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We report nucleon mass, isovector vector and axial-vector charges, and tensor and scalar couplings,
calculated using two recent 2þ 1-flavor dynamical domain-wall fermion lattice-QCD ensembles generated
jointly by the RIKEN-BNL-Columbia and UKQCD Collaborations. These ensembles were generated with
Iwasaki× dislocation-suppressing-determinant-ratio gauge action at an inverse lattice spacing of 1.378(7)GeV
and pion mass values of 249.4(3) and 172.3(3) MeV. The nucleon mass extrapolates to a value mN ¼
0.950ð5Þ GeV at the physical point. The isovector vector charge renormalizes to unity in the chiral limit,
narrowly constraining excited-state contamination in the calculation. The ratio of the isovector axial-vector to
the vector charges shows a deficit of about 10%. The tensor coupling no longer depends on mass and
extrapolates to 1.04(5) inMS 2 GeV renormalization at the physical point, in a good agreement with the value
obtained at the lightestmass inour previous calculations andother calculations that followed.The scalar charge,
though noisier, does not show mass dependence and is in agreement with other calculations.
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I. INTRODUCTION

The RIKEN-BNL-Columbia (RBC) Collaboration and
subsequently the joint RBC and UKQCD Collaborations
have been investigating nucleon structure using the
domain-wall fermion (DWF) quarks on a sequence of
quenched [1,2], two-flavor [3], and 2þ 1-flavor [4–6]
dynamical DWF ensembles at various mass values [7–12].
As is well known, the DWF scheme allows us to maintain
continuum-like flavor and chiral symmetries on the lattice,
and it helps to simplify nonperturbative renormalizations
[13–16]. In this paper, we report nucleon isovector vector

and axial-vector charges, and tensor (gu−dT ¼ h1iδu−δd)
and scalar (gu−dS ) couplings calculated using two recent
2þ 1-flavor dynamical DWF lattice-QCD ensembles gen-
erated jointly by the RBC and UKQCD Collaborations
with Iwasaki × dislocation-suppressing-determinant-ratio
(DSDR) gauge action at β ¼ 1.75, a−1 ¼ 1.378ð7Þ GeV,
and pion masses of 249.4(3) and 172.3(3) MeV [11,12],
which are significantly lighter than in our previous nucleon
works.
In our earlier works, calculated with degenerate up- and

down-quark masses set to be considerably heavier than
physical values [4–6], we observed the vector-current form
factors behaving reasonably well in trending toward experi-
ments: both Dirac and Pauli mean-squared charge radii and
the isovector anomalous magnetic moment appeared to
linearly depend on the pion mass squared. The radii
extrapolated to the physical mass undershoot the exper-
imental value by about 25% [17,18]. It would have been
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interesting to see if the present calculation confirmed this
earlier trend, or if it could help resolve the discrepancy seen
between the muon Lamb shift experiment [17] and older
electron scattering ones. However, our current numerical
precision from relatively small statistics and large momen-
tum transfer is yet to be competitive with the Lamb shift
experiments [17,18] which now are prevailing [19,20], so
we would like to defer reporting our form factors at finite
momentum transfers until a future date when we will have
better precision.
In our earlier calculation of axial-vector current form

factors, we saw a significant deficit in the calculated axial-
vector charge, gA, and form factors in general appear more
susceptible to finite-size effects than the vector-current ones
[4,5]. We find in our present calculations at lighter pion
mass that this deficit persists, and we investigate potential
causes for this in detail in Sec. V.
In contrast, the isovector tensor coupling showed an

interesting downward departure at the lightest mass to
about 1.0, away from the flat higher-mass values of about
1.1 [6]. Whether this trending continues in our present
calculations at considerably lighter mass is obviously an
interesting question. The tensor and scalar couplings are
also relevant to the search for new physics beyond the
standard model such as the neutron electric dipole
moment [21,22].
Some preliminary analyses of these nucleon observables

have been reported at recent lattice conferences [23–27].
In addition, the LHP Collaboration also calculated some
nucleon observables [28] using a RBCþ UKQCD 2þ 1-
flavor dynamical DWF ensemble [9].

II. NUMERICAL METHOD

In this paper, we concentrate on our results for mass and
four isovector couplings of nucleons: vector and axial-
vector charges and tensor and scalar couplings. Though we
summarize their definitions and computational methods
later in this section, we refer the readers to our earlier
publication [5] for the full details.
The two 2þ 1-flavor dynamical domain-wall fermion

gauge field ensembles we use in this work [11,12] were
generated jointly by the RBC and UKQCD Collaborations
on a 323 × 64 four-dimensional volume and Ls ¼ 32 in the
fifth dimension with Iwasaki × DSDR gauge action at the
gauge coupling of β ¼ 1.75 and 2þ 1-flavors of dynamical
DWF quarks with a domain-wall height of 1.8, strange-quark
mass of 0.045, and degenerate up- and down-quark masses
of 0.0042 and 0.001 in lattice units. These parameters result
in an inverse lattice spacing, a−1, of 1.378(7) GeV and a
DWF residual quark mass of 0.001842(7). Note that the
inverse lattice spacing has been slightly revised from the
original [10,11], using the global chiral and continuum fits in
conjunction with new physical-mass ensemble sets [12] with
Möbius DWF quarks. Thus, the heavier of the two ensem-
bles corresponds to a pion mass mπ of 249.4(3) MeV and a

spatial lattice extent L of mπL ¼ 5.79ð6Þ, and the lighter to
172.3(3) MeV and 4.00(6), respectively. Our measurement
calculations were made using 165 configurations between
themolecular dynamics (MD) trajectories 608 and 1920with
an 8-trajectory interval for the former, and using 39
configurations between 748 and 1420 with a 16-trajectory
interval for the latter.
We refer to our earlier publications [3,4] for the details

of two- and three-point correlation functions for the
nucleon. A conventional nucleon operator, NðxÞ ¼
ϵabcf½uaðxÞ�TCγ5dbðxÞgucðxÞ, with color indices a, b,
and c, quark flavors u for up and d for down, and charge
conjugation operator C ¼ γ4γ2 is used. Additionally,
gauge-invariant Gaussian smearing [29,30] is applied to
suppress excited-state contamination: For both ensembles,
we compared the Gaussian widths of 4 and 6 lattice units
and found that the wider width-6 results settle on a plateau
more quickly, and the narrower width-4 results merge with
them. From these observations, we concluded that the
wider width-6 Gaussian smearing is sufficient for our study.
Isospin symmetry is enforced for the up and down

quarks, and we calculate only proton matrix elements of
the third isospin component of the vector and axial-vector
currents:

hPjV3
μðxÞjPi ¼ hPjūðxÞγμuðxÞ − d̄ðxÞγμdðxÞjPi; ð1Þ

hPjA3
μðxÞjPi ¼hPjūðxÞγ5γμuðxÞ − d̄ðxÞγ5γμdðxÞjPi: ð2Þ

All quark-disconnected diagrams cancel in these matrix
elements.
We use a source-sink separation of 9 lattice units, or

about 1.3 fm. This is sufficiently long for the observables
reported in this paper to be free of excited-state contami-
nation, as is demonstrated below with augmentative cal-
culations with a source-sink separation of 7 lattice units
[24,25]. For the two-point correlation functions we use the
same Gaussian-smeared sources and point or Gaussian-
smeared sinks: We will refer to the former as G-L and the
latter as G-G, respectively. We also calculate the tensor
coupling, gT ¼ h1iδq, and scalar coupling, gS, the same
way. We use a conventional measurement strategy for the
former with seven source-sink pairs for each configuration,
and an “all-mode averaging” (AMA) strategy [31] for the
latter with 112 sloppy solves with sources at two sets of
eight evenly spaced spatial locations, from (0,0,0) to (16,
16, 16) and from (8,8,8) to (24,24,24) for T ¼ 0, 8, 16, 24,
32, 40, and 48, and four precise solves at spatial origins
with T ¼ 0, 16, 32, and 48 for each configuration. In
addition, to test for excited-state contamination, calcula-
tions with a source-sink separation of 7 lattice units were
made with 64 sloppy solves with sources at eight evenly
spaced spatial locations with T ¼ 0, 8, 16, 24, 32, 40, 48,
and 56, and one precise solve at spatial origins with T ¼ 0.
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III. NUCLEON MASS

Table I summarizes the nucleon energies obtained from
correlated, single-exponential fits to the G-G two-point
correlation function. To improve statistics, the correlation
function is averaged over forward- and backward-propa-
gating nucleon and antinucleon states. The fit ranges were
chosen after inspecting the effective masses and taking the
shortest distance from the source consistent with an
acceptable χ2 value from the fit. Increasing this minimum
distance by a single time unit does not change the energy
beyond the statistical error. From these we estimate the
nucleon mass for the present ensembles as summarized
in Table II and Fig. 1. Whereas our prior calculations at
heavier pion masses found nucleon masses extrapolating
to values much higher than experiment, pion masses
now are sufficiently close to physical values that the
new data extrapolates, linearly in terms of pion mass
squared (m2

π), to a value mN ¼ 0.6894ð7Þa−1 ¼ 0.6894ð7Þ×
1.378ð7ÞGeV¼ 0.950ð5ÞGeV. This extrapolation is only
slightlymorethan2standarddeviationsawayfromtheaverage
of the proton and neutron masses, 0.938918747(6) GeV [19].
The slope in this linear extrapolation is steeper than that
observed in our earlier calculations with heavier mass: the
result constrains nonlinear dependence of nucleon mass on
pion mass squared.

IV. VECTOR CHARGE

Signals for the isovector vector charge, gV , are shown in
Fig. 2 for both the mπ ¼ 172.3ð3Þ and 249.4(3) MeV
ensembles. Robust time-independent plateaus are seen. In
the following, we average values in the range 3 ≤ top ≤ 6,
and find 1.450(4) for the heavier and 1.447(9) for the
lighter ensemble, respectively. The values compare with
the inverse of the vector-current renormalization, ZV , com-
puted in the meson sector [11], 0.664ð5Þ−1 ¼ 1.506ð11Þ
and 0.669ð4Þ−1 ¼ 1.495ð9Þ. Alternatively, we linearly
extrapolate the two calculated vector-charge values of
1.450(4) at mfa ¼ 0.0042 and 1.447(9) at 0.001 to the
chiral limit, mfa ¼ −mresiduala ¼ −0.0018427, to obtain a
value 1.474(11). This is to be compared with the inverse of
the meson-sector vector-current renormalization, ZV , in
the chiral limit, Z−1

V ¼ 0.673ð8Þ−1 ¼ 1.49ð2Þ. Thus, the

FIG. 1. Estimated nucleon mass, mN , plotted against estimated
pion mass squared, m2

π , of the present ensembles (ID32, cyan)
and the two lightest of Refs. [5,6] (I24, magenta) with the new
and more accurate estimate for the inverse lattice spacing [12].
The present results linearly extrapolate to the experiment (□)
within the statistical error.

TABLE II. Nucleon mass estimates. We also list the revised
numbers for the two lightest ensembles of Refs. [5,6] with the
new and more accurate estimate for the inverse lattice spacing
[12].

a−1½GeV� mqa mNa mN ½GeV�
1.378(7) 0.001 0.7077(8) 0.9752(11)

0.0042 0.7656(2) 1.0550(3)
1.7848(5) 0.005 0.6570(9) 1.1726(16)

0.01 0.7099(5) 1.2670(9)
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I+D 1.4GeV 4.6fm 250MeV, 608-1920 (660p/165c), 1.450(4)
170MeV, 508-1412 (412p/103c), 1.447(9)

FIG. 2. Isovector vector charge, gV , from mπ ¼ 172.3ð3Þ and
249.4(3) MeV ensembles.

TABLE I. Fitted nucleon energy obtained from the Gaussian-
smeared sink two-point correlation function (G-G).

mmqa jp⃗j2 Fit range Energy χ2=d:o:f:

0.001 0 5–10 0.707(5) 0.33
0.001 1 5–10 0.734(5) 0.13
0.001 2 5–10 0.761(6) 0.16
0.001 3 5–10 0.786(6) 0.10
0.001 4 5–10 0.807(8) 0.72
0.0042 0 6–12 0.765(12) 1.55
0.0042 1 6–12 0.790(13) 1.62
0.0042 2 6–12 0.816(14) 2.01
0.0042 3 6–12 0.84(2) 2.20
0.0042 4 6–12 0.86(2) 1.77
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nucleon vector charge in the chiral limit renormalizes to
unity within statistical errors: ZVgV ¼ 0.992ð14Þ.
Had the renormalized vector charge ZVgV deviated from

unity, a likely cause would be excited-state contamination,P
excited stateshexcited statejgV j0i, through violation of vec-

tor-current conservation at Oða2Þ in lattice spacing a. That
our vector charge renormalizes to unity within a couple of
percent statistical error constrains such excited-state con-
tamination. As is shown in Fig. 3, signals for isovector
vector charge gV , from source-sink separations of 7
and 9 lattice units, agree to within 0.6 percent, well within
statistical errors. If we assume the first excited state is the
ground-state nucleon plus a pion of massmπa ¼ 0.1249ð2Þ
with a unit of lattice momentum 2π=L ¼ 0.1963, then it
decays as expð−2 × ð0.1249þ 0.1963ÞÞ ¼ 0.5260 in 2
lattice units of time from 7 to 9. So the relative amplitude
of this state in the source times the Oða2Þ mixing matrix
element cannot exceed approximately 1%. It may appear
that the statistics used for this comparison is small, but it is
sufficient for confirming that the results from the short and
long source-sink separations are in agreement with each
other. This is because the short- and long-separation results
are correlated within each configuration. Indeed such a
correlation can be directly studied by limiting the com-
parison to configurations between trajectories 748 and 908:
there are all eight configurations for separation 7, and an
additional three for 9. The jackknife difference between the
two separations is consistent with zero except for separa-
tion 6, where a larger DWF fifth-dimensional effect is
expected in the separation 7 result (see Fig. 4.) Hence, we
conclude that there is no evidence for excited-state con-
tamination detected in the most precise of our observables,
the vector charge, in the lighter ensemble. In addition, the
source smearing study performed for both ensembles did
not suggest any different behavior in the heavier ensemble,
and the lighter ensemble should have a denser excitation
spectrum. Accordingly, possible excited-state contamina-
tion in the heavier ensemble must be smaller than in the

lighter, as the excitations are farther away. There is no
evidence for excited-state contamination in our ensembles.

V. AXIAL-VECTOR CHARGE

As is the case for the vector current, we use the local-
current definition for the axial-vector current. Because the
two local currents are connected by a chiral rotation, they
share a common renormalization, ZA ¼ ZV , that relates
them with the corresponding conserved global currents, up
to Oða2Þ discretization. This is an advantage of the DWF
scheme. Thus, for the axial-vector charge gA, it is better to
look at its ratio gA=gV to the vector charge, for precision, as
is demonstrated in Fig. 5. The calculated value of the ratio
gA=gV underestimates the experimental value of 1.2732(23)
[19] by about 10% and does not depend much on the pion
mass,mπ , in the range from about 418.8(1.2) MeV down to
172.3(3) MeV from four recent RBCþ UKQCD 2þ 1-
flavor dynamical DWF ensembles [9–11] (see Fig. 6.). The
result appears to have been confirmed by several other
major collaborations [21,32–35] using different actions but
with similar lattice spacings and quark masses, though
extrapolations to physical mass seem to differ. It is
especially important for calculations with Wilson-fermion
quarks [21,32] to remove the OðaÞ systematic errors at the
linear order in the lattice spacing a [33].
We are obviously suffering from some systematics that

make our calculations undershoot the experimental value of
gA=gV ¼ 1.2732ð23Þ [19]. Indeed, we see possible signs of
inefficient sampling: First, we observe an unusually long-
range autocorrelation when we divide the lightest ensemble
atmπ ¼ 172.3ð3Þ MeV into two halves, earlier and later, in
hybrid MD time, as in Fig. 7. Indeed, when we further
divide the ensemble into four consecutive quarters in MD
time, the axial-vector charge starts at a value consistent

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 0  1  2  3  4  5  6  7  8  9

g V

t

ID 170MeV tsep=9 AMA 39-conf x 112-meas: 1.449(8)
tsep=7 AMA 8-conf x 64-meas: 1.453(6)

FIG. 3. Signals for isovector vector charge gV , from source-sink
separations of 7 and 9 lattice units, agree to within 0.6 percent,
well within statistical errors.
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FIG. 4. Direct comparison of signals for isovector vector charge
gV from source-sink separations of 7 and 9 lattice units agree for
trajectories 748, 764, 796, 828, 844, 876, 892, and 908 for 7 units
and for three more in the same range for 9 units. The difference is
consistent with zero, except for separation 6, where a larger DWF
fifth-dimensional effect can be seen for separation 7.
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with experiment but monotonically decreases to a value
below unity, as in Fig. 8.
Importantly, we also note that no such undersampling is

seen in any other isovector observables we have looked at,
including the vector charge gV , the quark momentum
fraction hxiu−d, and the quark helicity fraction hxiΔu−Δd,
and that blocked jackknife analyses with block sizes of 2
and 3 show a strong correlation of two successive gauge
configurations for gA and gA=gV . Somewhat weaker auto-
correlations may be seen in some other observables to a
block size of 2, but then they disappear at block size 3.

1
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1.25
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g A
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m L

experiment: 1.2732(23)
I24 1.75GeV 2.71fm, 2009

I24 1.75GeV 2.71fm AMA 2013
I+D 1.37GeV 4.61fm 2012

I+D 1.37GeV 4.61fm AMA 2013

FIG. 6. Comparison of the dependence of the ratio, gA=gV , of
isovector axial-vector charge gA and vector charge gV , calculated
with recent RBCþ UKQCD 2þ 1-flavor dynamical DWF en-
sembles, on the finite-size scaling parameter, mπL, in the present
paper and our earlier reports. The experimental value quoted here
is 1.2732(23), from the latest PDG [19].

FIG. 7. Plateaus of the ratio gA=gV for the first (trajectory from
748 to 1084, red) and the second (1100 to 1420, blue) halves,
respectively: fitted in the range from 2 to 7 lattice units, the values
of 1.26(5) for the first half and 1.07(5) for the second half are
almost 4 standard deviations away from each other.
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FIG. 5. Comparative signal qualities of the isovector vector, gV ,
and axial, gA, charges and their ratio, gA=gV , from the 172 MeV
ensemble. The charges are bare values from the local currents,
and the ratio is naturally renormalized, as the two currents share
the common renormalization. Clearly, the ratio is more precisely
determined than the axial-vector charge.
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FIG. 8. Quarterwise average along the hybrid MD time, from
748 to 892, 908 to 1084, 1100 to 1292, and 1308 to 1420: The
values drift monotonically from what is consistent with experi-
ment in the first quarter to a value around 1.0 in the last quarter.
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A similar but weaker sign of unusually long-range
autocorrelation can be seen in the lightest of our earlier
ensembles [9] at mπ ¼ 331.3ð1.4Þ MeV when we divide it
into four consecutive quarters in hybridMD time, as in Fig. 9.
However, no such sign of undersampling is seen in the other
two ensembles—the present one atmπ ¼ 249.4ð3Þ MeV, or
another at 418.8(1.2)MeV from the earlier work [9]. In other
words, the strongest sign of undersampling is seen at the
smallest finite-size scaling parameter, mπL ∼ 4.00ð6Þ.
Another weaker indication of a long-range autocorrelation
effect is seen at the second smallest parameter, but not the
second lightest, at mπL ∼ 4.569ð15Þ. No effect is seen for
larger values atmπL ∼ 5.79ð6Þ or 5.813(12). This, of course,
does not prove that the problem is caused by the finite lattice
spatial volume, but it suggests so.
That there is a long-range autocorrelation in this observ-

able is corroborated by blocked jackknife analysis with
block sizes of 2, 3, and 4, as is summarized in Table III: The
statistical error of the axial-vector charge keeps growing to
at least beyond a block size of 3, while those for the other
observables do not grow at all, except perhaps for tensor
coupling, which nonetheless stops growing earlier.

If an observable appears to have long-range autocorre-
lation, it would be interesting to look at its correlation
with the topology of the gauge configurations. We explored
this possibility by plotting jackknife samples against the
topological charge (see Fig. 10), and we did not find a
correlation.
We can also look at whether our low-mode deflation

affected this, though the available information is limited to
about half of the configurations of what we are presenting
from the 172 MeV ensemble (see Fig. 11.) Albeit with this
limitation, we do not find any correlation either: The
average of the lowest 100 eigenmodes does not differ
between the two halves. Some difference emerges as we

TABLE III. Summary of blocked jackknife analysis for some
isovector observables. The error does not grow with block size
except for the axial-vector charge and tensor coupling.

Blocked jackknife analysis

Block size

1 2 3 4

gV 1.447(8) 1.447(6) � � � � � �
gA 1.66(6) 1.66(7) 1.66(8) 1.65(4)
gA=gV 1.15(4) 1.15(5) 1.15(6) 1.14(3)
hxiu−d 0.146(7) 0.146(8) 0.146(8) � � �
hxiΔu−Δd 0.165(9) 0.165(11) 0.165(10) � � �
hxiu−d=hxiΔu−Δd 0.86(5) 0.86(4) � � � � � �
h1iδu−δd 1.42(4) 1.42(6) 1.42(6) 1.41(3)
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FIG. 10. Scatter plot of gA=gV jackknife samples against gauge
topological charge: No correlation is seen.
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go to higher eigenmodes, but it does not appear to be
significant.
On the other hand, as pointed out earlier in this paper,

similar long-range autocorrelation was seen in the 331.3
(1.4) MeVensemble [24] that is at the second smallestmπL,
but not in the lighter 249.4(3) MeV nor the heaviest 418.8
(1.2) MeV ensembles with larger mπL, hinting that the
systematics may arise from the finite-size effect.
It may be also instructive to remember earlier phenom-

enological analyses such as one performed using the MIT
bag model that estimates gA=gV ¼ 1.09 without the pion
[36], and another by the Skyrmion model that gives only a

conditionally convergent result of 0.61 that is strongly
dependent on pion geometry [37].
To explore such spatial dependence arising from pion

geometry, we divided the AMA samples into two spatial
halves such as 0 ≤ x < L=2 and L=2 ≤ x < L for each of
the three spatial directions in order to check if there is any
uneven spatial distribution (see Fig. 12.) We found that the
calculation fluctuates in space. A larger spatial volume
would stabilize the calculation better.

VI. TENSOR AND SCALAR COUPLINGS

Plateau signals for the bare isovector tensor, gT ¼
h1iδu−δd, and the scalar coupling, gS, are presented in
Fig. 13. The tensor-coupling signals are very clean and do
not show any mass dependence. As was mentioned earlier,
this observable shows weaker but still relevant signs of
long-lasting autocorrelation similar to that of the axial-
vector charge in the lighter 172.3(3) MeV ensemble [25].
Yet the agreement with the heavier ensemble, where there is
no such autocorrelation, reassures that this is less prob-
lematic in the tensor coupling than in the axial-vector
charge. The scalar plateaus are also well defined, albeit
with larger statistical errors. No mass dependence can be
seen here either. In addition, the flatness of the plateaus
within respective statistical errors for both observables
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FIG. 12. Evolution of the ratio gA=gV along the course of
molecular dynamics time, divided into two spatial halves in the
x (top), y (middle), and z (bottom) directions. The calculation
appears to fluctuate spatially. Spin polarization is along the
z axis.

FIG. 13. Bare isovector tensor, gT ¼ h1iδu−δd, and scalar, gS,
coupling plateau signals. The horizontal axes are lattice time in
lattice units.
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does not indicate the measurable presence of excited-state
contamination.
Bilinear operators are renormalized using the Rome-

Southampton nonperturbative renormalization (NPR)
method [13]. This method allows the determination of
lattice matching factors (Z factors) to regularization-inde-
pendent (RI) schemes using lattice simulations directly, and
without recourse to lattice perturbation theory. The validity
of the method requires that the renormalization scale μ be
sufficiently separated from the QCD scale and the scale of
the lattice cutoff:

ΛQCD ≪ μ ≪
π

a
: ð3Þ

A perturbative calculation in the continuum is then conven-
tionally used to convert the RI-scheme results to the MS
scheme.
The relation between bare (lattice) operators and their

renormalized counterparts is

ψR ¼ Z1=2
q ψB; OR ¼ ZOOB: ð4Þ

HereO is one of S, V, or T for the scalar, vector, and tensor
bilinears, respectively. We compute the amputated Landau-
gauge fixed Green’s functions of the operators of interest
between external quark states with the momenta p1 and p2.
Let these quantities be denoted ΛΓðp1; p2Þ, where Γ is one
of fS ¼ 1; V ¼ γμ; T ¼ σμνg. Here we use the RI/SMOM
scheme defined in Ref. [16], for which the momenta satisfy
p2
1 ¼ p2

2 ¼ ðp1 − p2Þ2. This differs from the original RI/
MOM scheme proposal [13], which instead takes p1 ¼ p2.
This improved kinematic setup maintains a single renorm-
alization scale, but it ensures momentum flows through the
vertex, thereby suppressing unwanted infrared effects. It

was also found in Ref. [16] that the RI/SMOM-to-MS
matching factors have smaller OðαsÞ coefficients.
There are two principal SMOM variants defined in

Ref. [16], called RI/SMOM and RI=SMOMγμ , which differ
in their definitions of wave-function renormalization. The
bilinear Z factors are determined at the scale jpj by
imposing the conditions

1

12
Tr½ΛS;Rðp1; p2Þ� ¼ 1;

1

144
Tr½σμνΛμν

T;Rðp1; p2Þ� ¼ 1;

1

12q2
Tr½qμΛμ

V;Rðp1; p2Þq � ¼ 1; ðRI=SMOMÞ
1

48
Tr½γμΛμ

V;Rðp1; p2Þ� ¼ 1; ðRI=SMOMγμÞ ð5Þ

on the amputated Green’s functions in the chiral limit. Here
the traces are over both spin and color indices, and the
normalization factors are such that Eq. (5) is satisfied by the
bare operators in the free theory.
The propagators used to construct ΛΓðp1; p2Þ are com-

puted using momentum sources, which results in very low
statistical noise using a modest number of configurations.
Additionally, twisted boundary conditions on the quark
fields allow us to continuously vary the magnitude of p
while keeping the orientation fixed, resulting in smooth
data as a function of the renormalization scale.
Results for the RI/SMOM and RI=SMOMγμ intermediate

schemes are presented in Tables IV–VI. The wave-function
renormalization factors have been removed using ZV=Zq

determined from Eq. (5), where ZV relates the local 4D
current to the conserved 5D current. These results are then
converted to the MS scheme using the two-loop perturba-
tive expressions calculated in Refs. [38,39].

TABLE IV. Scalar and tensor renormalization constants in the RI=SMOMðγμÞ schemes at mπ ¼ 172.3ð3Þ MeV.

μ ½GeV� 1.53 1.63 1.72 1.82 1.91 2.00 2.11

ZS=ZV (RI=SMOMγμ ) 0.813(1) 0.829(2) 0.842(2) 0.855(1) 0.866(1) 0.878(1) 0.888(1)
ZS=ZV (RI/SMOM) 0.892(1) 0.906(2) 0.918(2) 0.930(1) 0.940(1) 0.951(1) 0.960(1)
ZT=ZV (RI=SMOMγμ ) 1.073(1) 1.066(1) 1.060(1) 1.054(1) 1.049(1) 1.045(1) 1.041(1)
ZT=ZV (RI/SMOM) 1.177(1) 1.166(1) 1.155(1) 1.146(1) 1.138(1) 1.131(1) 1.125(1)

TABLE V. Scalar and tensor renormalization constants in the RI=SMOMðγμÞ schemes at mπ ¼ 249.4ð3Þ MeV.

μ½GeV� 1.53 1.63 1.72 1.82 1.91 2.00 2.11

ZS=ZV (RI=SMOMγμ ) 0.814(1) 0.829(1) 0.842(1) 0.855(1) 0.866(1) 0.877(1) 0.887(1)
ZS=ZV (RI/SMOM) 0.894(1) 0.907(1) 0.918(1) 0.930(1) 0.940(1) 0.950(1) 0.959(1)
ZT=ZV (RI=SMOMγμ ) 1.073(1) 1.066(1) 1.060(1) 1.054(1) 1.049(1) 1.045(1) 1.041(1)
ZT=ZV (RI/SMOM) 1.178(1) 1.166(1) 1.156(1) 1.146(1) 1.138(1) 1.132(1) 1.126(1)
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Taking the average of results from the two intermediate
schemes after conversion to modified MS, and taking
the full difference as an estimate of the systematic, we
find for the renormalization factors of the scalar
and tensor couplings ZSðMS; 2 GeVÞ ¼ 0.642ð8Þð22Þ and
ZTðMS; 2 GeVÞ ¼ 0.731ð8Þð24Þ.
From these, we obtain our estimates for the renormalized

isovector tensor and scalar couplings, as presented in
Table VII. Neither is dependent on mass.
The tensor coupling is in good agreement with a value,

about 1.0, obtained at the lightest mass in our previous
calculations [6], and also with later calculations by others
[40,41]. Its errors are dominated by scheme-dependent
systematics in nonperturbative renormalization, at about
5%, due mainly to the relatively low lattice cutoff.
The scalar coupling, though noisier, is in broad agree-

ment with other later calculations [40,41]. The scalar errors
are still dominated by statistical noise, but they will
eventually encounter the same scheme-dependent system-
atics in nonperturbative renormalization.

VII. CONCLUSIONS

The nucleon masses calculated in the two present
ensembles extrapolate linearly in pion mass squared, m2

π ,
to a value mN ¼ 0.950ð5Þ GeV at the physical point. This
is to be compared with the average of the proton and
neutron experimental mass values, 0.938918747(6) GeV
[19]. The slope in this linear extrapolation is steeper than

that observed in our earlier calculations with heavier
mass—the result constrains the nonlinear dependence of
nucleon mass on the pion mass squared.
The isovector vector charge renormalizes to unity in the

chiral limit. This narrowly constrains the excited-state
contamination in the Gaussian smearing.
The ratio of the isovector axial-vector to the vector

charge shows a deficit of about 10%. This is in agreement
with some other major lattice numerical calculations
[21,32–35] using different actions but with similar lattice
spacings and quark masses. The origin of this deficit is still
to be understood.
We obtained good signals for the isovector tensor

coupling. It does not depend on mass and extrapolates
to 1.04(5) at physical mass with the MS 2 GeV renorm-
alization. This is in agreement with the value obtained for
the lightest pion mass of 331.3(1.4) MeV in our earlier
work [6], and also with calculations by others [40,41].
The isovector scalar coupling is noisier, but again it does

not show mass dependence, and it is in agreement with
other calculations [40,41].
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