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Nonperturbative potential for the study of quarkonia in QGP
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A thermal potential can be defined to facilitate understanding the behavior of quarkonia in quark-gluon
plasma. A nonperturbative evaluation of this potential from lattice QCD is difficult, as it involves a real-
time correlation function, and has often involved the use of Bayesian analysis, with its associated
systematics. In this work we show that using the properties of the static quarkonia thermal correlation
functions, one can directly extract a thermal potential for quarkonia from Euclidean Wilson loop data. This
leads to a controlled extraction and allows us to judge the suitability of various model potentials.
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I. INTRODUCTION

Quarkonia, mesonic bound states of heavy quark and
antiquark, have played a very important role in our under-
standing of the physics of strong interactions. The exper-
imental signatures of some of these states are distinctive,
the most iconic being the dilepton peak of the vector
quarkonia. In the theoretical side, the heavy quark mass,
My > Agep, leads to simplifications. The earliest insights
about properties of quarkonia were obtained by treating
them as nonrelativistic states bound by a color electric
potential. The potential suitable for studies of quarkonia
has been calculated in detail using numerical Monte Carlo
studies on lattice-regularized QCD; see, e.g., Ref. [1] for a
review. The potential remains an important ingredient in a
systematic expansion of quarkonia in 1/M [2].

The dilepton peaks of the vector quarkonia, in particular
that of the J/y, have been extremely important signatures
of creation of quark-gluon plasma (QGP) in ultrarelativistic
heavy ion collisions (URHIC), following the suggestion
three decades ago [3] that the screening of the color
charge inside QGP will lead to the dissolution of bound
states. This was made more quantitative in follow-up
studies [4]. The early studies used a perturbative Debye-
screened form,
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which is the free energy of a static QQ pair in perturbative
QGP. Here mp is the Debye mass, a:%%, and g is
evaluated at a scale determined by the temperature 7.
Nonperturbatively, the free energy of the Q — Q pair in
plasma was calculated using lattice QCD [5], which was
used as a proxy for an effective finite temperature potential.
However, in the early days a proper formalism for the
potential-based study of quarkonia in QGP was missing. In
particular, other thermodynamic quantities can be derived
from the free energy, e.g., an “internal energy” for the QQ
pair [6]; the use of such quantities have also been explored
in the literature [7].

A theoretical formalism for an “effective finite temper-
ature potential,” which is connected to experimentally
observed quantities such as the dilepton rate, was first
provided in Ref. [8]. The starting point is a point-split
version of the dilepton current,

JE(t,X) =0 t)?+z U t-EEJrZ )?—Z 0 tf—z
r b 9 2 9 29 2 9 2 b

where U is a suitable gauge connection such that V* is
gauge invariant and the angular brackets denote a thermal
average. Defining the correlation function

C.(1,7) = / Px(J(1,7)],70, %)), (3)

the spectral function p;(w, 7; T) is defined from its Fourier
transform,

(@, FT) = (1 — e~/T) / At C_(1F).  (4)
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The dilepton rate is proportional to the spectral function of
the point current, p(w; T) = lims_o p; (@, 7 T).

Since we are interested in heavy quarks with My > T,
Agep, Eq. (3) simplifies. Going to the nonrelativistic
notation Q = (}"; ) where v, y are nonrelativistic fields that
annihilate a quark and create an antiquark, respectively, and
remembering that since M o>T, the thermal states do not
include Q fields, the leading (M) term in an 1/M,
expansion gives

C>(t»7)E/d3x<)(T(1‘73_5—§>0k[UTl//<t,)?+§>
XWT<0,5€'+%>6;<U)((O,5€—§>>. (5)

If one has a system where the sole interaction term is a
potential V(7) between the quark and the antiquark, then it
is easy to show that, to leading order in 1/M,, C.(t,7)
satisfies [9]

(za, Vi) C_(1.7) = V(F)C. (1. 7). (6)

Mo

In our theory where the QQ are interacting with the thermal
medium, we can then define a potential by equating the
left-hand side of Eq. (6) to V(z,7)C. (¢, 7) (staying within
leading order of 1/M ), where the interaction effects are
summarized in a time-dependent V(z,7). An effective
thermal potential, V;(7), can then be defined in the large
¢ limit, if the limit exists: V;(7) = lim,_, V(7,7).

The potential V;(7) can be obtained by going to the
static limit, where modulo renormalization factor, C- (¢, 7),
reduces to a Minkowski-time Wilson loop,

1 e B
Wi(1.7) = 3 TiPe' Jodntoln Py (1772, _7/2)
. [0 -
x Pl J TR0, 72, 7/2), (7)
and Eq. (6) reduces to

i0,log Wiy (1,7) — V7 (7), (8)

which defines our thermal potential [8,9]. Using V;(7) to
calculate C.. (¢, ) from Eq. (6) will give the resummation of
the leading ladder diagrams.

A calculation of V(7) in leading order hard thermal loop
(HTL) perturbation theory gives [8]

V(F) = VR(F) —iVIm(¥), where

Vin(F) = aT x /wdz
0

2z [1 sin(zmpr)

(22 +1)? ] ©)

Impr

and V' (7) is given in Eq. (1). In Eq. (9) we have absorbed a
negative sign in the definition of Vi (7), so that Vi (7) takes
positive values. Vi (7) corresponds to the usual physics of
Debye screening in medium, such that for sufficiently large
screening, the bound states will not form. On the other hand,
Vim(7) clearly leads to a broadening of the spectral function
peak [10]. It captures the physics of collision with the
thermal particles leading to a decoherence of the QQ wave
function [11-13]. For the quark and antiquark far apart,
r> T, ViI™(7) reaches a finite limit a7 giving the damping
rate of the individual quarks [9].

It is well-known that the perturbative calculation, Eq. (9),
is not suitable at temperatures < a few times T, the
deconfinement temperature. The aim of this paper is to
make a nonperturbative calculation of an effective thermal
potential, using numerical lattice gauge theory techniques.
Following the insight of Ref. [8], various authors have tried
calculating the thermal potential nonperturbatively. In the
next section we will outline our strategy. More details, and
some discussion on difference from earlier studies, can be
found in Sec. IV.

The potential description, Eq. (6), provides only the
leading order approximation to Eq. (3) in an expansion in
1/M, and (in the perturbative language) accounts for a
subclass of diagrams. At zero temperature, the justification
for this is well understood. At finite temperature, extra
scales come into play, making the picture more compli-
cated. A systematic, effective field theory based study of
the interplay of these scales has been made in Ref. [14] in
perturbation theory. In the hierarchy of scales

M> 7T > 1/rg 2 mp~gl > Eg

one gets the potential Eq. (9), where r is the radius of the
bound state and Ejp the binding energy. For the temper-
atures of interest in heavy ion collision experiments, this
hierarchy of scales is hardly satisfied. The effective field
theory version, however, is perturbative and therefore
cannot be directly used for phenomenology.

Instead of going through such an approximation, one
could instead try to directly calculate the spectral function
from the Euclidean (J,J,) correlation function. This has
been attempted for charmonia [15,16] and, using non-
relativistic  QCD (NRQCD), for bottomonia [17,18].
Unfortunately, the extraction of a spectral function from
the Euclidean correlator is a notoriously difficult problem,
and the systematics are large (see [19] for a discussion, and
[20] for early comparison of potential model results with
results of [15]). A nonperturbatively determined potential
allows one to study the in-medium modification of the
spectral function for sufficiently heavy quarks and has been
used for quarkonia phenomenology; see, e.g., [21].

Note that the spectral function obtained through Eqs. (4)
and (6) treats the QQ pair as an external probe in an
equilibrium plasma. A proper dynamical treatment should
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take into account the simultaneous evolution of the system
and the QQ pair. This can be formulated in the language of
an open quantum system [11,13,22-24]. The potential
remains an important structure in such frameworks
[22,24]. In particular, a microscopic understanding of
Eq. (6) can be obtained in such a framework by introducing
the collision of the plasma constituents with the QQ through
a statistical noise term [11,12]. VI™(7) then controls the
correlation of the noise term, and Eq. (4) is understood to be
the noise-averaged version of the QQ-plasma interaction.

The plan of the rest of the paper is as follows. After
explaining the calculational methodology in the next
section, in Sec. Il we will give the calculational details.
Section IV will give our results for the potential. Some
phenomenological discussions and implications of the
potential obtained will be discussed in Sec. V, and the last
section will have a summary and discussion.

II. NONPERTURBATIVE STUDY OF FINITE
TEMPERATURE POTENTIAL

The potential V(7) is directly related to the Minkowski
space Wilson loop, Eq. (8). But in numerical Monte Carlo
studies we work in Euclidean space. At zero temperature, it
is straightforward to calculate the QQ potential from the
Euclidean Wilson loop:

W(z,7) - C(7F)e v, (10)

At finite temperature, the simple spectral decomposition

outlined in Eq. (10) does not work. The first attempt to

extract the QQ potential from Wy(z,7) was carried out in

Ref. [25]. The spectral decomposition of the Minkowski-
time loop leads to [25]

Wo(z,7) = / " dwe=p(w, F;T)

3VT(?> = _81. 10g WT (T, ?)
[, dowe™ p(w, 7, T)
= dwep(0, F;T)

(11)

Bayesian techniques were used to extract p(w, 7; T) from
Wy (z,7), and then calculate the potential using Eq. (11).

The reconstruction of p(w,7;T) from Wy(r,7) is a
notoriously unstable problem. To make matters worse,
the quality of the Wilson loop data deteriorates quickly
at large 7 (this problem can be somewhat alleviated with
recent numerical techniques [26]). While very impressive
technological improvements have occurred in the Bayesian
analysis techniques, the results obtained for potential still
have stability issues or have large error bars, especially for
Vim(7). The first calculations [25] employed a Bayesian
analysis method similar to maximum entropy and fitted the
spectral function peak with a Lorentzian form. The results

obtained, however, are substantially different from a later
analysis [27] that is of similar philosophy but employs a
slightly different Bayesian analysis and fits to a skew-
Lorentzian form [28]. The state-of-the-art for calculations
in the gluonic plasma follows a similar methodology and
can be seen in Ref. [29]. Studies have also been carried out
for full QGP (i.e., with thermal quarks), both with a
Lorentzian form of the spectral function [30] and using
Bayesian reconstruction methods [31]. While the improve-
ment in the analysis method has been impressive, the
results still suffer from stability issues; in particular, it is
not easy to disentangle the effects of Vi™(¥) and V¥(F)
in Wr(z,7).

In this paper we take a different approach. Let us
motivate it by writing

Wi (7, 7) = e"@IWr(B/2). (12)

The physics of V% (7) is very similar to that of the
zero temperature potential, Eq. (10). We therefore expect
the real part of the potential to come from the part of
w(z, 7) which has a linear behavior around /2: w(z, 7) ~
—(z=p/2)VE(F) + - - -. We isolate the W part by splitting
Wr(z,7) as follows:

Wi(t,7) = Wi(z,7) x Wh(z,F),

Wr(z,7)
Wr(f -7, 7)’
Wo(z,7) = \/WT(T, ) x Wp(f—1,7). (13)

Wa(z,7) =

We find that B(z, 7) = log W4 (z, ¥) has exactly the behav-
ior we were expecting: B(z,7) ~ (4§ — 7) VI(7) over a large
range of 7 around /2. We illustrate this in Fig. 1, where
B(z,7)/(#/2 — 1) is plotted. We also checked that for
configurations below T'., where we can extract the potential
from the full Wilson loop, W4.(z, F) gives the same result
but reaches the plateau sooner.

To understand the behavior of W% (z,7), we write a
decomposition for A(z, 7) = log W4 (z, F):

© 1
Az, 7) = / dwo(w;T) E(e—”” + e~@lP=1))

(o]

+ 7-independent terms. (14)

To go to the potential, we follow the usual route of going to
real time 7 — if:

i0,A(it) = /oo doc(w;T) = (e7 — e=®Pei®!). (15)

(5]

SIRS

The potential is obtained in the large time limit of Eq. (15),
when the oscillating factors exp(=+iwt) ensure that only the
@ — 0 contribution to the integral survives. In this limit
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(Left) “Local mass” plot from Wy (z,7) and W4(z, 7) for Set 3, 1.5 T, at three different values of R = r/a,. The results are

from smeared Wilson loops. The dashed lines show the fitted mass. (Right) 9, W/ (z, 7) for the same set; the lines show the singular

structure contribution [Eq. (17); see text].

exp(fw) — 1, and it is obvious from Eq. (15) that A(it)
leads to an imaginary potential. One can then extract the
real and imaginary parts of the potential from W4 (z, 7) and
W¥(z,F), respectively [8],

VI (F) = tlimiat log W4.(z,7)| s

~VP(7) = mid, log Wi(e. P)|,ie (16)

The argument above is motivated by perturbative studies
of the potential, where the split Eq. (16) has been noted [8].
Even with Eq. (16), it is not obvious that the extraction of the
potential from the Euclidean correlation function is simple;
Eq. (16) involves large Minkowski time, while the non-
perturbative data that can be obtained from the lattice are in
Euclidean time 7 € [0,/). Successful extraction of the
potential from Eq. (16) is contingent upon the contribution
from the “potential modes” dominating the behavior of the
correlation functions A(z,7), B(z, 7). Fortunately, this is
what was found in the behavior of the nonperturbative data.
As we already discussed above and showed in Fig. 1, over a
large range of 7, W4.(z, ¥) ~ exp(—c7), leading to a straight-
forward extraction of V' (7) from the slope of the exponent.
We actually obtained a very similar plateau in all our lattices.
See Sec. IV A for more discussion.

One, of course, does not expect such a simple behavior
from A(z,7): Eq. (14) rules out a simple linear behavior
near f/2. This is expected: if WZ(z,7) had a linear
exponential falloff, it would have contributed to a real
potential. The large time behavior of W% (z — i1, 7) can be
inferred from a closer examination of Eq. (15), using the
fact that in the limit of large 7, exp(—iwt) — exp(iwt —
of) - —2ziwd(w). Then in order to get a potential
—iVin(¥) = lim,_,, i0,A(it) we need

ow:T) ~ %(1 + O). (17)

Interestingly, this leading singularity structure gives a very
good qualitative description of the 7z dependence of
0.A(r, 7). This is illustrated in the right panel of Fig. 1.

The argument in this section is based on the assumption
that a thermal potential can be defined using Eq. (8). We
then make plausibility arguments on the structure of
Wy(z,7), and we show that the nonperturbative lattice
data support this structure. The arguments leading to
Eq. (16) can be made more concrete using Feynman
diagrammatic language [9]: in Appendix B we outline this
argument. There we also show the results of the leading
order HTL perturbation calculation of W (z, F) [8], which
fully supports the structures of A(z, ) and B(z, ¥) discussed
above, and which motivated this nonperturbative study. The
/%
distribution function, (1 + ng(w)) I which follows
from the structure of the time-ordered propagator [see
Appendix B and Eq. (B4)]. It is connected to the scattering
origin of the imaginary part of the potential, discussed
below Eq. (9).

Our strategy for extraction of the potential is therefore
straightforward: we extract V' (7) from a linear fit to B(z, F),
and to get ViM(7), we expand (w; T) in Eq. (14) in the basis
(1+nz(w)){1/w,®,...}, and extract Vi™(7) from the
coefficient of the most singular term. As Fig. 1 suggests,
the leading terms dominate the data around /2, allowing us
to extract the potential relatively simply. We discuss further
details in Sec. IV.

1/w? behavior in Eq. (17) comes from the term and a

—

III. TECHNICAL DETAILS OF OUR STUDY

In this work, we have calculated the QQ potential in a
gluonic plasma, for moderately high temperatures <27T.
We have generated lattices with a spacetime anisotropic
discretization with £ = a,/a, ~ 3. A convenient algorithm
for doing this is given in [32]. We follow this reference to
estimate the lattice parameters we require. The anisotropy
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is estimated nonperturbatively from the comparison of
spatial and temporal Wilson loops [32], while a, is
estimated from the string tension calculated from temporal
Wilson loops. We use three sets of lattices, with a, ranging
between 1/19T, and 1/45T .. For each set, we change the
temperature by changing N,, while keeping the spatial
volume fixed.

For each set, we first make short Monte Carlo runs at
closely spaced N, to find the N, for deconfinement
transition. The final lattice sets used for the studies above
T, are shown in Table I. For much of this paper, we will
measure all scales in units of 7'.. However, for Sec. V we
will need to quote physical units. We will do so by taking
the string tension ¢ = (0.44 GeV)?. This translates to a
transition temperature ~280 MeV. The spatial extent of the
lattices are 1.44 fm or above. Some more details regarding
the runs are given in Appendix A.

To determine the potential, we calculate thermal expect-
ation values of timelike Wilson loops, i.e., the Euclidean
time version of W, in Eq. (8). It is well known that for the
spatial connections U straight thin-link gauge connections
are not suitable: they lead to very noisy signals in numerical
Monte Carlo studies. To alleviate the problem due to
extended spatial connections, we do APE smearing [33].
This constitutes a replacement of the elementary gauge
links U,

Uy (%) = Projsus {aU,- )

+ U UF+a,]. U] (F+ i)
1<j<3
J#i

+U;(f—as},T)Ui(f—as}J)Uj(f_asj+as?’f))}
(18)

iteratively. The spatial connections U are then constructed
from these smeared links. For this work, we have taken
a=25.

TABLE 1. Parameter sets for the finite temperature runs.
Set Bs» B Ny N, T/T. Ll[fm] a, [fm]
I 2.469, 14.8 16 48 0.4 1.82 0.038
24 0.8
16 1.2
I 253,1595 24 48 0.6 1.73 0.024
24 1.2
20 1.5
I 2.6, 16.98 30 72 0.63 1.44 0.016
60 0.75
38 1.2
30 1.5
23 2

Note that Eq. ([18]) does not involve the time direction,
and the time direction links are not smeared. So time slices
and the definition of transfer matrix is not affected by the
smearing. We use the multilevel algorithm [26] in the
temporal direction: this allows us to get a good signal even
for Wilson loops with a large time extent. For calculation of
the potential at 7 = 0, smearing is routinely used, and the
potential should be independent of the smearing. In the
finite temperature case, the physical quantity one is
interested in, the quarkonia peak in the dilepton channel,
is independent of the details of the connection U, as it is
connected to the point current. We however, do a detailed
study of the dependence of the potential on the smearing
level in the next section.

In the literature, the correlator of Coulomb gauge fixed
Wilson lines have often been used to extract the potential.
The Coulomb gauge fixing can be formally understood as a
dressing of the quark fields [34]:

T (V)lcou. = Wa(X)yaly), (19)

where yq(x) = Q(x)y(x) and Q(x) is a dressing function
such that wo(x) is gauge invariant [34].

The Coulomb gauge potential has obvious advantages
in that the extended spatial links are not there. At 7 = 0,
it is also easy to argue (and has been well tested) that
the Coulomb gauge potential agrees with the potential
extracted from the Wilson loop. For T > T, such detailed
comparison does not exist in the literature. Here we have
made such a comparative study. The Coulomb gauge is
fixed to an accuracy of 10~7. We have also checked that the
results do not change if the accuracy is made 107 or 10~°
instead. The potential from this Wilson line correlator has
also been presented in Sec. IV. In particular, for the
imaginary part of the potential, we observe differences
between this potential and that obtained from the smeared
Wilson loop. Since the Wilson loop operator does not
involve dressing of the quark field, the connection to the
point-point correlator at 7 — 0 is transparent. We use
the potential obtained from the Wilson loop for further
studies in Sec. V.

IV. POTENTIAL CALCULATED
FROM WILSON LOOPS

In this section we present the details of our extraction of
the potential, using Eq. (16). In Sec. IVA we discuss the
real part of the potential. The results for the free energy of a
QO pair is given in Sec. IV B, and the extraction of Vi™(7)
is discussed in Sec. IV C. Besides quoting the results for the
potential, we also compare the potential at different levels
of smearing, and the results for Coulomb gauge. Finally, in
Sec. IVD we will discuss the spectral representation
Eq. (11) and touch on issues of direct extraction of spectral
function from Euclidean data.
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A. Real part of the potential

As outlined in Sec. II and Fig. 1, for smeared Wilson
loops the extraction of the real part of the potential from
W4.(z,7) is straightforward. In the left panel of Fig. 2 we
show the “local measurements” of V' (7) from Wilson
loops at different levels of smearing. The error bars shown
are from a jackknife analysis, after blocking the data to
reduce autocorrelation. As the figure shows, while for a
small number of APE smearing steps, the local mass takes
time to reach a plateau, on increasing the number of steps a
plateau is reached quickly, and we can easily extract the
potential using a single exponent fit. While we have shown
the local mass for one particular case, the effects are very
similar for all our sets. For each smearing level the value
obtained from the fit is shown by the horizontal band of the
same color. The goodness of the fit, as demonstrated by )(2,
is very good. The figure also shows that varying the number
of smearing steps over a large range does not seem to have
any statistically significant effect on the value reached at the
plateau.

We also show in the figure the local values of the
potential obtained from the Coulomb gauge fixed Wilson
lines. As the figure shows, the Coulomb gauge data seem to
be noisier than the data from Wilson loops. We checked that
this is not an artifact of the accuracy at which the Coulomb
gauge is fixed. Also the Coulomb gauge results are found to
be close to the results from the smeared Wilson loops, but
the difference between them is statistically significant.

In the right panel of Fig. 2 we summarize the fitted value
of V% (7) for this set. At this scale, the dependence of the
potential on the smearing level is hardly visible. Similarly,
the potential from smeared Wilson loops and that from
Coulomb gauge fixed Wilson lines are very close, though
they differ at the 1o level.

As we have discussed in Sec. III, we believe that for the
study of quarkonia property in medium, the potential from

N=10 Y X x X
0213} . x x % % ¥
%
X
X
0.212 |
) coulomb +
a o211} ¢
9> ° i ¢ | °
3 [ ]
© 0.21 & o O A %L& &A& @L&L Ji:5N @14 Gh (il
} L + pin l{ ® T T
0.209
N=100 N=200 N=250
0.208 ‘ : : : : :
2 4 6 8 10 12 14
t/ay

FIG. 2.

the smeared Wilson loop is appropriate. It is satisfactory
that V() becomes practically independent of the level of
smearing very soon. Anyway, when quoting a result for
V% (7), we include, as a systematic error, some variation
with the level of smearing: for example, for the set shown in
Fig. 2 we include the spread in results between smearing
levels of 100 and 250 as a systematic error. In what follows,
our error bars for V¥ (7) include this variation for all sets.

Results from lattices at a finite lattice spacing have
discretization errors. We can have an idea of the size of the
discretization error by comparing the results at different
lattice spacings. As Table I shows, we have lattices with
three different lattice spacings at 1.2 T, and at 1.5 T'. we
have results with two different lattice spacings. In Fig. 3 we
show the potentials calculated from lattices at different
lattice spacings. Within our error bars the results agree very
well, indicating that the cutoff effects are very small at these
lattice spacings. We will, therefore, take the results on our
finest lattice spacings as a valid estimator of the continuum
results.

Figure 4 summarizes our results for V¥ (7) at different
temperatures. We see that the potentials at the two temper-
atures below 7. agree completely, indicating that the
temperature effect is small even at 0.75 T,.. The potentials
have the familiar Cornell form, with a dip at small r and a
linearly rising part for r 2 0.5 fm. This behavior changes
abruptly on crossing T,.: while the short distance part,
<0.2 fm, remains similar to the form below T, beyond
rT.~0.5~0.35 fm the effect of string breaking clearly
shows up, and the potential becomes flatter with increasing
temperature.

B. Free energy

The study of the free energy cost of introducing a QQ
pair in the plasma is almost as old as the study of
deconfinement transition in QCD. The free energy of a

0.22 a|
o 8 E] & B B8
2]
=)
2]
__o18f B
g
> 2]
<
0.14
N=50 ¢
N=100
2 N=200 —&—
N=250
0.1 ‘ ‘ ‘ ‘coulomb‘ —o—
) 2 4 6 8 10 12 14
r/ag

(Left) The “local measurements” of V' (7) at r = 8ay, at T ~ 1.5T, for Set 3. Shown are results from Wilson loops at different

levels of smearing, and Coulomb gauge fixed Wilson lines. The horizontal bands show the result for the potential obtained from a single
state fit. (Right) Estimates of V% (7) for the same set, from Wilson loops at different levels of smearing, and for the Coulomb gauge fixed

Wilson line.
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different lattice spacings.

QQ pair was calculated from the correlator of Polyakov
loops, (L(?)LT(6)) [35]. Later, the free energy cost of a

singlet QQ pair was connected to the cyclic Wilson loop
(for sufficiently smeared loops) [36],

F(F/,T)=-TlogW¢(B,7), (20)

or from Coulomb gauge fixed circular Wilson lines [37]
(see also [38]). In leading order perturbation theory, the
singlet free energy agrees with V5 (7).

The singlet free energy has been studied in great detail,
for both gluonic plasma and the theory with quarks [5], and
we do not intend to add to the existing results. Here we will,
however, examine the issue of whether the perturbative
agreement between the free energy and V' (7) is also valid
nonperturbatively.

In Fig. 5 we show the singlet free energy calculated
from the smeared circular Wilson loop at different levels of

12 T
0.63T, —%—
0.75T, —B— A
1ME 12T —o— 1
1.5TC>—A—< ]
——
2.0T, w o ©
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o o)
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> 8¢ R
8
7" |
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5 E\ L L L L L L L L
0 0.1 02 03 04 05 06 07 08 09 1
rTg

FIG. 4. V%(7) calculated from smeared Wilson loops. The
results are from Set 3, which can be taken as a good estimate of
the continuum results.
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=
S 8
g 5
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0 02 04 06 08 1 12 14 16
1)

The potential V5 (7) at (left) 1.2 T, measured on lattices with three different lattice spacings; and (right) at 1.5 T, at two

smearing, and that from the Coulomb gauge fixed operator.
The smearing dependence is similar to what was seen for
V' (7): the results are quite insensitive to the smearing level
used. The Coulomb gauge operator is close to the Wilson
loop results, but not exactly identical.

In Fig. 6 we compare the free energy and V% (7),
extracted from the smeared Wilson loops, at three different
temperatures. As discussed before in Sec. IV A, the results
are expected to be valid continuum results. At all temper-
atures, we find that F(7;7) and V' (7) are very close to
each other. However, at long distances V'¥(F) shows
slightly less screened behavior than F(7;T).

C. Imaginary part of the potential

As we have discussed in Sec. II, the behavior of the
symmetrized correlation function W% (z, 7) is dominated by

N=50 ——
N=200 =
L =, ——
651 N=250 . g 6 & 8 88 8
coulomb —-&— g & 7
61 8 |
& 6.6 ;
AL
g %° % 6af N LU I
= o
g 5 62F 2 H )
B 6l 2 L
=
4571 58 1
selb_
4 04 06 08 1 12 14 -
35LE— : ‘ : : : :
0.2 0.4 0.6 0.8 1 1.2 1.4
T
FIG. 5. Free energy calculated from cyclic Wilson loops at

different levels of smearing, and from Coulomb gauge fixed
circular Wilson lines, at 1.5 T for Set 2. The inset highlights the
long distance part. The Coulomb gauge result is seen to be close to
that obtained from a smeared Wilson loop, but with a statistically
significant difference.
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FIG. 6. The free energy, Eq. (20), compared with Vi (7) at 1.2 T, (left), 1.5 T (middle), and 2 T, (right). The long distance part is

highlighted in the inset.

the most singular behavior in Eq. (17), which is the term
that corresponds to Vi (7). Encouraged by this, we expand
o(w;T) in Eq. (14) in a series

o(@;T) = (1 + ny(w)) <%+ 10+ Cr0® + - ) (21)

where the form of Eq. (21) is motivated by the structure of
A(z, 7) [see Eq. (B4) and the discussion at the end of Sec. I1].
o(w;T) in Eq. (21) has the property that o(—w;T) =
e?6(w; T) and so the integrand in Eq. (14) is an even
function of w; the even powers of w are absent in Eq. (21) as
they will not contribute to the integral. The imaginary
potential Vi™(7) is obtained from the coefficient of the
1/w term: ViIM(7) = % co- Putting Eq. (21) in Eq. (15), we
get the linear series for the “local mass™:

0.A(1,7) = ¢yGo(7) + Z ¢,G(7),

1=12,...
~ T T
Gy = ——cot—,
Y
- (2 T T
,=ﬁ21+1 4 2[—&-1,1—2 - ZH_LE ,
(22)
0.06 T .
smr=50 ———
smr=100 —&—
smr=150 —o—
smr=200 ~——-&— %
0.04 % ﬁ%
& X %
0.02 ¥ &
r B
. &
% [3
o e X @ L ! !
0 2 4 6 8 10 12
r/ag

00 1

n=1 (x+n)**
Note that this form Eq. (22) is similar to, and could also be
motivated by, perturbation theory [8].

The data near /2 give a very good fit to just two terms in
Eq. (22), and with three terms, almost the entire range of =
could be fit in all our datasets. In Fig. 7 we show the results
for Vim(7) obtained with different levels of smearing. The
error bar here includes the variation due to the change in
number of terms of Eq. (22) in the fit. The dependence on
the level of smearing is stronger here, but a plateau can be
reached after some levels of smearing. When quoting a
result for the imaginary part of the potential in what
follows, our error bar encompasses the spread among the
different smearing levels in this plateau.

In Fig. 8 we show the imaginary potential at two different
temperatures, obtained on lattices with different cutoffs.
While our coarsest lattice, Set I, seems to show some lattice
spacing dependence, the results from the two finer sets
agree very well. We therefore take VI™(7) obtained from
our finest lattice as a good approximation to the continuum
result.

In Fig. 9 we show our final results for the imaginary
potential at three different temperatures. In Sec. V we will
use this data as the nonperturbatively evaluated V™ (7) and
explore its physics. We have shown here the results above

where the generalized ¢ functions {(s,x) =

smr=50
smr=100
smr=150
smr=200
smr=250
cgauge

0.04

0.031

ay Vipy(r)

0.01F

r/ag

FIG. 7. The imaginary part of the potential, Vi™(7), for different smearing levels, (left) at 1.2 T, Set 2, and (right) at 1.5 T, Set 3.
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FIG. 8. The imaginary part of the potential, Vi (7), at 1.2 T, (left) and at 1.5 T, (right), at different lattice spacings. The results from
different lattice spacings vary very little and so we take the results from our finest lattices as a good approximation to the continuum

result.

T. only; we have, however, run the same analysis strategy
on the configurations below T, and checked that the results
are consistent with zero, as expected.

D. Low-o structure of the spectral function

Combining the results of Sec. IVA and Sec. IV C, we
can write the correlation function near the center of the
lattice as

B

Wi (z, ?) = e_vrre<7>(7—7)_/,‘ivirm(?)10g Siﬂ(%)—'"WT(ﬂ/z’ ;.’)’ (23)

where the higher order terms,

-~~—;cz/§’éz<r>,

do not contribute to the potential. For explaining the Wilson
loop data over a substantial range near the center, just c¢; is

1.8

T=1.2T, —e—
16} T=1 '5Tc —A—

T=2.0T, — 35— i
1.4F %] .
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B
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02t 0 T og 2 og 1
L o ©
oo . @ ¢ ¢ ¢ ‘ ‘ ‘ ‘ ‘
0 01 02 03 04 05 06 07 08 0.9 1
T

FIG. 9. The imaginary part of the potential, Vi"(7), extracted
from Set 3, at three different temperatures.

enough, while adding ¢, allows us to explain W (z, ) over
the entire range except a couple of points at the edge.
Further insight into the potential can be obtained if we
investigate the structure of the low w part of p(w, 7, T) in
Eq. (11). In order to do this, we take the Fourier transform
of the structure of Wy(z,7), Eq. (23), continued to real
time: Wy (7 = —iz, 7). This shows a peak structure at low ),
as has been anticipated in various lattice extractions of the
potential, e.g., [25,27-29,31]. Interestingly, however, the
peak structure is very different from what has often been
anticipated. In the literature a Lorentzian or a Gaussian
structure has often been assumed for the peak. Instead, we
find a structure that is exponentially falling in the low w
side of the peak, ~exp(w/T), while in the high w side it
falls only as a power law. The illustration of the peak
structure is shown for a few representative values of r in
Fig. 10. Given this peak structure, we could rephrase our
discussion of the potential extraction by simply starting
from a structure such as those shown in Fig. 10, and
extracting the potential from them. We checked numeri-
cally that the Laplace transform of the peak gives a
statistically satisfactory description of Wy (z,7) near /2.
While the direct Bayesian inversions have to grapple with
the issue of convergence of the integral in the negative @
side, here we could easily do the integral by putting a lower
cutoff: because of the sharp fall, the effect of the cutoff on
the value of the integral is negligible. The addition of the
correction terms does not have any significant effect on
the position or the half-width of the peak, but modifies the
falloff with @ away from the position of the peak.
Bayesian statistics based studies of the potential proceed
without making strong assumptions about the structure of
the peak. In fact, some of the Baysian analyses use only
very mild information about the peak. We would like to add
a note of caution here. If we do not make the assumption
Eq. (22), which is well-motivated by the physics involved
in the imaginary potential and also by perturbation theory,
it is possible to describe the Wilson loop data by other
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1.2

(Left) The low w structure of the spectral function obtained from Eq. (23), at 1.5 T... Results for three representative values of

r are shown. (Right) The temperature dependence of the low @ peak. results for two values of r are shown.

structures, leading to different V(7). In particular, a very
good description of the data is provided by the form

Ve et LD [ g
Wr(z,7) =e Vi) f/f/Zlog/’ Wr(B/2,7). (24)
The spectral peak obtained from this form is considerably
different from that shown above; see Fig. 11. A Bayesian
analysis, in our opinion, ought to include the broad features
of the low @ peak discussed in the previous paragraph.

V. DISCUSSION OF POTENTIALS
AND QUARKONIA

Let us try to analyze in some detail the potentials
obtained in Sec. IV. We start with V(7). Figure 4 shows
our estimation of VIi(7) at different temperatures. As is
expected for a gluonic plasma, the thermal effects are
negligible at temperatures of 0.75 7.: the potential agrees
completely between 0.75 T,. and 0.63 T... So the potential at
our lowest temperature measured for each set can safely be

1.2

12T, ——
T,=0.53 15T
- [
1 f fi /w 20T, — ]
| |
0.8+
g 0.6
0.4
0.2
0 12 14
FIG. 11. The low w structure indicated by Eq. (24) (dotted line)

compared with that obtained from Eq. (23), at R = 8, at three
different temperatures.

taken to approximate the zero-temperature potential. The
potential shows the familiar features of the 1/r singularity
at short distances and the linear rise at large distances, and
gives a good fit to the Cornell form.

As we cross T, the finite temperature potential is close
to that at 7 = 0 at short distances. But clear temperature
effects are seen as r increases: in particular, the linear
behavior of the 7 = 0 potential gets screened. In perturba-
tion theory one expects, in leading order, a Debye-screened
form of V!$(7) which is the same as the free energy [8],

(1)

Via(R.T) = ==

e —mpa(T)+ C, (25)
where mp, = ¢T in leading order and a(7) is the running
coupling at the appropriate temperature scale. In Fig. 12
this form, Eq. (25), is shown at different temperatures,
along with the nonperturbatively obtained potential.
For drawing the perturbative curve, following [8], we have
used a one-loop formula for the coupling [39], a='(T) =
%10g(6.742T/Am), and T./Ayg = 1.10-1.20 [40]. The
band in the perturbative form in Fig. 12 corresponds to
this range in 7./Agyzg. Since we are interested in the r
dependence of V' (7), the additive renormalization constant
C is fixed by matching to the lattice potential at 7. = 0.5
at T =2T,.

As Fig. 12 shows, the perturbative form does not explain
the potential obtained in Sec. IVA. In particular, the long
distance part of the potential is not as flat as the screened
Debye form predicts: as if a shadow of the string tension
rise survives.

Since the long distance part of the QQ potential in the
QCD vacuum has a linear string tension term, a natural next
step would be to try a screened form of the string tension
term. The string tension term being entirely nonperturba-
tive, there is, however, no single unique/preferred possibil-
ity for the screened form of this term. We will consider here
two models for screening that have been discussed in the
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FIG. 12. The finite temperature potential V' (7) at temperatures 1.2 T, (left), 1.5 T, (middle), and 2 T, (right), shown with various
models for the potential: perturbative form [Eq. (25)], Debye-screened string in 1D [Eq. (26)] and in 3D [Eq. (28)].

literature. A linear string tension is obtained in the (1 + 1)-
dimensional Schwinger model. Since string is essentially a
one-dimensional (1D) object, one can assume that the
physics of screening of the string term will also be similar
to that in the Schwinger model. Such a consideration leads
to the potential [41]

VIE (R T) = =2 emmor 47 (1 = g=mo7) 4 ',

This form of the screened potential can also be obtained by
generalizing the timelike gluon propagator to [42]

1 20/a
RN AR

D(py=0.p) = (27)

The second term gives a linear string term in the limit
mp — 0. We treat Eq. ([27]) here as a purely phenomeno-
logical construct to model the screening in a string tension
term. In perturbation theory, one expects « to be a function
of r and T. In the Cornell potential, however, one usually
treats « as a constant. We follow [41] and keep «, o fixed to
their 7 = 0 value, the temperature dependence entering in
Eq. (26) only through mp. The long distance part of the
potential V(7), Fig. 4, is fitted to Eq. (26) to obtain
mp,C'. V& (7,T) does a good job of explaining the
measured potential as shown in Fig. 12. We have tried a
few fit ranges covering the large distance side of our
measured potential. The band in Fig. 12 shows the variation
of the fit parameters on shifting the fit range. The narrow-
ness of the band is evidence for the stability of the fit to the
form of Eq. (26). The fitted value of m, obtained from the
fits is shown in Table II; the range corresponds to this
change in the fit range.

A different line of argument to a screened potential is to
start with a generalized Gauss’ law which gives a linear
potential [43]. The medium effect then can be incorporated
by introducing a medium permittivity [44]. Using an
isotropic permittivity motivated by HTL perturbation
theory leads to the potential [45]

x2

(:e Mf\/}@ <3) rCr, o (28)

Te _:T — __ p—mpr _
(7T) %

where y* =mp,\/2, x =pur, and K, is the modified
Bessel function of the second kind [46]. At large r, the

second term behaves as M. The results of the fit to
this form are also shown in Fig. 12 and the value of mp,
shown in Table II. The fit to Eq. (26) is found to be slightly
more stable than that to Eq. (28), and so we use it for
analysis of quarkonia behavior. However, Eq. (28) also
approximately captures the r dependence of Vi (7); with
our data we cannot statistically rule out either of the one-
dimensional and three-dimensional (3D) screening forms.

The imaginary part, Vi (7), turns out to be more difficult
to model using the conventional screening forms available
in the literature. The perturbative form of the imaginary
part, Eq. (9), is shown in Fig. 13 together with our data, for
three different temperatures. The parameters used are
identical to that for the real part, as detailed below
Eq. (25). The data show very different behavior from that
of Eq. (9): at short distance, the perturbative result over-
shoots the data, but it soon saturates, while our non-
perturbative data do not show a sign of saturation in the
distance scale studied by us. The perturbative result
V() pen behaves ~r?logr at small r, and saturates to

TABLEII. Various parameter sets related to the potential models
discussed in Sec. V. The 1D refers to Eq. (26), the 3D to Eq. (28).
Also shown are fits to Vi™(¥) with a quadratic form VIl(7, T) =
bT(rT)* and a form V(7. T) = a;Vie (7. T) + a, VI (7. T),
where Vio (7, T) and Vi*(7,T) are given in Eq. (9) and
Eq. (30), respectively. The errors shown include the variation
with a fit range and should be treated as a systematic band rather
than a statistical 1 — ¢ band.

mD/T
T/T. 1D 3D b a, a;
1.2 1.18(6) 1.37(6) 0.34(1) —1.23(7) 1.22(4)
1.5 1.34(8) 1.49(6) 0.353) —0.87(2) 1.85(2)
2.0 1.46(8) 1.6009) 0.29(2) —0.8(2) 2.85(38)
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~aT as r — co. The nonperturbative data show a r?

behavior to a much larger distance: in particular, almost
the whole range of r explored by us, r7'. < 1, can be fitted
to a quadratic behavior at 1.5 T. and 2 T,.

im (72 im /7 . . m
ViB(F.T) = VP (F)pen + “T{D—l/z(\/ix)A dyReD—uz(l\/i)’)yzg(—D)’)

The HTL permittivity that leads to Eq. (9), is complex, so
as to produce a complex potential. Use of this permittivity
in the generalized Gauss’ law leads to [45] Eq. (28) and an
imaginary part

u

+ReD_; 5(iV2x) Loo dyD_5(V2y)y%g (%O —D_y,(0) /Ooo dyD_; ;5(V2y)y*g (%O }

o0 2z sinzx
where ¢g(x) = dz
9() A Z2+1 zx

and

2
D—I/Z(Z) = %Kl/él <Z4>

is the parabolic cylinder function. VIl (7, T) is also shown
in Fig. 13, with the legend “3D.” Here the value of mp
obtained from Eq. (28) is used, and the band corresponds to
the range in mp, (Table II). This form has a similar behavior
~r? at small r to the data. While it is steeper at large r than
the perturbative form, it is less steep than our data.

If one uses a complex permittivity analogous to the
HTL term in conjunction with the modified propagator
of Eq. ([42]), one can get the “complex potential” for
1D screening, i.e., the imaginary part of Eq. (26). The
imaginary part reads [42]

VIR(F.T) = Vieu(F.T) + VR (F.T).

VE“(KT)—%—TAmd 2 [1—Sin(szr)]. (30)

Z
m?, (22+1)3 zmpr

Vim (7, T) is shown in Fig. 13 with legend “1D”; the value
of myp, is that obtained from Eq. (26) in Table II. This form
seems to have a higher slope than our data at small r and a
smaller slope at large r, though at 1.5 7', it is close to our

(29)

As Fig. 13 reveals, none of the simple forms discussed
does a good job of modeling our data for the imaginary
potential over the range of r studied by us. At small r, the
numerically calculated potential has a smaller slope than
either the screened string forms or the forms Eq. (30) and
Eq. (29). At large r, on the other hand, it is steeper. Both of
these latter forms, in turn, show a much larger imaginary
part than the perturbative form at large r, with Eq. (30)
comparable to our data at larger values of r. In the range
rT, < 1 studied here, our data for Vi () grows ~r2. On
physical principles we expect it to saturate at large r.
Motivated by Eq. (30), we tried to model the imaginary part
of the potential by fitting the data to an arbitrary combi-
nation a; Vg (7, T) + a, V™ (7, T). The results of the fit are
shown in Table II, which also shows the results of the fit to
a purely quadratic form b7 (rT)?. We emphasize that our
forms for ViM(¥, T') represent purely phenomenological fits
of the data; one can take them to correspond to two limiting
asymptotic behaviors given the data.

To get an idea of the effect of the imaginary part at
various quark masses, let us calculate the spectral function
of the QyﬂQ current at various values of M, using Egs. (4)
and (6), with

R . = _ yre (7 _ syim(3
data in the range of r studied by us. Voo(F.T) = Vip (A T) — iV (7. T), (31)
0.9 1.2 1.8
D —— 1D —— iD ——
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06 1.2 +
o o
E o5} E 1 %
£ 1.2T, 15T, £ :
E 04 E 08 -
> >
0.3} 0.6
0.2} 0.4
01 o 02
0 = e 0 = ", . . . . . 0 = . . . ...
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Mg Mg e

FIG. 13. The imaginary part of the finite temperature potential, Vi™(7), at temperatures 1.2 T.. (left), 1.5 T, (middle), and 2 T, (right),
shown with various models for the potential: perturbative form [Eq. (9)], Debye-screened string in 1D [Eq. (30)] and in 3D [Eq. (29)].

034507-12



NONPERTURBATIVE POTENTIAL FOR THE STUDY OF ...

PHYS. REV. D 101, 034507 (2020)

60 —
30 ——
05| 15 ——
Mg[GeV
1.5T, olGeV]
o
[e)
S
B 0.3}
=
01} /4
= )

(@-Mp)/Mq

08 12T, ——
n‘ 15T0
‘M 20Te
0.6 1
;
N Mp=9.45 GeV ‘:(
s’ fl
z p
Q
02}
-0.2 -0.1

FIG. 14. (Left) the peak of the spectral function p(w, 7 — 0) for a QyMQ current probe in an equilibriated plasma at a temperature of
1.5 T, for different values of the quark mass. The dashed line corresponds to the quadratic form and the full line to the two-parameter
form of VI™ (7). (Right) The spectral function at different temperatures for a quark mass close to the bottom, M(1S) = 9.45 GeV. In the
x axis, the zero is at @ = Mp, the 1S state mass obtained using the Cornell potential.

where V'S, (7, T) is given in Eq. (26) and for VIM(7, T) we
use the two fit forms with the fit parameters given in
Table II, treating the results obtained with the two forms
of VIm(¥) as a systematic band. As mentioned in the
Introduction, this corresponds to an idealized situation of
an external heavy quark current probe in an equilibriated
plasma [11,22]. A dynamical study of quarkonia in plasma
requires a more elaborate formalism [12,23,24]. However,
the spectral function obtained here can be compared to
lattice studies of quarkonia spectral functions for charm
[15,16] and bottom [17,18]. In the left panel of Fig. 14 we
have shown the spectral function obtained using Eq. (31) at
1.5 T., with the quark mass varying from 1.5 GeV to
6 GeV. At T = 0, using the unscreened Cornell potential
we get a series of sharp peaks. We denote the mass of the 1S
state as M p and normalize the x axis with respect to it in
Fig. 14. At 1.5 T, even for a quark mass of 6 GeV we only
find one peak. Of course, 1.5 T, here corresponds to a
temperature of about 420 MeV. Expectedly, the peak is the
sharpest for the heaviest quark, gradually broadening till,
for quark masses close to the charm, only a very broad peak
structure can be seen. The spectral function for My, =
1.5 GeV is also qualitatively different from the others, and
it is very different from the spectral function obtained
directly from c¢y,c correlators in [15], but in qualitative
agreement with a later study [16]. Similar results have been
seen in [20]. In the right panel of Fig. 14 we have shown the
peak in the spectral function of the i)}/ﬂb current. Quark
mass M, was tuned to get the 1S state mass (in vacuum)
~9.45 GeV. A sharp peak is seen at 1.2 T,., which
gradually broadens as the temperature increases. But a
peak structure survives all the way to 2 T'.. Note that 2 T,
here corresponds to about 560 MeV, setting the scale using
the string tension. Also at low temperatures the peak is
quite narrow, in comparison to what was found from
nonrelativistic bottomonia correlators in [17].

VI. SUMMARY

For the study of quarkonia in quark-gluon plasma, an
effective “in-medium potential” is an important ingredient.
Theoretically, a suitable potential can be defined [8,9] by
examining the time dependence of the Minkowski-time
Wilson loop, Eq. (8). This potential is complex, with the
real part of the potential describing the Debye-screened
binding of the QQ pair in medium and the imaginary part
related to Landau damping. A nonperturbative extraction of
this potential [25] involves extracting the low-frequency
structure of the spectral function from the Euclidean-time
Wilson loop, Eq. (11). This is in general a very difficult
problem. The existing studies in the literature have pro-
gressed through either by using Bayesian analysis, with
their associated, and sometimes hard-to-estimate, system-
atic errors, or by making an ad hoc assumption about the
low-frequency structure.

In this work we have introduced a new method of
nonperturbative evaluation of the potential. We find that
a reorganization of the Euclidean Wilson loop data,
motivated by the underlying structure of the finite temper-
ature correlation function (see Appendix B), leads to an
enormous simplification in the extraction of the peak
structure from the Wilson loop. The main ingredients of
our method are outlined in Sec. II, and the details are given
in Sec. IV. We have calculated the potential in a gluonic
plasma for temperatures <27 . from smeared Wilson loops,
calculated using anisotropic lattice discretization of the
gluonic theory. Our results for the potential are summarized
in Fig. 4 and Fig. 9. The real part of the potential, which
shows the Cornell form below 7. with no noticeable
temperature dependence up to 0.75 T,., shows Debye
screening on crossing 7', with the screening mass increas-
ing with temperature. The form of the potential is different
from the perturbative form at least up to 2 T, as illustrated
in Fig. 12. The imaginary part of the potential is zero below

034507-13



DIBYENDU BALA and SAUMEN DATTA

PHYS. REV. D 101, 034507 (2020)

T.. Above T, it rises rapidly, with a spatial dependence ~r>

till distances r < 1/T.. Its behavior is sharply different
from the perturbative result, as illustrated in Fig. 13.

In the course of our study, we have also investigated
issues such as the dependence of the finite-temperature
potential on the definition of the operator, which, we feel,
have not been properly discussed in the literature. We have
examined how the potential depends on the smearing and
compared the potential obtained from smeared Wilson
loops with those from Coulomb gauge fixed Wilson line
correlators. We have also examined the relation between
the real part of the potential and the free energy of a static
QQ pair in the plasma; see Fig. 6. In Sec. IV D we have
discussed the structure of the low energy peak of the
spectral function. It is quite different from the Lorentzian
structure that has often been assumed in direct extractions
of potential from the Euclidean Wilson loop using Eq. (11).
We have also illustrated, with an example, the difficulty of
extracting the low energy peak from the Euclidean Wilson
loop without putting in additional physics input.

Our data for the extracted potential can be found in
Sec. IV, in particular in Fig. 4 and Fig. 9. Moreover, for
various purposes it is convenient to have a parametrization
of the potential. In Sec. V we have explored various
standard forms of a screened potential. As Fig. 12 shows,
for the real part, the form of 1D screening of the string
potential seems to give a reasonable description of the data,
with parameters given in Table II. For the imaginary part it
is more difficult to find a quantitative agreement with a
standard screened form. The potential rises ~7? till inter-
mediate distances T, ~ 1. While the potential is expected
to saturate as r — oo, it is difficult to make any statement
about that behavior from our data at 7. < 1. A purely
phenomenological generalization of Eq. (30), using an
arbitrary linear combination of V(7). and Vi(7),,
seems to give a good description of the data in the range
of r explored by us, with coefficients given in Table II.
Since we expect the long distance behavior of Vi (7) to be
somewhere between this and the > behavior, for a study of
the spectral peaks of Q}/MQ current in the plasma we use

both of the forms for Vi (7). The difference in the spectral
structure obtained with these two forms is considered as a
qualitative systematic band.

The spectral function peaks for a vector current probe in
the equilibriated plasma are shown in Fig. 14. In the left
panel, the variation of the spectral function with the heavy
quark mass, M, is shown. Below T the spectral function
has a number of narrow peaks corresponding to the nS
states; but above T'. only a single peak near 2M , survived
even for My = 6 GeV. For M, = 1.5 GeV, close to the
mass of charm, there is no significant peak structure at this
temperature. Of course, the nonrelativistic formalism may
not be valid for charmonia at these temperatures. For
My = 3 GeV, a clear peak structure is seen at 1.5 T,

with very little shift in the peak position. In the right panel
of Fig. 14 the spectral function peak for l_)y”b current is
shown. While the peak structure weakens with temperature,
a clear peak survives till 2 T, with very little shift in peak
position, and a reasonably narrow peak, at least till 1.5 T,..

While potential by itself does not provide a complete
description of medium interaction of quarkonia, it is an
important part of a complete description. It provides
essential nonperturbative ingredients of an open quantum
system analysis of in-medium quarkonia [11-13,22-24]. It
can also provide a useful benchmark for direct extraction of
spectral functions from Matsubara correlators calculated on
lattice. Our results are for the quenched theory, and one
needs to be careful when applying them for quarkonia
phenomenology. However, the method we have outlined
for the extraction of the potential, Sec. II, is quite simple
and stable, and we expect one should be able to use it to
extract the reliable potential also from dynamical lattices.

ACKNOWLEDGMENTS

We acknowledge support of the Department of Atomic
Energy, Government of India, under Project No. 12-R&D-
TFR-5.02-0200. This work was carried out under the
umbrella of ILGTIL. The computations reported here were
performed on the clusters of the Department of Theoretical
Physics, TIFR. We thank Ajay Salve and Kapil Ghadiali for
technical support. D. B. thanks Rajiv Gavai, Alexander
Rothkopf, and Peter Petreczky for discussions.

APPENDIX A: LATTICE PARAMETERS

We use the anisotropic Wilson gauge action for our
discretization of the gluonic theory. The discretized
Euclidean action is

Sg = %ZRetr(l — P;j(x)) +%ZRCU(1 = Pyi(x)),
(A1)

where i, j =1, 2, 3 and P,, are the plaquette variables in
the p, v direction. Since we are interested in fine grating in
the time direction, we use 3, > f,.

Klassen has provided a convenient way of nonperturba-
tively finding couplings suitable for an anisotropy,
& = a,/a,, from the comparison of spatial and spacetime

Wilson loops [32]: find &, = \/f./B such that

R(x,y) W j)

— =1 hereR',':%.
Reer=g) " RO =y )

(A2)

An interpolating formula for estimating f, and f, for a
given £ is also given [32]. We use this formula to get the
suitable couplings for our purpose and then checked the
anisotropy by comparing the potentials as mentioned
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above. We use this formula to get a set of prior guesses for
lattices with £ = 3, and then did some simulations to tune
the anisotropy. The final parameter set for our runs is shown
in Table I.

For each of the lattices in Table I we have used about
O(10*) configurations. For each set, the configurations were
generated from 90 independent (different random number
seeds) runs. For the runs below 7T, a multilevel algorithm
was used. About 2000 measurements were collected (90
independent runs with 20-25 measurements each), with
each measurement being a sublattice average of 200-400
updates, and after each measurement 100 decorrelating
sweeps were made. Each sweep consisted of one heat bath
and three overrelaxation steps (this was kept fixed across all
runs). The above T, multilevel was less cost effective and
was used mostly for the runs with large N,. The multilevel
steps were similar to what is described above, but a larger
number of measurements ~4500-9000 were used. In the
runs above 7', where multilevel was not used, 9000-27000
configurations were used, two configurations being sepa-
rated by 100 sweeps.

APPENDIX B: PERTURBATIVE EXPRESSIONS

In Sec. II we have outlined our method to extract the
thermal potential, Eq. (6). At T = 0 the definition of V()
through Eq. (8) is well understood diagrammatically: the
ladder of time-ordered gluon propagators Dy, (including the
crossed diagrams) lead to an exponentiation of the Fourier

transform of D (0, /?) which defines the potential [47].

At finite temperature, the structure of the Wilson loop is
more complicated. It was stressed in [9], however (and
demonstrated for QED), that in order for a potential to exist
via Eq. (8) the ladder of the time-ordered gluon propagators
need to be resummed. Then W (7,7) will have the
structure

WMO» 7, rz) N e—iﬂ)’dq fo’dtzD‘}O(t,—tz.ﬁ—rE)' (Bl)

Here we have only shown the potential part that depends on
7} — r3, omitting self-energy corrections and nonpotential
contributions.

The Euclidean Wilson loop can, similarly, be written

as [9]
Wi(e. ) ~ e~ Jo o [idmatand) gy

where the finite-temperature imaginary-time propagator
has the structure [9]

M) = [ G2 w06 + my(@). (B)

Here we have used a mixed representation in the right-hand
side: pp(w, 7) is the spatial Fourier transform of the usual
spectral function.

Putting Eq. (B3) in Eq. (B2) gives, using ng(w) =
e (1 + np(@)),

- d T
log Wr(e.7) ~ [ S2:22(227)

+ [t () (e + ew0)
(B4)

omitting 7 independent terms. The first and second terms in
the right-hand side of Eq. (B4) correspond to B(z, 7) and
A(z,7) in Sec. IL

For QCD, the expression for the Wilson loop has been
calculated in [8] to leading order in HTL perturbation
theory. For convenience, we reproduce here the results of
[8], written in the notation of Sec. II,

Az, F) =2g%¢; / dqsinzg (14 ng(w))(e= 4 e~ F=)

A (G + (Le- 5 )orto.0)

+ zindep. terms,

- . 2-
B(z,7) :2gch/dqsm2%ﬂ/ !
®

pe(@.q). (BS)

g do . _ 4
ey a>"f T3

pe(w, g) are the spectral functions corresponding to the
transverse and the longitudinal parts of the gluon
propagator.

We are interested in the energy regime |w| < |g|. In this
regime, the spectral functions pg(w, ), pr(w, ¢) become,
to leading order in HTL perturbation theory,

Here dq = is the color factor, and py(w, q),

pe(@.§) = —mmh > ="

E ’ - = A=/ 2 , _9o2\2>°
P 2[g](w? + m})?

, @

@ (B6)
P 4gp

pr(w.q) = am
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