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We present a real-space renormalization group transformation with continuous scale change to calculate
the continuous renormalization group β function in nonperturbative lattice simulations. Our method is
motivated by the connection between Wilsonian renormalization group and the gradient flow trans-
formation. It does not rely on the perturbative definition of the renormalized coupling and is also valid at
nonperturbative fixed points. Although our method requires an additional extrapolation compared to
traditional step scaling calculations, it has several advantages which compensates for this extra step even
when applied in the vicinity of the perturbative fixed point. We illustrate our approach by calculating the β
function of 2-flavor QCD and show that lattice predictions from individual lattice ensembles, even without
the required continuum and finite volume extrapolations, can be very close to the result of the full analysis.
Thus our method provides a nonperturbative framework and intuitive understanding into the structure of
strongly coupled systems, in addition to being complementary to existing lattice determinations.

DOI: 10.1103/PhysRevD.101.034514

I. INTRODUCTION

The renormalization group (RG) β function encodes the
energy dependence of the running coupling. While the β
function is scheme dependent, the number of its zeros,
corresponding to infrared and ultraviolet fixed points
(IRFP, UVFP), as well as the slope around the zeros are
universal. The characteristic structure of the β function
distinguishes conformal vs confining, asymptotically vs
infrared free, trivial vs asymptotically safe systems [1–8].
The perturbative β function of 4-dimensional non-Abelian
gauge-fermion systems are known up to 5-loop level in the
MS scheme, but the perturbative expansion is unreliable at
strong couplings [5,9–11]. The β function calculated non-
perturbatively is essential to describe strongly coupled
systems whether QCD-like, within the conformal window,
or infrared free.
The gradient flow (GF) renormalized coupling [12–14] is

used in many lattice calculations to study the nonperturba-
tive properties of strongly coupled systems [15–31]. Most
lattice studies consider the discrete step-scaling function,
where the GF time t and corresponding energy scale μ ¼
1=

ffiffiffiffi
8t

p
are tied to the volume t ¼ ðcLÞ2=8 [15–17,32]. The

definition of the gradient flow renormalized coupling and
the steps needed to take the continuum limit are justified
perturbatively. In this paper we rely on an alternative

approach based on Wilsonian real-space renormalization
group that is valid also at nonperturbative FPs [33–35].
We develop a new method to predict the continuous β
function of the renormalized GF coupling. This method has
several advantages compared to a traditional step-scaling
calculation even when applied in the basin of attraction of
the GFP. This easily compensates for the one additional
extrapolation required. The approach is general and
equally applicable for confining, conformal, or infrared
free systems.
We demonstrate the method by calculating the β function

of a QCD-like system with two flavors and SU(3) gauge
group. The final prediction of this study with relatively low
statistics is shown by the grey band in Fig. 1. It is consistent
with existing finite volume step scaling function calcula-
tions of 3-flavor QCD [22] in that it is close to the 1-loop
perturbative prediction. More interesting is that the colored
data points in Fig. 1, corresponding to raw lattice data at
finite volume, differ only slightly from the result of the full
analysis. The continuous β function approach predicts the
running of the renormalized coupling in a transparent way
where cutoff and finite volume effects are clearly identi-
fiable. This property could be particularly helpful when
analyzing near-conformal systems or infrared free systems
where the gauge coupling at the GFP is an irrelevant
parameter. GF measurements of existing configurations of
step-scaling studies can be reanalyzed to predict the
continuous β function without additional computational
cost. Hence this method provides an alternative to test
systematical errors.
The connection between GF and RG is discussed

in Ref. [36]. Gradient flow is a continuous smearing
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transformation that is appropriate to define real-space RG
blocked quantities, but it is not an RG transformation as it
lacks the crucial step of coarse graining. However, coarse
graining can be incorporated when calculating expectation
values. In particular, expectation values of local operators,
like the energy density that enters the definition of the GF
coupling, are identical with or without coarse graining.
When the dimensionless GF time t=a2 is related to the
RG scale change as b ∝

ffiffiffiffiffiffiffiffiffi
t=a2

p
, the GF transformation

describes a continuous real-space RG transformation.
The topology of RG flow on the chiral m ¼ 0 critical

surface in an asymptotically free gauge-fermion system
is sketched in Fig. 2. g1 represents the relevant gauge
coupling at the Gaussian fixed point (GFP), while g2 refers
to all other irrelevant couplings. The GFP is on the g1 ¼ 0
(lattice spacing a ¼ 0) surface and the renormalized
trajectory (RT) emerging from the GFP describes the cutoff
independent continuum limit at finite renormalized cou-
pling. Numerical simulations are performed with an action

characterized by a set of bare couplings. If this action is in
the vicinity of the GFP or its RT, the typical RG flow
approaches the RT and follows it as the energy scale is
decreased from the cutoff toward the infrared as indicated
by the blue lines. RG flows starting at different bare
couplings approach the RT differently, but once the
irrelevant couplings have died out, they all follow the
same 1-dimensional renormalized trajectory and describe
the same continuum physics. The RT of chirally broken
systems continues to g1 → ∞, while conformal systems
have an IRFP on the RT that stops the flows from either
direction. While the topology of the RG space is universal,
the location of the fixed points and their corresponding RTs
depend on the RG transformation.
The RT is a 1-dimensional line, therefore, a dimension-

less (zero canonical and zero anomalous dimension) local
operator with nonvanishing expectation value can be used
to define a running coupling along the RT. The simplest
such quantity in gauge-fermion systems is the energy
density multiplied by b4 (or t2) to compensate for its
canonical dimension. This is indeed the quantity defined
in Ref. [14] as the gradient flow coupling g2GFðt; g20Þ ∝
ht2EðtÞi. EðtÞ, the energy density at flow time t, can be
estimated through various local lattice operators like the
plaquette or clover operators. At large flow time irrelevant
terms in the lattice definition of EðtÞ die out. In that limit
g2GF approaches a continuum renormalized running cou-
pling and its derivative is the RG β function

βðg2GFÞ ¼ μ2
dg2GF
dμ2

¼ −t
dg2GF
dt

: ð1Þ

The above definition is valid in infinite volume only. In
a box of finite length L the RG equation contains the
term Lðdg2GF=dLÞ, a difficult to estimate quantity. In our
approach we extrapolate L=a → ∞ at fixed t=a2 which also
sets the renormalization scheme c ¼ 0. The continuum
limit of the β function is obtained at fixed g2GF while taking
t=a2 → ∞. In QCD-like systems this automatically forces
the bare gauge coupling toward zero, the critical surface of
the GFP.
The Wilsonian RG description suggests that lattice

simulations at a single bare coupling can predict, up to
controllable cutoff corrections, a finite part of the RG β
function. In practice the finite lattice volume limits the
range where the infinite volume β function is well approxi-
mated. Chaining together several bare coupling values, we
can cover the entire RT while the overlap and deviation
between different volume and bare coupling predictions
characterizes the finite volume and finite cutoff effects as
illustrated in Fig. 1.
Once the GF coupling is determined and its derivative is

calculated as the function of the GF time, the continuous β
function calculation requires two steps:
(A) Infinite volume extrapolation at every GF time.

action parameter space

RT trajectory 
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g2

bare action

GFP

continuum physics

FIG. 2. Sketch of RG flow in the multidimensional action
parameter space.
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FIG. 1. Continuous RG β function of 2-flavor QCD in the GF
scheme. The grey band is the result of our full analysis with
statistical uncertainties only. The colored data points show the
lattice predictions for 323 × 64 (“þ”) and 243 × 64 (“×”)
ensembles in a wide range of bare couplings without any
extrapolation or interpolation. Only flow times t=a2 ∈
ð2.0; 3.64Þ are shown. The dashed and dash-dotted lines are
the perturbative 1- and 2-loop βðg2Þ functions.
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(B) Infinite flow time extrapolation at every g2GF.
Step (B) removes cutoff effects and replaces the L=a → ∞
continuum limit extrapolation of the step-scaling function
approach [26,30,37,38]. Step (A) is new in the continuous β
function approach but is compensated by several advan-
tages. In all GF analysis the flow time has to be chosen
large enough to remove all but the largest irrelevant
operator even on the smallest volume considered. In
traditional step-scaling calculations the flow time grows
with L2 which leads to large statistical errors on the largest
volumes. In the continuous β function approach the flow
time is independent of the volume. This significantly
reduces statistical errors. Finally the continuum limit of
the continuous β function is obtained by extrapolating a
continuous function of the flow time. Although the data are
highly correlated, a continuous function nevertheless
allows control to determine the functional form, e.g., the
scaling exponent of the irrelevant operator. The correlations
themselves can be handled by a fully correlated analysis
similar to fitting subsequent time slices of a 2-point
correlation function.
The RG β function is defined in the chiral limit. Finite

fermion mass introduces a relevant operator that drives the
RG flow away from the critical surface. Thus simulations
with am ¼ 0 are essential to avoid yet another am → 0
extrapolation. This is always possible in chirally symmetric
conformal systems and can be enforced in chirally broken
models by limiting the simulation volumes to be finite in
physical units, below the inverse of the critical temperature.
The same constraint is present in step-scaling studies.
A continuous β function based on GF around the GFP

has been considered before. The only published result is a
prediction at one renormalized gauge coupling [27] that
assumes perturbative scaling.

II. SIMULATION DETAILS

Our lattice study of 2-flavor QCD is based on tree-level
improved Symanzik gauge action and chirally symmetric
Möbius domain wall (DW) fermions with stout smeared
gauge links. Using GRID [39,40] we generate configurations
at 10 bare gauge couplings β0 ¼ 6=g20 ranging from 4.70 to
8.50 on 163 × 64, 243 × 64, and 323 × 64 volumes with
fermion boundary conditions periodic in space, antiperi-
odic in time. In this pilot study each ensemble has between
90 to 200 measurements separated by 10 molecular dynam-
ics time units (MDTU). The simulations are performed
setting the input quark mass to zero and the 5th dimension
of DW fermions to Ls ¼ 12. This leads to residual masses
amres < 10−6 for all gauge couplings considered. The same
combination of actions has been used in recent works
[26,30,37] and properties for QCD simulations are reported
in [41–44]. Measurements for three different gradient
flows, Wilson (W), Symanzik (S), and Zeuthen (Z), have
been implemented in QLUA [45,46] and we analyze
three operators, Wilson plaquette (W), clover (C), and

Symanzik (S) to estimate the energy density [47,48]. Our
data analysis is performed using the Γ-method which is
designed to estimate and account for autocorrelations [49].

III. STEPS OF THE β FUNCTION
CALCULATION

In this section we demonstrate the calculation of the
continuous β function step by step. Additional information
including a preliminary analysis of the SU(3) system with
12 fundamental flavors can be found in Ref. [50].
The GF coupling is defined as

g2GFðt;L; g20Þ ¼
128π2

3ðN2 − 1Þ
1

1þ δðt=L2Þ ht
2EðtÞi: ð2Þ

The normalization ensures that g2GF matches the MS
coupling at tree level, and the term 1=ð1þ δÞ corrects
for the gauge zero modes due to periodic gauge boundary
conditions [15]. On L3 × Lt volumes

δ ¼ −
π2ð8tÞ2
L3Lt

þ ϑ3
�

t
L2

�
ϑ

�
t
L2
t

�
; ð3Þ

where ϑ is the standard Jacobi elliptic function [15].
We calculate βðg2GFÞ ¼ −tdg2GFðtÞ=dt using a symmetric
4-point numerical approximation for the derivative.

A. Infinite volume extrapolation

The finite volume effects depend on t=L2, and at leading
order are proportional to t2=L4. Figure 3 shows g2GF as the
function of a2=t for our set of bare coupling values on all
three volumes for Zeuthen gradient flow with Symanzik
operator (ZS). The L=a ¼ 16 ensembles exhibit growing
finite volume effects for a2=t≲ 0.2, but the two larger
volumes remain close up to a2=t≲ 0.1. We monitor both
g2GF and βðg2GFÞ closely and restrict the GF time such that
the finite volume corrections remain very small and the
leading order t2=L4 term is sufficient to take the infinite
volume limit.
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FIG. 3. g2GF as the function of a2=t at bare couplings 4.70 ≤
β ≤ 8.50 on the three different volumes we consider.
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The L=a → ∞ limit has to be taken at fixed t=a2 flow
time and coupling g2GF. We therefore determine g2GFðtÞ
and its derivative on every ensemble and interpolate
βðg2GFðtÞ;LÞ with a 4th order polynomial for each lattice
volume to predict the finite volume β function at arbitrary
renormalized coupling. The top panels of Fig. 4 illustrate
this for the ZS combination. We predict the infinite volume
βðg2GFÞ using a linear a4=L4 extrapolation of the interpo-
lated βðg2GFÞ values. The lower panels of Fig. 4 show
examples for g2GF values spanning the accessible range in
our numerical simulation. Finite volume effects are negli-
gible at small flow time and the extrapolations are mild,
well described by a linear a4=L4 dependence even at
t=a2 ¼ 4.2. As a consistency check we compare extrapo-
lations using all three volumes to extrapolations using the
two largest volumes only. While the errors of the infinite
volume predictions change, the values are consistent. Other
flow and operator combinations show similar volume
dependence.

B. Infinite flow time extrapolation

The final step is the a2=t → 0 continuum limit extrapo-
lation at fixed g2GF. The GF time is a continuous variable but
the range of t=a2 values has to be chosen with care. First,
the flow time must be large enough for the RG flow to reach
the RT where irrelevant operators are suppressed.
Assuming one irrelevant operator with scaling dimension
α < 0 dominates the cutoff effects, an extrapolation in
ðt=a2Þα=2 predicts the continuum limit. Around the GFP
α ¼ −2 and we find that our data is well described by a
linear a2=t dependence when t=a2 ≳ 2.0. Second, the
upper end of the flow time range must also be restricted.
When finite volume effects depending on t=L2 are large,
the L → ∞ extrapolations become unreliable. Figure 3

suggests that t=a2 ≲ 4.0 is sufficient to control this. Any
change of the continuum limit prediction when varying the
minimal and maximal flow time values can be incorporated
as systematical uncertainty.
We show an example for the a2=t → 0 continuum

extrapolation at g2GF ¼ 4.8 in Fig. 5 where we fit the
data (filled symbols) in the range 2.00 ≤ t=a2 ≤ 3.64
(0.500 ≥ a2=t ≥ 0.274). In principle the flow time t is a
continuous variable; in practice we choose to dilute the
data by fitting in Δt ¼ 0.12 intervals. Further we perform
uncorrelated fits neglecting that values in t are correlated
which could easily be accounted for in a bootstrap or
jackknife analysis. Varying the minimal and maximal
flow times in the range 1.88 ≤ t=a2 ≤ 4.06 impacts the
uncertainties but not the central values.
We compare the βðg2GF; tÞ functions obtained using

Zeuthen flow and Wilson plaquette, Symanzik, and clover
operators in Fig. 5. We consider two different infinite
volume extrapolations and show for illustration additional
data at larger flow time using open symbols. The linear
extrapolations in a2=t shown by the colored bands are
obtained independently for each operator. Their excellent
agreement at the a2=t ¼ 0 limit is a strong consistency
check of the GF time range and the infinite volume
extrapolation. Further consistency checks are possible by
considering different flows. The scaling exponent α of the
leading irrelevant operator could also be extracted when
performing simultaneous fits to several operators.

IV. DISCUSSION

We summarize the final result of our calculation by
showing in Fig. 6 the continuous GF β function predicted
from nine different flow and operator combinations. For
reference we add the universal 1- and 2-loop perturbative
predictions. The different flow/operator combinations are
barely distinguishable, and the continuum limit prediction
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FIG. 4. Top panels show the finite volume β function at flow
times t=a2 ¼ 2.2 and 4.2 (a2=t ¼ 0.455 and 0.238) for our three
volumes. Dashed lines show a polynomial interpolation of the
data points. Bottom panels present the infinite volume extrapo-
lation at several g2GF values for the same flow times.
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is very close to the raw ZS data as is shown in Fig. 1. The
nonperturbative prediction follows the universal perturba-
tive curves up to g2GF ≈ 2.0, but at stronger couplings is
closer to the 1-loop prediction. A similar trend is observed
in Ref. [22,51] for 3-flavor QCD, suggesting that the GF
coupling runs slower than the MS coupling. Since the RG β
function is scheme dependent, the GF and MS schemes do
not have to agree. However the precise nonperturbative
running is needed to determine αs, the Λs parameter, or
connecting lattice simulations to continuum results [51,52].
The continuous β function described here works in both

conformal or infrared free systems [50]. The relation
between GF and Wilsonian RG is especially useful in
strongly coupled conformal systems. The method comple-
ments the step scaling function studies, providing a new
handle on systematic errors. In addition it provides an
intuitive picture to understand the RG in numerical sium-
lations as we show in Fig. 1.
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