
 

Nπ states and the projection method for the nucleon axial
and pseudoscalar form factors

Oliver Bär
Institut für Physik, Humboldt Universität zu Berlin, 12489 Berlin, Germany

(Received 18 December 2019; accepted 3 February 2020; published 24 February 2020)

The RQCD Collaboration proposed a projection method to remove the excited-state contamination in
lattice QCD calculations of nuclear form factors. The effectiveness of this method in removing the two-
particle nucleon-pion-state contamination is examined using chiral perturbation theory. It is shown that the
projection method has practically no impact in the calculation of the axial and induced pseudoscalar form
factors. In the pseudoscalar form factor the projection method strongly enhances the nucleon-pion-state
contamination. The generalized Goldberger-Treiman relation is satisfied even though large nucleon-pion-
state contaminations are present in individual form factors. Therefore, the projection method is not a
solution to the excited-state problem in nucleon form factor calculations.
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I. INTRODUCTION

Lattice QCD results can have a valuable impact on
particle physics areas beyond QCD. For example,
Ref. [1], one of a series of white papers from the
USQCD Collaboration, discusses the opportunities for
lattice QCD in neutrino-oscillation physics. Lattice QCD
is in principle able to provide various observables, among
others the vector and axial vector form factors of the
nucleon. Lattice calculations of these form factors have a
long history and are straightforward to carry out. However,
in order to be phenomenologically relevant the lattice results
need to have small and reliable statistical and systematic
errors such that the total error is at the percent level.
Currently this is still challenging to achieve.
Even though the lattice techniques for the calculation of

nucleon form factors are well established, recent calcula-
tions of the axial form factors display an unexpected and
puzzling behavior: The partially conserved axial vector
current (PCAC) relation implies the so-called generalized
Goldberger-Treiman (gGT) relation between the axial and
pseudoscalar form factors, but the lattice results for the
form factors strongly violate this relation [2–5]. As pointed
out by the RQCD Collaboration [6], this so-called PCAC
puzzle is surprising since the PCAC relation is fulfilled
rather well on the level of the correlation functions. This
strongly suggests a large excited-state contamination as the
source for violating the gGT relation.

As a remedy RQCD proposed a simple projection
method to remove the large excited-state contamination
from the correlation functions [6]. Numerical tests of this
method show that the gGT relation is indeed satisfied if
the projection method is applied. Still, the results are not
fully conclusive. A large excited-state contamination in the
induced pseudoscalar form factor is essentially unaffected
by the projection, and the theoretically expected pion pole
dominance for this form factor is as badly violated as before
applying the projection method.
The excited-state contamination due to two-particle

nucleon-pion (Nπ-)states has recently been studied in
Refs. [7–9] within chiral perturbation theory (ChPT). It
has been shown that the observed violation of the gGT
relation can be explained by a large Nπ contamination in
the induced pseudoscalar form factor. The Nπ contamina-
tion in the axial and pseudoscalar form factors have a much
smaller influence, in particular for small momentum trans-
fer. These findings are apparently in contradiction to the
results in [6]: How can the projection method solve the
PCAC puzzle if it has essentially no impact on the Nπ
contamination in the induced pseudoscalar form factor?
In this paper we extend the ChPT results in Refs. [7,8] to

the projected axial vector current and pseudoscalar density.
The results provide an analytical understanding for the
effectiveness of the projection method in removing the Nπ-
state contamination and explain the apparent contradiction
mentioned before.
The main results of this paper are easily summarized.

The projection method removes only part of the Nπ
contamination in the pseudoscalar form factor. The remain-
ing part is larger than the original one because the
subtraction upsets a delicate cancellation in the Nπ con-
tamination. As a consequence the pseudoscalar form factor
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obtained with the projection method is largely overesti-
mated by the remaining Nπ contamination. This overesti-
mation compensates the underestimation of the induced
pseudoscalar form factor and the gGT relation is indeed
satisfied. Obviously this is not the desired solution to the
PCAC puzzle: Applying the projection method we are left
with two form factors instead of one afflicted with a large
excited-state contamination. Comparing the ChPT results
with the lattice data of [6] strongly supports this conclusion.
This paper relies heavily on the results in Refs. [7,8], and

the reader is assumed to be familiar with these references.
The general ideas behind ChPT calculations of theNπ-state
contamination in nucleon observables have recently been
reviewed in [10,11] and are not repeated here.

II. NUCLEON AXIAL FORM FACTORS

A. Basic definitions

We are interested in the matrix elements of the local
isovector axial vector current Aa

μðxÞ and pseudoscalar
density PaðxÞ between single-nucleon (SN) states jNðp; sÞi
of definite momenta and spin,

hNðp0;s0ÞjAa
μð0ÞjNðp;sÞi

¼ ūðp0;s0Þ
�
γμγ5GAðQ2Þ− iγ5

Qμ

2MN
G̃PðQ2Þ

�
σa

2
uðp;sÞ;

ð2:1Þ

mqhNðp0; s0ÞjPað0ÞjNðp; sÞi

¼ mqGPðQ2Þūðp0; s0Þγ5
σa

2
uðp; sÞ: ð2:2Þ

The right-hand side shows the form factor decomposition of
thematrix elements.mq denotes themass of the up and down
quarks which we assume to be degenerate. uðp; sÞ is an
isodoublet Dirac spinorwithmomentump and spin s, and in
Euclidean space-time the four-momentum transfer Qμ is
given by

Qμ ¼ ðiEN;p⃗0 − iEN;p⃗; q⃗Þ; q⃗ ¼ p⃗0 − p⃗: ð2:3Þ

In Euclidean (lattice)QCD the form factors are computed for
spacelikemomentum transfersQ2>0, withQ2¼ðp⃗0−p⃗Þ2−
ðEN;p⃗0−EN;p⃗Þ2 and the nucleon energy E2

N;p⃗ ¼ p⃗2 þM2
N.

The two matrix elements are decomposed into three form
factors: the axial form factor GAðQ2Þ, the induced pseu-
doscalar form factor G̃PðQ2Þ, and the pseudoscalar form
factor GPðQ2Þ. These three form factors are not indepen-
dent. Taking the PCAC relation

∂μAa
μðxÞ ¼ 2mqPaðxÞ ð2:4Þ

between SN states leads to the gGT relation

2MNGAðQ2Þ − Q2

2MN
G̃PðQ2Þ ¼ 2mqGPðQ2Þ ð2:5Þ

for the three form factors.1

Considering (2.5) in the limit of vanishing momentum
transfer and pion mass one can conclude that both G̃PðQ2Þ
andGPðQ2Þ are dominated by a pion pole for smallQ2. For
Q2 close to −M2

π one can derive the expressions2

G̃ppd
P ðQ2Þ ¼ 4M2

N

Q2 þM2
π
GAðQ2Þ; ð2:6Þ

2mqG
ppd
P ðQ2Þ ¼ 2MNM2

π

Q2 þM2
π
GAðQ2Þ; ð2:7Þ

for the form factors, which are called the PPD model
results.
The standard procedure to compute the form factors

in lattice QCD is based on evaluating various two- and
three-point (pt) functions. The nucleon two-pt function is
given by

C2ðp⃗; tÞ ¼
Z

d3xeip⃗ x⃗ΓβαhNαðx⃗; tÞN̄βð0; 0Þi: ð2:8Þ

N, N̄ denote interpolating fields of the nucleon. We assume
them to be given by the standard three-quark operators
[13,14] (either pointlike or smeared) that have been mapped
to ChPT [15–17]. The projector Γ ¼ ð1þ γ4Þð1þ iγ5γ3Þ=4
acts on spinor space and projects onto the positive-parity
sector.
The nucleon three-pt functions are typically computed

with the nucleon at the sink being at rest, p⃗0 ¼ 0, and the
third isospin component is chosen as a ¼ 3. Thus, the
nucleon three-pt functions we consider are given by

C3;A3
μ
ðq⃗;t;t0Þ

¼
Z

d3x
Z

d3yeiq⃗y⃗ΓβαhNαðx⃗;tÞA3
μðy⃗;t0ÞN̄βð0;0Þi; ð2:9Þ

C3;P3ðq⃗;t;t0Þ

¼
Z

d3x
Z

d3yeiq⃗y⃗ΓβαhNαðx⃗;tÞP3ðy⃗;t0ÞN̄βð0;0Þi: ð2:10Þ

The Euclidean times t and t0 denote the source-sink
separation and the operator insertion time, respectively.
With the two-pt and three-pt functions the generalized
ratios (μ ¼ 1;…; 4; P)

1Reference [6] refers to it as the PCACFF relation.
2See Appendix B of Ref. [12] for a quick derivation.
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Rμðq⃗; t; t0Þ ¼
C3;X3

μ
ðq⃗; t; t0Þ

C2ð0; tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ðq⃗; t− t0Þ
C2ð0; t− t0Þ

C2ð0⃗; tÞ
C2ðq⃗; tÞ

C2ð0⃗; t0Þ
C2ðq⃗; t0Þ

s

ð2:11Þ

are defined. As a shorthand notation μ ¼ P refers to the
ratio with the pseudoscalar three-pt function (2.10). The
ratios are defined in such a way that, in the asymptotic limit
t; t0; t − t0 → ∞, they converge to constant asymptotic
values,

Rμðq⃗; t; t0Þ → Πμðq⃗Þ: ð2:12Þ

The form factors are obtained from these constant values.
For example, the pseudoscalar form factor GPðQ2Þ is
directly proportional to ΠPðq⃗Þ,

ΠPðq⃗Þ ¼
q3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EN;q⃗ðMN þ EN;q⃗Þ
p GPðQ2Þ: ð2:13Þ

The proportionality factor is a simple kinematical factor
that is easily computed and removed from ΠPðq⃗Þ. The axial
form factors GAðQ2Þ and G̃PðQ2Þ can be computed
analogously, although in general one has to solve a linear
system to extract the two form factors from two indepen-
dent asymptotic values Πμðq⃗Þ.3
Although this method works in principle, in practice one

only has access to the ratios Rμðq⃗; t; t0Þ at time separations
t, t0 that are far from being asymptotically large. In that case
the correlation functions and the ratios not only contain the
SN ground-state contribution, but also contributions of
excited states. This excited-state contamination enters the
calculation of the form factors: Instead of the true form
factors we obtain effective form factors including an
excited-state contamination. These effective form factors
are expected to be of the form4

Geff
X ðQ2; t; t0Þ ¼ GXðQ2Þ½1þ ΔGXðQ2; t; t0Þ�;

X ¼ A; P; P̃: ð2:14Þ

The excited-state contribution ΔGXðQ2; t; t0Þ vanishes
for t; t0; t − t0 → ∞.
The effective form factors depend on both the source-

sink separation t and the operator insertion time t0. As an
estimator for the form factor we can introduce the plateau
estimateGplat

X ðQ2; tÞ that, for a given source-sink separation
t, fixes t0 to the value that minimizes the deviation from the
true form factor. Alternatively one can define the midpoint
estimateGmid

X ðQ2; tÞ ¼ Geff
X ðQ2; t; t0 ¼ t=2Þ. Both are func-

tions of the momentum transfer and t. In practice the

difference between the two estimators is small, at least for
small momentum transfers.
Instead of the standard current and density the projection

method proposed in [6] uses

Aa;⊥
μ ðxÞ ¼ Aa

μðxÞ −
pμpν

p2
Aa
νðxÞ; ð2:15Þ

Pa;⊥ðxÞ ¼ PaðxÞ − 1

2mq

pμpν

p2
∂μAa

νðxÞ; ð2:16Þ

with pμ ¼ ðp0
μ þ pμÞ=2 being the mean of the initial and

final nucleon momenta. By construction the projected
current and density satisfy the PCAC relation (2.4) and
the contraction of pμ with the SN matrix element in
Eq. (2.1) vanishes [6]. Therefore, the ratios R⊥

μ ðq⃗; t; t0Þ,
formed with the three-pt functions of the projected current
and density, have the same constant asymptotic values as
the original ratios in Eq. (2.12). However, the effective form
factorsGeff

X⊥ðQ2; t; t0Þ obtained from R⊥
μ ðq⃗; t; t0Þ at finite t, t0

differ because the excited-state contaminations are in
general different,

ΔGX⊥ðQ2; t; t0Þ ≠ ΔGXðQ2; t; t0Þ: ð2:17Þ
Therefore, the plateau and midpoint estimators also differ
depending on which currents or densities are used.
As a quantitative measure for violations of the gGT

relation one can introduce the dimensionless ratio [2,6]

restPCACðQ2; tÞ ¼ Q2

4M2
N

G̃est
P ðQ2; tÞ

Gest
A ðQ2; tÞ þ

mq

MN

Gest
P ðQ2; tÞ

Gest
A ðQ2; tÞ ; ð2:18Þ

for both the plateau and midpoint estimator, and, analo-
gously, r⊥;est

PCACðQ2; tÞ. In the limit t → ∞ these ratios assume
the constant value 1. This is nothing but the gGT relation
(2.5). For finite t the excited-state contamination in the form
factor estimators result in deviations from 1. One typically
finds values smaller than 1, and the deviation increases the
smaller the momentum transfer is [2,6].

III. NUCLEON-PION EXCITED STATES

A. Preliminaries

In lattice simulations with pion masses as small as in
nature one can expect two-particle Nπ-states to cause the
dominant excited-state contamination,

ΔGXðQ2; t; t0Þ ≈ ΔGNπ
X ðQ2; t; t0Þ; ð3:1Þ

provided the time separations t, t0 are sufficiently large.
This expectation rests on the naive observation that the
energy gaps between the Nπ-states and the SN ground state
are smaller than those from resonance states and other
(heavier) multihadron states. For this to happen not only
does the pion mass need to be small, but sufficiently large

3The expressions for Πμðq⃗Þ in terms of the axial form factors
are given in Eqs. (2.16) and (2.17) of Ref. [8], for example.

4For brevity we introduce the notation GP̃ ¼ G̃P.
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spatial volumes are also necessary such that the discrete
spatial momenta imply sufficiently small energies for the
lowest-lying Nπ-states. Volumes with MπL ≃ 4, typically
used in lattice simulations, fulfill this criterion [10].
Provided we are in the regime where Eq. (3.1) holds we

can use ChPT to get an estimate for the Nπ-state contami-
nation ΔGNπ

X for all three form factors. For the axial form
factors the calculation to leading order (LO) is given in [7],
the analogous result for the pseudoscalar form factor can be
found in [8]. With these results it is straightforward to
derive the corresponding results for the projected current
and density, i.e., the contaminations ΔGNπ

X⊥ .

B. Nπ-state contribution to nucleon three-pt functions

Performing the standard spectral decomposition in
C3;μðq⃗; t; t0Þ defined in Eqs. (2.9) and (2.10), the three-pt
function is found to be a sum of various contributions,

C3;μðq⃗; t; t0Þ ¼ CN
3;μðq⃗; t; t0Þ þ CNπ

3;μðq⃗; t; t0Þ þ…: ð3:2Þ

The first two terms on the right-hand side refer to the SN
and the Nπ contributions. The ellipsis refers to omitted
contributions which we assume to be small in the follow-
ing. Provided the SN contribution is nonzero we may write
Eq. (3.2) as

C3;μðq⃗; t; t0Þ ¼ CN
3;μðq⃗; t; t0Þð1þ Zμðq⃗; t; t0ÞÞ: ð3:3Þ

Thus, Zμ denotes the ratio CNπ
3;μðq⃗; t; t0Þ=CN

3;μðq⃗; t; t0Þ. With
our kinematical setup p⃗0 ¼ 0 the generic form for
Zμðq⃗; t; t0Þ is found as [7]

Zμðq⃗; t; t0Þ ¼ aμðq⃗Þe−ΔEð0;−q⃗Þðt−t0Þ þ ãμðq⃗Þe−ΔEðq⃗;−q⃗Þt0

þ
X
k⃗

bμðq⃗; k⃗Þe−ΔEð0;k⃗Þðt−t0Þ

þ
X
k⃗

b̃μðq⃗; k⃗Þe−ΔEðq⃗;k⃗Þt0

þ
X
k⃗

cμðq⃗; k⃗Þe−ΔEð0;k⃗Þðt−t0Þe−ΔEðq⃗;k⃗Þt0 : ð3:4Þ

The sum runs over all pion momenta k⃗ that are compatible
with the boundary conditions imposed for the spatial
volume. The nucleon momentum r⃗ is fixed to r⃗ ¼ −q⃗ − k⃗
by momentum conservation. To LO in ChPT the energy gaps
ΔEðq⃗; k⃗Þ between the SN ground state and the Nπ-states are
obtained by ignoring the (small) nucleon-pion interaction
energies, i.e.,

ΔEðq⃗; k⃗Þ ¼ Eπ;k⃗ þ EN;q⃗þk⃗ − EN;q⃗: ð3:5Þ

The coefficients aμðq⃗Þ; ãμðq⃗Þ; bμðq⃗; k⃗Þ; b̃μðq⃗; k⃗Þ; cμðq⃗; k⃗Þ in
Eq. (3.4) are ratios of matrix elements involving the nucleon

interpolating fields and either the axial vector current or
pseudoscalar density. To obtain ChPT estimates for these
coefficients both CN

3;μðq⃗; t; t0Þ and CNπ
3;μðq⃗; t; t0Þ as well as the

ratio needs to be computed in ChPT. To LO
this involves 12 one-loop and three tree diagrams for
CNπ
3;μðq⃗; t; t0Þ. For the axial vector three-pt function this

has been done in [7], and the explicit results for the
coefficients are given in Sec. IV of that reference.
In order to compute ZPðq⃗; t; t0Þ, the Nπ contribution in

the pseudoscalar three-pt function, one may calculate the
same diagrams with the axial vector current replaced by the
pseudoscalar density. Alternatively, the result can be
obtained by making use of the PCAC relation which relates
the pseudoscalar coefficients to the axial vector ones. This
route has been followed in Ref. [8].
With the ChPT results for Zμðq⃗; t; t0Þ at hand it is

straightforward to compute the analogous Nπ contributions
associated with the projected current and density,
Z⊥
μ ðq⃗; t; t0Þ. It is defined with Eqs. (2.15) and (2.16) in

the three-pt functions on the left-hand side in Eq. (3.3).
Z⊥
μ ðq⃗; t; t0Þ has the same form as Zμðq⃗; t; t0Þ in Eq. (3.4) but

with coefficients carrying a superscript: a⊥μ ðq⃗Þ; b⊥μ ðq⃗; k⃗Þ,
etc. Aa;⊥

μ ðxÞ is a linear combination of all four Aa
μðxÞ, thus

the same holds for the Nπ contributions,

Z⊥
μ ðq⃗; t; t0Þ ¼ Zμðq⃗; t; t0Þ − ΔZμðq⃗; t; t0Þ; ð3:6Þ

ΔZμðq⃗; t; t0Þ ¼
X
ν

pμpν

p2
rνμðq⃗ÞZνðq⃗; t; t0Þ: ð3:7Þ

The newly introduced rνμðq⃗Þ denotes the ratio of SN
contributions in the three-pt function,

rνμðq⃗Þ ¼
CN
3;νðq⃗; t; t0Þ

CN
3;μðq⃗; t; t0Þ

; ð3:8Þ

and to LO it is readily obtained with the results in Eqs. (4.2)
and (4.3) of Ref. [7]. Note that the time dependence cancels
in the ratio on the right-hand side, so rνμ is a function of the
momentum q⃗ only.
The calculations in [7] are performed in the covariant

formulation of baryon ChPT [18,19]. The results for the
coefficients are rational functions involving the energies
and masses of the nucleon and pion, and the expressions are
fairly cumbersome in full covariant form. However, they
simplify significantly if we perform the nonrelativistic
(NR) expansion of the nucleon energy,

EN;q⃗ ¼ MN þ q⃗2

2MN
þ…; ð3:9Þ

and keep the first two terms only. For practical uses this
approximation is expected to be sufficient. For example, the
NR expansion for the coefficients akðq⃗Þ with spatial index
μ ¼ k ¼ 1, 2, 3, reads
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akðq⃗Þ ¼ a∞k ðq⃗Þ þ
Eπ;q⃗

MN
acorrk ðq⃗Þ; ð3:10Þ

and the results for a∞k ðq⃗Þ; acorrk ðq⃗Þ are given in [7],
Eqs. (4.14) and (4.16). Analogous expressions hold for
the other coefficients.
The NR expansion is slightly different for the coeffi-

cients with μ ¼ 4. The reason is that the SN contribution in
the three-pt function has a different nonrelativistic limit for
μ ¼ k and μ ¼ 4. For the latter one finds [7]

CN
3;μ¼4ðq⃗;t;t0Þ¼

�
gA

M2
πq3

2E2
π;q⃗MN

þO

�
1

M3
N

��
e−MNðt−t0Þe−EN;q⃗t0 :

ð3:11Þ

Thus, the leading term is Oðq3=MNÞ suppressed. On the
other hand, the expansion of the SN contribution CN

3;k and
the Nπ contributions CNπ

3;μ both start with O(1). The
coefficients in Zμ are defined by the ratio CNπ

3;μ=C
N
3;μ, thus,

for μ ¼ 4, the inverse power 1=MN in the SN contribution
shifts the NR expansion of the ratio such that powers linear
in the nucleon mass appear. Thus, in contrast to Eq. (3.10) it
is more appropriate to define [7]

a4ðq⃗Þ ¼
MN

Eπ;q
a∞4 ðq⃗Þ þ acorr4 ðq⃗Þ: ð3:12Þ

In the following we label the Nπ contribution with
Z∞
μ , Z⊥;∞

μ if the leading NR results are used for the
coefficients entering it. It turns out that this leading
contribution suffices to qualitatively understand the impact
of the projection method, so it is useful to quote these
results explicitly.
To obtain the NR limit results ΔZ∞

μ it is sufficient to
expand rνμðq⃗Þ and pμpν=p2 and consistently drop higher
order terms. For the ratio rνμðq⃗Þ we use the results in
Eqs. (4.2) and (4.3) in [7] and obtain (k; l;¼ 1, 2, 3)

rνμðq⃗Þ¼

8>><
>>:
Oð1Þ μ¼ ν¼ 4 and μ¼ k;ν¼ l;

Oðqk=MNÞ for μ¼ k;ν¼ 4;

OðMN=qkÞ μ¼ 4;ν¼ k:

ð3:13Þ

Recalling the definition pμ ¼ ðp0
μ þ pμÞ=2 we also find

pμpν

p2
¼

8>><
>>:

Oð1Þ μ ¼ ν ¼ 4;

Oðqk=MNÞ for μ ¼ k; ν ¼ 4;

Oðqkql=M2
NÞ μ ¼ k; ν ¼ l:

ð3:14Þ

Putting all this together in Eq. (3.7) yields

ΔZ∞
k ðq⃗; t; t0Þ ¼ 0; ð3:15Þ

ΔZ∞
4 ðq⃗; t; t0Þ ¼ Z∞

4 ðq⃗; t; t0Þ: ð3:16Þ

Thus, to LO in the NR expansion the Nπ contamination in
the three-pt function with a spatial component of the axial
vector is the same for both the projected and the original
axial vector current. For the μ ¼ 4 component, on the other
hand, the projection removes completely the LO Nπ
contamination, Z⊥;∞

4 ¼ 0. These results will be slightly
modified if we take into account the next order in the NR
expansion. Still, we can expect the projection method to
remove the dominant part of the Nπ-state contamination in
the Aa

4 correlation function, and being essentially ineffec-
tive for the spatial components Aa

k . Qualitatively this
pattern has been observed in Ref. [6].
The Nπ contamination ZP has been worked out in

Ref. [8]. To LO in the NR expansion one finds5

Z∞
P ðq⃗; t; t0Þ ¼ Z0;∞

4 ðq⃗; t; t0Þ þ
X3
k¼1

αkZ∞
k ðq⃗; t; t0Þ: ð3:17Þ

The αk are a shorthand notation for simple ratios of the
spatial momenta components qk and the pion mass, see
Eq. (3.30) in [8] and Eq. (A6) in the Appendix. Z0;∞

4

denotes the Nπ contamination of the time derivative of the
three-pt function CNπ

3;4ðq⃗; t; t0Þ with respect to the operator
insertion time t0. The explicit form of this contribution can
also be found in [8], Sec. III C. See also Eqs. (A8)–(A13) in
the Appendix.
The computation of Z⊥

P ðq⃗; t; t0Þ is analogous to the one of
Z⊥
μ ðq⃗; t; t0Þ and given in the Appendix. Here we simply

quote the LO result if the NR expansion is performed,

ΔZ∞
P ðq⃗; t; t0Þ ¼ Z0;∞

4 ðq⃗; t; t0Þ; ð3:18Þ

Z⊥;∞
P ðq⃗; t; t0Þ ¼

X3
k¼1

αkZ∞
k ðq⃗; t; t0Þ: ð3:19Þ

In the pseudoscalar case the projection method removes
only the Z0;∞

4 part in the Nπ contamination Z∞
P given in

Eq. (3.17). The consequences of this partial subtraction are
discussed in the next section.

IV. COMPARISON WITH RQCD LATTICE DATA

A. Preliminaries

To LO ChPT the coefficients in Zμ, Z⊥
μ depend on five

parameters only, and these are known or easily obtained.
Three of these parameters are the extent L of the spatial
volume and the nucleon and pion masses. We set Mπ ¼
150 MeV and MπL ¼ 3.5, the measured values for

5See Eq. (3.15) in [8].
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ensemble VIII analyzed in [6].6 The nucleon mass is fixed
by the measured value Mπ=MN ¼ 0.160 [20]. Errors for
these values are at the 1% level and will be ignored since
they are too small to play a role in the following.
In addition, two LO low-energy constants (LECs) need

to be specified, the chiral limit values of the pseudoscalar
decay constant and axial charge. To LO it is consistent to
use the phenomenologically known values and we set
fπ ¼ 93 MeV and gA ¼ 1.27.7 Note that we do not need
values for the LECs associated with the nucleon interpolat-
ing fields. To LO these drop out in the ratios Rμ, R⊥

μ .
We also need to specify an upper bound on the pion

momentum in the Nπ-state to truncate the sum in Eq. (3.4).
We follow our earlier studies [7,8,21–23] and choose jk⃗nj ≤
kmax with kmax=Λχ ¼ 0.45, where the chiral scale Λχ is
equal to 4πfπ . Nπ-states with pions satisfying this bound
are called low-momentum Nπ-states. For these we expect
the LO ChPT results to work reasonably well. States with
larger pion momenta are called high-momentum Nπ-states.
These too contribute to the excited-state contamination.
However, choosing all Euclidean time separations suffi-
ciently large the contribution of the high-momentum Nπ-
states is small, and dropping it leads to a truncation error
that can be ignored. The results in Refs. [21,22] suggest that
separations of about 1 fm or larger between the operator
and either source or sink are necessary. This corresponds to
source-sink separations of 2 fm or larger in the three-pt
functions. In some cases, however, significantly smaller
source-sink separations are accessible, for instance in the
Aa
4 correlation function as well as those that enter the

calculation of the induced pseudoscalar form factor G̃P [7].
The lattice data of [6] we compare to in the following

were generated for a source-sink separation t ¼ 1.07 fm.8

At such small t we would not be surprised if the high-
momentum Nπ-states were not sufficiently suppressed for
the truncation error to be negligible. However, we will see
that the LO ChPT results work rather well, much better than
naively anticipated for such a small source-sink separation.

B. The axial vector three-pt functions

Figure 1 shows the data for R4ðQ2; t; t0Þ (red data points)
and R⊥

4 ðQ2; t; t0Þ (blue data points) as a function of the
shifted operator insertion time t0 − t=2 for fixed t ¼
1.07 fm and momentum transfer Q2 ¼ 0.073 GeV2.9 The
solid lines of the same color show the corresponding ChPT

result. Apparently, LO ChPT describes the data very well.
Recall that the ChPT results are not fits to the data, all input
parameters are fixed as discussed in Sec. IVA.
The R4 data do not exhibit a plateau and show, as a

function of t0, an almost linear dependence with a large
negative slope. As explained in [7], the origin of this
behaviour is twofold: First, the ground-state SN matrix
element is OðMπ=MNÞ, while the Nπ-state matrix element
is O(1). Thus, the Nπ-state contamination is OðMN=MπÞ
enhanced compared to the SN matrix element. Secondly,
one finds a relative sign between the coefficients a∞4 ðq⃗Þ and
ã∞4 ðq⃗Þ entering Z∞

4 . This implies [7]

Z∞
4 ðq⃗;t;t0Þ¼−

2MNEπ;q⃗

M2
π

exp

�
−
Eπ;q⃗t

2

�
sinh

�
Eπ;q⃗

�
t0−

t
2

��
;

ð4:1Þ
and it is essentially the sinh ðEπ;q⃗ðt0 − t

2
ÞÞ behavior in this

equation we observe in Fig. 1. The prefactor in Eq. (4.1) is
large because of the factorMN=Mπ. The large excited-state
contamination in R4 is one of the reasons why R4 data are
usually excluded from the calculation of the axial form
factors.
According to Eq. (3.16) the projection method removes

the dominant Nπ-state contamination Z∞
4 . The remaining

contributions are OðMπ=MNÞ suppressed and therefore
smaller. In addition, there is no relative sign between the
coefficients a∞k ðq⃗Þ and ã∞k ðq⃗Þ, k ¼ 1, 2, 3, Therefore, the
R⊥
4 shows the familiar cosh behavior. However, note that

the Nπ contamination is still rather large, even though the
mild curvature in the R⊥

4 data may suggest otherwise: The
midpoint estimate R⊥

4 ðq⃗; t; t0 ¼ t=2Þ is a factor ≈2.9 larger

FIG. 1. The correlation function ratios R4ðq⃗; t; t0Þ (red) and
R⊥
4 ðq⃗; t; t0Þ (blue) for t ¼ 1.07 fm and a momentum transfer

Q2 ¼ 0.073 GeV2. The red and blue solid lines are the corre-
sponding LO ChPT results. The black line shows the associated
constant Π4ðQ2Þ the ratios converge to in the infinite t limit. The
yellow band indicates the ground-state contribution obtained by
fits to the data [6].

6See Table 1 in that reference for details of the ensemble.
7For gA we could also use the measured value gA ≈ 1.18 for

ensemble VIII [20], but the difference is irrelevant for the results
of this paper.

8I thank the RQCD Collaboration, in particular T. Wurm, for
sending me the data. Data for two smaller sink separations t ≈
0.85 fm and t ≈ 0.64 fm are also available but seem too small for
the ChPT analysis in this paper.

9In Ref. [6] the data are displayed in figure 6, left panel.
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than the SN result, shown by the solid black line in Fig. 1.
This decreases to a factor ≈1.8 if the source-sink separation
is increased by a factor 2 to t ≈ 2.1 fm. The reason for this
slow convergence is the smallness of the SN result. Large
source-sink separations are necessary to exponentially
suppress the O(1) Nπ contamination compared to the small
SN contribution of OðMπ=MNÞ.
As discussed before we expect a small impact of the

projection method on the ratios Rk, k ¼ 1, 2, 3. Instead of
considering these ratios we look directly at the impact on
the effective axial form factors Geff

A and G̃eff
P , which are

extracted from axial vector ratios with spatial compo-
nents only.
The ratio

rPPDðQ2; tÞ≡Q2 þM2
π

4M2
N

G̃est
P ðQ2; tÞ

Gest
A ðQ2; tÞ ð4:2Þ

is introduced as an estimator for the validity of the PPD
hypothesis. If the lattice estimates for the two form factors
satisfy Eq. (2.6) this ratio assumes the constant value 1.
Figure 2 shows the data for rPPD (red data points) and

r⊥PPD (blue data points) for the smallest four-momentum
transfer accessible on ensemble VIII [6]. Within the
statistical errors there is no difference between the data
for the projected and the standard axial vector currents. The
open circles show the corresponding ChPT results (same
color code) when the midpoint estimates for the axial and
induced pseudoscalar form factors are used. Here too the
symbols overlap and no significant difference is found.
rPPD is substantially smaller than 1, and the discrepancy

increases the smaller Q2 is. Thus, the PPD hypothesis
seems strongly violated. As explained in Ref. [8], the
dominant source is the Nπ contamination in the induced
pseudoscalar form factor. It results in a substantial

underestimation of G̃P that increases for small momentum
transfer.
Note that the PPD result (2.6) holds exactly in ChPT but

does not need to hold in QCD. The small discrepancy
between the lattice data and the ChPT results in Fig. 2 may
be an indication for this. Still, it is remarkable how well the
data is described by LO ChPT.

C. The pseudoscalar three-pt function

Figure 3 shows the data for RPðq⃗; t; t0Þ (red data points)
and R⊥

P ðq⃗; t; t0Þ (blue data points) as a function of t0 − t=2.10

The solid lines of the same color show the corresponding
ChPT results.11 The yellow bands indicate the ground-state
contributions extracted in [6] by fits to the data. The black
line shows the ChPT result for infinite source-sink sepa-
ration, i.e., the ChPT result for the SN contribution.
The LO ChPT results describe the data rather well. Near

the midpoint t0 ≈ t=2 the ChPT results are within the yellow
bands. Besides this we observe two striking features in
Fig. 3: (a) the Nπ contamination in RP is tiny, the red and
black lines are very close, and (b), the data and the ChPT
results for R⊥

P and RP differ vastly, roughly by a factor 3.
Thus, the Nπ contamination in R⊥

P is huge.
Both features can be understood with the results pre-

sented in the last section. According to Eq. (3.17) Z∞
P is the

sum of two contributions, the spatial one
P

3
k¼1 αkZ

∞
k and

Z0;∞
4 . While the spatial one is larger then zero, we find

Z0;∞
4 < 0. The origin for the latter is visible in Fig. 1: It

FIG. 2. RQCD data for rPPD (red data points) and r⊥PPD (blue
data points) for t ¼ 1.07 fm and the smallest four Q2 accessible
with Mπ ¼ 150 MeV and MπL ¼ 3.5. The open symbols (same
color code) correspond to the ChPT results.

FIG. 3. The correlation function ratios RPðq⃗; t; t0Þ (red) and
R⊥
P ðq⃗; t; t0Þ (blue) for t ¼ 1.07 fm and Q2 ¼ 0.073 GeV2. The

red and blue solid lines are the corresponding LO ChPT results,
the black line shows the associated constant ΠPðQ2Þ the ratios
converge to in the infinite t limit. The yellow bands indicate the
ground-state contributions obtained by fits to the data [6].

10In Ref. [6] the data are displayed in Fig. 6, right panel.
11For the Pa;⊥ result the quark massmq and the renomalization

factors ZA, ZP are needed and taken from Ref. [20], Tables I–III.
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stems from the time derivative ∂t0 of C3;A4
ðq⃗; t; t0Þ, and

Z0
4 < 0 is nothing but the negative slope of R4ðq⃗; t; t0Þ as a

function of t0.
Due to the opposite signs the two contributions in ZP

largely compensate. This compensation is not perfect, for
small momentum transfers we find ZP < 0, while it turns
positive for larger Q2, see Fig. 1 in Ref. [8]. This implies a
particular value forQ2 whereZP vanishes. For t ¼ 2 fm and
physical pion mass this value is approximately 0.065 GeV2

[8], and it does not change much for the setup considered
here. Accidentally, this value is close to the momentum
transfer Q2 ¼ 0.073 GeV2 underlying the data shown in
Fig. 3, thus explainingwhy theNπ contamination is so small
in this figure. This coincidence is accidental, it stems from
the particular setup with Mπ ¼ 150 MeV and MπL ¼ 3.5,
which implies Q2 ¼ 0.073 GeV2 for the smallest nonvan-
ishing momentum q⃗ with jq⃗j ¼ 2π=L.
As discussed in the previous section, the projection

method subtracts Z0;∞
4 from the Nπ contamination, leaving

the large positive spatial contribution in Z⊥;∞
P . The partial

removal by the projection method results in a large positive
Nπ contamination for the projected pseudoscalar density
correlation function.
Figure 4 shows the Nπ contaminations ZPðq⃗; t; t0Þ and

Z⊥
P ðq⃗; t; t0Þ at the midpoint t0 ¼ t=2 for the lowest four-

momentum transfers accessible. The accidental ZP ≈ 0 for
the lowest Q2 changes to nonvanishing positive values for
the larger momentum transfers. Also the difference ΔZP

increases for increasing Q2.

D. The generalized Goldberger-Treiman relation

Figure 5 shows the data for rPCACðQ2; tÞ (red data points)
and r⊥PCACðQ2; tÞ (blue data points) as a function of Q2 for

t ¼ 1.07 fm. The open circles (same color code) are the
corresponding LO ChPT results when the midpoint esti-
mates for all three form factors are used. Once again we
find very good agreement between the lattice data and the
ChPT results.
The lattice data for rPCACðQ2; tÞ display the original

PCAC puzzle. The ratio is smaller than 1 and the discrep-
ancy increases the smaller the momentum transfer is. It was
shown in Ref. [7] that the Nπ-state contamination in G̃P is
the dominant source for this discrepancy. The induced
pseudoscalar form factor is substantially underestimated
due to the Nπ contamination. Consequently, the first
term on the right-hand side of Eq. (2.18) turns out to be
too small.
In contrast, r⊥PCACðQ2; tÞ is close to 1. With the findings

of the last subsection the reason for this apparent improve-
ment is easily identified. While the axial form factors G⊥

A,
G̃⊥

P are essentially unchanged compared to GA, G̃P, the
pseudoscalar form factor G⊥

P receives a large Nπ contami-
nation leading to a significant overestimation of the
pseudoscalar form factor. This compensates for the under-
estimation of G̃P and results in r⊥PCACðQ2; tÞ ≈ 1.

V. CONCLUDING REMARKS

We can conclude that the projection method does not
provide the desired solution for the excited-state contami-
nation in nucleon axial form factors. Even though the
generalized Goldberger-Treiman relation is satisfied after
the projection has been performed, the situation for the
individual form factors is worse. Instead of eliminating the
large excited-state contamination in the induced pseudo-
scalar form factor the projection method introduces an
additional large one in the pseudoscalar form factor. These

FIG. 4. ChPT results for the Nπ contaminations ZPðq⃗; t; t0Þ
(red) and Z⊥

P ðq⃗; t; t0Þ (blue) for t ¼ 1.07 fm, t0 ¼ t=2 and the
lowest four Q2 accessible with Mπ ¼ 150 MeV and MπL ¼ 3.5.
For the smallest momentum transfer ZP is accidentally close to
zero (see the main text).

FIG. 5. Data for the ratios rPCACðQ2; tÞ (red) and r⊥PCACðQ2; tÞ
(blue) for t ¼ 1.07 fm and the lowest for momentum
transfers Q2 accessible with Mπ ¼ 150 MeV and MπL ¼ 3.5.
The corresponding LO ChPT are shown by the open circles
(same color code).
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two essentially compensate for each other in the measure
rPCAC, and rPCAC ≈ 1 falsely indicates the removal of all
excited-state contaminations.
Notwithstanding the negative outcome for the projection

method, the results of this paper strongly support the
findings and conclusions of Refs. [7,8]. ChPT is a useful
tool to provide theoretical understanding for the Nπ
excited-state contamination in nucleon form factor calcu-
lations. The comparison between the LO ChPT results and
lattice data works remarkably well, even at rather small
Euclidean time separations. This suggests that two-particle
Nπ-states are responsible for the dominant excited-state
contamination in lattice estimates for the form factors.
Other excited states seem to have a small if not negligible
impact.12

According to Ref. [7] the large excited-state contami-
nation in G̃P stems from a particular low-momentum Nπ-
state, where the axial vector current at t0 either directly
creates a pion that propagates to the sink or destroys a pion
that was created at the source. The same state is responsible
for the large Nπ contamination in the ratio R4. This has
recently been exploited in [24] to remove the excited-state
contamination in G̃P using R4 data as input in the analysis
of G̃P data. Although this may turn out to be a viable
method for G̃P it is not expected to work for GA. For this
form factor the ChPT prediction for the Nπ contamination
is very different. Instead of stemming from one Nπ-state
with a small pion momentum the Nπ contamination is the
cumulative contribution of many states that is not related to
R4 data.
In a recent paper [25] the RQCD Collaboration devised a

new analysis strategy based on the theoretical insights
obtained from the ChPT results. The method has been
applied to the axial and pseudoscalar form factor calcu-
lations with encouraging results. The dominant Nπ-state
contamination can be removed from the correlation func-
tions and the SN ground-state matrix elements can be
extracted reliably. The lattice result for the induced pseu-
doscalar coupling g�P at the muon capture point is found to
be in good agreement with the experimentally measured
value. This warrants analogous ChPT calculations for other
nucleon observables, for instance the nucleon electromag-
netic form factors.
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APPENDIX: THE Nπ CONTAMINATION Z⊥
P

In this appendix we derive the result for the Nπ
contamination Z⊥

P of the projected pseudoscalar density.
The main task is to express the expressions in terms of the
known results for the standard axial vector current.
The extra term in the projected pseudoscalar density

(2.16) involves the partial derivatives ∂μAa
νðxÞ of the axial

vector current. Computing the three-pt function (2.10) with
P⊥ and comparing it with (3.6) we find

ΔZPðq⃗; t; t0Þ ¼
X
μ;ν

pμpν

p2

CNπ
3;∂μAa

ν
ðq⃗; t; t0Þ

2MNCN
3;Aa

4
ðq⃗; t; t0Þ : ðA1Þ

Two comments are appropriate here. First, we have used the
result

P
ν pνCNπ

3;∂μAa
ν
ðq⃗; t; t0Þ ¼ 0, a direct consequence ofP

ν pνCNπ
3;Aa

ν
ðq⃗; t; t0Þ ¼ 0 [6]. Secondly, the denominator in

Eq. (A1) stems from the replacement [8]

2mCN
3;Paðq⃗; t; t0Þ ¼ 2MNCN

3;Aa
4
ðq⃗; t; t0Þ: ðA2Þ

The three-pt function of ∂μAa
ν in the numerator of Eq. (A1)

is related to the three-pt function of the axial vector itself.
Performing a partial integration we find

C3;∂μAa
ν
ðq⃗; t; t0Þ ¼

(∂t0C3;Aa
ν
ðq⃗; t; t0Þ; μ¼ 4;

−iqkC3;Aa
ν
ðq⃗; t; t0Þ; μ¼ k¼ 1;2;3:

ðA3Þ

Using this result in Eq. (A1) the Nπ contribution ΔZP can
be expressed in terms of theNπ contributions Zμ. The result
simplifies if we take into account the NR expansion (3.14)
for pμpν=p2 up to Oð1=M2

NÞ, leading to

ΔZP ¼ Z0
4 −

X3
k¼1

αkZ0
k þ

q⃗2

4M2
N

�
Z4 −

X3
k¼1

αkZk

�
: ðA4Þ

The αk are the shorthand notation for the combination

αkðq⃗Þ ¼ −i
CN
3;Aa

k
ðq⃗; t; t0Þ

CN
3;Aa

4
ðq⃗; t; t0Þ

qk
2MN

; ðA5Þ

but performing the NR expansion we obtain the simple
results [8]

αk ¼ −
q2k
M2

π
; k ¼ 1; 2; α3 ¼

E2
π;q⃗ − q23
M2

π
: ðA6Þ

12The ChPT result for the three-particle Nππ-state contami-
nation in the nucleon two-pt function is indeed found to be
negligibly small [23].
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The primed contributions Z0
ν stem from the three-pt

function with the time derivative ∂t0 ,

Z0
νðq⃗; t; t0Þ ¼

∂t0CNπ
3;Aa

ν
ðq⃗; t; t0Þ

2MNCN
3;Aa

ν
ðq⃗; t; t0Þ : ðA7Þ

These have the same form as the original Zνðq⃗; t; t0Þ, but
with primed coefficients:

Z0
νðq⃗; t; t0Þ ¼ a0νðq⃗Þe−ΔEð0;q⃗Þðt−t0Þ þ ã0νðq⃗Þe−ΔEðq⃗;−q⃗Þt0

þ
X
k⃗

b0νðq⃗; k⃗Þe−ΔEð0;k⃗Þðt−t0Þ

þ
X
k⃗

b̃0νðq⃗; k⃗Þe−ΔEðq⃗;k⃗Þt0

þ
X
k⃗

c0νðq⃗; k⃗Þe−ΔEð0;k⃗Þðt−t0Þe−ΔEðq⃗;k⃗Þt0 : ðA8Þ

The primed coefficients involve additional factors stem-
ming from the time derivative ∂t0 of the exponentials in
CNπ
3;Aa

ν
ðq⃗; t; t0Þ:

a0νðq⃗Þ ¼
Eπ;q⃗

2MN
aνðq⃗Þ; ðA9Þ

ã0νðq⃗Þ ¼ −
Eπ;q⃗

2MN
ãνðq⃗Þ; ðA10Þ

b0νðq⃗; k⃗Þ ¼
Eπ;k⃗ þ EN;k⃗ − EN;q⃗

2MN
bνðq⃗; k⃗Þ; ðA11Þ

b̃0νðq⃗; k⃗Þ¼−
Eπ;k⃗− ðEN;k⃗þq⃗−EN;q⃗ÞþðEN;q⃗−MNÞ

2MN
b̃νðq⃗; k⃗Þ;

ðA12Þ

c0νðq⃗; k⃗Þ ¼ −
EN;k⃗þq⃗ − EN;k⃗

2MN
cνðq⃗; k⃗Þ: ðA13Þ

Note that the primed coefficients are 1=MN suppressed
relative to their unprimed counterparts. Thus, Z0

ν contrib-
utes at one order higher in the NR expansion than Zν.
Therefore, to LO in the NR expansion Eq. (A4) reduces to
the results (3.18) and (3.19) presented in Sec. III B.
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