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Despite considerable experimental progress large parts of the axionlike particle (ALP) parameter space
remain difficult to probe in terrestrial experiments. In some cases, however, small-scale structure of the
ALP dark matter (DM) distribution is strongly enhanced, offering opportunities for astrophysical tests.
Such an enhancement can be produced by a period of prenucleosynthesis early matter domination (EMD).
This cosmology arises in many ultraviolet completions and generates the correct relic abundance for weak
coupling fa ∼ 1016 GeV, ALP masses in the range 10−13 eV < ma < 1 eV, and without fine-tuning of the
initial misalignment angle. This range includes the QCD axion around 10−9 − 10−8 eV. EMD enhances the
growth of ALP small-scale structure, leading to the formation of dense ALP miniclusters which can contain
nearly all of DM (depending on ALP mass and reheating temperature). We study the interplay between the
initial ALP oscillation, reheating temperature, and effective pressure to provide analytic estimates of the
minicluster abundance and properties. ALP miniclusters in the EMD cosmology are denser and more
abundant than inΛCDM.While enhanced substructure generically reduces the prospects of direct detection
experiments, we show that pulsar timing and lensing observations can discover these minihalos over a large
range of ALP masses and reheating temperatures.
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I. INTRODUCTION

Axionlike particles (ALPs) provide a compelling and
elegant explanation for the dark matter (DM) of the
Universe [1–4]. These DM candidates arise in ultraviolet
(UV) completions of the Standard Model (SM) as pseudo-
Nambu-Goldstone bosons of spontaneously broken global
symmetries, or as zero modes of higher-dimensional gauge
fields [4–7]. As such, their masses can be naturally light.
A relic density of ALPs can be produced via several
mechanisms, including misalignment, thermal and inflation-
ary production, and from the decays of heavier particles or
topological defects. In many well-motivated cases several
mechanisms can contribute. For reviews, see, e.g., Refs. [8,9].
The nonthermal production of ALPs suggests that both

their abundance and late-time distribution are sensitive to
physics in the UV. This is in contrast to thermally produced
DM (such as weakly interacting massive particles, or
WIMPs), where the abundance only depends on processes
at energies similar to the DMmass. This UV sensitivity can
open a window into the prenucleosynthesis universe, where
few other probes are currently available.
One of the principal means for discovering and meas-

uring the properties of ALPs is through terrestrial direct
detection experiments. Previously we have studied pros-
pects for the direct detection of ALPs in a variety of

cosmological scenarios [10], providing a range of experi-
mental targets which are free of fine-tuning; some of these
targets are shown in Fig. 1. The most difficult scenario
to probe via direct detection involves a period of early
matter domination (EMD). In EMD scenarios, the value
of the ALP decay constant required to achieve the correct
DM relic density is large, corresponding to a small value
of the ALP-photon coupling gaγγ ∼ 10−18 GeV−1. This
value is independent of the ALP mass over a large range
of masses, including a range of QCD axion candidates
around a nano-eV.
Although challenging for ALP direct detection experi-

ments, a period of EMD is an interesting possibility for early
Universe physics, motivated both by top-down model build-
ing and by bottom-up phenomenological considerations.
From the phenomenological perspective, the prenucleo-

synthesis expansion history has not been determined by
observations, and it is natural to consider alternatives to the
standard radiation-dominated assumption. Among these
alternatives, a period of matter domination is perhaps the
simplest possibility. Furthermore, as alluded to above,
EMD is a natural way to achieve the correct relic abundance
of axions with decay constants around the grand unified
theory (GUT) scale independent of the axion mass [10,20].
Whereas in the standard cosmology the axion fraction of
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the energy density grows linearly with temperature from
H ∼ma until matter-radiation equality, generally leading to
overclosure for high-scale decay constants unless the axion
is extremely light, in EMD this energy fraction is frozen
around ðfa=MPlÞ2 until reheating. The correct relic abun-
dance is then obtained for Teq=TRH ∼ ðfa=MPlÞ2, indepen-
dent of ma.
From the top-down perspective, EMD is thought to occur

generically in string models of light axions [20], where
axions typically have GUT-scale decay constants [5] and
are accompanied by a saxion (a heavier scalar modulus
partner of the axion) that comes to dominate the energy
density at early times. Saxion moduli in these models
typically have Planck-suppressed couplings, and there can
also be other modulus fields which are similarly weakly
coupled (see, for example, the textbook discussion of
Refs. [21,22] or the models discussed in Refs. [5,23,24]).
Moduli fields are thus naturally long-lived, and the energy
stored in their oscillations can come to dominate the energy
density of the early Universe before they decay, leading to a
period of EMD. If the moduli decay happens too late, the
energy injection can ruin the success of big bang nucleo-
synthesis (BBN): this is known as the cosmological moduli
problem [25–27]. The moduli problem can be avoided if the
moduli mass scale is aboveOð10Þ TeV, leading to reheating
(RH) above 5 MeVand satisfying BBN constraints [28–31].
A period of EMD can modify dark matter physics in

various ways. In WIMP scenarios, dark matter can be

produced in the decay of the fields responsible for EMD,
favoring different parts of the supersymmetric parameter
space [32–36]. In ALP scenarios, axions that begin to
oscillate during an EMD phase have modified relic den-
sities and perturbation growth relative to the standard
radiation dominated cosmology. The authors of Ref. [37]
performed an early study of axion dark matter with a period
of EMD; more recent studies include Refs. [38–41] and
projections for a wide range of proposed experiments for
this scenario were given in Ref. [10].
In this work we explore the impact of a stage of early

matter domination on the growth of ALP density pertur-
bations, which has also recently been considered in
Refs. [39,40] for ALPs and in Refs. [42–46] for
WIMPs. Density perturbations grow linearly with the scale
factor during EMD, as opposed to logarithmically during
radiation domination. Linear growth leads to enhanced
structure on scales that enter the horizon before the end of
EMD. These structures decouple from the Hubble flow
and collapse at high redshifts, leading to the formation of
ALP miniclusters or minihalos (we use these terms inter-
changeably) [47–52]. Galactic dark matter halos are then
hierarchically assembled from these miniclusters. If the
miniclusters survive the galactic assembly process, their
presence can significantly alter the optimal DM search
strategy. For example, the terrestrial minicluster encounter
rate may be too low for effective direct detection searches
[53,54]. On the other hand, such compact structures can be
searched for via lensing and pulsar timing. Future lensing

FIG. 1. Existing constraints (gray regions), target parameter space (colored bands) and sensitivity of future experiments (colored lines)
in the ALP mass ma and photon coupling gaγγ ∼ 1=fa (left panel) and nucleon dipole moment coupling gd ∼ 1=ðfaΛQCDÞ (right panel)
planes. The QCD axion band is shown in blue and corresponds to a particular approximate mass-coupling relation, mafa ∼mπfπ .
Relaxing this relationship but imposing saturation of the dark matter relic density results in other mass-coupling relations. These
relations depend on the pre-BBN expansion history and initial misalignment angle θi. The green and yellow bands correspond to
cosmologies with early matter domination (with a reheat temperature of 10 MeV) and standard radiation domination before
nucleosynthesis and natural values of θi ∼ 1. Larger masses and lower couplings favored by EMD are challenging to probe in terrestrial
experiments. In this paper we show that EMD enhances ALP DM small-scale structure, resulting in the formation of ALP minihalos.
These minihalos can be probed with lensing and pulsar timing observations through gravitational interactions alone for ma ≳ 10−10 eV
as indicated by the green arrow. We also show the far-future sensitivities of DM Radio [11,12] and ABRACADABRA [13–15] to the
ALP-photon coupling and CASPER-electric to the ALP-nucleon coupling [16–18]. These experiments are projected to reach the EMD
target region for a range of reheating temperatures (the upper and lower ABRACADABRA lines correspond to the broadband and
resonant searches, respectively [15]). The left panel is adapted from Ref. [10] including results of Ref. [19].
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[55–57] and pulsar-timing searches [58] will be able to
probe compact DM substructure at an unprecedented level.
The formation of ALP miniclusters is known to occur for

ALP initial conditions generated by postinflationary Pecci-
Quinn (PQ) breaking, topological defect decay or when
ALP self-interactions are important. In this work, we focus
on the complementary case where the initial ALP pertur-
bations are smallOð10−4Þ, in analogy to the preinflationary
PQ breaking scenario for the QCD axion. We show that
even in this case, miniclusters form due to the enhanced
growth during EMD. Unlike the post-PQ breaking case, the
growth of ALP perturbations can be treated analytically.
Consequently the minicluster distributions can be charac-
terized with mild assumptions about their survival proba-
bility. We generalize and extend previous analyses of
Refs. [39,40] by considering non-QCD ALPs, treating
growth before and after matter-radiation equality, and
studying the impact of the ALP mass, sound speed effects,
reheating temperature, and initial conditions on the growth
and distribution of miniclusters.
Recent numerical work [59] suggests QCD axion mini-

clusters formed from postinflationary PQ breaking in the
standard cosmology may be too light to be relevant for
lensing and pulsar timing searches. In contrast, in the ALP
parameter space where EMD provides a natural explanation
for the relic density, we find that these searches, particularly
photometric microlensing, offer strong sensitivity. In EMD
scenarios it is plausible that most of the present-day relic
density is bound in miniclusters, greatly weakening direct
detection prospects. These conclusions affect a large range
of weakly coupled ALP models, including a QCD axion
with a mass around an neV.
This work is organized as follows. In Sec. II we discuss

the ALP relic density and a model for the period of early
matter domination. In Sec. III we assemble the Boltzmann
equations for the evolution of the background energy
densities and the ALP perturbations. The physics involves
a number of different scales: the ALP mass (and hence
scale of oscillation), the comoving horizon size, the ALP
Jeans scale, and the reheating scale. We carefully assess the
impact of each scale on the growth of perturbations, and we
present numerical results tracking the perturbations from
early matter domination, through reheating and into stan-
dard radiation domination, and through standard matter-
radiation equality. In Sec. IV we use the Press-Schechter
formalism to estimate the statistical distributions of the
ALP miniclusters. We discuss our results in Sec. V, and
study their implications for the minicluster survival rate,
direct detection, and pulsar timing and lensing searches.
We conclude in Sec. VI.

II. ALP RELIC ABUNDANCE

Our model consists of the Standard Model, an ALP field
a which will constitute the dark matter, and a heavy scalar
field ϕ. The energy density in coherent ϕ oscillations

dominates the Universe at early times and redshifts like
matter, leading to a period of EMD. The scalar field a is
minimally coupled to gravity with action

S ⊃
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ð∂aÞ2 − VðaÞ

�
; ð1Þ

where for simplicity we consider a quadratic potential

VðaÞ ¼ 1

2
m2a2: ð2Þ

If the field a is an axionlike particle then we expect its
interactions with SM fields to be suppressed by factors of
1=fa, where fa is the ALP decay constant. While critical
for direct detection, these interactions are not relevant for
the early Universe cosmology we study in this paper.
We assume that the ALP relic density is set through the
misalignment mechanism [1–3], and that the ALP mass is
independent of temperature.
Higher-order terms may also be present in the potential

of Eq. (2). These terms delay the onset of ALP oscillations
for large initial values of a, and including them can have
Oð1Þ impact on the relic density. For a=fa ≲ 1 these effects
are unimportant. Nonlinear terms in the ALP equation of
motion can also lead to important effects on small scales,
such as solitonlike configuration known as axitons or
oscillons [48,59–62]. The precise effect of self-interactions
depends on the interaction terms and temperature depend-
ence of the ALP mass. On the whole, the presence of
axitons could provide additional substructure within the
miniclusters we identify below and would be interesting to
pursue further through dedicated numerical studies.
In a Friedmann-Robertson-Walker cosmology, the equa-

tion of motion for the ALP background is

d2a
dt2

þ 3H
da
dt

þm2
aa ¼ 0; ð3Þ

where H is the Hubble parameter. The evolution of the
ALP field depends on the distribution of initial conditions
θi ¼ ai=fa. If the ALP exists prior to inflation then θi is
uniform across the initially causally disconnected regions
constituting the Universe at the present time. This is the
scenario we study in this paper. Another possibility is that
θi is stochastically distributed over the separate causal
patches throughout the Universe. In models where the
ALP is a pseudo-Nambu Goldstone boson, this corre-
sponds to the scenario where associated global symmetry
is broken after inflation. This can be studied analytically
using cosmological perturbation theory by taking an
effective average misalignment angle corresponding to
θi ¼ π=

ffiffiffi
3

p
[63]. However, one also expects the formation

of topological defects such as strings and domain walls at
the boundaries of different causal patches which are not
captured by this approach. The decay of these defects

IMPRINTS OF THE EARLY UNIVERSE ON AXION DARK … PHYS. REV. D 101, 035002 (2020)

035002-3



leads to large fluctuations in the ALP field which later
evolve into miniclusters. Structure formation in this
scenario has recently been studied numerically in
Refs. [59,60] and analytically in Refs. [51,52,64] using
the Press-Schechter formalism, and leads to the formation
of miniclusters [47–50].
It is well known that the preinflationary PQ-breaking

axion scenario generates isocurvature perturbations, which
are strongly constrained by cosmic microwave background
(CMB) measurements [65–67]. Suppressing these modes
either implies an upper bound on the scale of inflation HI
[68] or requires nontrivial axion-inflaton dynamics (see,
e.g., Ref. [68]). In the former case we estimate in
Appendix D that HI ≲ 109−10 GeV depending on the
reheating temperature. This is less constraining than for
the QCD axion in a standard cosmology [38]. For the rest of
this paper we assume that inflation has taken place at a
sufficiently low scale to satisfy the isocurvature constraint.
The scalar field ϕ comes to dominate the energy density

in the early Universe before it decays. Reheating occurs
when the Hubble parameter is approximately equal to the
decay width of the scalar, H ∼ Γϕ. During matter-domina-
tion H ∝ a−3=2, and the scale factor a at reheating is
approximately aRH ∼ Γ−2=3

ϕ .1 We denote the temperature of
the Universe when reheating occurs by TRH. This is
constrained by big bang nucleosynthesis to be larger than
OðMeVÞ. The lowest reheat temperature we consider in this
work is 5 MeV [28–31].
In UV-complete models the field ϕ could correspond to a

saxion or modulus field. We assume that the ϕ decays
predominantly into Standard Model fields, corresponding
to radiation in the early Universe. It is also possible that ϕ
decays into ALPs. In that case the ALP relic density would
be made up partly from a population due to misalignment
and partly from a population due to ϕ decay. Whether this
population behaves as matter or radiation depends on the
relative mass of ϕ and a, and on TRH. However, for
ma < eV and the low reheat temperatures we are interested
in, ALPs produced from ϕ decays are still relativistic at
matter-radiation equality (MRE). Therefore, they contrib-
ute to the total energy density of the Universe as dark
radiation and their abundance is constrained by the con-
cordance of standard cosmology with observations of the
CMB and light element abundances. These constraints are
conveniently expressed as bounds on the effective number
of relativistic degrees of freedom, Neff . In the instantaneous
decay approximation we estimate that ALPs from ϕ decays
would contribute

ΔNeff ≲ 4

7

�
BRðϕ → aaÞ

BRðϕ → SMSMÞ
�
g�ðTRHÞ; ð4Þ

where the upper bound arises from assuming TRH≲
10 MeV; higher TRH is more weakly constrained due to
additional SM entropy injections which dilute the relativ-
istic ALP contribution relative to the SM. CMB and BBN
limit ΔNeff ≲ 0.5 at 95% C.L. (see, e.g., Refs. [69–71]),
which translates into BRðϕ → aaÞ < 0.08. In the absence
of self-interactions, this ALP component does not
contribute to the formation of ALP clumps, so we set
BRðϕ → aaÞ ¼ 0 throughout this work. We also note that
topological defects such as domain walls and strings tend
to be irrelevant in preinflationary ALP scenarios, since
inflation smooths out inhomogeneities. Recent numerical
studies suggest that the magnitude of the defect contri-
bution is small even in the postinflationary ALP scenario
[59,60,72] (although significant uncertainty remains—see
Refs. [59,73,74]). We therefore assume that the relic
density is determined entirely by production through
misalignment.
In the early Universe while H > ma the field a is

effectively frozen in its initial value. As the Universe
expands and Hubble decreases and becomes comparable
with the ALP mass H ∼ma the ALP field starts evolving at
time tosc and oscillates in its potential. After oscillations
begin, the ALP energy density redshifts as matter,

ρa ¼
1

2
m2

af2aθ2i ðaðtoscÞ=aÞ3 þOðH2=m2
aÞ; ð5Þ

where the a−3 is the redshifting of the energy density with
the scale factor.
The ALP density in the current epoch can be shown to be

approximately [10]

Ωah2 ≃ 0.12 ×

�
faθi

9 × 1014 GeV

�
2

×

�
TRH

10 MeV

�
; ð6Þ

where θi ¼ ai=fa is the initial ALP misalignment angle.
This equation holds for temperature-independent ALP
masses, and also assumes that the reheating temperature
TRH is lower than the ALP oscillation temperature Tosc.
If this were not the case then ALP oscillations would
commence during radiation domination, and EMD would
not have any impact on dark matter physics and structure
formation. Notably, Eq. (6) is independent of the ALP mass:
EMD is an efficient mechanism for preventing heavier ALPs
from overclosing the Universe without fine-tuning the
misalignment angle [10,75]. Similarly, it achieves the correct
relic abundance for weaker couplings than in the standard
scenario. In the next section we study the evolution of
inhomogeneities in the ALP field and the corresponding
cosmological density and velocity perturbations.

III. GROWTH OF ALP PERTURBATIONS

In this section we trace the evolution of the ALP
perturbations through EMD, reheating, and into standard

1We use a to refer to both and ALP field and the cosmological
scale factor. It will be clear from context which one is in use.
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radiation domination. The initial ALP perturbations are
small for our choice of initial conditions, so their growth
during these stages is well described by linear perturbation
theory. We determine the evolution of the background
densities, then find the Boltzmann equations and initial
conditions describing the perturbations in the EMD field,
ALPs and radiation. We solve the Boltzmann system
numerically and discuss the growth of perturbations of
different physical sizes. Finally, we use these results to
construct approximate transfer functions, which will be
employed in the following section to characterize mini-
cluster formation and distribution in the nonlinear regime.
Our analysis closely follows that of Ref. [43] for WIMP-

like DM with EMD, so it is useful to highlight some
differences from the WIMP case. First, since the ALP
masses are low, if they are to account for the cold DM of the
Universe, they cannot be produced during reheating in the
decays of the massive particles responsible for EMD.
Second, ALPs only behave like matter after they begin
to oscillate. This sets a characteristic minimum scale for
enhanced structure growth, and it modifies the Boltzmann
equations compared to the WIMP scenario. Finally, the
ALP coupling to the SM is so weak that there are no
annihilations or decays of the ALP during reheating [45].

A. Background

We model the background evolution of the Universe as a
three fluid system adapted from [43,76]. This scenario is
described by the following evolution equations for the
energy densities of the scalar field ρϕ, the ALP ρa, and SM
radiation ρr:

dρϕ
dt

þ 3Hρϕ ¼ −Γϕρϕ ð7aÞ

dρr
dt

þ 4Hρr ¼ þΓϕρϕ ð7bÞ

dρa
dt

þ 3Hρa ¼ 0: ð7cÞ

We will follow the conventions of Ref. [43] and set the
scale factor and Hubble parameter at an initial time t0 to be
aðt0Þ ¼ 1 and Hðt0Þ ¼ H1. We also define dimensionless
variables

ρ̃i ¼ ρi=ρcrit;0 ð8Þ

Γ̃ϕ ¼ Γϕ=H1; ð9Þ

where ρcrit;0 ¼ 3M2
PlH

2
1=ð8πÞ. We work in these scaled

units throughout and drop the tildes below for simplicity.
Physical quantities are ratios of scales and the dependence
on H1 drops out.

Equations (7) are valid after the ALP starts to oscillate;
before this era, the energy density must be obtained by
solving the field equation (3). We obtain the initial
conditions for Eq. (7) by assuming that ϕ dominates the
energy density at early times, that the dominant component
of radiation has been produced by ϕ decay alone (i.e., any
primordial contribution has been diluted away), and that the
Universe is flat. These assumptions give

ρrðt0Þ ≈
2

5
Γϕρϕðt0Þ; ð10Þ

ρaðt0Þ ≈ ρaðt0Þ; ð11Þ

ρϕðt0Þ þ ρaðt0Þ þ ρrðt0Þ ≈ 1; ð12Þ

where the last condition can be solved for ρϕðt0Þ≈
1 −OðΓϕÞ. Since we are considering times well before
the standard matter-radiation equality, we have ρaðt0Þ ≪
ρϕ;rðt0Þ.
The background evolution, Eq. (7), can be solved in the

early-time limit:

ρϕðtÞ ≈ ρϕðt0Þa−3; ð13aÞ

ρaðtÞ ≈ ρaðt0Þa−3; ð13bÞ

ρrðtÞ ≈ ρrðt0Þa−3=2: ð13cÞ

The ALP and ϕ redshift as matter, but the radiation
density redshifts slower than the usual a−4 due to the ϕ
decays. These solutions are approximately valid until
reheating when Γϕ=HðaRHÞ ∼ 1, which occurs when

aRH ∼ Γ−2=3
ϕ : ð14Þ

Compared to Ref. [43], we assume in Eq. (7) that the
DM component does not arise from decays of ϕ [f ¼
BRðϕ → aaÞ ¼ 0 in their notation]. Instead, the ALP initial
condition is set by requiring that we get the correct DM
abundance by the time of (standard) matter-radiation equal-
ity. A representative numerical solution of the system in
Eq. (7) is shown in Fig. 2. Before it commences oscillating,
the axion energy density behaves as a component of dark
energy and is constant. In this section we have presented the
background evolution equations in terms of the time t. In all
sections after this we will use either the scale factor a, or
conformal time τ as our time variables.

B. Perturbations and initial conditions

Density and velocity perturbations in the ϕ and radiation
fluids are governed by the Einstein and stress-energy
conservation equations in the perturbed FRW space-time.
The ALP fluid behaves as a cosmological constant before
oscillations commence and as matter afterwards. Even deep
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in the matterlike regime, however, the ALP is not CDM-
like at all scales. At small physical scales (large comoving
wavevector k), the wavelike nature of the ALP introduces
an effective pressure (and a corresponding sound speed) for
the ALP fluid, preventing clustering below a characteristic
scale, the Jeans wavenumber kJ, which is estimated below
following Refs. [6,77,78]. We focus on times after oscil-
lations have begun and take into account these effects by
integrating out the fast oscillations of the ALP, giving rise
to effective fluid equations. The derivation of these equa-
tions, including the ALP sound speed, is discussed in
greater detail in the Appendixes A and B. Here we collect
the results.
We work in the conformal Newtonian gauge and take the

metric to be

ds2 ¼ a2½ð1þ 2ΨÞdτ2 − ð1þ 2ΦÞdx2�; ð15Þ

where τ is the conformal time, x is the comoving coor-
dinate, a is the scale factor, and Ψ and Φ are the metric
perturbations. We neglect neutrino anisotropic stress and
set Φ ¼ −Ψ; this is a good approximation for modes that
entered the horizon before T ≳MeV, since Weak inter-
actions are still in equilibrium, so neutrinos behave as a
perfect fluid. The equation of motion for the linear ALP
field perturbation a1 is [79]

ä1 þ 2H _a1 þ ðk2 þm2
aa2Þa1 − ð _Ψ − 3 _ΦÞ _a0 þ 2a2m2

aΨa0
¼ 0; ð16Þ

where the dots denote derivatives with respect to conformal
time, H ¼ aH is the comoving Hubble parameter and
a0 is the background solution of Eq. (3). The oscillation-
averaged equations for the energy density and velocity
perturbations are obtained by constructing approximate
solutions in the H=ðmaaÞ expansion as in Ref. [78].
We find the Fourier-space density δi and velocity

divergence θi ¼ ik⃗ · v⃗i perturbation equations for i ¼ ϕ
(the EMD field), a (the ALP), and r (SM radiation) to be

_δϕ þ θϕ þ 3 _Φ ¼ −aΓϕΨ; ð17aÞ

_θϕ þHθϕ − k2Ψ ¼ 0; ð17bÞ

_δr þ
4

3
θr þ 4 _Φ ¼ aΓϕ

ρϕ
ρr

½δϕ − δr þ Ψ�; ð17cÞ

_θr −
1

4
k2δr − k2Ψ ¼ aΓϕ

ρϕ
ρr

�
3

4
θϕ − θr

�
; ð17dÞ

_δa þ θa þ 3 _Φ ¼ −3c2nadHδa − 9c2nadH
2θa=k2 ð17eÞ

_θa þHθa − k2Ψ ¼ þ3c2nadHθa þ k2c2nadδa ð17fÞ

k2Φ − 3H½HΨ − _Φ� ¼ 4πGa2½ρϕδϕ þ ρrδr þ ρaδa�;
ð17gÞ

where the nonadiabatic sound speed cnad is

c2nad ¼
k2

k2 þ 4m2
aa2

: ð18Þ

We take standard adiabatic initial conditions for all
fluids. These are discussed in detail in Appendix A.
Note that this assumption for the ALP is not trivial.
Under standard assumptions and high-scale inflation,
quantum fluctuations of the ALP will generate isocurvature
initial conditions at large scales. Consistency with the CMB
then implies either a low scale of inflation or nontrivial
inflationary dynamics, as discussed in Sec. II. For example,
if the scale of inflation is low, the isocurvature component
in the ALP is tiny. The adiabatic component vanishes until
the ALP begins to oscillate. After oscillations begin,
superhorizon modes of the ALP develop adiabatic pertur-
bations, as we show in Appendix B.
The system of Eqs. (17) is nearly identical to those

derived in Ref. [43] for the WIMP, except for the appear-
ance of the sound speed terms, the initial conditions, and
the generation of the relic abundance through misalign-
ment. As a result, modes that enter the horizon after
oscillations and for which the sound speed is not important
evolve as described in Ref. [43]. Likewise, the other fluids
evolve as in Ref. [43].

FIG. 2. Evolution of background densities for a cosmology
with early matter domination. At early times, the energy budget
of the Universe is dominated by a nonrelativistic field ϕ, which
eventually decays into radiation (at a ¼ aRH ≈ 104), reheating the
Universe. The DM of the Universe consists of an axionlike
particle with density ρa. This density is constant before the ALP
field commences oscillation at aosc ≈ 102. We study the growth of
ALP perturbations in this background cosmology.
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Before numerically analyzing Eq. (17), it is useful to study
the behavior of the ALP density perturbations analytically.
First, let us focus on longer wavelength modes, which enter
the horizon after the ALP begins to oscillate, and for which
sound speed effects can be neglected. The growing mode of
perturbations that enter the horizon before RH is

δaða; kÞ ¼ 2Φ0 þ
2

3

�
k
H1

�
2

aΦ0ða < aRH; k > kRHÞ; ð19Þ

where Φ0 is the initial value of the gravitational potential
(prior to reheating), and kRH is the comoving scale corre-
sponding to the comoving horizon at reheating:

kRH ¼ HðaRHÞ ∼ a−1=2RH : ð20Þ

This wavenumber can be expressed in physical variables [43]:

kRH
keq

¼ kRH
aeqHðTeqÞ

≈ 5.9 × 106
�

TRH

5 MeV

��
g�ðTRHÞ
10.75

�
1=6

;

ð21Þ

where we used aeq ¼ 1=ð1þ zeqÞ, zeq ¼ 3365 and Teq ¼
0.79 eV [80].
After RH, these modes continue to grow logarithmically;

assuming horizon entry occurs well before instantaneous
reheating at a ¼ aRH and matching solutions in the two
regimes, one finds that for a > aRH

δaða; kÞ ¼
2

3

�
k

kRH

�
2

Φ0 ln
ea
aRH

ða > aRH; k > kRHÞ: ð22Þ

Here the prefactor ∝ ðk=kRHÞ2 encodes the period of
enhanced growth between horizon entry and reheating;
sinceH ∼ a−1=2 during EMD, linear growth corresponds to

aRH=ahor ¼ ðk=kRHÞ2: ð23Þ

Modes that enter the horizon after RH evolve as in
ΛCDM; the solution is well approximated by the fitting
formula [81]

δða; kÞ ¼ 10

9
AΦ0 ln

�
Ba
ahor

�
ða > aRH; k < kRHÞ ð24Þ

after horizon entry ða ≫ ahorÞ, withA ≈ 9.11 andB ≈ 0.594;
the prefactor 10=9 accounts for the transition from EMD
to RD.
How much growth can an axion perturbation undergo

during EMD? Linear growth in the scale factor corresponds
to δaðTRHÞ=δaðToscÞ ∼ ðkosc=kRHÞ2 [see Eq. (22)], where
kosc is the comoving horizon size when oscillations begin:

kosc ¼ maaosc: ð25Þ

Therefore

�
kosc
kRH

�
2

¼ aRH
aosc

≈
�

ma

HðTRHÞ
�

2=3

∼ 106
�

ma

10−5 eV

�
2=3

�
5 MeV
TRH

�
4=3

�
10.75

g�ðTRHÞ
�

1=3
:

ð26Þ

Note also that during RD the temperature falls as T ∝ a−1,
but during EMD, entropy release from the ϕ decay causes
the temperature to fall as a smaller power, T ∝ a−3=8 [82].
The fact that axion miniclusters are produced in an EMD
cosmology relies both on this fact and on the linear growth
of perturbations during EMD.
The only modes that could possibly grow by the amount

(26) must already be inside the horizon at Tosc, as well as
being nonrelativistic and below the Jeans scale (discussed
below). This is an estimate that represents the maximum
theoretically possible growth of a mode during EMD.
We show this result in Fig. 3 for TRH ¼ 10 and
100 MeV. We see that we can indeed achieve a duration
of matter domination with aRH ∼Oð104Þ after ALP oscil-
lation (taking aosc ¼ 1), but that this requiresma ≳ 10−6 eV
and a low reheating temperature. For low masses, the
enhancement is quite small, since the ALP starts to oscillate
later and so does not benefit as much from EMD.
The previous discussion neglected the effective ALP

pressure. This approximation turns out to be excellent for
modes that enter the horizon well after oscillation and well
before reheating, which will be the most important for the
formation of miniclusters. To see this, and to understand the
effect of the sound speed on other modes, we combine

FIG. 3. The ratio of scale factors at the onset of ALP oscillation
and at reheating aosc=aRH, corresponding to the maximum
possible enhancement in the growth of the dark matter perturba-
tion δa, for reheating temperatures TRH ¼ 10 and 100 MeV.
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Eqs. (17e) and (17f) into a single second-order equation.
The exact result is complicated, but if we takeH ∼ k ≪ ma
(i.e., cnad ≪ 1) then it can be expanded in these small
quantities, with the result

δ̈a þH_δa þ c2nadk
2δa ¼ −k2Ψ − 3H _Φ − 3Φ̈: ð27Þ

This equation was also obtained in Ref. [6]. It is clear that
the sound speed term competes with the gravitational
driving term, and it prevents growth of the perturbations
with k greater than some Jeans scale kJ, which we estimate
as follows. First we analyze the EMD era, where the
gravitational potential is dominated by ϕ and is constant in
time. When the ALP oscillations begin, the ALP density
contrast is δa ≈ 2Φ0 (see Sec. III B and Appendix A). The
sound speed term prevents growth until it becomes com-
parable to the gravitational source term k2Ψ ¼ −k2Φ,
which occurs when k < maa. Thus during EMD, kJ∼
maa≡ kCompt.

2 Moreover, modes that enter the horizon
duringEMDbutwell after oscillations satisfy k ≪ aoscma ≪
ama ∼ kJ. On the other hand, since kJ ∼ kCompt, modes with
k > kJ during EMD are not well described using the
oscillation-averaged equations used here. It is still true,

however, that during this period the density perturbation
does not grow beyond the CDM adiabatic initial condition
2Φ0, as illustrated in the right panel of Fig. 4.
After reheating, the gravitational potential rapidly decays

and oscillates, averaging to zero over cosmological time
scales for k ≫ H. In this limit, the source terms on the
right-hand side of Eq. (27) can be dropped, leading to an
approximate solution

δa ∼ sin
�

k2

2ma
ffiffiffiffiffiffiffiffi
aRH

p ln
a

aRH

�
: ð28Þ

The perturbation grows logarithmically as for a CDM fluid
when the argument of the sine is small, and begins to
oscillate (with a constant frequency in ln a) when k2 ∼
2ma

ffiffiffiffiffiffiffiffi
aRH

p
= lnða=aRHÞ. Combining the EMD and RD

regimes we find that the Jeans scale (expressed in physical
units) is

kJ ¼
8<
:

maa ða ≤ aRHÞ
aRH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maHðaRHÞ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnða=aRHÞ

p ða > aRHÞ:
ð29Þ

C. Numerical solutions

In this section we solve the full linearized system of
equations described above numerically and study the
growth of ALP perturbations. We interpret the evolution

FIG. 4. Left: comoving wavevectors ki of representative ALP perturbations (solid lines) compared to the evolution of comoving
Hubble distanceH (short dashed gray line), ALP mass ma (dashed red line), and the Jeans scale kJ (dot-dashed black line). Each mode
begins evolving when k ≈H and its subsequent behavior depends on its size relative to the other scales at a given time. The ϕ decay rate
is such that reheating happens at aRH ≈ 104 and the ALP mass is chosen such that kosc=kRH ¼ 10, i.e., ALP oscillations begin before
reheating. k1 enters the horizon after reheating and evolves as in the standard cosmology; k2 enters at reheating and corresponds to
physical scales much larger than the ALP Jeans scale; k3 and k4 enter deep during the EMD; k3 (k4) is physically larger (smaller) than the
Jeans scale. Right: evolution of modes with different wavevectors k (same as in the left panel) as a function of the scale factor (solid
lines) compared to the CDM case (dotted lines), corresponding to kosc=kRH → ∞ or, equivalently, large ma. The growth of modes with
k > kJ ∼ kosc is suppressed by the effective ALP pressure, while those with k < kJ are identical to the CDM case. Modes that enter the
horizon before RH experience enhanced growth due to EMD.

2Note that this is a different scaling with scale factor and ALP
mass than found in, e.g., Ref. [6,52,77,83], due to the fact that the
gravitational potential is dominated by the EMD field ϕ, rather
than the ALP itself.
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of perturbations with different k in terms of their relation to
the key physical scales:

(i) the horizon size H,
(ii) the Compton scale kCompt ¼ maa,
(iii) the horizon size at RH, kRH, defined in Eq. (20),
(iv) the horizon size when ALP oscillations begin, kosc,

defined in Eq. (25),
(v) the Jeans scale, kJ, defined in Eq. (29), which

encodes the effects of the ALP effective pressure.
In Fig. 4 we illustrate the evolution for several values of k;
the left panel shows the relation of these wavenumbers to
the key scales above. The right panel shows the time
evolution of the corresponding perturbations. The mode
k1 < kRH enters during RD, and is always smaller than the
Jeans and Compton scales, so its evolution is CDM-like
with no enhancement from EMD or suppression from the
ALP effective pressure.3

The mode k2 ¼ kRH entered at reheating, while the Jeans
scale is unimportant, so it evolves as a CDM perturbation.
The mode k3 > kRH enters during EMD, while quasirela-
tivistic, and it is slightly sensitive to the Jeans scale at the
start of its evolution. This can be seen in the right-hand plot
in the small suppression in the growth of the k3 mode
relative to the same mode in the CDM case as they both
enter the horizon. Finally, the mode k4 enters the horizon
while relativistic. After it becomes nonrelativistic however
(a ¼ 5000), we see that its amplitude is suppressed and it

undergoes rapid oscillations driven by gravity and ALP
effective pressure. We note that ALP oscillation-averaged
equations [Eqs. (17)] are not adequate in this case before
the onset of oscillations; we therefore solve for its early
evolution using the field equation (16). Its late-time
evolution matches onto the solutions of the oscillation-
averaged equations with adiabatic initial conditions dis-
cussed above. We therefore only use these equations in the
remainder of this work.
The previous discussion can be used to understand

Fig. 5, which shows the evolution of a wide range of k
modes in the left panel; the right panel illustrates the
suppression of growth due to the effective pressure well
after reheating at a ¼ 103aRH. The most important features
are evident in the left panel: modes that enter the horizon
benefit from EMD, while those with k ≫ kJ ∼ kosc are
suppressed. The magnitude of the suppression is scale and
somewhat time dependent [due to the scale factor depend-
ence of kJ; see Eq. (29)]. In the following subsection we
combine these numerical solutions with late-time growth of
perturbations during standard radiation and matter domi-
nation. The goal is to evaluate the ALP perturbation power
spectrum and smoothed density variance at various red-
shifts. In order to simplify these considerations we will
model the small-scale suppression of power as a sharp
cutoff at k ¼ kosc. This is an approximation as the actual
fall-off is much smoother; see the right panel of Fig. 5.
However, this simplification will enable a fast exploration
of the minihalo parameter space without having to solve
the full Boltzmann system for each ðma; TRHÞ. A more
sophisticated treatment of these small-scale effects would

FIG. 5. Growth of ALP perturbations δa with different comoving wavenumbers. The left panel shows the evolution of δa (normalized
to its initial value) in the plane of a=aRH and k=kRH. Important comoving scales are indicated by lines (in analogy to Fig. 4): the
comoving Hubble horizonH (solid black line), the comoving Compton scalemaa (teal dashed line) and the Jeans scale (red dot-dashed
line). The right panel shows the amplitude of ALP perturbations well after reheating (at a ∼ 103aRH) with and without the ALP sound-
speed effects, solid and dashed lines respectively. Key scales are shown by vertical dashed gray lines. In both panels, the ALP mass is
chosen such that kosc=kRH ¼ 10. The growth of modes with k≳ kJ ∼ kosc is suppressed because of the effective ALP pressure. These
modes also enter the horizon prior to ALP oscillations, when the ALP field still behaves like a cosmological constant. Modes with
k=kRH ≲ 1 enter after reheating and therefore evolve as in standard cosmology. Note that the k > kJ part of the right panel is the
envelope of the oscillating function shown in the left panel.

3There is a brief kick of nonlogarithmic growth as modes cross
the horizon due to gravitational driving [81]. This is particularly
clear for the k1 mode and it is unrelated to the period of EMD.
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involve using the analytic solution during RD [Eq. (28)] to
evaluate the density contrast and the corresponding transfer
function at late times. This approximation is appropriate
for the gravitational signals we will study in Sec. V, since
they are sensitive to the largest surviving minihalos which
originate as k < kosc perturbations in models with kRH ≪
kosc (i.e., when there is an extended period between the
start of ALP oscillations and end of reheating). In scenarios
where there is only a mild hierarchy kRH ≲ kosc, the sharp
cutoff underestimates the abundance of minihalos and their
survival probability, and therefore leads to conservative
estimates of signal rates.

D. Growth and transfer function

The minicluster abundance depends on the evolution of
ALP perturbations towards collapse. For our choice of
adiabatic initial conditions this happens at or after the
standard matter-radiation equality. In order to match onto
this “standard” growth period we modify the semianalytic
prescription of Ref. [43] to account for ALP mass effects.
The quantity of interest is the time-dependent fluctuation
variance smoothed over comoving length scales R

σ2ða; RÞ ¼
Z

d3k
ð2πÞ3 hδaða; kÞ

2iWðkRÞ2

¼ 1

2π2

Z
dkk2WðkRÞ2jTDða; kÞj2PðkÞ: ð30Þ

The averaging is achieved through the use of a window
functionWðkRÞ, which we take to be a spherical top hat in
real space. In the second line we wrote the time-dependent
ALP perturbation as

δaða; kÞ ≈
2k2

5ΩmH2
0

TDða; kÞRðkÞ ða > aeqÞ; ð31Þ

where R is the primordial scalar curvature fluctuation
amplitude that determines the initial conditions for the
evolution of δa; this equation defines TDða; kÞ, the scale-
dependent growth function which we discuss in more detail
below. The primordial matter power spectrum PðkÞ is
related to the power spectrum of R by

PðkÞ ¼
�

2k2

5ΩmH2
0

�
2

PRðkÞ; ð32Þ

where

PRðkÞ ¼
2π2

k3
As

�
k
k0

�
ns−1 ð33Þ

is set by inflation, with k0 ¼ 0.05 Mpc−1 and Planck best-fit
values of lnð1010AsÞ ¼ 3.044� 0.014 and ns ¼ 0.965�
0.004 [70]. We note that the scales we are interested in are

far smaller than those probed by the CMB; thus the
assumption of a power-law spectrum with a constant ns
amounts to a significant extrapolation. While the uncertain-
ties in the ns measurement do not qualitatively affect the
results below,we emphasize that the k ≫ k0 part of thematter
power spectrum we are studying has not been measured
directly.
The scale-dependent growth function TDða; kÞ contains

both the dynamics of the Boltzmann equations solved in
the previous section and the post-reheating growth of
ALP overdensities. For cosmologies without baryons or
the cosmological constant, TD factorizes as TDða; kÞ ¼
TðkÞDðaÞ, where T and D are the standard transfer and
growth functions, respectively. The normalization factors
in Eq. (31) are chosen such that TðkÞ ≈ 1 for modes that
entered the horizon after matter-radiation equality and
DðaÞ ≈ a deep in the matter domination era. The factor
of k2 in Eq. (31) combines with DðaÞ ¼ a to become
k2a ¼ a=ahor, representing linear growth during the most
recent era of matter domination. The transitions from EMD
to RD at TRH, and from RD to MD at Teq introduce two
characteristic scales keq and kRH into the transfer function.
Schematically, T behaves as

TðkÞ ∼

8>>>>><
>>>>>:

1 k < keq

ðk=keqÞ−2 lnðk=keqÞ kRH ≥ k ≥ keq

ðkRH=keqÞ−2 kosc > k > kRH
0 k > kosc

; ð34Þ

The first line reflects the fact that modes with k < keq enter
the horizon after matter-radiation equality and their growth
is entirely captured by DðaÞ. The second line applies to
modes that enter the horizon during radiation domination
(after reheating and before MRE); for these modes, the
transfer function measures the deviation from linear
growth. The factor of ðk=keqÞ−2 removes this linear growth
from k2D and the factor of lnðk=keqÞ restores the standard
logarithmic growth during RD. The transfer function
plateaus for modes that enter the horizon before reheating,
simply removing linear growth between reheating and
equality, but preserving it at higher scales. Finally, modes
that enter before oscillations begin are suppressed due to
the ALP effective pressure (note that this sharp cutoff is
only a rough approximation; the actual falloff is k and a
dependent as discussed in the previous section).
In a universe with a non-negligible baryon abundance

and a late-time period of dark energy domination, TD
does not factorize. The former ensures that the growth of
modes below the baryonic Jeans scale is slower (since
baryons are pressure supported on these scales), while the
latter affects the late-time evolution of structure. In both
cases the growth rate becomes scale dependent as can be
seen by solving the Meszaros equation [43]. However, the
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approximate scaling relations in Eq. (34) can still be used
to qualitatively understand our results. The transfer
function can also be altered through the presence of a
nonzero velocity dispersion for dark matter, which washes
out structure at low masses. ALPs produced through the
misalignment mechanism have a momentum dispersion
which is of order the Hubble scale at the time of
oscillation, which is negligible [38].
In order to facilitate the exploration of parameter space,

we follow Ref. [43] in defining a semianalytic approxi-
mation to δaða; kÞ that allows us to propagate our results
into standard matter domination. The linearity of the
Boltzmann equations and decoupling of different k-modes
allows us to approximate the full scale-dependent growth
function as

TDða; kÞ ¼ TDΛCDMða; kÞRðkÞ; ð35Þ

where

RðkÞ ¼ δaða; kÞ
δðΛCDMÞ
a ða; kÞ

∼

8>><
>>:

1 k < kRH
ðk=kRHÞ2
lnðk2=k2RHÞ

kosc ≥ k ≥ kRH

0 k > kosc

:

ð36Þ

The growth of perturbations after equality cancels in the
ratio such that R does not depend on a. This para-
metrization is useful because RðkÞ encodes the effects
of EMD and the ALP mass relative to ΛCDM, while
TDΛCDMða; kÞ can be computed using a standard
Boltzmann code [84,85] or using well-known fitting
formulas [81]. The precise form of RðkÞ and the compu-
tation of TDΛCDM are described in Appendix C. The
scalings in Eq. (36) follow from the approximate solutions
in Eqs. (22). Since TDΛCDM ∼ 1=k2 at k ≫ keq and R ∼ k2

for modes that entered during EMD, we see that the
rescaling by R results in the “flattening” of the transfer
function as indicated in the third line of Eq. (34).4

We can capture the EMD-enhanced growth in terms of
an effective primordial power spectrum Peff

R ðkÞ ¼
PRðkÞ × RðkÞ2 that can be used as input to N-body
simulations. This effective power spectrum is shown in
Fig. 6 as a function of k=keq. The gray band is for the
standard cosmology as in Eq. (32). The blue lines
correspond to our scenario for two different choices of
TRH ¼ 5 and 100 MeV. Modes with k < kRH enter the

horizon after reheating and evolve as in the standard
cosmology. The wavenumbers of those modes can be
estimated using Eq. (21). For modes kosc ≥ k ≥ kRH the
power spectrum grows as k3þns as in Eq. (36). At large k
power is cut off by the Jeans scale. The dashed blues lines
correspond to the heavy limit ma → ∞, for which there is
no Jeans scale cutoff, and the solid blue lines correspond
to ma ¼ 10−9 eV and 10−8 eV.
In Fig. 7 we show the density standard deviation σ for

TRH ¼ 5 MeV, different choices of ma and two different
times, z ¼ 1000 and z ¼ 100, illustrating the linear growth
of density perturbations during standard matter domination.
Its value in the standard cosmology is indicated by the
dotted gray lines. In this case there is no enhancement at
large k, corresponding to small M. The dashed lines show
the small-scale enhancement in models with a large ALP
mass where the effective pressure is not important. In this
regime,

σ ∝
1

1þ z
M−2=3k−2RH ∝

1

1þ z
M−2=3T−2

RH: ð37Þ

In contrast, if ma is small, the effective pressure introduces
a small scale cutoff in the EMD mode “amplification,”
leading to a flattening of σ at small M. Larger TRH reduce
the largest mass scales that benefit from increased growth

FIG. 6. The dimensionless effective primordial curvature
power-spectrum k3Peff

R ðkÞ=ð2π2Þ that encodes EMD structure
growth at small scales. The gray band corresponds to the power
spectrum in the standard cosmology as in Eq. (33). The solid blue
lines correspond to TRH ¼ 5 MeV, ma ¼ 10−9 eV (upper) and
TRH ¼ 100 MeV, ma ¼ 10−8 eV (lower). The sharp cutoffs at
small scales in the small ma cases roughly approximate the
suppression of power for modes with k > kJ ∼ kosc due to
the effective ALP sound speed. This suppression is absent in
the CDM case (dashed lines), corresponding to ma → ∞.

4To qualitatively summarize the slightly ridiculous paramet-
rization δ ∼ k2TDΛCDMR: k2D puts in linear growth for all modes
for all times, TDΛCDM removes all linear growth prior to matter-
radiation equality for modes entering during this time, and R
restores it again between ALP oscillations and reheating for
modes entering during this time, while setting to zero modes that
enter the horizon before oscillations begin.
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during EMD. In the following section, we use these results
to estimate minihalo size, density and distribution.

IV. MINICLUSTER ABUNDANCE

Early matter domination leads to enhanced structure
growth for scales that entered the horizon before reheating.
Given the bound on TRH ≳ 5 MeV, the maximum mass of
fluctuations that benefit from this enhancement simply
corresponds to the matter mass enclosed by the horizon
when T ¼ TRH:

MRH ¼ 250M⊕

�
5 MeV
TRH

�
3
�

10.75
g�ðTRHÞ

�
1=2

: ð38Þ

Perturbations with M > MRH evolve as in standard cos-
mology, while those with M < MRH experience enhanced
growth. However, perturbations in the ALP fluid only begin
to grow like matter after the oscillations have begun, so
there is also aminimummass of fluctuations, corresponding
to the mass inside the horizon at the start of oscillations,
even in standard cosmology without EMD:

Mosc ≈ 2.7 × 10−11 M⊙Ωa

�
10−5 eV

ma

��
5 MeV
TRH

�
; ð39Þ

where we used Eqs. (26) and (21) and Ωa is given in
Eq. (6). It is these objects that are usually called mini-
clusters, especially in models with postinflationary PQ
breaking where they collapse very early. The purpose of
this section is to show that these smallest miniclusters are

assembled into larger clumps, since EMD enhances the
growth of density fluctuations over a range of scales.5

We estimate the statistics of collapsed ALP DM objects
as a function of size and redshift using the Press-Schechter
(PS) formalism [88,89] with the results from linear theory
discussed in the previous sections. We wish to estimate the
mass spectrum of miniclusters, their sizes and densities,
and their assembly history.

A. Halo function

The central assumption of PS is that the fraction of mass
in structures of size ∼R is equal to the probability that the
smoothed density contrast δR exceeds a threshold δc. The
critical density contrast δc can be estimated from spherical
collapse, with the result that overdensities with δR ¼ δc ¼
1.686 (as derived in linear perturbation theory) should have
collapsed; this number is insensitive to the precise cosmo-
logical model, i.e., variations in ΩΛ and Ωm, as long as the
collapse occurs during matter domination [90].6 Using this
prescription, the fraction f of matter in objects of mass in
the range ½M;M þ dM� at redshift z is

dfðM; zÞ ¼
ffiffiffi
2

π

r
δc
Mσ

���� d ln σd lnM

���� exp
�
−

δ2c
2σ2

�
dM: ð40Þ

The halo function is the number density of collapsed
objects in this mass range:

nðM; zÞ ¼ ρ

M
df
dM

: ð41Þ

Equation (40) can be integrated to find the fraction of
matter contained in collapsed objects with a mass in the
range ½M1;M2�

FðM1;M2Þ ¼ erf

�
δcffiffiffi

2
p

σðM2; zÞ

�
− erf

�
δcffiffiffi

2
p

σðM1; zÞ

�
:

ð42Þ
It is useful to define a characteristic mass M�ðzÞ,

σðM�; zÞ ¼ δc: ð43Þ

FIG. 7. The density fluctuation standard deviation for a
standard cosmology (dotted lines) and EMD cosmology with
reheating at TRH ¼ 5 MeV with ma ¼ 10−9 eV and ma → ∞
(solid and dashed lines, respectively). For each model, the lower
and upper lines correspond to z ¼ 1000 and z ¼ 100.

5Coincidentally, in the standard ΛCDM scenario where the
dark matter is a thermal relic whose density is set through freeze-
out, the smallest gravitationally bound structures are also ap-
proximately Earth-mass microhalos [86]. The formation of these
structures is determined by the time of kinetic decoupling from
the Standard Model thermal bath. This occurs when the temper-
ature has dropped a further factor of 10–1000 after freeze-out
[87]. For a 100 GeV WIMP this corresponds to a temperature of
order 10–100 MeV, similar to TRH in our scenario.

6Collapse can also occur during RD following the end of
EMD. In this regime the collapse criterion is different; see, e.g.,
Ref. [91]. Objects forming during this era would be very light and
unimportant for the gravitational probes we consider in Sec. V.
We therefore focus on objects that reach nonlinearity at or after
standard matter-radiation equality.
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At a given redshift z, M� gives the mass of the typical
structures that collapse at this time. The fact that M� is a
monotonically increasing function of redshift suggests that
structures are formed hierarchically in this model. Using
Eq. (30) we see that σ ∼M−ðnsþ3Þ=6 for M < MRH.
Therefore we can approximately solve for M�ðzÞ:

M�ðzÞ ≈MRH

�
c

1þ z

�
6=ðnsþ3Þ

ð44Þ

where c ∼ 2.4–2.8 for TRH ∼ ½5; 100� MeV is a slowly
varying function of TRH. This scaling is valid for z≳ 20
and ma → ∞. In Fig. 8 we show the numerical solution for
M� as a function of the collapse redshift in the left panel
and the ALP mass in the right panel for several choices of
the reheating temperature. In the limit of a “heavy”ALP we
find a result similar to that of Ref. [43] for CDM. For small
ALP masses, however, there is a noticeable suppression of
minicluster formation. As explained in Sec. III C, this is
due to the delayed onset of oscillations of the ALP, which
reduces the amount of EMD linear growth experienced
by the perturbations. Since this linear growth factor is
∼Tosc=TRH, the “cutoff” occurs at larger ma for larger
reheat temperatures, as is evident in the right panel of
Fig. 8. The minimum ma needed to form minihalos at z for
a given TRH may be estimated by requiring the total amount
of growth between oscillations and z to be of order 105,

105 ≈
�
kosc
kRH

�
2

log

�
TRH

Teq

��
1þ zeq
1þ z

�
; ð45Þ

where the first factor is given by Eq. (26). For thermal
DM, an analogous cutoff in the power on small scales
occurs in the presence of nonzero DM velocities and the

resulting free-streaming [43]. The choice of z ¼ 250 in the
right panel is motivated in Sec. VA: minihalos forming
later than this are expected to undergo significant tidal
disruption in stellar encounters.
The Press-Schechter formalism is based on the

assumption of spherical collapse, and when compared with
the results of numerical simulations overpredicts the
amount of structure at the smallest scales and underpredicts
the amount at larger scales [92]. Better agreement with
simulations in ΛCDM can be achieved using formalisms
such as Sheth-Tormen [93,94] which allow for ellipsoidal
collapse. It would be interesting to study the implications of
ellipsoidal collapse for ALP miniclusters in future work.
In Fig. 9 we show the fractional minicluster abundance at

a redshift of z ¼ 250 as function of the minicluster massM
and TRH. For finite ALP masses and at larger TRH, there is
less time during EMD for perturbations to grow, and the
abundance peaks at smaller M. If the ALP is too light and
TRH too high, oscillations begin after EMD ends, and the
minicluster abundance is suppressed on all scales.
Another quantity of interest is the fraction of DMmass in

minihalos, which is given in Eq. (42) and corresponds to
the area under the constant-TRH slices of the distributions in
Fig. 9. This equation should be evaluated at a high enough
redshift that standard ΛCDM-like halos have not started to
form. In Fig. 10 we show the fraction of DM in minihalos in
the mass range M ∈ ½Mosc;MRH� at z ¼ 250 as a function
of TRH (these masses are defined in Eqs. (39) and (38),
respectively). There is no collapse in ΛCDM in this mass
range at this time, so all minihalos form solely due to EMD.
Lower TRH implies a longer period of enhanced growth,
while the effective pressure of lighter ALPs inhibits it. We
see that in the regime where the small-scale cutoff of the
power spectrum is not important (the ma ¼ 10−6 eV curve

FIG. 8. The typical mass M� (in units of the Earth mass) of minihalos forming at z, defined by σðM�; zÞ ¼ δc. Results are shown as a
function of redshift at fixed reheat temperature TRH ¼ 5 MeV for different ALP masses (left panel) and for fixed redshift z ¼ 250 as a
function of the ALP mass for different TRH (right panel). We expect that minihalos forming before this redshift will survive tidal
disruption through encounters with stars in the galaxy; see Sec. VA. In the right panel the curves remain flat for higher values of ma.
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and lower TRH), all of DM is already in minihalos at
z ¼ 250. Higher TRH and lower ALP masses can result in
smaller minihalo fractions. Note that these calculations do
not take into account possible disruption of minihalos at
later times, which may liberate some of the ALPs. Because
the minihalos are built up hierarchically, the contents of
the disrupted minihalos themselves are made of smaller
miniclusters (depending on the ALP mass and the resulting

small-scale cutoff). More detailed questions about the
distribution of substructure in larger ALP minihalos and
galactic halos can be studied using the extended Press-
Schechter/excursion set formalism [89,95,96].
The formation of QCD axion miniclusters in the

standard cosmological scenario with postinflationary
PQ breaking has been the topic of recent numerical
simulation [59,60]. Reference [59] finds that the differ-
ential minicluster mass function peaks at 10−14 M⊙ with a
long tail to very small masses of around 10−17 M⊙ and a
shorter tail to heavier miniclusters up to 10−12 M⊙,
measured at matter-radiation equality. The characteristic
size of the QCD axion miniclusters in Ref. [60] is slightly
larger at 10−12 M⊙. Both of these studies find that the
average overdensities in miniclusters are smaller than
estimated in Refs. [48–50]. Analytic studies also based on
the Press-Schechter formalism find results which are
similar [51] or somewhat heavier [52,64]. In contrast,
we find that ALP miniclusters which benefit from a period
of EMD are heavier than these, with masses 10−ð6−10ÞM⊙
depending on the ALP mass, as in Fig. 9.

B. Minicluster density and size

Collapse and decoupling from Hubble flow occur when
δ ¼ δc ∼ 1. If a minicluster collapses at redshift zc during
standard matter domination, the density of the final virialized
object can be estimated using the spherical collapse model
(see, e.g., Ref. [90]):

ρðzcÞ ≈ 178ρ̄ðzcÞ ≈ 3500 GeV=cm3

�
1þ zc
250

�
3

: ð46Þ

This allows us to calculate a characteristic radius R� of a
minicluster with mass M�ðzÞ,

FIG. 9. Fractional minicluster mass distribution df=d lnM at z ¼ 250 as a function of minicluster massM and reheating temperature
TRH for ma → ∞ (left panel), ma ¼ 10−9 eV (middle panel) and ma ¼ 10−10 eV (right panel). Minicluster formation is suppressed for
large TRH and small ALP masses. In each panel the gray dashed line shows the approximate value of M� [from Eq. (44)], the mass of a
typical minicluster forming at this redshift in the CDM (ma → ∞) limit. The dot-dashed red line shows Mosc, the DM mass within the
horizon at the start of oscillations. Minihalos forming after z ¼ 250 are expected to undergo significant tidal disruption in encounters
with stars; see the discussion in Sec. VA.

FIG. 10. Fraction of ALP DM bound in minihalos of massM ∈
½Mosc;MRH� at z ¼ 250 as a function of TRH for different choices
of the ALP mass. In models with heavier ALPs and lower
reheating temperatures, nearly all of DM is bound into minihalos
at early times. Estimates in Sec. VA indicate that minihalos
forming at z ≳ 250 are resilient to tidal disruption, suggesting that
the fraction of ALPs in minihalos evaluated at early times is
robust, i.e., it remains roughly constant through the remaining
evolution.
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R�ðzcÞ ¼
�
3M�ðzcÞ
4πρðzcÞ

�
1=3

ð47Þ

∼ 10−3 pc

�
5 MeV
TRH

��
250

1þ zc

�ð5þnsÞ=ð3þnsÞ
; ð48Þ

where the second line was estimated using Eqs. (44) and
(46). R� is shown in Fig. 11 as function of the redshift of
collapse for different ALP masses.
Note that unlike Ref. [39], these calculations include

the growth of ALP perturbations during standard matter
domination after MRE. As a result, we find that the
miniclusters are hierarchically assembled into much more
massive minihalos at later redshifts.
In the following section we discuss the implication of

ALP DM clustering in the EMD cosmology on direct and
indirect probes.

V. ANALYSIS

Early matter domination enhances the growth of struc-
ture of ALP DM over a range of scales. As a result the DM
distribution is clumpy, and the minihalo spectrum reflects
fundamental properties of the ALPs and cosmology (the
ALP mass and reheating temperature), as well as the tidal
encounter history. Larger minihalos are assembled from
smaller ones, but tidal disruption of the larger halos can
“free” some of the component subhalos. Because the
EMD-enhanced scales collapse early, all of DM is expected
to be in minihalos by the time of galaxy formation. This
observation has important implications for direct and
indirect searches for ALP DM. First, the clumpiness of
DM typically decreases the encounter rate of DM objects
with laboratories on Earth, reducing the probability of a
signal. On the other hand, if we are lucky and such an

encounter occurs, the signal is much stronger, since the
minihalo density is much larger than the average local DM
density. The DM substructure also opens up a range of
other probes, e.g., through pulsar timing or through
gravitational lensing, as we discuss below.

A. Minicluster survival

Hierarchical structure formation assembled miniclus-
ters into larger and larger objects. Both the early-time
assembly and late-time encounters with other minihalos
and dense baryonic objects (such as stars in the galactic
disk) can disrupt miniclusters. The precise nature of the
substructure in our vicinity must be modeled numerically,
but we can get a sense of which objects survive using
simple estimates, following Refs. [53,97]. Evolution of
DM substructure has been extensively studied in the
context of CDM and axionlike particles. Reviews of these
subjects include Refs. [54,98].

1. Disruption by other miniclusters

Whether the EMD-enhanced minihalos at a given
redshift themselves have substructure depends on the
precise form of the power spectrum, as well as the age
of the clumps. If the power spectrum features an isolated
peak (which is the case if kosc ∼ kRH), then numerical
simulations of Ref. [99] indicate that the minihalos lack
structure as one would naively expect; these objects then
evolve in isolation until they are assembled into galaxies.
In the other limit kRH ≪ kosc, a wide range of scales is
enhanced by EMD, and clumps are formed from smaller
clumps. Such an initial power spectrum was also studied
in Refs. [99,100], and their results suggest that minihalos
retain their substructure for at least a factor of ∼10 in
redshift after formation. In both cases, the analytical
arguments of Ref. [101] imply that tidal heating and
stripping through minihalo-minihalo encounters is a
subdominant effect to stellar and galactic disk encounters.
We therefore neglect this effect in what follows, but note
that a definitive confirmation of this approximation would
require an extremely high-resolution simulation over
∼10 Gyr timescales.
Minihalo-minihalo encounters at early times are, how-

ever, important for determining the internal density profile
ρðrÞ of clumps. References [99,100] found that ρðrÞ
depends on whether the minihalos evolved in isolation
(corresponding to the power-spectrum spike mentioned
above) or continually accrete other clumps (corresponding
to a scale-invariant enhancement). The latter case is
analogous to standard hierarchical structure formation in
CDM (albeit at much smaller scales) and results in a
Navarro-Frenk-White (NFW) density profile:

ρðrÞ ¼ 4ρs
ðr=rsÞð1þ r=rsÞ2

; ð49Þ

FIG. 11. The radius of a minicluster of mass M� for TRH ¼
5 MeV and various ALP masses. Color coding is the same as in
the left panel of Fig. 8.
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where rs is the scale radius and ρs ¼ ρðrsÞ is the scale
density. The scale quantities, including Ms (the mass
interior to rs), can be related to R� andM� used previously,
and to virial quantities at any redshift. For reference, we
catalog these relationships in Appendix E. The spiked
initial power spectrum leads to a steeper inner slope, ρðrÞ ∝
r−3=2 for r < rs. The EMD effective power spectrum in
Fig. 6 is likely to result in minihalos with density profiles
that interpolate between these two limits. In what follows,
we take the minihalos to have the NFW profile in Eq. (49).
This assumption is conservative for the gravitational probes
we consider in Sec. V C, since a shallower inner slope
leads to more diffuse structures, thus weakening observa-
tional prospects.

2. Disruption in stellar encounters

If a minicluster survives structure formation, it still
might be disrupted within the galaxy. Compared to CDM
minihalos, the EMD-enhanced substructures form earlier,
resulting in denser, more compact objects, which have a
higher probability of surviving tidal stripping. We esti-
mate the disruption probability following Refs. [53,97].
An encounter with a star transfers energy to the sub-
components of the minicluster, effectively heating them
and decreasing their binding energy. Collisions with an
impact parameter b < bc transfer enough energy to
completely unbind the minicluster, where bc is the critical
impact parameter [53,97],

b2c ∼
Gmsrvir
vrelvvir

: ð50Þ

Here ms is the typical stellar mass, vrel is the relative
velocity of the star and minicluster, and rvir and vvir ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMvir=rvir

p
are the virial radius and velocity of the

minicluster; these quantities can be related to the NFW
scale parameters as described in Appendix E. Collisions
with b > bc transfer less energy but are more likely.
Integrating over the entire range of impact parameters
yields the approximate probability of disruption in a
single traversal of the disk of p ¼ 2πb2cS, where S is
the orbit-averaged column mass density of stars along the
minicluster orbit. A typical minicluster has experienced
ncross ∼ 100 crossings in the age of the Milky Way, leading
to a total disruption probability of [53,97]

p ¼ 2πncrossGrvirS
vrelvvir

ð51Þ

≈
�
ncross
100

��
250

1þ zc

�
3=2

: ð52Þ

Here it is assumed that vrel ¼ 10−3, the disc has a constant
stellar density, and the distribution of minicluster orbits is

isotropic, leading to S ≈ 140 M⊙=pc2 [53]. Note that since
this is an estimate for the disruption probability of an
individual clump, it only depends on its density [through
1þ zc and Eq. (46)], and it is not sensitive to other model
details such as ma and TRH which determine the abun-
dances of clumps of various sizes. Reference [102] has
improved on these approximations by carefully modeling
the disc and considering interactions with halo and bulge
stars. However, the total disruption probability remains
numerically the same. Therefore we see that miniclusters
that have formed after z ∼ 250 are expected to have been
disrupted. Conversely, less than 2% of halos that formed
around MRE have been disrupted. These numbers should
be considered as guidelines rather than hard boundaries
for the destruction or survival of substructure. We note
that high-resolution simulations of subhalos indicate that
even if tidal encounters transfer energy far in excess of the
subhalo binding energy, the subhalo is never completely
disrupted, even for CDM subhalos [101,103]. This is
because the energy injected is not efficiently redistributed
among minihalo particles and therefore it is not directly
correlated with minihalo survival. Moreover, EMD-
enhanced clumps are more compact and have an even
larger chance of withstanding such encounters. Thus, the
above estimate is most likely conservative and a more
realistic calculation of the DM substructure distribution
today requires a simulation.
Encounters with baryonic objects can also alter the

density profiles of minihalos, recently studied with N-body
simulation in Ref. [104]. These events have a dramatic
effect on the minihalo density profiles at r > rs, efficiently
stripping away the outer minihalos, and resulting in a much
steeper falloff for r > rs. The inner core r < rs remains
NFW-like (ρ ∝ 1=r), with scale radius and density modi-
fied by Oð1Þ in the encounter. The gravitational probes we
consider in Sec. V C are mainly sensitive to the “core”mass
Ms, so this modification of the density profile does not
qualitatively affect our results in the following sections, and
we continue to use the NFW profile for simplicity.

B. Direct detection

Dark matter substructure has important implications for
direct searches for ALPs. Direct detection experiments in
terrestrial laboratories will detect ALPs only when Earth
encounters a clump or its remnant. If the clumps remain
intact, the typical time between such encounters, τenc, is

τenc ¼
1

nσvrel
; ð53Þ

where, assuming all of DM is in minihalos of similar mass
and size, n ¼ ρdm=M� is the local clump number density,
σ ∼ πR2� is their geometric cross section and vrel velocity
relative to Earth. Since σ ∝ Mð5þnsÞ=3, the time between
encounters is smaller for heavier miniclusters. This is a
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consequence of the fact that the heavier miniclusters are
less dense (due to their later formation), leading to a cross
section that grows faster than the constant density expect-
ation ∝ M2=3; this effect compensates for the decreasing
number density of heavier miniclusters at fixed local DM
density ρdm. As we showed previously, in cosmologies with
EMD, the smallest bound objects are assembled into larger
miniclusters. Further evolution may disrupt these, so their
final mass and size distribution depends on the merger
history of the Milky Way halo and interactions with the
disk. With this caveat in mind, we show the time between
Earth-minihalo encounters in Fig. 12. The left panel
corresponds to the CDM case with various values of
TRH, where ALP effective pressure effects are not impor-
tant. Note that regime is reached already for ma ≳ 10−6 eV
for scales of interest. In the right panel we fix TRH ¼
5 MeV and show the effect of decreasing ma, which
suppresses the growth of structure at small scales, delay-
ing collapse and leading to clumps that are more diffuse at
a given mass. Their larger size leads to larger cross
sections and therefore higher encounter rates compared
to the ma → ∞ case.
A minihalo-Earth encounter implies a higher density of

DM in the laboratory than expected from the local volume
average and a different velocity dispersion compared to
the unclustered scenario. The latter fact means that signal
frequency linewidth δf=f in resonant detectors is orders
of magnitude smaller. The naive expectation from the
typical kinetic energy of ALPs is δf=f ≈ vsvrel, where
v2s ∼GMs=rs is the scale velocity and vrel ∼ 10−3 is the
relative Earth-minihalo velocity. For example, if the

effective pressure effects are not important, Eqs. (44)
and (46) imply vs ∼ 10−8ð5 MeV=TRHÞ [we approximated
ns ≈ 1 and dropped factors of g�ðTRHÞ], which is much
smaller than the galactic virial velocity of ∼10−3. This
suggests that the signal can be orders of magnitude
narrower than in unclustered models. However, as the
minihalo enters the solar system, it will experience tidal
forces from the Sun, which impart different velocities to
different parts of the minihalo, resulting in an additional
drift in the signal frequency as the minihalo crosses the
laboratory [62]. The measurement time can be limited to
ensure that the drift can be ignored or the drift can be
incorporated as part of the signal template. In the former
case, Ref. [62] estimates that the minimum signal width is
δf=f ∼ 10−11ðμeV=maÞ1=2, which can be comparable or
larger than the intrinsic minihalo dispersion (depending
on ma and TRH). As emphasized in that work, the narrow
width of the signal in models with ALP substructure
suggests that a broadband search strategy is beneficial in
efficiently probing the ALP parameter space.
The previous discussion is rather optimistic, since

Fig. 12 indicates that in the absence of disruption the
expected encounter rates in EMD cosmologies with low
TRH are small. However, tidal disruption through inter-
actions with the disk or other clumps can lead to a
population of DM streams, which occupy a more signifi-
cant fraction of the local volume at the price of reducing
the density enhancement compared to an intact clump
[53,102,105,106]. In Fig. 12, the region of parameter
space below the thin dashed line is where tidal disruption
due to interactions with stars may be important; this line

FIG. 12. Time between Earth-minihalo encounters assuming all of DM is inside minihalos of a single mass that survive tidal disruption
until today. In the left panel we fixma ≳ 10−6 eV so that the small-scale cutoff due to the ALP effective pressure is irrelevant; in the right
panel we take TRH ¼ 5 MeV and vary the ALP mass. Early matter domination produces minihalos at high redshift, leading to dense and
therefore compact minihalos. The resulting reduced geometric cross section increases the time between encounters for M < MRH,
despite the increasing number density for smaller M. Smaller ALP masses suppress growth of small scales, leading to the formation of
more diffuse objects with larger cross sections and encounter rates. Gray dotted lines correspond to encounter rates for ΛCDM
minihalos. Above the thin gray dashed line, tidal disruption of minihalos due to stellar encounters is expected to be unimportant.
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scales as M1=3 and corresponds to the time between
encounters, Eq. (53), evaluated at fixed disruption prob-
ability as obtained from Eq. (52). Thus in some parts of
parameter space minihalos are expected to undergo dis-
ruption in the galactic gravitational field and form tidal
streams. We have estimated the stream-crossing rate
following Refs. [53,102], finding that it can approach
once per year at the price of losing the density enhance-
ment of the progenitor minihalo. However, the stream may
still retain a lower velocity dispersion which can have an
impact on direct detection as discussed above. We leave a
detailed study of stream formation and properties, includ-
ing the effects of a realistic minihalo distribution to future
work.

C. Lensing and pulsar timing

The DM clumps formed after EMD are much denser than
minihalos in ΛCDM, but are far from compact. The size of
these miniclusters is much larger than the typical Einstein
radii of stellar and supernova gravitational lens systems
[58]. As a result, these objects do not lead to signals in
microlensing searches such as Refs. [107–109]. However,
new techniques to search for more diffuse objects have
recently been proposed in Refs. [56–58]. We estimate the
sensitivity of photometric microlensing [57] and pulsar
timing [58] to axion minihalos produced from EMD below
(the astrometry proposal of Ref. [56] is sensitive to heavier
subhalos that cannot arise from EMD).
Photometric monitoring of individual stars behind gal-

axy cluster lenses can be used to observe the imprints of
substructure on microlensing light curves [57]. The stars of
interest are those which are very near to a cluster lens
caustic; these stars are therefore highly magnified. If such
a star then undergoes a microlensing event due to compact
objects inside the cluster (stars or black holes), their
brightness becomes variable on the timescale of the
observation and the individual star can be studied [110].
The lensed stars can experience magnifications of up to
μ ∼ 103−4 under these circumstances. The proximity to the
caustic and the resulting large amplification means that the
magnification matrix is nearly singular—its determinant is
tuned close to zero at the level of μ−1. This tuning means
that the brightness of the observed star is sensitive to
surface density fluctuations in the cluster lens at that level.
Thus, the presence of DM clumps within the cluster can
then lead to Oð1Þ brightness fluctuations if they produce
surface density fluctuations of Oðμ−1Þ on the relevant time
and length scales [57]. This phenomenon has recently been
observed for a small number of stars [111,112] using the
Hubble Space Telescope. Those initial measurements were
not sensitive to the presence of miniclusters, which would
require dedicated monitoring over a period of days or weeks
either with HST or with future telescopes such as James
Webb Space Telescope.

To estimate how sensitive this technique would be to the
presence of ALP minicluster we follow the simplified
analysis of Ref. [62], based on the proposal of Ref. [57].
We consider the miniclusters to have a standard NFW
density profile [Eq. (49)], with a distribution described by a
fractional halo mass function df=d lnM. Assuming there is
a large number of DM minihalos in the cluster along the
line of sight, the resulting random surface density fluctua-
tions can be described by the lensing convergence power
spectrum [57], given by

PκðqÞ ¼
Σcl

Σ2
cr

Z
dM

df
d lnM

�jρ̃ðq;MÞj
M

�
2

; ð54Þ

where Σcl is the cluster surface density, Σcr is the critical
surface density, and ρ̃ is the Fourier transform of the
NFW density profile, and q ¼ 2π=r is the inverse length
scale of the fluctuations. The critical surface density can
be expressed in terms of an effective distance Deff by
Σcr ¼ 1=ð4πGDeffÞ. Following Ref. [62], we make the
simplifying assumption that some fraction f of the DM is
contained entirely within clumps with mass M ¼ Ms, so
that

df
d lnM

¼ fMδðM −MsÞ: ð55Þ

Note that we do not use the Press-Schechter estimate of
df=d lnM derived in Sec. IV, since it does not account for
minihalo disruption or sub-substructure.
We obtain the sensitivity of photometric microlensing

observations by comparing the dimensionless power spec-
trum ΔκðqÞ to the (expected) amplitude of observable
surface density fluctuations Oð10−3−4Þ for realistic lenses.
The power spectrum is

ΔκðqÞ ¼
�
q2PκðqÞ

2π

�
1=2

¼ 1

lnð2= ffiffiffi
e

p Þ
½ΣclfMs�1=2qrsgðqrsÞ

Σcrrs
ð56Þ

where rs is the NFW scale radius,Ms is the mass within the
scale radius, and

gðxÞ ¼ 1

2
sinðxÞðπ − 2SixÞ − cosðxÞCix ð57Þ

comes from the Fourier transform of the halo density
profile. The quantity qrsgðqrsÞ is maximized at qrs ¼ 0.77
with a value of 0.35. We take Deff ¼ 1 Gpc and Σcl ¼
0.8Σcr; these numbers roughly correspond to the observed
highly magnified star LS1 [111]. We define the sensitivity
of photometric lensing by requiring ΔκðqÞ in Eq. (56) to
be larger than 10−3, while a number of other conditions
are simultaneously satisfied. First, the length scale of the
fluctuations r ¼ 2π=q must be larger than the minimum
length scale ∼10 AU probed in the lens plane; this sets a
lower bound in Ms for the sensitivity, since smaller

BLINOV, DOLAN, and DRAPER PHYS. REV. D 101, 035002 (2020)

035002-18



minihalos would give density fluctuations that are too rapid
to be detected. Second, the characteristic size of the clump
must be smaller than the largest length scale of the
microlensing event, rs < d where d ∼ 103 AU; minihalos
that exceed this size do not give rise to star magnification
fluctuations on the timescale of the lensing event. Note that
this condition does not depend on the fraction of DM in
minihalos. Finally, to ensure that there are many clumps
along the line of sight we require fπðd=2Þ2Σcl=Ms > 10
such that the fluctuations can be described by a power
spectrum [62]. This sets the sharp cutoff ofMs ∼ 10−2 M⊙.
To obtain the sensitivity of the future lensing search in the
Ms–ρs plane we evaluate Eq. (56) at the value of q ¼ 2π=r
that maximizes the sensitivity, subject to the constraints
above. We show the projected limits as filled red regions in
Fig. 13, where the thickness of the bands arises from
varying the DM fraction in clumps of mass Ms between
f ¼ 0.3 and 1 in the Ms–ρs plane. DM substructures with
scale densities above these bands will be testable with
photometric lensing. Figure 13 also shows the region which
can be constrained by future pulsar timing array searches,
which we now discuss.
Reference [58] has argued that even comparatively

diffuse minihalos can be probed with pulsar-timing array
(PTA) measurements. They consider two types of signal.
The first is a Doppler-shift in the pulsar frequency as a
DM clump passes near the star or Earth. The second is a
Shapiro time delay if a minihalo crosses our line of sight
to the pulsar. Near-term facilities (and in particular the
Square Kilometre Array) will be sensitive to these signals.
Following [58], we assume that 73 currently known

pulsars will continue to be monitored for the next 30 years,
and that SKA will discover 200 more which it will
measure for 20 years with 50 ns timing accuracy. We
show the sensitivity of a search for such anomalous
frequency shifts in Fig. 13 in purple. The projections
shown here correspond to 30 years of observations with
the current pulsar dataset, and 20 years of observations
with the Square Kilometre Array (SKA) (i.e., assuming
that SKA starts in 10 years from the time of writing). The
main sensitivity occurs at Ms ∼ 10−9 M⊙ for the Doppler
dynamic signal, with the small spike feature at Ms ∼
10−3 M⊙ corresponding to the Shapiro dynamic signal.
Again, the width of the band corresponds to scanning over
the clump fraction from 0.3 to 1. These projections were
obtained by rescaling the projected sensitivity to primor-
dial black holes by assuming the NFW density profile in
Eq. (49) as described in Ref. [58]. The necessary con-
versions between the virial quantities used in Ref. [58]
and Ms and ρs are discussed in Appendix E.
The left panel of Fig. 13 shows the target parameter space

corresponding to ma ¼ 10−6, 10−9, 10−10 and 10−11 eV for
TRH ¼ 5 MeV. In order to relate R� and M� obtained in
Sec. IV to Ms, rs and ρs, we assumed a particular
concentration parameter at formation, c� ¼ R�=rs (R� is
just the virial radius at collapse; see Appendix E). Based on
the compilation of simulated Earth-mass minihalos inΛCDM
from Ref. [113], we take c� ≈ 2.7 Larger concentration

FIG. 13. The reach of future pulsar timing array (PTA) Doppler and Shapiro dynamic measurements (purple) and photometric
microlensing (red) in theMs–ρs plane. In each panel, the (upper) gray dashed line corresponds to a collapse redshift of 250: the region of
the plane above this has zc > 250 with minihalos that are likely to survive tidal disruption in stellar encounters. The (lower) gray dotted
line shows the prediction from the standard ΛCDM scenario. The left panel shows EMD predictions for ma ¼ 10−6, 10−9, 10−10 and
10−11 eV and fixed TRH ¼ 5 MeV. The right panel shows EMD predictions for TRH ¼ 10, 50 and 100 MeV for fixed ma → ∞ (this
limit is already reached forma ≳ 10−6 eV). The thickness of the PTA and lensing projections corresponds to varying the DM fraction in
minihalos of mass Ms between 0.3 and 1. The actual fraction of ALPs in minihalos can span a wide range and depends on model
parameters (see Fig. 10) and tidal disruption history.

7Reference [57] instead took c� ¼ 4, which is tuned to
simulations of galaxy-sized DM halos.
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parameters at formation imply more compact halos (larger
ρs at fixed Ms) that are easier to detect with lensing
or PTA. Each point on the lines in Fig. 13 corresponds to a
specific value of the collapse epoch zc for the clumps of that
mass, since zc relates the scale mass to the scale radius (and
hence scale density). The horizontal gray-dashed line at ρs ∼
102 M⊙=pc3 corresponds to a collapse redshift of 250;
according to Eq. (52), minihalos that form at this redshift
or earlier are likely to survive tidal disruption in the galaxy.We
therefore expect EMD clumps which collapse before zc ¼
250 and where the ALP mass is larger than around 10−10 eV
to be detectable by photometric microlensing, and possibly
by Doppler dynamic PTA searches. This mass range was
indicated in the ALP mass-coupling parameter space of
Fig. 1 as a green arrow. Finally, the gray dotted line shows
the results for the standard ΛCDM scenario. Since collapse
happens relatively late in that case, none of the CDM
miniclusters would be dense enough to turn up in these
searches (even without considering the fact that they are quite
easily disrupted in hierarchical structure formation). The right
panel of Fig. 13 shows the sameprojections as the left panel but
with the model curves corresponding to different reheating
temperatures TRH ¼ 5, 50 and 100 MeV with the ALP mass
fixed to the CDM limit of ma → ∞. We see that lensing and
PTA will be sensitive to a wide range of cosmologies with
reheat temperatures as high as TRH ∼ 100 MeV (and possibly
higher if our estimates of the minihalo survival probability are
too conservative).

VI. CONCLUSION

Early matter domination is a natural feature of many
UV completions of the Standard Model, including super-
symmetric theories and various hidden sector models. If
the cosmological history included a period of EMD, both
the relic abundance of dark matter and the growth of
its density perturbations are modified relative to ΛCDM.
Nonthermally produced dark matter candidates, including
axions produced through misalignment, are particularly
sensitive to the expansion history of the Universe. In the
axion case, EMD yields a relic abundance that is inde-
pendent of the axion mass and favors high fa, including
a QCD axion window of roughly ma ∼ 10−ð8−9Þ eV and
fa ∼ 1015−16 GeV.
In this work we studied the evolution of ALP density

perturbations and the resulting DM substructure in cos-
mologies with early matter domination. During EMD
density perturbations grow linearly with the scale factor,
enhancing the density contrast on scales smaller than the
horizon size at reheating and larger than the Jeans scale
set by the effective ALP pressure. This enhancement of
substructure results in early formation of ALP minihalos,
and subsequently their hierarchical assembly into larger
and larger objects. The high redshift of formation results
in DM structures that have a typical density much larger

than DM halos in the standard cosmology. Given the
constraints on late reheating, the largest objects that can
benefit from EMD-enhanced growth have a mass of
Oð1 − 100ÞM⊕. Since all of the DM ends up in minihalos,
the direct detection rates are suppressed by the time
between Earth-minihalo encounters. These times are
longer than the timescale of typical experiments, making
this search strategy impractical if all minihalos remain
intact. However, it is not clear whether all minihalos
survive until today. Tidal disruption processes include
clump-clump and clump-star encounters. If a significant
fraction of clumps are disrupted, the encounter rates with
the resulting streams may be significantly larger than for
isolated minihalos. Simulations are required to reliably
estimate the disruption probability over the lifetime of
the galaxy and the resulting ALP volume-filling fraction.
It will also be important to study higher-order terms in the
potential, and the formation and impact of ALP solitons
inside miniclusters.
If the minihalo survival probability is high, we find that

proposed astrophysical detection techniques offer strong
sensitivity. Pulsar timing measurements are sensitive to
the Doppler shift induced by a minihalo passing close a
pulsar. The enhanced small-scale structure can also have
an observable imprint on the microlensing lightcurves
of highly magnified stars. These observations are sensitive
to a wide range of the relic-density target regions for
different reheating temperatures and natural misalignment
angles. While both techniques require long-term obser-
vations on decadal timescales, it is important to note that
the DM power spectrum at small scales is nearly uncon-
strained. Early matter domination provides an illustrative
example of the interesting physics that can be imprinted
on these scales. There are also other compelling possibil-
ities leading to similar physics, including different mod-
ifications of the expansion history (e.g., a period of
kination [114]), a running spectral index and gravitational
particle production. Astrophysical searches for the small-
scale structure of matter can thus provide a crucial window
in the prenucleosynthesis Universe and offer hints about the
origin of DM.
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APPENDIX A: BOLTZMANN EQUATIONS
IN DETAIL

In this section we express the linear Boltzmann equa-
tions (17) in convenient dimensionless variables defined
in Eq. (9) and using the scale factor a as a time variable.
This form of the Boltzmann system is easily implemented
and solved numerically. The resulting perturbation equa-
tions are [43]

a2Eδ0ϕ þ θϕ þ 3a2EΦ0 ¼ aΓϕΦ; ðA1aÞ

a2Eθ0ϕ þ aEθϕ þ k2Φ ¼ 0; ðA1bÞ

a2Eδ0r þ
4

3
θr þ 4a2EΦ0 ¼ ρϕ

ρr
aΓϕ½δϕ − δr −Φ�; ðA1cÞ

a2Eθ0r þ k2Φ − k2
δr
4
¼ ρϕ

ρr
aΓϕ

�
3

4
θϕ − θr

�
; ðA1dÞ

a2Eδ0a þ θa þ 3a2EΦ0 ¼ −3c2nadaEδa − 9c2nada
2E2θa=k2;

ðA1eÞ

a2Eθ0a þ aEθa þ k2Φ ¼ þ3c2nadaEθa þ k2c2nadδa; ðA1fÞ

k2Φþ 3aE2½a2Φ0 þ aΦ� ¼ 3

2
a2½ρϕδϕ þ ρrδr þ ρaδa�;

ðA1gÞ

where the prime denotes differentiation with respect to a, E
is the dimensionless Hubble parameter

E2 ¼ ρϕ þ ρr þ ρa; ðA2Þ
and

c2nad ¼
k2

k2 þ 4m2
aa2

: ðA3Þ

The energy densities are normalized as in Eq. (9), while Γϕ,
ma and k are in units of H1, the Hubble rate at an arbitrary
initial time.

1. Initial conditions

To derive initial conditions for the perturbation equations
in Eq. (A1) we follow [43], with some changes. First, we
assume that all relevant modes are initially subhorizon, such

that k ≪ 1. In this limit we can approximately solve the
perturbation equations while expanding in k. Superhorizon
modes do not evolve, i.e., δ0i ¼ 0 and θi ∼Oðk2Þ. This
implies that the right-hand side of Eqs. (A1c) vanishes,
leading to the following constraint at leading order in k:

δϕ − δr −Φ ¼ 0: ðA4Þ

Furthermore, Eq. (A1g) can be solved for δϕ using the early-
time background solutions in Eq. (13), giving

δϕ ¼ 2Φ: ðA5Þ

The two above equations in turn imply that

δr ¼ Φ ðA6Þ

to leading order in k.
For the ALP density perturbation, we assume that low-

scale inflation or nontrivial inflationary dynamics prevents
the generation of a large isocurvature mode. The adiabatic
mode is zero before the ALP starts to oscillate [9]. After
oscillations begin, the correct initial condition for the
superhorizon density perturbations becomes adiabatic,

δa ¼ δϕ: ðA7Þ

We show that this also follows from approximate solutions
to the perturbed field equations in Appendix B.
Given the initial assumptions above, the right-hand side

of Eq. (A1e) also vanishes. This allows us to relate δa to
θa via δa ¼ −3aEθa=k2, where we consider c2nad ∼Oðk0Þ.
Substituting this into the right-hand side of Eq. (A1f), we
observe that it vanishes, leaving

a2Eθ0a þ aEθa þ k2Φ ¼ 0: ðA8Þ

During early matter domination we have EðaÞ ≃ a−3=2.
This is solved by

θa ¼ −
2

3
k2

ffiffiffi
a

p
Φ: ðA9Þ

We obtain an identical solution

θϕ ¼ −
2

3
k2

ffiffiffi
a

p
Φ ðA10Þ

from Eq. (A1b) with the same logic. Using this in Eq. (A1d)
along with δr ∼Φ we finally obtain

θr ¼ −
2

3
k2

ffiffiffi
a

p
Φ: ðA11Þ

The set of Eqs. (A5), (A6), (A7), (A9), (A10), (A11) form
our set of initial conditions.
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APPENDIX B: ALP INITIAL CONDITIONS
FROM FIELD EQUATIONS

In this section we derive the initial conditions for the
ALP density perturbation δa from the perturbed field
equations. We will denote the ALP field by φ ¼ φ0 þ φ1

to avoid confusion with the scale factor a, and work in the
dimensionless variables defined below Eq. (7). The modes
of interest enter the horizon during EMD when H ¼
1=

ffiffiffi
a

p
and the gravitational potentials are constant with

Φ þΨ ¼ 0. In this regime, the background and perturbed
field equations, Eqs. (3) and (16), simplify to

φ00
0 þ

5

2a
φ0
0 þm2

aaφ0 ¼ 0; ðB1Þ

φ00
1 þ

5

2a
φ0
1 þ ðk2=aþm2

aaÞφ1 ¼ þ2m2
aaφ0Φ; ðB2Þ

where primes denote derivatives with respect to the scale
factor. We take the initial conditions for a completely
smooth field initially at rest with a misalignment value φi:

φ0ð0Þ ¼ φi; φ0
0ð0Þ ¼ 0; ðB3Þ

φ1ð0Þ ¼ 0; φ0
1ð0Þ ¼ 0: ðB4Þ

The background equation is easily solved to give

φ0 ¼
3φi

2maa3=2
sin

�
2

3
maa3=2

�
: ðB5Þ

Next, we consider the superhorizon evolution of modes
that enter the horizon after oscillations have begun, k ≪
kosc ∼m1=3

a . This allows us to drop the k2 term in Eq. (B2)
in comparison to either the Hubble damping term ∝ φ0 or
the mass term. We then find the Oðk0Þ solution

φ1 ≈ −Φφi cos

�
2

3
maa3=2

�
þ 3Φφi

2maa3=2
sin

�
2

3
maa3=2

�
:

ðB6Þ
We can now construct the energy density and its perturba-
tion from [115]

ρa ¼
1

2a
ðφ0

0Þ2 þ
1

2
m2

aφ
2
0; ðB7Þ

δρa ¼
1

a
ðφ0

0φ
0
1 þ ðφ0

0Þ2ΦÞ þm2
aφ0φ1: ðB8Þ

Averaging over oscillations, we find that for superhorizon
scales with k ≪ kosc

ρa ≈
9φ2

i

16a3
; ðB9Þ

δρa ≈
9φ2

iΦ
8a3

; ðB10Þ

and therefore

δa ≈ 2Φ ðB11Þ

at leading order in k. Thus, we see that even though the
ALP field starts as completely homogeneous with δa ¼ 0,
superhorizon evolution in the gravitational potential
ensures that it locks onto the matter adiabatic mode after
oscillations have begun.

APPENDIX C: FITTING FUNCTIONS FOR ALP
DENSITY CONTRAST EVOLUTION

In this section we define the various semianalytical
fitting functions that we use to evaluate the fluctuation
variance for a wide range of parameters, without having to
solve for the evolution of all modes numerically from
horizon entry to now. These fitting functions are nearly
identical to those presented in Ref. [43] despite slightly
different initial conditions, owing to the fact the ALP DM
cannot be produced in the decays of the EMD field ϕ. The
reason for this similarity is that the late-time evolution of
modes is insensitive to this initial condition. This is already
evident in the approximate solution in Eq. (19), since the
growing term quickly overtakes the initial value once the
mode is inside the horizon. We confirmed this by compar-
ing the various fitting functions below to the numerical
solutions discussed in Sec. III C. The ALP fluid and CDM
evolve differently at small scales, which we implement as a
simple cutoff as we discuss below.
The differences between ΛCDM and EMD in the

evolution of the DM density contrast are neatly encapsu-
lated by the ratio

RðkÞ ¼ δa
δc

¼
AðkÞ ln½ð 4e3Þf2=f1

BðkÞaeq
ahorðkÞ �

9.11 ln½ð 4e3Þf2=f1 0.594
ffiffi
2

p
k

keq
�
; ðC1Þ

where δc refers to the evolution of the CDM density
contrast in ΛCDM and [43,81]

f1 ¼ 1 − 0.568fb þ 0.094f2b; ðC2Þ

f2 ¼ 1 − 1.156fb þ 0.149f2b − 0.074f3b; ðC3Þ

with fb ¼ Ωb=Ωm and [43]

ahorðkÞ
aeq

≈
keqffiffiffi
2

p
k

�
1þ

�
k

kRH

�
4.235

�
−1=4.235

: ðC4Þ

This scaling relation was obtained by fitting this approxi-
mate form to numerical solutions of k ¼ HðahorÞ; we
confirmed the results of Ref. [43]. The values of AðkÞ,
BðkÞ and in various limits are given by
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A ¼

8>><
>>:

0 k > kosc
3
5

�
k

kRH

	
2

kosc > k > kRH

9.11 k < kRH

;

B ¼
8<
:

e
�
kRH
k

	
2

k > kRH

0.594 k < kRH
: ðC5Þ

The functions A and B interpolate between the linear EMD
growth and logarithmic RD evolution. Reference [43]
provides numerical functions that smoothly connect the
two limits above. Note that we model the small-scale
suppression of power due to the effective ALP mass by a
hard cutoff at k ¼ kosc. This is an approximation as the
actual falloff is much smoother; see the right panel of
Fig. 5. However, this approximation allows for fast explo-
ration of the clump parameter space without having to solve
the full Boltzmann system for each ðma; TRHÞ.
The density contrasts in Eq. (C1) are evaluated at matter-

radiation equality, so the evolution at later times is captured
by a scale-dependent growth function TDΛCDMða; kÞ
defined via Eqs. (31) and (35). Since the density variance
in Eq. (30) involves an integral over all scales within the
horizon, we need TDΛCDMða; kÞ for a wide range of k and
a. We obtain TDΛCDM by stitching together solutions from
the Boltzmann solver CLASS [85,116] at small k and the
Eisenstein-Hu interpolating formula [117] at high k. This
matching is performed at k=keq ∼ 106 (where both the
CLASS calculation and the Eisenstein-Hu formula are
accurate) and scale factor am and the result is then
propagated forward or backward in time using solutions
of the Meszaros equation [81]:

δ00c þ
2þ 3y

2yð1þ yÞ δ
0
c ¼

3

2yð1þ yÞ ð1 − fbÞδc; ðC6Þ

where primes denote derivatives with respect to y ¼ a=aeq
and fb ¼ Ωb=Ωm. We denote the DM density contrast with
a subscript c to emphasize that we are now discussing
evolution in ΛCDM—the EMD and ALP dynamics are
encapsulated by RðkÞ defined above. This equation is valid
before and after equality, and well after horizon entry; the
two solutions U1;2 are expressed in terms of hypergeo-
metric functions in Ref. [81] and they can be matched
onto the standard radiation-domination solution, given in
Eq. (24). As a result, the evolution of the density contrast
can be factorized as

δcða; kÞ ¼ DðaÞδcðaeq; kÞ; ðC7Þ

where

DðaÞ ¼ U1ða=aeqÞ þ
A1

A2

U2ða=aeqÞ: ðC8Þ

The coefficients A1;2 (obtained by matching in the RD
regime such that D → 1 as a=aeq → 0) and the functional
form ofU1;2 are given in Ref. [81]. The functionD captures
the linear growth during standard matter domination since
U1ða=aeqÞ ∼ ða=aeqÞ for fb ¼ 0 and a=aeq ≫ 1. The full
expression is accurate near the transition from logarithmic
growth (captured by U2) to linear evolution, and fb ≠ 0.8

The scale-dependent growth function at an arbitrary red-
shift is then given by

TDΛCDMða; kÞ ¼ TDΛCDMðam; kÞ
�
DðaÞ
DðamÞ

�
: ðC9Þ

The scale factor am at which the numerical and semi-
analytic expressions for TDΛCDM are matched is arbitrary,
and can be chosen to minimize the error made in the simple
extrapolation using D. Similar to Ref. [43], we find that
matching at zm ¼ 50 and using DðaÞ leads to fractional
errors of < 4% for a wide range of redshifts and scales
of interest. This procedure ensures that the amplitude of
density fluctuations on large scales is correctly normalized.
In particular, using Eq. (30), we reproduce the observed
value of σ8 ¼ σðz ¼ 0; R ¼ 8=hMpcÞ ≈ 0.8 [70].

APPENDIX D: ISOCURVATURE CONSTRAINTS

Planck [118] constrains ratio of the scalar-to-isocurvature
amplitude to be α < 0.038. For theories with a period of
EMD we proceed following Ref. [68]. The definition of the
isocurvature perturbation is

Si ¼
δðni=sÞ
ni=s

¼ δni
ni

− 3
δT
T

: ðD1Þ

We assume that only the axion has Sa ≠ 0, with all other
fields satisfying Si ¼ 0. The invariance of the local energy
density under isocurvature perturbations can then be used to
relate Sa to the temperature perturbation δT=T as follows.
The total energy is

ρ ¼
X
i

mini þmana þ ρr ðD2Þ

and we require

δρ ¼
X
i

miδni þmaδna þ 4ρr
δT
T

≃ 0: ðD3Þ

The second equality in Eq. (D1) implies δni ¼ ni3δT=T for
i ≠ a. Substituting that in the equation above we obtain

δT
T

≃ −
ρa

3
P

iρi þ 4ρr
Sa; ðD4Þ

8On scales larger than the baryonic Jeans length, the fb ¼ 0
solution is appropriate since the baryons are no longer pressure-
supported and collapse like CDM. We interpolate between the
fb ¼ 0 and fb ≠ 0 regimes using the prescription in Ref. [43].
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which implicitly requires δT=T ≃ 0 for the ALP. For fluc-
tuations on superhorizon scales which enter the horizon
during standard matter domination (after Teq) the above
implies

δT
T

≃ −
1

3

Ωa

Ωm
Sa: ðD5Þ

We add an extra −1=15 onto the prefactor to take the Sachs-
Wolfe effect into account [68], so the total temperature
fluctuation is

δT
T iso

≃ −
6

15

Ωa

Ωm
Sa: ðD6Þ

Now we find an expression for Sa in terms of θi, f and
HI . The fractional fluctuation in the axion density is related
to fluctuations around the initial misalignment angle θi in
the early Universe

Sa ≃
δna
na

≃
δðθ2Þ
hθ2i ≃

hðθi þ δθÞ2 − hθ2i
hθ2i

≃
2θiδθ þ ðδθÞ2 − σ2θ

θ2i þ σ2θ
ðD7Þ

where the variance is σ2θ ¼ hðθ − hθiÞ2i ¼ H2
I =ð2πfÞ2 and

hθi ¼ θi. We will also need

hS2ai ¼ 2σ2θ
2θ2i þ σ2θ
ðθ2i þ σ2θÞ2

: ðD8Þ

The isocurvature component of the total power in CMB
temperature fluctuations is

α ¼ hðδT=TÞ2isoi
hðδT=TÞ2toti

; ðD9Þ

where COBE measured hðδT=TÞ2toti1=2 ¼ 1.1 × 10−5 [119].
Putting the pieces together we have

α ¼
�
6

15

�
2 ðΩa=ΩmÞ2
hðδT=TÞ2toti

2σ2θ
2θ2i þ σ2θ
ðθ2i þ σ2θÞ2

< 0.038: ðD10Þ

where Ωm ≃ 0.13, the expression for the axion relic density
in EMD theories is Eq. (6) and the rest is defined above.
As an example, for benchmark values of θi ¼ 1, fa ¼

9 × 1014 GeV and TRH ¼ 10 MeV Eq. (D10) implies
HI < 2 × 1010 GeV. The requirements on the scale of
inflation in EMD theories are less onerous than standard
cosmology by a factor of Oð102−3Þ. As we raise the
reheating temperature the bound on the HI decreases: for
TRH ¼ 500 MeV we have HI < 2 × 109 GeV. The iso-
curvature bounds can be evaded in low-scale theories of
inflation; see, e.g., Refs. [120,121].

APPENDIX E: RELATIONSHIPS BETWEEN
SIZE AND MASS DEFINITIONS

In this section we relate the various mass and size scales
used to characterize minihalos. We will assume that
minihalos have an NFW profile:

ρðrÞ ¼ 4ρs
ðr=rsÞð1þ r=rsÞ2

; ðE1Þ

where ρs and rs are scale density and scale radius. The mass
within a certain radius r is then

MðrÞ ¼ 16πρsr3sfðr=rsÞ; ðE2Þ

where

fðcÞ ¼ lnðcþ 1Þ − c
cþ 1

: ðE3Þ

The scale mass Ms is the mass within the scale radius:

Ms ¼ MðrsÞ ¼ 16πρsr3sfð1Þ: ðE4Þ

Given any two of ðrs; ρs;MsÞwe can solve for the other one
using this relationship.

1. Virial mass, radius and concentration

The virial quantities are defined for a sphere centered on
the gravitational potential minimum that encloses a region
within which the average density is Δ ¼ 200 times the
critical density at some redshift ρcðzÞ ¼ 3H2ðzÞ=ð8πGÞ
[113,122] (sometimes only the average matter density
ΩmρcðzÞ is used [97]). We therefore have the following
relationship between Mvir and rvir:

Mvir ¼
4π

3
200ρcr3vir: ðE5Þ

We want to relate virial quantities to the NFW scale
parameters defined above. First,

Mvir ¼ MðrvirÞ ¼ Msfðc200Þ=fð1Þ; ðE6Þ

where we defined the concentration parameter

c200 ¼ rvir=rs: ðE7Þ

We can take ðc200;MvirÞ as defining the halo and solve
for the NFW scale quantities using the relations above,
leading to

Ms ¼
fð1Þ

fðc200Þ
Mvir; ðE8Þ

rs ¼ rvir=c200 ðE9Þ
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and

ρs ¼
1

12
200ρc

c3200
fðc200Þ

: ðE10Þ

Note that at large concentration parameters c200 ≫ 1,
fðc200Þ ∼ ln c200=e and Eq. (E8) implies that

Mvir

Ms
∼ 43þ 5 ln

�
c200
104

�
; ðE11Þ

so the virial mass and scale mass can be quite different.
This occurs if the redshift at which the virial quantities are
calculated is long after the initial collapse that created the
gravitationally bound core; subsequent evolution resulted
in accretion of matter on this core.

2. M�, R� and concentration at formation

Recall that R� is defined as the radius within which the
density is 178ρaðzcÞ, where ρaðzcÞ is the background

density at collapse. This means that M� and R� are like
the virial quantities, evaluated at collapse, i.e., MvirðzcÞ ≈
M� and rvirðzcÞ ≈ R�. Let c� be the concentration parameter
at formation, i.e.,

c� ¼ R�=rs: ðE12Þ

This is anOð1Þ number. Simulations of Earth-mass ΛCDM
halos imply that c� ≈ 2 [113] for Ms ∼ 10−6 M⊙, but in
principle this is a cosmology and mass-dependent quantity.
The concentration parameter allows us to find Ms and ρs
from c�, R� and M�:

Ms ¼
fð1Þ
fðc�Þ

M� ðE13Þ

The scale density is then obtained from Eq. (E4).
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