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Mixing in the Σ0–Λ0 system is a direct consequence of broken isospin symmetry and is a measure of
both isospin-symmetry breaking as well as general SU(3)-flavor symmetry breaking. In this work we
present a new scheme for calculating the extent of Σ0–Λ0 mixing using simulations in lattice QCDþ QED
and perform several extrapolations that compare well with various past determinations. Our scheme allows
us to easily contrast the QCD-only mixing case with the full QCDþ QED mixing.
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I. INTRODUCTION

Our best theoretical understanding of the classification
and qualities of the low-lying hadron states comes from the
theory of SU(3)-flavor symmetry, first summarized by the
eightfold way [1]. Since SU(3)-flavor is an approximate
symmetry, broken by nondegeneracy in the physical
properties of the up, down and strange quarks, it is often
only a convenient starting point for precision determina-
tions of hadron properties.
The neutral Σ and Λ states of the spin-1=2 baryon octet,

as defined by SU(3) flavor, differ only in isospin (also
denoted T spin [2]), which is not an exact symmetry in
nature. Consequentially the physical particle states that
correspond to these octet baryons are actually mixtures of
the idealized isospin states. They are the only two states in
the baryon octet that have the same quark content and
charge and thus permit mixing under isospin breaking. The
neutral members of the pseudoscalar meson nonet present
an analogous system of mixing (see e.g., [3,4]).

The amount of mixing that occurs in the physical system
depends on the degree of isospin-symmetry breaking, as
well as further SU(3)-flavor symmetry breaking by the
strange quark, and is driven by both the bare mass
parameters and the differences in the quark charges.
One approach in calculating the Σ0–Λ0 mixing, due to

Dalitz and Von Hippel (DvH [5]), is based on relationships
between the electromagnetic (EM) mass splittings of octet
baryons. This was derived by consideration of an effective
Lagrangian density exhibiting SU(3)-flavor symmetry plus
a perturbation which encodes bare quark mass and QED
effects [6], and uses experimental baryon masses as inputs.
Our approach herein is to use simulations in lattice

QCDþ QED to fit a parametrization of the Σ0–Λ0 mixing
angle, which we derive by considering the effects of
continuous variations in the quark mass and charge param-
eters around an SU(3)-symmetric point, and extrapolate to
physical values of the quark masses and charges. We find
that the inclusion of QED effects in our determination gives
us a result comparable to that ofDvH,which is the only other
determination to explicitly include electromagnetic effects.
Further, when QED is ignored we show that our new

extrapolation scheme gives good agreement with previous
QCD-only calculations of the mixing, using chiral pertur-
bation theory (χPT) [7,8] and lattice QCD (no QED [9,10]),
and gives a magnitude of about half of that found by DvH
or this work when QED is incorporated.
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In Sec. II we introduce the practical structure for probing
Σ0–Λ0 using lattice QCDþ QED and derive a parametri-
zation for use in extrapolating our lattice results to the
physical point (physical quark masses and QED coupling).
We give details of the lattice simulation parameters used in
Sec. III before performing the extrapolation and presenting
our results in Sec. IV, and we also observe some traits of the
mixing in the cases of QCD only and QCDþ QED and
contrast these cases. We conclude this work in Sec. V.

II. SIGMA-LAMBDA MIXING ON THE LATTICE

Hadrons are studied on the lattice by calculation of
correlation functions made from operators which are
constructed to represent particular hadrons by incorporat-
ing their flavor content, symmetries and quantum numbers.
The canonical way of doing this is to write down the
operators for a particular hadron using the full SU(3)-flavor
symmetry with definite isospin, since we know isospin to
be a very good approximate symmetry in reality.
In this study we wish to explore other SU(2) symmetries

in addition to isospin and hence, to begin with, we do not
appeal to the quark flavors up, down and strange, and
instead use placeholders a, b and c.

A. Standard interpolating operators

Following the notation introduced in [9], we employ
standard Euclidean-space interpolating operators for the
SU(3) Σ0 and Λ0 octet baryons with flavor content a, b, c,

BΣðabcÞ;αðxÞ ¼
1ffiffiffi
2

p ϵlmnðblαðxÞ½amðxÞ⊤Cγ5cnðxÞ�

þ alαðxÞ½bmðxÞ⊤Cγ5cnðxÞ�Þ; ð1Þ

and

BΛðabcÞ;αðxÞ ¼
1ffiffiffi
6

p ϵlmnð2clαðxÞ½amðxÞ⊤Cγ5bnðxÞ�

þ blαðxÞ½amðxÞ⊤Cγ5cnðxÞ�
− alαðxÞ½bmðxÞ⊤Cγ5cnðxÞ�Þ; ð2Þ

where C ¼ γ2γ4, the superscript ⊤ denotes a transpose in
Dirac space, l, m and n are color indices and α is a Dirac
index. These interpolating operators are constructed to
create states with definite iso-, U- or V-spin (see [11])
symmetry depending on the choice of Cartan subalgebra
[12] used in constructing the octet representation. The Σ0 is
symmetric in the flavors a and b [which define the SU(2)
subalgebra] while the Λ0 is antisymmetric; this ensures that
the Σ0 andΛ0 states are orthogonal when the a and b quarks
are degenerate. From these operators we construct the
matrix of correlation functions

CijðtÞ ¼
1

Vs
TrDΓunpol

�X
y⃗

X
x⃗

Biðy⃗; tÞB̄jðx⃗; 0Þ
�
;

for 0 ≪ t ≪ T=2; i; j ¼ ΣðabcÞ;ΛðabcÞ; ð3Þ

where Γunpol ¼ ð1þ γ4Þ=2, Vs is the spatial lattice volume
and T is the full temporal extent of the lattice. The
correlation matrix is Hermitian and its diagonalization
can hence be described by a single parameter which we
call the mixing angle, θΣΛ.
The labeling of the three distinct quark flavors ðabcÞ in

the above agrees with the notation used in previous works
[9], but for the purpose of this work it is sometimes
advantageous to promote these labels to an explicit func-
tional dependence of the correlation matrix elements on the
quark masses and charges,

CijðtÞ ⟶ Cijðt; ma;mb;mc; ea; eb; ecÞ
or Cijðt; m⃗abc; e⃗abcÞ; i; j ¼ Σ;Λ; ð4Þ

where m⃗abc ¼ ðma;mb;mcÞ is used for brevity and similar
for the quark electric charges. Note that the ordering of the
labels, or explicit dependencies, is important, since the Σ0

operator for example has a symmetry in the first two quark
flavors, a and b in this case. In our notation this is indicated
by the ordering of the labels.

B. Extrapolation scheme

When we have degeneracy in the first two (distinct)
quarks (i.e., degenerate masses and charges, and hence
numerically identical propagators), by symmetry the cor-
relation matrix is diagonal. Furthermore, if the third quark
is also degenerate [SU(3) symmetry], the correlation matrix
is proportional to the identity. In general, the diagonal
elements of the correlation matrix are symmetric under an
interchange of the first two quarks, while the off-diagonal
elements are antisymmetric.
For the case of a degeneracy between either the first and

third or second and third quarks (these cases are simply
related by the symmetry of the correlation matrix under
interchange of the first two quarks) we find by explicit
manipulations of the correlation functions that we are able
to write

CΣðaba0ÞΣðaba0Þ ¼
ð3CΛðaa0bÞΛðaa0bÞ þ CΣðaa0bÞΣðaa0bÞÞ

4
; ð5Þ

CΛðaba0ÞΛðaba0Þ ¼
ð3CΣðaa0bÞΣðaa0bÞ þ CΛðaa0bÞΛðaa0bÞÞ

4
; ð6Þ

CΣðaba0ÞΛðaba0Þ ¼
ffiffiffi
3

p

4
ðCΛðaa0bÞΛðaa0bÞ − CΣðaa0bÞΣðaa0bÞÞ: ð7Þ

We have primed the second quark label a to indicate that its
flavor is distinct even though it is degenerate in terms of
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mass and charge, while the time dependence is left implicit.
All correlation function relations in this subsection are
assumed to be at equal times.
The relations given in Eqs. (5)–(7) can also be summa-

rized as

�
CΣðaba0ÞΣðaba0Þ CΣðaba0ÞΛðaba0Þ
CΛðaba0ÞΣðaba0Þ CΛðaba0ÞΛðaba0Þ

�
¼ U½Ciðaa0bÞjðaa0bÞ�UT;

ð8Þ

where the matrix U is given by

U ¼
"

1
2

ffiffi
3

p
2

−
ffiffi
3

p
2

1
2

#
: ð9Þ

These relations can also be reversed to write

CΛðaa0bÞΛðaa0bÞ ¼
ð3CΣðaba0ÞΣðaba0Þ − CΛðaba0ÞΛðaba0ÞÞ

2
; ð10Þ

CΣðaa0bÞΣðaa0bÞ ¼
ð3CΛðaba0ÞΛðaba0Þ − CΣðaba0ÞΣðaba0ÞÞ

2
: ð11Þ

If for example we associate the degenerate a and a0
quarks with the up (down) quarks, and the b quark with the
strange, then Eqs. (5)–(7) give the U-spin (V-spin) corre-
lators in terms of the isospin correlators.
In order to construct an SU(3)-flavor breaking expansion

in terms of quark masses and charges, we begin by
supposing that we have three distinct quark flavors with
no electric charge and degenerate mass m0. We then give
the quarks small charges, ϵQi, proportional to the uds
physical charges, Qi, but scaled by the small parameter ϵ
(so as to keep their ratios physical). Since the down and
strange quarks are still degenerate (same charge), if we take
the ordering of isospin (uds here; however dus is also
isospin), the first-order Taylor expansion in the quark
charge parameter gives

Cðm⃗uds;0; ϵQ⃗udsÞ ¼ Cðm⃗uds;0; 0Þ þ
S
2

�
1 0

0 1

�
ϵ

þDQED

4

�
−1

ffiffiffi
3

p
ffiffiffi
3

p
1

�
ϵ; ð12Þ

where m⃗uds;0 ¼ ðm0; m0; m0Þ and

S ¼
�∂CΣΣðm⃗dsu;0; ϵQ⃗dsuÞ

∂ϵ þ ∂CΛΛðm⃗dsu;0; ϵQ⃗dsuÞ
∂ϵ

�				
ϵ¼0

ð13Þ

DQED¼
�∂CΣΣðm⃗dsu;0;ϵQ⃗dsuÞ

∂ϵ −
∂CΛΛðm⃗dsu;0;ϵQ⃗dsuÞ

∂ϵ
�				

ϵ¼0

:

ð14Þ

This form follows from realizing that with constant and
equal mass parameters for the three quarks, the correlation
matrix elements obey the relations in Eqs. (5)–(7) for all
values of ϵ, and hence the first derivatives of each isospin
element can be written in terms of the diagonal U-spin
elements.
Since the term Cðmi;0; 0Þ is proportional to the identity

and has no effect on the eigenvectors, we make the
definition

Cðm⃗uds;0; 0Þ þ
S
2

�
1 0

0 1

�
ϵ≡ AI2; ð15Þ

and also absorb a factor of ϵ into DQED: DQED → ϵDQED.
We have now, to first order, described the breaking of
SU(3) symmetry down to SU(2) U-spin symmetry in
the Σ0–Λ0 correlation matrix by introducing electromag-
netism. Next we seek to break the remaining SU(2)
symmetry by expanding the correlation matrix in powers
of δmi ¼ mi −m0, the deviations in the masses from the
SU(3) symmetric point (QED aside) where all three flavors
of quark have mass mi ¼ m0. To do this we make use of
Eqs. (5)–(7) to notice that, for example,

∂Cijðm⃗uds; 0Þ
∂md

				
ðm⃗uds;0Þ

¼ Uik
∂Cklðm⃗uds; 0Þ

∂ms

				
ðm⃗uds;0Þ

UT
lj; ð16Þ

for the matrix U from Eq. (9). We find that if we also
enforce the constraint that the average quark mass is held
fixed as we move away from the SU(3) symmetric
point [13],

m̄≡ 1

3
ðmu þmd þmsÞ ¼ m0 ð17Þ

⇒ δmu þ δmd þ δms ¼ 0 ð18Þ

for δmi ¼ mi − m̄; ð19Þ

then the first-order expansion in the masses reduces to (see
the Appendix for a more detailed calculation)

Cðm⃗uds; ϵQ⃗udsÞ

¼ AI2 þ
DQED

4

�
−1

ffiffiffi
3

p
ffiffiffi
3

p
1

�

þDQCD

4

�
−3ðδmu þ δmdÞ

ffiffiffi
3

p ðδmu − δmdÞffiffiffi
3

p ðδmu − δmdÞ 3ðδmu þ δmdÞ

�
; ð20Þ
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where

DQCD ¼
�∂CΣΣðm⃗uds; 0Þ

∂ms
−
∂CΛΛðm⃗uds; 0Þ

∂ms

�				
m⃗uds;0

: ð21Þ

This first-order expression is diagonalized to yield

tan 2θΣΛ;isospin ¼ −
ffiffiffi
3

p �
DQCDðδmu − δmdÞ þDQED

3DQCDðδmu þ δmdÞ þDQED

�
:

ð22Þ

Repeating this process with the starting point of U- and
V-spin correlation matrices gives

tan2θΣΛ;V-spin¼
ffiffiffi
3

p �
DQCDðδmu−δmsÞþDQED

3DQCDðδmuþδmsÞþDQED

�
; ð23Þ

tan 2θΣΛ;U-spin ¼
ffiffiffi
3

p
DQCDðδmd − δmsÞ

3DQCDðδmd þ δmsÞ þ 4DU-spin
QED

; ð24Þ

where DU-spin
QED parallels DQED but with derivatives of

correlation functions of definite isospin instead of U spin.
Notice that if we set DQED ¼ 0, the parameter DQCD

cancels and the isospin expression reduces to exactly that
presented in leading order (LO) χPT [8], as well as the
leading order term presented in our previous work [9] based
on a more group-theoretic approach. It is interesting to note
that the method used in [9] was to diagonalize the octet
mass matrix to find the mixing angle before expanding the
Σ0=Λ0 masses in terms of quark masses, while we have
herein expanded the correlation matrix in terms of quark
masses and then diagonalized.
At this point it is necessary for us to recall that our

parameters Di still carry an implicit time dependence, and
unlike in the QCD-only limit, for full QCDþ QED our
mixing angle depends explicitly on these parameters. We
can take the usual route of diagonalizing at large times in
our lattice simulations where the ground state dominates
the signal. As we see in the results of Sec. IV, the time
dependence of the mixing angle appears to be much weaker
than that of the effective masses of the baryons themselves.

C. Running quark masses

Since we are operating with QED, we must also consider
that variation in the input bare quark masses will no longer
result in the same mass differences for quarks of different
charges, due to renormalization. This leads us to include
one further parameter in our fit function, which comes from
taking

δmu þ δmd þ δms

¼ 0 →
1

Z2=3
δmu þ

1

Z−1=3
ðδmd þ δmsÞ ¼ 0; ð25Þ

where the Zi factors correct for the running of the masses
due to QED, specifically to account for the resultant
difference in the u and d=s quark propagators from an
equal change in their respective quark mass parameters,
analogous to the Dashen scheme presented in [14].
Upon updating our fit functions and making the defi-

nitions

DQED → Z2=3DQED and Z≡ Z2=3

Z−1=3
; ð26Þ

we are left with

tan 2θΣΛ;isospin ¼
ffiffiffi
3

p � ðδmu − ZδmdÞ þDQED=DQCD

3ðδmu þ ZδmdÞ þDQED=DQCD

�
;

ð27Þ

and similar for V spin, while for U spin no extra factor is
needed explicitly, although in keeping with the formalism a
factor Z−1=3 can be thought to have been absorbed

by DU-spin
QED .

In practice, the mixing angle can be determined on the
lattice by numerical diagonalization of the correlation
matrix. By performing calculations at a range of quark
mass parameters and constant electric charge parameters
we are able to fit the parameters DQED=DQCD and Z.
Assuming the functional form of Eq. (27) we are able to use
these parameters to extrapolate to the physical point—the
details for which are given in the following sections.
Finally, considering terms beyond leading order, we can

incorporate some higher order terms by replacing

DQED →

�X∞
n¼0

1

ðnþ 1Þ!
�
ϵ
∂
∂ϵ

�
n
�
DQED; ð28Þ

and absorbing all higher order QED terms (however not
mixed QED-QCD terms) into the existing parameter with-
out changing our established functional form. This is
possible because we do not wish to vary ϵ in our
extrapolation to the physical point, and the correlation
matrix exhibits U-spin symmetry for all values of ϵ. We can
therefore think of our parametrization as including all
orders of pure-QED terms automatically, in theory. In
practice however, as is discussed in Sec. IV, we scale
our QED parameter linearly to match the physical electro-
magnetic coupling and hence negate the inclusion of these
higher order terms in the present study.
We have found that at second order in the quark masses

two additional parameters must appear in the correlation
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matrix expansion, and further parameters for mixed QCD-
QED terms. Given the relatively few number of lattice
ensembles available in the current analysis we therefore
forgo inclusion of higher order QCD terms.

III. LATTICE SCHEME

We extract the Σ0–Λ0 mixing angles from a combination
of 243 × 48 and 483 × 96, Nf ¼ 1þ 1þ 1, dynamical
QCDþ QED lattice simulations around the U-spin sym-
metric point [approximate SU(3)-symmetric point] defined
in [14]. The gauge actions used are the tree-level Symanzik
improved SU(3) gauge action and the noncompact U(1)
QED gauge action (further details in [14,15]). The fermions
are described by an OðaÞ-improved stout link nonpertur-
bative clover (SLiNC) action [16]. The couplings used and
lattice spacing are

βQCD ¼ 5.5; βQED ¼ 0.8; a−1=GeV ¼ 2.91ð3Þ;
ð29Þ

which gives a QED coupling αQED ≃ 0.1, roughly 10×
larger than the physical value.
Wepresently neglect electromagneticmodifications to the

clover term. This leaves us with corrections ofOðαQEDe2aÞ,
which turn out to be no larger than the Oða2Þ corrections
fromQCD (see [17] for numerical evidence of this). Adding
an electromagnetic clover termwith cem ¼ 1would leave us
with corrections of OðαQEDe2g2aÞ (to this order in αQED),
which is not a significant improvement, if at all.
Furthermore, since the current manuscript is concerned
with isospin-breaking effects, these discretization effects
are further suppressed by a power of md −mu for QCD
effects and e2u − e2d for QED effects.
The lattice ensembles used for this study have

been selected to focus on the region near an approximate

SU(3)-flavor symmetry. Given the difference in charges,
this symmetry cannot be exact, and our approach is to tune
the neutral (connected) pseudoscalar mesons to be degen-
erate (see [14]). Starting from this point, the approximate
symmetry is further broken along a trajectory that leaves no
residual invariant (or approximate invariant) SU(2) sub-
group. In particular, we introduce a breaking mu −ms,
while holding fixed bothmd and the average quark mass. In
this way we preserve the physical mass hierarchy,
mu < md < ms. To further improve the constraint on our
expansion parameters we also consider partially quenched
(PQ) propagators, where the valence masses are allowed to
vary independently of the simulated sea quarks. The
simulation parameters used in this study are listed in
Table I.

IV. RESULTS

From the expressions presented in Eqs. (22)–(24), in the
absence of QED, it is clear that the mixing angle depends
only on the relative quark mass splitting at first order,

tan 2θΣΛ;isospin;QCD-only ¼
δmd − δmuffiffiffi
3

p ðδmu þ δmdÞ
; ð30Þ

provided that the average quark mass m̄ is held constant. As
a consequence, given a set of quark mass parameters, we
can directly predict the QCD-only mixing angle.
In a recent QCD-only lattice study of the Σ0–Λ0 mixing

[9], the quark masses at the physical point were determined
to be

aδmu ¼ −0.01140ð3Þ; aδmd ¼ −0.01067ð3Þ; ð31Þ

giving

TABLE I. The lattice volumes, κ values used in the generation of the lattice configurations, valence κ values of the hadron operators
and the fitted isospin mixing angles. Physical electric charges were associated with the κ’s for each flavor of quark (although the
coupling is nonphysical; see Sec. IV) and we also present the lightest neutral flavor-singlet mesonMuū on each ensemble for reference.
The mixing angle result for the first ensemble follows theoretically from Eqs. (5)–(7).

Lattice ensembles

Volume κu; κd; κs (sea) κu; κd; κs (valence) θΣΛ;isospin Muū (MeV)

243 × 48 0.124362 0.121713 0.121713 0.124362 0.121713 0.121713 −30° (theory) 442(9)

243 × 48 0.124374 0.121713 0.121701 0.124374 0.121713 0.121701 −21.8ð1.1Þ° 423(9)
0.124387 0.121713 0.121689 −19.5ð1.2Þ° 423(10)
0.124400 0.121740 0.121649 −6ð1Þ° 378(28)

243 × 48 0.124400 0.121713 0.121677 0.124400 0.121713 0.121677 −17.8ð7Þ° 405(8)
0.124420 0.121713 0.121657 −16.7ð7Þ° 387(8)
0.124430 0.121760 0.121601 −4.8ð7Þ° 377(8)

483 × 96 0.124508 0.121821 0.121466 0.124508 0.121821 0.121466 −3.5ð4Þ° 284(4)
0.124400 0.121713 0.121677 −18.5ð9Þ° 389(5)
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⇒ θΣΛ;isospin;QCD-only ¼ −0.55ð3Þ°: ð32Þ

Note that we are using a sign convention that followed
from our choice of ordering for isospin (uds vs dus) as well
as the ordering of the Σ0 and Λ0 along the diagonal of the
correlation matrix, and differs from that used in [9].
We also note that using the mass ratios of the latest

FLAG review [18], the QCD-only mixing angle is pre-
dicted to be θΣΛ;isospin;QCD-only ¼ −0.65ð3Þ°.
In the present work we directly determine the lattice

mixing angle for each of the QCDþ QED ensembles listed
in Table I. This is done by calculating all four elements of the
Σ0–Λ0 correlation matrix [Eq. (3)] on an ensemble, for each
site in the time dimension of the lattice, and numerically
diagonalizing the matrix CðtÞ. A constant is fitted to the
observed plateau region. We perform this direct diagonal-
ization in favor of the more typical generalized eigenvalue
problem (GEVP, first introduced in [19]) as it is more

consistent with our extrapolation formalism, and the advan-
tages of the GEVP are in extracting eigenvalues of CðtÞ,
while we are herein only interested in the eigenvectors.
Upon including QED, the resulting mixing angles are

displayed in Table I. These results are used to fit Eq. (27).
It is a feature of our method for determining the mixing

angle that we avoid fitting effective masses and instead fit
the mixing angle directly. As it can be seen in Fig. 1, the
signal quality and ability to resolve the T-, U- and V-spin
signals is much greater for the mixing angle, since it
generally exhibits a much weaker time dependence than the
effective masses of the baryons themselves. Theoretically,
we have shown that when QED is absent there is no time
dependence in the mixing angle at first order, while this is
no longer true for QCDþ QED mixing, but as the QCD
contribution to the mixing angle is much larger than the
contribution of QED for most of our mass splittings, the
mixing angle appears roughly time independent.

FIG. 1. An example of the mixing angle from diagonalization
and corresponding effective mass, in this case on the largest-
volume lattice used (unitary). The effective mass shows the
Σ0–Σ0 component of the correlation matrix for each SU(2)-
subgroup with a slight offset in time applied for clarity.

FIG. 2. This figure shows the T-, U- and V-spin mixing angles
for the two PQ calculations we performed with the constituent
quark charges set to 0. The top plot has ðκu; κd; κsÞ ¼ ð0.12092;
0.1209; 0.12088Þ and the bottom plot has ðκu; κd; κsÞ ¼
ð0.12094; 0.1209; 0.12086Þ. The QCD-only mixing angle for-
mula we have derived predicts that the mixing angles are time
independent at first order when QED is absent.
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We have performed mixing angle calculations at two
additional partially quenched points with the up, down and
strange quark electric charges set to 0 which are presented
in Fig. 2, where we see our first-order prediction of time
independence of the QCD-only mixing angle (for constant
m̄) to be manifest.
In Fig. 3 we show a comparison of the QCD-only and

QCDþ QED mixing angle fit functions [Eqs. (22)–(24)
with DQED ≡ 0 for QCD-only mixing] for lattice simula-
tions with δmd ¼ 0, for which the QCD-only mixing angle
function is constant. In addition to the relevant points from
Table I, we have included the two neutral partially quenched
diagonalizations of Fig. 2, which can be seen to agree well
with the theoretical prediction of QCD-only mixing.
It can be seen in Fig. 3 and from Eqs. (22)–(24) that in the

absence of QED (DQED → 0), the differences between any
two of the mixing angles is a constant (magnitude π=3 or
π=6), while with QED instated, only the isospin-V differ-
ence remains constant. This is because the isospin and
V-spin doublets have the same combination of charges.
Another feature of Fig. 3 is that as we move to the left, and

the SU(3)-flavor symmetry becomes more broken, the
mixing angle for QCDþ QED is asymptoting to that of
QCD only, which is a result of the bare quark mass
differences becoming dominant in their mixing contribution
over the electric charge differences (which do not change).
As can be observed from Table I, we have determined the

mixing angle on both 243 × 48 and 483 × 96 volumes. The
mixing angles on the larger volume are consistent with the
243 × 48 result and hence we do not attempt to correct for
finite-volume effects in this work. We have investigated the
results of excluding the 483 × 96 result from our fits but
given the small number of total simulations, it has proven to
reduce the uncertainty by about 25% to include it, despite
the possibility of finite-volume differences.
To extrapolate our result to the physical point, we use the

physical quark mass parameters determined in [14],

aδmu ¼ −0.00834ð8Þ; aδmd ¼ −0.00776ð7Þ;

and

FIG. 3. This plot shows our simulation results for the mixing angles at the quark κ values with δmd ¼ 0. In this scenario the QCD-only
mixing angle is a constant (dotted lines) and we can see the QED-inclusive mixing angle asymptoting to that of only QCD as the T-,
U- or V-spin symmetry becomes more broken by the mass parameters. The squares are mixing results from PQ calculations performed
with all charges set to 0 to approximate the QCD-only scenario while the circles are PQ with physical charges (unphysical coupling; see
Sec. III) and the crosses are unitary.
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aδmu ¼ −0.00791ð4Þ; aδmd ¼ −0.00740ð4Þ;

using 323 × 64 and 483 × 96 volume lattices, respectively.
No 243 × 48 physical point is available; however our
mixing angles seem consistent between 243 × 48 and 483 ×
96 volumes within uncertainty, and it is interesting to
observe the variation in the result due to systematic
differences. Using the best-fit parameters displayed in
Table II, where the parameter DQED has been scaled down
by the proportionality factor α⋆QED=αQED ¼ 0.07338 that
relates our simulated EM coupling αQED to that of the real
world, α⋆QED, we find

θΣΛ;isospinjQCDþQED ¼ −1.00ð32Þ°;

and

θΣΛ;isospinjQCDþQED ¼ −0.96ð31Þ°;

for the physical quark masses determined on 323 × 64 and
483 × 96 volumes, respectively. These first-order results
compare well with the widely used DvH formula result
[5,20], −0.86ð6Þ°, which also incorporates QED effects
implicitly, in the sense that it cannot separate QCD from
QED effects on the mixing angle.
While a direct confirmation of the validity of the

assumed linear-in-αQED scaling of the QED parameter
has not yet been performed, it was shown in [16] that
1=κcq, 1=κ̄q and the bare quark mass at the symmetric point,
1=2κ̄q − 1=2κcq, all displayed linear behavior with scaling
of the quark charge squared.
We note that our renormalization parameter Z is con-

sistent with that presented in [14] of 0.93 using the Dashen
scheme, which is defined by the running of connected
neutral pseudoscalar meson masses. As was found in [9],
the magnitude of the next-to-leading order QCD term was
roughly one third that of the LO QCD term, and hence we
approximate the contributions from higher order QCD
terms as a systematic uncertainty of 20%. The effects of
higher order QED terms remain to be investigated.

V. CONCLUSION

In this work we have used the symmetry properties of the
pure baryon-octet wave functions (and hence, interpolating
operators) to simplify an expansion in QCD and QED
parameters about the SU(3)-symmetric point, and conse-
quently derived a scheme for extrapolating the Σ0–Λ0

mixing angle to the physical point along a path where
the average quark mass is held constant.
We have observed that our extrapolation scheme accom-

modates past determinations of the mixing angle in the
cases of both QCD-only mixing and physical QCDþ QED
mixing, and offers new insight into the interplay between
QCD and QED effects on the mixing. We find that the QED
contribution to the mixing angle at first order is of
comparable magnitude to that of the quark mass differences
and acts to effectively double the mixing.
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APPENDIX: EXPLICIT
CALCULATION OF QCD TERM

We present here a more detailed derivation of the
QCD term in Eq. (20) and note that the QED term is
derived in an analogous manner. The starting point is the
Taylor expansion in quark masses about the nominated
SU(3)-symmetric point, mi ¼ m̄. In the following we
ignore the correlation matrix dependence on the electric
charges of the quarks, since they are identically set to 0
throughout. We find, dropping Oðδm2Þ terms,

TABLE II. The best-fit parameter values (χ2=DOF ¼ 0.84)
from the fit of the QCDþ QED isospin mixing angles with
DQED scaled to the physical EM coupling. The correlation
coefficient for the two parameters is −0.45.

Fit parameters

Parameter DQED=DQCD Z
Central value −3.8ð7Þ × 10−5 0.96(4)
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Cijðm⃗udsÞ ≃ Cijðm⃗uds;0Þ þ
�∂Cijðm⃗udsÞ

∂mu

				
m⃗uds;0

�
δmu þ

�∂Cijðm⃗udsÞ
∂md

				
m⃗uds;0

�
δmd þ

�∂Cijðm⃗udsÞ
∂ms

				
m⃗uds;0

�
δms

¼ Cijðm⃗uds;0Þ þ
�
UT

ik
∂Cklðm⃗udsÞ

∂ms

				
m⃗uds;0

Ulj

�
δmu þ

�
Uik

∂Cklðm⃗udsÞ
∂ms

				
m⃗uds;0

UT
lj

�
δmd þ

�∂Cijðm⃗udsÞ
∂ms

				
m⃗uds;0

�
δms;

or written as a matrix equation,

2
64CΣΣðm⃗uds;0Þ þ 3

4

∂CΛΛðm⃗udsÞ∂ms

			
m⃗uds;0

ðδmu þ δmdÞ þ ∂CΣΣðm⃗udsÞ∂ms

			
m⃗uds;0



1
4
δmu þ 1

4
δmd þ δms

�
ffiffi
3

p
4


∂CΣΣðm⃗udsÞ∂ms
− ∂CΛΛðm⃗udsÞ∂ms

�			
m⃗uds;0

ðδmu − δmdÞ
� � �

ffiffi
3

p
4


∂CΣΣðm⃗udsÞ∂ms
− ∂CΛΛðm⃗udsÞ∂ms

�			
m⃗uds;0

ðδmu − δmdÞ

CΣΣðm⃗uds;0Þ þ 3
4

∂CΣΣðm⃗udsÞ∂ms

			
m⃗uds;0

ðδmu þ δmdÞ þ ∂CΛΛðm⃗udsÞ∂ms

			
m⃗uds;0



1
4
δmu þ 1

4
δmd þ δms

�
3
75;

and this, upon making the constant-m̄ substitution δms ¼ −δmu − δmd, reduces to

Cðm⃗udsÞ ≃ Cðm⃗uds;0Þ þ
1

4

�
−3ðδmu þ δmdÞ

ffiffiffi
3

p ðδmu − δmdÞffiffiffi
3

p ðδmu − δmdÞ 3ðδmu þ δmdÞ

��∂CΣΣðm⃗udsÞ
∂ms

−
∂CΛΛðm⃗udsÞ

∂ms

�				
m⃗uds;0

;

and we can now see the connection to Eq. (20), with the term in parentheses being the previously definedDQCD. The above
expression can be directly diagonalized to yield the QCD-only mixing formula familiar from χPT (for constant m̄) and the
matching first-order term presented in [9]. Furthermore we can make the connection to our previous work that for the
expansion parameter A2 in [9], at large times we must have DQCDðtÞ ¼ 2A2.
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