was observed for a long time. For this model,
one can estimate the muon g − 2 through the amplitudes
formulated above:

Δaμ ≈ −mμðaL þ aRÞ22: ð2:21Þ

The deviation from the SM prediction is Δaμ ¼ aexpμ −
aSMμ ¼ ð2.74� 0.73Þ × 10−9 [24] with a positive value.
However, because our analysis shows that the muon g − 2
is too tiny after imposing other bounds, we just employ the
muon g − 2 as a model quality for reference.

D. Z−Z0 mixing

The effect of the hidden Z0 at the TeV scale will actually
decouple from the dark matter physics, and we would like
to qualify this argument in this section. After the three
scalar fields develop VEVs, Uð1ÞH and electroweak sym-
metries are spontaneously broken so that the mass terms of
the neutral gauge boson are obtained,

1

2

�
Z0

Z̃

�T
" ðg2

1
þg2

2
Þ

4
ðv2H þ 4v2ΔÞ 3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p
gHv2Δ

3x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p
gHv2Δ 9x2g2Hðv2Δ þ v2φÞ

#�
Z0

Z̃

�
;

ð2:22Þ

where g2, g1, and gH are gauge couplings of SUð2ÞL,
Uð1ÞY , and Uð1ÞH, respectively. The Z0 and Z̃ are the
gauge fields for Uð1ÞY and Uð1ÞH with the Z0 mostly
composed of the SM Z boson. Here we assume that the
kinetic mixing between the two Abelian gauge bosons is
negligibly small for simplicity. In the case of x ¼ 1, we
parametrize the mass matrix to be

" ðg2
1
þg2

2
Þ

4
ðv2H þ 4v2ΔÞ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p
gHv2Δ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p
gHv2Δ 9g2Hðv2Δ þ v2φÞ

#

¼ m2
Z̃

�
ϵ21 2ϵ1ϵ2ϵ3

2ϵ1ϵ2ϵ3 1þ ϵ22

�
; ð2:23Þ

where we use the definition of mZ0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2

1
þg2

2
Þðv2Hþ4v2ΔÞ

p
2

,

mZ̃ ¼ 3gHvφ, ϵ1 ¼ mZ0
mZ̃

and ϵ2 ¼ vΔ
vφ
, ϵ3 ¼ vΔffiffiffiffiffiffiffiffiffiffiffiffi

v2Hþ4v2Δ
p . The

mass matrix can be diagonalized by an orthogonal trans-
formation to be Diagðm2

Z;m
2
Z0 Þ, and in an approximation of

vΔ ≪ vH ≲ vφ and gH ¼ Oð1Þ, this gives

m2
Z ≈m2

Z0
ð1 − 4ϵ22ϵ

2
3Þ; m2

Z0 ≈m2
Z̃
ð1þ ϵ22Þ; ð2:24Þ

�
Z

Z0

�
¼

�
cZ sZ
−sZ cZ

��
Z0

Z̃

�
; tan θZ ¼ −2ϵ1ϵ2ϵ3

1þ ϵ22 − ϵ21
:

ð2:25Þ

If we fix c2W ¼ g22=ðg21 þ g22Þ as the SM value, the ρ
parameter can be expressed as

ρ0 ≃
ð1þ 2v2Δ

v2H
Þ

ð1þ 4v2Δ
v2H
Þð1 − 4ϵ22ϵ

2
3Þ
: ð2:26Þ

The experimental constraint from the PDG is ρ0;exp ¼
1.00039� 0.00019 [24], which will translate into a
requirement of vΔ ≲ 3.5 GeV. In this paper, we assume
the Z0 boson mass to be above the TeV scale for
vφ ≳ 350 GeV. According to Eq. (2.25), this results in
an extremely small j tan θZj < 10−5 compared with the
Yukawa coupling with DM and the neutrino. Thus as long
as we prefer the DMmass inOð100Þ GeV, it will be safe to
neglect the impact of Z0 on either DM annihilation or DM-
nucleon scattering.

E. Bound of electroweak precision test

The electroweak precision test (EWPT) on low energy
observables can set limits for deviations from the SM. The
new physics effects are mainly encoded in the oblique
parameters S, T, andU, expressed in terms of the transverse
part of the gauge boson’s self-energy amplitudes. For this
model, since the U parameter is suppressed by an addi-
tional factor of v2=M2

new, its effect is neglected. Due to the
vectorlike nature and degeneracy, the exotic particles of L0

i
have no impact on oblique parameters, i.e.,ΔSf ¼ 2

3π ðt3L −
t3RÞ2 ¼ 0 and ΔTf ¼ 0 [24]. However, the inert scalars
(η; s) may cause notable deviation to S ¼ −16πΠ0ð0ÞW3B

and T ¼ 4π
m2

Zs
2
Wc2W

½2ΠW1W1
ð0Þ − ΠW3W3

ð0Þ� [29]; we will

discuss their constraints on the mass splitting among
ðmηþ ; mHi

Þ and the mixing angle sinðαÞ. After evaluating
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the relevant self-energy correlations, we find that the effects
from the inert scalars are described by

ΔS ¼ 1

12π
½s4αGðmH1

; mH1
; mηþÞ þ c4αGðmH2

mH2
; mηþÞ

þ 2c2αs2αGðmH1
; mH2

; mηþÞ�

¼ 1

12π

�
s2α ln

�
m2

H1

m2
ηþ

�
þ c2α ln

�
m2

H2

m2
ηþ

�

− 3c2αs2αχðmH1
; mH2

Þ
�
; ð2:27Þ

ΔT ¼ 1

16πm2
Ws

2
W
½s2αFðmH1

; mηþÞ þ c2αFðmH2
mηþÞ

− c2αs2αFðmH1
; mH2

Þ�; ð2:28Þ

where the loop functions Gðm1; m2; m3Þ, χðm1; m2Þ, and
Fðm1; m2Þ are defined as

Gðm1; m2; m3Þ ¼
1

2

�
ln

�
m2

1m
2
2

m4
3

�
− 3χðm1; m2Þ

�
; ð2:29Þ

χðm1; m2Þ ¼
5ðm4

1 þm4
2Þ − 22m2

1m
2
2

9ðm2
1 −m2

2Þ2

þ 3m2
1m

2
2ðm2

1 þm2
2Þ −m6

1 −m6
2

3ðm2
1 −m2

2Þ3
ln

�
m2

1

m2
2

�
;

ð2:30Þ

Fðm1; m2Þ ¼ m2
1 þm2

2 −
2m2

1m
2
2

m2
1 −m2

2

ln

�
m2

1

m2
2

�
; ð2:31Þ

with χðm1; m2Þ and Fðm1; m2Þ being symmetric for
m1 ↔ m2 and vanishing for equal masses, i.e.,
χðm;mÞ ¼ Fðm;mÞ ¼ 0. During the calculation, the diver-
gences inherent in the two-point functions are properly
canceled.2 In the case of the SM Higgs h barely mixing
with (Δ;φ), the ΔT is exactly the wave-function renorm-
alization of the Goldstone bosons Gþ; G0 with ðη�; ððηR þ
iηIÞ=

ffiffiffi
2

p Þ; sÞ running inside the loops (refer to Appendix B
for details) [31]. However, for the ΔS, the function
Gðm1; m2; m3Þ is related to d

dp2 ½B22ðp2; m2
1; m

2
2Þ−

B22ðp2; m2
3; m

2
3Þ�jp2¼0 ¼ 1

2

R
1
0 dxxð1 − xÞ ln½xm2

1
þð1−xÞm2

2

m2
3

�,
using the Passarino-Veltman function B22 defined in [32].
The bound for the S and T parameters is obtained from

the precision electroweak data, such as MZ and ΓZ, at the
1σ deviation by fixing U ¼ 0 [24]:

S ¼ 0.02� 0.07 T ¼ 0.06� 0.06 ð2:32Þ

with an off-diagonal correlation of 92%. In Fig. 4, combin-
ing all the discussed parts, we translate the S-T χ2 fit into
the bounds of inert scalar masses and the mixing angle.
Since both ΔS and ΔT are symmetric functions of

0.0 0.2 0.4 0.6 0.8 1.0
–300

–200

–100

0

100

200

300

400

S T exclusion

mH1
= 300 GeV m =mH2

100 200 300 400 500
0

50

100

150

200

250

cos( ) =
1

2
m +=mH2

FIG. 4. In the left plot, the two white bands represent the region allowed by the S − T bound at the 1σ C.L., while the red line is the 3σ
bound for mH2

¼ 300 GeV. The right plot shows the bound for ðmH2
−mH1

Þ and mH1
in the case of sα ¼ cα ¼ 1ffiffi

2
p (assuming mH2

>

mH1
and mηþ ¼ mH2

), where the regions outside the contours of the red, green, and blue lines are excluded at 68% ð1σÞ, 95% ð2σÞ, and
99% ð3σÞ C.L.s.

2For the T parameter, if we calculate it in terms of the gauge
boson’s self-energy amplitudes, the divergence is fully captured
in the loop function A0ðm2Þ ¼ 1

iπ2
R

d4k
ðk2−m2Þ [30] and should be

canceled after counting all the diagrams. The cancellation due to
the mixing of neutral inert scalars ððηR þ iηIÞ=

ffiffiffi
2

p Þ; sÞ [precisely
speaking, ðH1;2; A1;2Þ in the mass basis] is demonstrated by the
following pattern: 2s2αA0ðm2

H1
Þ þ 2c2αA0ðm2

H2
Þ − 2s4αA0ðm2

H1
Þ−

2c4αA0ðm2
H2
Þ − 2c2αs2αðA0ðm2

H1
Þ þ A0ðm2

H2
ÞÞ ¼ 0.

RADIATIVE NEUTRINO MODEL WITH SEMIANNIHILATING … PHYS. REV. D 101, 035006 (2020)

035006-7



ðmH1
; mH2

Þ, we focus on the case of mηþ ¼ mH2
for

simplicity. The operation of switching H1 ↔ H2 is to shift
the mixing angle by α → ðα − π

4
Þ. The 1σ EWPT fit prefers

the mass splitting ðmH2
−mH1

Þ > 0 in a small range of
0.92 < cos α < 1.0; i.e., H2ðA2Þ dominantly composed of
ηRðηIÞ should be heavier. However, at the 3σ fit, ðmH2

−
mH1

Þ is permitted in either sign (þ=−) for 0 < α < π
2
, with

its magnitude decreasing with cosα. In the right plot, we
show that assuming mH2

> mH1
, the S − T bound requires

ðmH2
−mH1

Þ ⊂ ð30; 120Þ GeV at 1σ and ðmH2
−mH1

Þ <
150 GeV at 3σ for 100 < mH1

< 500 GeV under the
condition specified in the caption.

III. DARK MATTER

The relic density for a DM species X is determined by its
energy density, ∝ mXnXðT0Þ in the present Universe, where
the number density nX is governed by the Boltzmann
equation during the decoupling phase plus the expansion
effect afterwards. For a Dirac fermion DM stabilized by a
Z3 symmetry, semiannihilation modes, in addition to
annihilation, are expected to contribute. The Boltzmann
equation can be recast into an evolution in terms of a yield
by defining YX ¼ nX=s with s as the entropy density and
x ¼ MX=T where the temperature is scaled by the DM
mass. The redefined equation reads

dYX

dx
¼ −

λA
x2

½Y2
X − Yeq2

X � − 1

2

λS
x2

½Y2
X − YXY

eq
X �; ð3:1Þ

λi ¼
sðx ¼ 1Þ
Hðx ¼ 1Þ hσvrelii; i ¼ A; S;

sðx ¼ 1Þ ¼ 2π2

45
g�M3

X; Hðx ¼ 1Þ ¼
ffiffiffiffiffiffiffiffiffiffi
π2

90
g�

r
M2

X

Mpl

ð3:2Þ

where A, S stand for annihilation and semiannihilation,
Hðx ¼ 1Þ is the Hubble constant at T ¼ MX, g� is the
effective total number of relativistic degrees of freedom,
and Mpl ¼ 1.22 × 1019½GeV� is the Planck mass. The 1

2

factor in the second term of Eq. (3.1) is due to the identical
initial particles,3 and hσvreli is the thermal average of the
velocity-weighted cross section, which represents the DM
interaction rate. This equation can be analytically solved in

a proper approximation by matching the results from two
regions at the freeze-out point. A brief review for this
approach will be presented here in order to clarify the
missing 1=2 in some of the literature. We start by defining a
quality Δ ¼ YX − Yeq

X , so the original equation is trans-
formed into

dΔ
dx

¼ −
dYeq

X

x
−
λA
x2

½Δ2 þ 2ΔYeq
X �−

1

2

λS
x2

½Δ2 þΔYeq
X � ð3:3Þ

where the Maxwell-Boltzmann distribution will be used for
the yield in equilibrium so that Yeq

X ðxÞ ∝ x3=2e−x. For
x ≪ xf, we can obtain

Δ ¼ Yeq
X

λA
x2 ð2Y

eq
X þ ΔÞ þ λS

2x2 ðY
eq
X þ ΔÞ ; ð3:4Þ

and for x ≫ xf, the integration of the Boltzmann equation
gives

YXð∞Þ ≃ −
Z

∞

xf

dx
λA þ 1

2
λS

x2
: ð3:5Þ

Thus, the relic density at the present Universe is found as

Ωh2 ¼ mXs0YXð∞Þ=ρc ≈ 2
1.07 × 109 GeV−1ffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðxfÞ

p
MplJðxfÞ

; ð3:6Þ

JðxfÞ ¼
Z

∞

xf

dx
hσvreliA þ 1

2
hσvreliS

x2
; ð3:7Þ

where Ωh2 is rescaled by the critical density ρc ¼
3H2=8πG. We multiply by a factor 2 for the relic density
in order to count the contribution from the antiparticle X̄
and set g�ðxfÞ ≈ 100 at the point of freeze-out. Here hσviA
is the thermal average for annihilation, while hσviS is for
semiannihilation. Then the freeze-out temperature xf is
determined by the boundary condition ΔðxfÞ ¼ cYeq

X ðxfÞ
with c ¼ ffiffiffi

2
p

− 1 as

xf ≃ ln
�
0.038cðcþ 2ÞhσviA

gMXMplffiffiffiffiffiffiffiffiffig�xf
p

�

þ ln

�
1þ cþ 1

cþ 2

hσviS
2hσviA

�
; ð3:8Þ

which is up to a factor of 1=2 for the semiannihilation part
as given by [6], and we set g ¼ 2 for a fermion DM of
2 degrees of freedom without counting its antiparticle [33].
We can see that in order to estimate the relic density, one

has to calculate the thermal average of the cross section
times the relative velocity hσvreli. Generally, the thermal
average is approximated by an expansion on the order of
x−n (hv2i ∼ 6

x in the nonrelativistic limit). However, in our

3For the semiannihilation, considering the evolution of the
number density for one species X, we need to take into account
the processes of XX → X̄νi and X̄ X̄ → Xν̄i, where the number of
the species X is only depleted by 1 in the forward direction, which
is the same as in the particle-antiparticle annihilation. Thus, the
Boltzmann equation with only the semiannihilation mode should
be dnX

dt þ 3HnX ¼ − 1
2
hσviSemi½n2X − nXn

eq
X �. This is different from

the DM annihilation of Majorana fermions, where the depletion
number is 2, and it compensates the phase space factor 1

2
from

identical particles.
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case, the dominant DM cross section proceeds through an
s-channel with one very narrow resonance ΓM=MX ≪ vrel
and one wider resonance ΓM=MX ∼ vrel. In addition, for an
s-channel interaction mediated by a scalar, the s-wave is
vanishing for the velocity averaged cross section; thus the
expansion in terms of v2rel is complicated for two resonances
interfering with each other. We prefer to use the integration
approach to evaluate hσvreli, which is given by [34,35]

hσvreliA ¼
X2
i¼1

R
∞
4M2

X
dsσiXXðs − 4M2

XÞ
ffiffiffi
s

p
K1ð

ffiffi
s

p
MX

xÞ
8M5

Xx
−1K2ðxÞ2

; ð3:9Þ

hσvreliS ¼
R∞
4M2

X
dsσ3XXðs − 4M2

XÞ
ffiffiffi
s

p
K1ð

ffiffi
s

p
MX

xÞ
8M5

Xx
−1K2ðxÞ2

; ð3:10Þ

where s ¼ ðk1 þ k2Þ2 is a Mandelstam variable and K1;2

are the modified Bessel functions of order 1 and 2,
respectively:

σiXX ¼ jk1j
32π2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s− 4M2

X

p Z
dΩjM̄ij2; i¼ 1;2;3;

with jk1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
4
−m2

l=ν

r
i¼ 1;2; jk1j ¼

s−M2
X

2
ffiffiffi
s

p i¼ 3:

ð3:11Þ

Here σiXX is the cross section of the 2 → 2 process
(denoting k1 as the 3-momentum of the first outgoing
particle) and with the amplitude squared jM̄1;2j2 corre-
sponding to XX̄ → νiν̄j and XX̄ → lil̄j in Figs. 5(a)
and 5(b) and the third jM̄3j2 standing for XX → X̄νi,
i.e., the semiannihilation as depicted in Figs. 5(c)–5(e).
We derive the analytic expression for each amplitude

squared present in Eq. (3.11). Let us consider the case
where only the lightest flavor of χi is the DM candidate. By
defining X ¼ χ1 and assuming yLχ ¼ yRχ , the DM-scalar
interaction in this model is written as

−L ¼ yηi1ffiffiffi
2

p ν̄iPRXðsαH1 þ cαH2Þ − i
yηi1ffiffiffi
2

p ν̄iPRXðsαA1 þ cαA2Þ − yηi1 l̄iPRXη−

þ yχ11ffiffiffi
2

p X̄CXðcαH1 − sαH2Þ þ i
yχ11ffiffiffi
2

p X̄CXðcαA1 − sαA2Þ þ H:c: ð3:12Þ

For the annihilation processes, jM̄1;2j are the usual amplitudes squared with the spin averaged for the initial states and
summed for the final states. However, a special treatment is needed for jM̄3j because of the identical incoming particles. As
illustrated in Figs. 5(c)–5(e), the semiannihilation proceeds in S, T, andU channels after counting the momentum exchange
for the identical initial particles. In particular, there is a symmetry factor 2 for the s-channel amplitude.4 Combining all
channels, we can arrive at the following analytic expressions:

jM̄1j2 ¼
X3
i;j¼1

jyηi1y†η1j j2
���� s2α
M2

X −m2
H1

− 2p1 · k1
þ c2α
M2

X −m2
H2

− 2p1 · k1

����2ðp1 · k1Þðp2 · k2Þ; ð3:13Þ

jM̄2j2 ¼
X3
i;j¼1

���� yηi1y
†
η1j

M2
X −m2

η� − 2p1 · k1

����
2

ðp1 · k1Þðp2 · k2Þ; ð3:14Þ

(a) (b) (c) (d) (e)

FIG. 5. Feynman diagrams for the annihilation (a, b) and semiannihilation processes (c)–(e), where the mediating scalar fields are Ha
or Aa, with a ¼ 1, 2.

4We need to consider the momentum exchange for the identical initial particles due to the phase space integration in the
thermal average. For semiannihilation Xðp1ÞXðp2Þ þ Xðp2ÞXðp1Þ → X̄ðk1Þviðk2Þ, the s-channel amplitude is proportional to
½ūcðp1Þuðp2Þ − ūcðp2Þuðp1Þ�½v̄ðk1Þuðk2Þ� ¼ 2½v̄ðp1Þuðp2Þ�½v̄ðk1Þuðk2Þ�, where we use the identities uc ¼ CūT ¼ v and v̄ðp2Þuðp1Þ ¼
uTðp1ÞC−1Cv̄Tðp2Þ ¼ −v̄ðp1Þuðp2Þ, with C ¼ iγ0γ2 being the charge conjugate operator. This is similar to the identical scalar case
ϕϕ → Ha; the symmetry factor is normally encoded in the vertex.
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jM̄3j2 ¼ ðsαcαÞ2
X3
i¼1

jyχ11yηi1 j2
�
8

����X2
a¼1

ð−1Þaþ1Sainv

����2ðp1 · p2 −M2
XÞðk1 · k2Þ

þ2

����X2
a¼1

ð−1Þaþ1Ta
inv

����2ðp1 · k1 þM2
XÞðp2 · k2Þ þ 2

����X2
a¼1

ð−1Þaþ1Ua
inv

����2ðp2 · k1 þM2
XÞp1 · k2

þ2
X2
a¼1

ð−1Þaþ1SRe;ainv

X2
a¼1

ð−1Þaþ1Ta
inv½ðp1 · p2Þðk1 · k2Þ − ðp1 · k2Þðp2 · k1Þ þ ðp1 · k1Þðp2 · k2Þ

þM2
Xð−p1 · k2 þ p2 · k2 − k1 · k2Þ� þ 2

X2
a¼1

ð−1Þaþ1SRe;ainv

X2
a¼1

ð−1Þaþ1Ua
inv½ðp1 · p2Þðk1 · k2Þ

−ðp1 · k1Þðp2 · k2Þ þ ðp1 · k2Þðp2 · k1Þ þM2
Xð−p2 · k2 þ p1 · k2 − k1 · k2Þ�

−
X2
a¼1

ð−1Þaþ1Ta
inv

X2
a¼1

ð−1Þaþ1Ua
inv½ðp1 · k1Þðp2 · k2Þ − ðp1 · p2Þðk1 · k2Þ þ ðp1 · k2Þðp2 · k1Þ

þM2
Xðk1 · k2 þ p1 · k2 þ p2 · k2Þ�

�
: ð3:15Þ

In the M3 amplitude of semiannihilation, we define Sainv ¼ 1=ðs −m2
a þ imaΓaÞ, Ta

inv ¼ 1=ð2M2
X −m2

a − 2p1 · k1Þ,
Ua

inv ¼ 1=ðM2
X −m2

a − 2p1 · k2Þ, and the index a ¼ 1, 2 corresponds to H1ðA1Þ, H2ðA2Þ, respectively. The inner products
are given in Appendix C.
For the s-channel amplitude, the widths of inert scalars H1;2ðA1;2Þ enter into the Breit-Wigner propagator Sainv, whose

magnitude near two on-shell poles mH1
¼ 2MX or mH2

¼ 2MX is determined by the ΓH1
or ΓH2

. Under this consideration,
we will only be interested in the parameter region mH1

< mH2
< minðmE0

i
; mχ2 ; mχ3Þ to ensure a narrow resonance.

Therefore, the decay widths of ΓH1
(¼ ΓA1

) and ΓH2
(¼ ΓA2

) are formulated as

ΓH1
¼ θðmH1

− 2MXÞΓðH1 → XX þ X̄ X̄Þ þ θðmH1
−MXÞΓðH1 → Xv̄i þ X̄viÞ

ΓðH1 → XX þ X̄ X̄Þ ¼ jyχ11 j2c2α
ðm2

H1
− 4M2

XÞ3=2
4πm2

H1

ΓðH1 → Xv̄i þ X̄viÞ ¼
X3
i

jyηi1y†η1i js2α
ðm2

H1
−M2

XÞ2
16πm3

H1

; ð3:16Þ

and for H2, one more decay channel H2 → H1h0, with a coupling vertex of 1
2
λ0vφðc2α − s2αÞ ¼ sαcαðc2α − s2αÞðm2

H1
−

m2
H2
Þ=vH and h0 being the SM Higgs boson, will be open if it is permitted by kinematics,

ΓH2
¼ θðmH2

− 2MXÞΓðH2 → XX þ X̄ X̄Þ þ θðmH2
−MXÞΓðH2 → Xv̄i þ X̄viÞ

þ θðmH2
−MH1

−mh0ÞΓðH2 → H1h0Þ

ΓðH2 → XX þ X̄ X̄Þ ¼ jyχ11 j2s2α
ðm2

H2
− 4M2

XÞ3=2
4πm2

H2

ΓðH2 → Xv̄i þ X̄viÞ ¼
X3
i

jyηi1y†η1i jc2α
ðm2

H2
−M2

XÞ2
16πm3

H2

ΓðH2 → H1h0Þ ¼ s2αc2αðc2α − s2αÞ2
ðm2

H2
−m2

H1
Þ2

16πv2Hm
3
H2

× ½ðm2
H2

− ðmH1
þmh0Þ2Þðm2

H2
− ðmH1

−mh0Þ2Þ�1=2 ð3:17Þ

where the step function is defined as θðxÞ ¼ 1 only for x > 0 and otherwise it is zero.
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A. Relic density analysis

In this section, we show that the numerical analysis satis-
fies all the constraints discussed in Sec. II. We find that after
imposing the LFV bounds and neutrino oscillation data, one
DM-neutrino-scalar coupling yηi1 populates in the range of
ð10−3; 1.0Þ, so the annihilation process in this model cannot
account for a correct relic density. However, a large enhance-
ment for hσvi could be achieved if the semiannihilation
proceeds through an s-channel and in the vicinity of one
narrow-width resonance. Since Eq. (3.15) indicates that two
resonances of complex scalars are deconstructive, the con-
dition 100 < ðmH2

−mH1
Þ < 150 GeV is imposed in the

analysis, with the upper limit from the 3σ EWPT fit at
cos α ¼ 1ffiffi

2
p . Thus, for a given DM mass, only one resonance

can effectively be on shell. On the other hand, we require
mH0

1
≃mH0

2
, i.e., quasidegenerate, in order to satisfy the

neutrino oscillation data. This condition can be easily
fulfilled if we make the mixing term λ00H

†η0s0�φ� tiny. In
order to simplify the analysis, we adopt several assumptions:

mη� ¼ mH2
; y0η0 ¼ yη0 ; y0s0 ¼ ys0

sα ¼ sα0 ¼ cα ¼ cα0 ¼
1ffiffiffi
2

p : ð3:18Þ

We set mη� ¼ mH2
, which is consistent with the EWPT

bound, as shown in Fig. 4, and y0η0 ; y
0
s0 are taken to be

diagonal matrices. Under these assumptions, a numerical
scan is conducted for the parameter space by imposing the
relevant neutrino and LFV bounds and limiting the relic
density to be 0.117 < Ωh2 < 0.123. We explore the two on-
shell scenarios in two overlapping DM mass regions with
mH1

¼ 2MX for 80 < MX < 350 GeV andmH2
¼ 2MX for

200 < MX < 400 GeV. Furthermore, in order to work well

under the Breit-Wigner narrow-width prescription, we

remove the points with maxðΓH1

mH1

;
ΓH2

mH2

Þ > 0.2. For the latter

case of mH2
¼ 2MX, we impose a smaller splitting

ðmH2
−mH1

Þ ≃ ð115; 125Þ GeV; thus mH1
≫ mX. This

condition will ensure ΓH1
≪ mH1

and avoid coannihilation
from scalars. From the left plot in Fig. 6, we can see that the
observed relic density dominantly comes from the semi-
annihilation. At the time of freeze-out, xf ≈ 21.0 [calculated
by Eq. (3.8)], the thermal average of the cross section is
within the range of 5.98 × 10−10 GeV−2 ≲ hσvSemii≲
8.83 × 10−10 GeV−2, where the larger value normally cor-
responds to a larger DM mass. In the right plot, we show the
allowed region in the ðMX; yχ11Þ plane with other parameters
randomly scanned. The plot demonstrates that a small DM
mass MX < 200 GeV is more sensitive to the lighter H1 þ
iA1 resonance and permits a DM Yukawa coupling
yχ11 ≳ 0.1. However, for MX > 200 GeV, our fitting analy-
sis indicates a larger DM coupling yχ11 ≳ 0.5, which is close
to the perturbative limit

ffiffiffiffiffiffi
4π

p
regardless of the lighter or

heavier resonance scenario.
Figure 7 presents the mass ranges for ME0 ð¼ MN0 Þ and

MN , which enter into the numerator of neutrino mass form
factors as well as values of jΔaμj versus MX. The typical
value for the lightest vectorlike fermions L0

i lies in the range
0.5–2.5 TeV, but the degeneracy results in no effect on
EWPT. Also, this mass range of ME0 is not sensitive to the
LHC bound for charged lepton pairs plus missing trans-
verse energy [36]. While after enforcing all the bounds, the
maximum value for jΔaμj is of order ≲10−14, and even
lower for most benchmark points, it is negligible compared
with the 3.6σ deviation of order 10−9 as measured by the
experiment. Thus, this model cannot simultaneously
account for the large discrepancy in the muon g − 2.
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FIG. 6. The left plot shows the thermal average hσvAnnii for annihilation versus the thermal average hσvSemii for semiannihilation at the
freeze-out temperature. The right plot illustrates the allowed region in the plane of ðMX; yχ11Þ, with the red line signaling the perturbation
limit yχ11 <

ffiffiffiffiffi
4π

p
. The blue points represent the scenario of mH1

¼ 2MX (lighter resonance), and the magenta points stand for the
scenario of mH2

¼ 2MX (heavier resonance). All points satisfy the LFV bounds, neutrino data, and Planck satellite measurement
0.117 < Ωh2 < 0.123 at the 3σ confidence level.
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Direct detection.—In our case, there are no direction
interactions between H1;2=A1;2 and the quarks at the tree
level; therefore, the constraints of direct detection searches
should be satisfied without difficulty.

IV. CONCLUSIONS AND DISCUSSIONS

We have constructed a neutrino mass model based on
hidden local Uð1ÞH symmetry, which gives rise to a Dirac
fermion type of dark matter. The neutrino masses are
generated at the two-loop level due to the symmetry and
particle content. Furthermore, because the form factor of the
neutrino mass is proportional to the mass squared differences
of inert scalars, we require one set of inert scalars to be
quasidegenerate so that a sub-eV scale neutrino mass can be
achieved without large fine-tuning for the Yukawa cou-
plings. As a variation to this model, we illustrate that the
heavy Z0 associated with the Uð1Þ will not impact the DM
annihilation because its mixing with the SM Z boson is
induced by a complex triplet field Δ, whose VEV is severely
constrained by the ρ parameter. Particularly, the presence of
inert scalars (η; s) gives rise to notable S and T deviations.
Note that the impact of singlet s on oblique parameters is via
the mixing with doublet η. The 3σ EWPT fit prefers the mass
splitting of jmH2

−mH1
j≲ 150 GeV, provided cosα ¼ 1ffiffi

2
p

and mþ
η ¼ mH2

.
Our DM is the lightest neutral particle stabilized by a

discrete Z3 parity, which is a residual symmetry of Uð1ÞH

after spontaneous symmetry breaking. Therefore, in addi-
tion to the standard DM annihilation process, DM semi-
annihilation is induced in this model. After imposing the
LFV bounds and neutrino oscillation data and assuming no
specific flavor structure in Yukawa couplings, we find that
the s-channel semiannihilation plays an important role to
determine the observed relic density with a DM mass of
Oð100Þ GeV. Our analysis demonstrates that the lighter
and heavier resonances can contribute significantly when
either one is actually put on shell and the allowed DM-
scalar Yukawa coupling is in the range of (0.1–

ffiffiffiffiffiffi
4π

p
),

depending on the DM mass region.
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APPENDIX A: LOOP FUNCTIONS FOR
NEUTRINO MASS

The neutrino mass in this radiative seesaw model is
generated by the two-loop Feynman diagrams in Fig. 2.
It is convenient to decompose the mass matrix as ðmνÞij ¼
mðIÞ

νij þmðIIÞ
νij þ ½mðIÞ

νij �T þ ½mðIIÞ
νij �T , with mðIÞ

νij and mðIIÞ
νij

calculated as

mðIÞ
ν ¼ yηiay

T
s0aρ
yη0ρby

T
Sbj
sαcαs0αc0α

Z
d4k1
ð2πÞ4

Z
d4k2
ð2πÞ4

−MNρ
k22

ðk21 −M2
Nρ
Þðk22 −M2

Xa
Þðk22 −M2

N0
b
Þ

×

�
1

k22 −m2
H1

−
1

k22 −m2
H2

��
1

ðk1 − k2Þ2 −m2
H0

1

−
1

k22 −m2
H0

2

�
; ðA1Þ
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FIG. 7. The left plot shows the lightest mass inME0
i
; i ¼ 1, 2, 3 versus the lightest mass inMNi

; i ¼ 1, 2, 3. The right plot illustrates the
correlation of jΔaμj to the DM mass MX . The blue points represent the scenario of mH1

¼ 2MX , and the magenta points stand for the
scenario of mH2

¼ 2MX. All points satisfy the LFV bounds, neutrino data, and Planck satellite measurement 0.117 < Ωh2 < 0.123 at
the 3σ confidence level.
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mðIIÞ
ν ¼ yηiay

0T
s0aρ
y0η0ρby

T
Sbj
sαcαs0αc0α

Z
d4k1
ð2πÞ4

Z
d4k2
ð2πÞ4

MχaMNρ
MN0

b

ðk21 −M2
Nρ
Þðk22 −M2

Xa
Þðk22 −M2

N0
b
Þ

×

�
1

k22 −m2
H1

−
1

k22 −m2
H2

��
1

ðk1 − k2Þ2 −m2
H0

1

−
1

k22 −m2
H0

2

�
: ðA2Þ

For clarity, we can redefinemðI=IIÞ
νij ¼ 1

ð4πÞ4 yηiaFI=IIðH1;2; H0
1;2ÞabyTbj by extracting out a loop factor and Yukawa couplings in

the outer loop of Feynman diagrams. After imposing the Feynman parametrization, the two-loop functions FI=IIðH1;2; H0
1;2Þ

are given by

FIðH1;2; H0
1;2Þab ¼ 2yTs0aρMNρ

yη0ρbðm2
H1

−m2
H2
Þðm02

H1
−m02

H2
Þsαcαsα0cα0

×
Z ½da�3½dα�5aðbþ cÞ

½αðaM2
Nρ

þ bm2
H0

1
þ cm2

H0
2
Þ þ aðbþ cÞðβM2

χa þ γM2
N0

b
þ ρm2

H1
þ σm2

H2
Þ�2 ; ðA3Þ

FIIðH1;2; H0
1;2Þab ¼ 2Mχay

0T
s0aρ
MNρ

y0η0ρbMN0
b
ðm2

H1
−m2

H2
Þðm02

H1
−m02

H2
Þsαcαsα0cα0

×
Z ½da�3½dα�5a2ðbþ cÞ2

½αðaM2
Nρ

þ bm2
H0

1
þ cm2

H0
2
Þ þ aðbþ cÞðβM2

χa þ γM2
N0

b
þ ρm2

H1
þ σm2

H2
Þ�3 ; ðA4Þ

where we use the definitions ½da�3 ≡
R
1
0 db

R
1−b
0 dc with

a ¼ 1 − b − c, and ½dα�5 ≡
R
1
0 dα

R
1−α
0 dβ

R 1−α−β
0 dγ ×R 1−α−β−γ

0 dρ with σ ¼ 1 − α − β − γ − ρ. Note that these
form factors are finite and will be numerically evaluated.

APPENDIX B: T PARAMETER FROM
MIXING INERT SCALARS

Since the longitude modes of W, Z gauge bosons are
∂μG�;0, the T parameter is easily calculated from the wave-
function renormalization of Goldstone bosons. We show
that the two approaches match with each other. The relevant
terms from the scalar potential are

V ⊃ −μ2HH†H þ λHðH†HÞ2 þ λHηðH†HÞðη†ηÞ
þ λ0HηðH†ηÞðη†HÞ þ λφηðφ†HÞðη†ηÞ
þ λHsðH†HÞðs�sÞ þ λφsðφ†φÞðs�sÞ
þ ðλ0H†ηs�φþ H:c:Þ þ μ2ηη

†ηþ μ2ss�s: ðB1Þ

Due to the Z3 parity, there is no mass splitting among the
imaginary and real parts of inert neutral scalars. The masses
can be read off from Eq. (B1):

m2
ηþ ¼ μ2η þ

1

2
ðλHηv2H þ λφηv2φÞ; ðB2Þ

1

2

�
sR=I
ηR=I

�T� m2
sR

1
2
λ0vHvφ

1
2
λ0vHvφ m2

ηR

��
sR=I
ηR=I

�
; ðB3Þ

with the diagonal parts

m2
sR ¼ μ2s þ

1

2
ðλHsv2H þ λφsv2φÞ;

m2
ηR ¼ μ2η þ

1

2
ðλHηv2H þ λφηv2φ þ λ0Hηv

2
HÞ: ðB4Þ

The following identities will hold for the mass eigenstates
and rotating angle:

m2
sR ¼ m2

H1
cos2 αþm2

H2
sin2 α

m2
ηR ¼ m2

H1
sin2 αþm2

H2
cos2 α

sin 2α ¼ λ0vHvφ
m2

H1
−m2

H2

: ðB5Þ

Since δρ ¼ δZGþ − δZG0 , the two-point self-energy dia-
grams in Fig. 8 give us

α̂ΔT ¼ 2

�
λ0Hη

vH
2
sin αþ λ0

vφ
2
cos α

�
2

fðmH1
; mηþÞ

þ 2

�
λ0Hη

vH
2
cos α − λ0

vφ
2
sin α

�
2

fðmH2
; mηþÞ

−
1

2
λ20v

2
φfðmH1

; mH2
Þ ðB6Þ

with the function fðm1; m2Þ ¼ −i dΠðp
2Þ

dp2 jp2¼0, and α̂ ¼ e2
4π.

The Πðp2Þ is defined as

Πðp2Þ ¼
Z

d4k
ð2πÞ4

1

ðk2 −m2
1Þððkþ pÞ2 −m2

2Þ

¼
Z

d4k
ð2πÞ4

Z
1

0

dx
1

ðk2 − ΔÞ2 ðB7Þ
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with Δ ¼ −p2ð1 − xÞxþ xm2
1 þ ð1 − xÞm2

2. Thus, we can
obtain the analytic formula

fðm1; m2Þ ¼
1

16π2

m4
1 −m4

2 þ 2m2
1m

2
2 logðm

2
2

m2
1

Þ
2ðm2

1 −m2
2Þ3

: ðB8Þ

Using Eqs. (B2), (B4), and (B5), the coefficients in
Eq. (B6) are related as

�
λ0Hη

vH
2
sin αþ λ0

vφ
2
cos α

�
2

¼
ðm2

H1
−m2

ηþÞ2
v2H

sin2α

�
λ0Hη

vH
2
cos α − λ0

vφ
2
sin α

�
2

¼
ðm2

H2
−m2

ηþÞ2
v2H

cos2α

λ20v
2
φ ¼ 4ðm2

H1
−m2

H2
Þ2

v2H
× sin α2cos2α: ðB9Þ

Then, after substituting those identities back into Eq. (B6),
we obtain the ΔT expression in Eq. (2.28).

APPENDIX C: INNER PRODUCTS FOR
THE AMPLITUDES

The inner products of incoming and outgoing momenta
are:

pk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððs−m2

1−m2
2Þ2−4m2

1m
2
2Þððs−n21−n22Þ2−4n21n

2
2Þ

q
;

p1 ·k1¼
1

4s
ðjðsþm2

1−m2
2Þðsþn21−n22Þj−pkcosθÞ;

p1 ·k2¼
1

4s
ðjðsþm2

1−m2
2Þðsþn22−n21ÞjþpkcosθÞ;

p2 ·k1¼
1

4s
ðjðsþm2

2−m2
1Þðsþn21−n22ÞjþpkcosθÞ;

p2 ·k2¼
1

4s
ðjðsþm2

2−m2
1Þðsþn22−n21Þj−pkcosθÞ;

ðC1Þ

where s≡ ðp1 þ p2Þ2 is the Mandelstam variable,
m1;2ðp1;2Þ are the initial state masses (momenta), and
n1;2ðk1;2Þ are the final state masses (momenta).
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