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A thermal potential can be defined to facilitate understanding the behavior of quarkonia in quark-gluon
plasma. A nonperturbative evaluation of this potential from lattice QCD is difficult, as it involves a real-
time correlation function, and has often involved the use of Bayesian analysis, with its associated
systematics. In this work we show that using the properties of the static quarkonia thermal correlation
functions, one can directly extract a thermal potential for quarkonia from Euclidean Wilson loop data. This
leads to a controlled extraction and allows us to judge the suitability of various model potentials.
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I. INTRODUCTION

Quarkonia, mesonic bound states of heavy quark and
antiquark, have played a very important role in our under-
standing of the physics of strong interactions. The exper-
imental signatures of some of these states are distinctive,
the most iconic being the dilepton peak of the vector
quarkonia. In the theoretical side, the heavy quark mass,
MQ ≫ ΛQCD, leads to simplifications. The earliest insights
about properties of quarkonia were obtained by treating
them as nonrelativistic states bound by a color electric
potential. The potential suitable for studies of quarkonia
has been calculated in detail using numerical Monte Carlo
studies on lattice-regularized QCD; see, e.g., Ref. [1] for a
review. The potential remains an important ingredient in a
systematic expansion of quarkonia in 1=MQ [2].
The dilepton peaks of the vector quarkonia, in particular

that of the J=ψ , have been extremely important signatures
of creation of quark-gluon plasma (QGP) in ultrarelativistic
heavy ion collisions (URHIC), following the suggestion
three decades ago [3] that the screening of the color
charge inside QGP will lead to the dissolution of bound
states. This was made more quantitative in follow-up
studies [4]. The early studies used a perturbative Debye-
screened form,

Vre
T ðr⃗Þ ¼ −

αðTÞ
r

e−mDr; ð1Þ

which is the free energy of a static QQ̄ pair in perturbative

QGP. Here mD is the Debye mass, α ¼ 4
3
g2

4π, and g is
evaluated at a scale determined by the temperature T.
Nonperturbatively, the free energy of the Q − Q̄ pair in
plasma was calculated using lattice QCD [5], which was
used as a proxy for an effective finite temperature potential.
However, in the early days a proper formalism for the
potential-based study of quarkonia in QGP was missing. In
particular, other thermodynamic quantities can be derived
from the free energy, e.g., an “internal energy” for the QQ̄
pair [6]; the use of such quantities have also been explored
in the literature [7].
A theoretical formalism for an “effective finite temper-

ature potential,” which is connected to experimentally
observed quantities such as the dilepton rate, was first
provided in Ref. [8]. The starting point is a point-split
version of the dilepton current,

Jμr⃗ðt; x⃗Þ ¼ Q̄

�
t; x⃗þ r⃗

2

�
γμU

�
t; x⃗þ r⃗

2
; x⃗−

r⃗
2

�
Q

�
t; x⃗−

r⃗
2

�
;

ð2Þ

where U is a suitable gauge connection such that Vμ is
gauge invariant and the angular brackets denote a thermal
average. Defining the correlation function

C>ðt; r⃗Þ ¼
Z

d3xhJμr⃗ðt; x⃗ÞJμ;r⃗ð0; x⃗Þi; ð3Þ

the spectral function ρJðω; r⃗;TÞ is defined from its Fourier
transform,

ρJðω; r⃗;TÞ ¼ ð1 − e−ω=TÞ
Z

dteiωtC>ðt; r⃗Þ: ð4Þ
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The dilepton rate is proportional to the spectral function of
the point current, ρðω;TÞ ¼ limr⃗→0 ρJðω; r⃗;TÞ.
Since we are interested in heavy quarks with MQ ≫ T,

ΛQCD, Eq. (3) simplifies. Going to the nonrelativistic
notation Q ¼ ðψχÞ where ψ , χ are nonrelativistic fields that
annihilate a quark and create an antiquark, respectively, and
remembering that since MQ ≫ T, the thermal states do not
include Q fields, the leading (M0

Q) term in an 1=MQ

expansion gives

C>ðt; r⃗Þ≡
Z

d3x

�
χ†
�
t; x⃗ −

r⃗
2

�
σkU†ψ

�
t; x⃗þ r⃗

2

�

× ψ†
�
0; x⃗þ r⃗

2

�
σkUχ

�
0; x⃗ −

r⃗
2

��
: ð5Þ

If one has a system where the sole interaction term is a
potential Vðr⃗Þ between the quark and the antiquark, then it
is easy to show that, to leading order in 1=MQ, C>ðt; r⃗Þ
satisfies [9]

�
i∂t −

∇2
r⃗

MQ

�
C>ðt; r⃗Þ ¼ Vðr⃗ÞC>ðt; r⃗Þ: ð6Þ

In our theory where theQQ̄ are interacting with the thermal
medium, we can then define a potential by equating the
left-hand side of Eq. (6) to Vðt; r⃗ÞC>ðt; r⃗Þ (staying within
leading order of 1=MQ), where the interaction effects are
summarized in a time-dependent Vðt; r⃗Þ. An effective
thermal potential, VTðr⃗Þ, can then be defined in the large
t limit, if the limit exists: VTðr⃗Þ ¼ limt→∞ Vðt; r⃗Þ.
The potential VTðr⃗Þ can be obtained by going to the

static limit, where modulo renormalization factor, C>ðt; r⃗Þ,
reduces to a Minkowski-time Wilson loop,

WMðt; r⃗Þ ¼
1

3
TrPei

R
t

0
dt1A0ðt1;r⃗=2ÞUðt; r⃗=2;−r⃗=2Þ

× Pei
R

0

t
dt2A0ðt2;−r⃗=2ÞUð0;−r⃗=2; r⃗=2Þ; ð7Þ

and Eq. (6) reduces to

i∂t logWMðt; r⃗Þ⟶
t→∞

VTðr⃗Þ; ð8Þ

which defines our thermal potential [8,9]. Using VTðr⃗Þ to
calculateC>ðt; r⃗Þ from Eq. (6) will give the resummation of
the leading ladder diagrams.
A calculation of VTðr⃗Þ in leading order hard thermal loop

(HTL) perturbation theory gives [8]

VTðr⃗Þ ¼ Vre
T ðr⃗Þ − iV im

T ðr⃗Þ; where

V im
T ðr⃗Þ ¼ αT ×

Z
∞

0

dz
2z

ðz2 þ 1Þ2
�
1 −

sinðzmDrÞ
zmDr

�
ð9Þ

and Vre
T ðr⃗Þ is given in Eq. (1). In Eq. (9) we have absorbed a

negative sign in the definition ofV im
T ðr⃗Þ, so thatV im

T ðr⃗Þ takes
positive values. Vre

T ðr⃗Þ corresponds to the usual physics of
Debye screening in medium, such that for sufficiently large
screening, the bound states will not form. On the other hand,
V im
T ðr⃗Þ clearly leads to a broadening of the spectral function

peak [10]. It captures the physics of collision with the
thermal particles leading to a decoherence of the QQ̄ wave
function [11–13]. For the quark and antiquark far apart,
r ≫ T, V im

T ðr⃗Þ reaches a finite limit αT giving the damping
rate of the individual quarks [9].
It is well-known that the perturbative calculation, Eq. (9),

is not suitable at temperatures ≲ a few times Tc, the
deconfinement temperature. The aim of this paper is to
make a nonperturbative calculation of an effective thermal
potential, using numerical lattice gauge theory techniques.
Following the insight of Ref. [8], various authors have tried
calculating the thermal potential nonperturbatively. In the
next section we will outline our strategy. More details, and
some discussion on difference from earlier studies, can be
found in Sec. IV.
The potential description, Eq. (6), provides only the

leading order approximation to Eq. (3) in an expansion in
1=MQ and (in the perturbative language) accounts for a
subclass of diagrams. At zero temperature, the justification
for this is well understood. At finite temperature, extra
scales come into play, making the picture more compli-
cated. A systematic, effective field theory based study of
the interplay of these scales has been made in Ref. [14] in
perturbation theory. In the hierarchy of scales

M ≫ πT ≫ 1=rB ≳mD ∼ gT ≫ EB

one gets the potential Eq. (9), where rB is the radius of the
bound state and EB the binding energy. For the temper-
atures of interest in heavy ion collision experiments, this
hierarchy of scales is hardly satisfied. The effective field
theory version, however, is perturbative and therefore
cannot be directly used for phenomenology.
Instead of going through such an approximation, one

could instead try to directly calculate the spectral function
from the Euclidean hJμJμi correlation function. This has
been attempted for charmonia [15,16] and, using non-
relativistic QCD (NRQCD), for bottomonia [17,18].
Unfortunately, the extraction of a spectral function from
the Euclidean correlator is a notoriously difficult problem,
and the systematics are large (see [19] for a discussion, and
[20] for early comparison of potential model results with
results of [15]). A nonperturbatively determined potential
allows one to study the in-medium modification of the
spectral function for sufficiently heavy quarks and has been
used for quarkonia phenomenology; see, e.g., [21].
Note that the spectral function obtained through Eqs. (4)

and (6) treats the QQ̄ pair as an external probe in an
equilibrium plasma. A proper dynamical treatment should
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take into account the simultaneous evolution of the system
and the Q̄Q pair. This can be formulated in the language of
an open quantum system [11,13,22–24]. The potential
remains an important structure in such frameworks
[22,24]. In particular, a microscopic understanding of
Eq. (6) can be obtained in such a framework by introducing
the collision of the plasma constituents with theQQ̄ through
a statistical noise term [11,12]. V im

T ðr⃗Þ then controls the
correlation of the noise term, and Eq. (4) is understood to be
the noise-averaged version of the QQ̄-plasma interaction.
The plan of the rest of the paper is as follows. After

explaining the calculational methodology in the next
section, in Sec. III we will give the calculational details.
Section IV will give our results for the potential. Some
phenomenological discussions and implications of the
potential obtained will be discussed in Sec. V, and the last
section will have a summary and discussion.

II. NONPERTURBATIVE STUDY OF FINITE
TEMPERATURE POTENTIAL

The potential VTðr⃗Þ is directly related to the Minkowski
space Wilson loop, Eq. (8). But in numerical Monte Carlo
studies we work in Euclidean space. At zero temperature, it
is straightforward to calculate the QQ̄ potential from the
Euclidean Wilson loop:

Wðτ; r⃗Þ⟶
τ→∞

Cðr⃗Þe−τVðr⃗Þ: ð10Þ

At finite temperature, the simple spectral decomposition
outlined in Eq. (10) does not work. The first attempt to
extract the QQ̄ potential from WTðτ; r⃗Þ was carried out in
Ref. [25]. The spectral decomposition of the Minkowski-
time loop leads to [25]

WTðτ; r⃗Þ ¼
Z

∞

−∞
dωe−ωτρðω; r⃗;TÞ

⇛VTðr⃗Þ ¼ −∂τ logWTðτ; r⃗Þ

¼
R∞
−∞ dωωe−ωτρðω; r⃗;TÞR∞
−∞ dωe−ωτρðω; r⃗;TÞ : ð11Þ

Bayesian techniques were used to extract ρðω; r⃗;TÞ from
WTðτ; r⃗Þ, and then calculate the potential using Eq. (11).
The reconstruction of ρðω; r⃗;TÞ from WTðτ; r⃗Þ is a

notoriously unstable problem. To make matters worse,
the quality of the Wilson loop data deteriorates quickly
at large τ (this problem can be somewhat alleviated with
recent numerical techniques [26]). While very impressive
technological improvements have occurred in the Bayesian
analysis techniques, the results obtained for potential still
have stability issues or have large error bars, especially for
V im
T ðr⃗Þ. The first calculations [25] employed a Bayesian

analysis method similar to maximum entropy and fitted the
spectral function peak with a Lorentzian form. The results

obtained, however, are substantially different from a later
analysis [27] that is of similar philosophy but employs a
slightly different Bayesian analysis and fits to a skew-
Lorentzian form [28]. The state-of-the-art for calculations
in the gluonic plasma follows a similar methodology and
can be seen in Ref. [29]. Studies have also been carried out
for full QGP (i.e., with thermal quarks), both with a
Lorentzian form of the spectral function [30] and using
Bayesian reconstruction methods [31]. While the improve-
ment in the analysis method has been impressive, the
results still suffer from stability issues; in particular, it is
not easy to disentangle the effects of V im

T ðr⃗Þ and Vre
T ðr⃗Þ

in WTðτ; r⃗Þ.
In this paper we take a different approach. Let us

motivate it by writing

WTðτ; r⃗Þ ¼ ewðτ;r⃗ÞWTðβ=2Þ: ð12Þ

The physics of Vre
T ðr⃗Þ is very similar to that of the

zero temperature potential, Eq. (10). We therefore expect
the real part of the potential to come from the part of
wðτ; r⃗Þ which has a linear behavior around β=2: w̃ðτ; r⃗Þ∼
−ðτ − β=2ÞVre

T ðr⃗Þ þ � � �. We isolate the w̃ part by splitting
WTðτ; r⃗Þ as follows:

WTðτ; r⃗Þ ¼ Wa
Tðτ; r⃗Þ ×Wp

Tðτ; r⃗Þ;

Wa
Tðτ; r⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WTðτ; r⃗Þ

WTðβ − τ; r⃗Þ

s
;

Wp
Tðτ; r⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WTðτ; r⃗Þ ×WTðβ − τ; r⃗Þ

p
: ð13Þ

We find that Bðτ; r⃗Þ ¼ logWa
Tðτ; r⃗Þ has exactly the behav-

ior we were expecting: Bðτ; r⃗Þ ∼ ðβ
2
− τÞVre

T ðr⃗Þ over a large
range of τ around β=2. We illustrate this in Fig. 1, where
Bðτ; r⃗Þ=ðβ=2 − τÞ is plotted. We also checked that for
configurations below Tc, where we can extract the potential
from the full Wilson loop, Wa

Tðτ; r⃗Þ gives the same result
but reaches the plateau sooner.
To understand the behavior of Wp

Tðτ; r⃗Þ, we write a
decomposition for Aðτ; r⃗Þ ¼ logWp

Tðτ; r⃗Þ:

Aðτ; r⃗Þ ¼
Z

∞

−∞
dωσðω;TÞ 1

2
ðe−ωτ þ e−ωðβ−τÞÞ

þ τ-independent terms: ð14Þ

To go to the potential, we follow the usual route of going to
real time τ → it:

i∂tAðitÞ ¼
Z

∞

−∞
dωσðω;TÞω

2
ðe−iωt − e−ωβeiωtÞ: ð15Þ

The potential is obtained in the large time limit of Eq. (15),
when the oscillating factors expð�iωtÞ ensure that only the
ω → 0 contribution to the integral survives. In this limit
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expðβωÞ → 1, and it is obvious from Eq. (15) that AðitÞ
leads to an imaginary potential. One can then extract the
real and imaginary parts of the potential fromWa

Tðτ; r⃗Þ and
Wp

Tðτ; r⃗Þ, respectively [8],

Vre
T ðr⃗Þ ¼ lim

t→∞
i∂t logWa

Tðτ; r⃗Þjτ→it;

−iV im
T ðr⃗Þ ¼ lim

t→∞
i∂t logW

p
Tðτ; r⃗Þjτ→it: ð16Þ

The argument above is motivated by perturbative studies
of the potential, where the split Eq. (16) has been noted [8].
Evenwith Eq. (16), it is not obvious that the extraction of the
potential from the Euclidean correlation function is simple;
Eq. (16) involves large Minkowski time, while the non-
perturbative data that can be obtained from the lattice are in
Euclidean time τ ∈ ½0; βÞ. Successful extraction of the
potential from Eq. (16) is contingent upon the contribution
from the “potential modes” dominating the behavior of the
correlation functions Aðτ; r⃗Þ; Bðτ; r⃗Þ. Fortunately, this is
what was found in the behavior of the nonperturbative data.
As we already discussed above and showed in Fig. 1, over a
large range of τ,Wa

Tðτ; r⃗Þ ∼ expð−cτÞ, leading to a straight-
forward extraction of Vre

T ðr⃗Þ from the slope of the exponent.
We actually obtained a very similar plateau in all our lattices.
See Sec. IVA for more discussion.
One, of course, does not expect such a simple behavior

from Aðτ; r⃗Þ: Eq. (14) rules out a simple linear behavior
near β=2. This is expected: if Wp

Tðτ; r⃗Þ had a linear
exponential falloff, it would have contributed to a real
potential. The large time behavior of Wp

Tðτ → it; r⃗Þ can be
inferred from a closer examination of Eq. (15), using the
fact that in the limit of large t, expð−iωtÞ − expðiωt−
ωβÞ → −2πiωδðωÞ. Then in order to get a potential
−iV im

T ðr⃗Þ ¼ limt→∞ i∂tAðitÞ we need

σðω;TÞ∼
ω→0

1

ω2
ð1þOðωÞÞ: ð17Þ

Interestingly, this leading singularity structure gives a very
good qualitative description of the τ dependence of
∂τAðτ; r⃗Þ. This is illustrated in the right panel of Fig. 1.
The argument in this section is based on the assumption

that a thermal potential can be defined using Eq. (8). We
then make plausibility arguments on the structure of
WTðτ; r⃗Þ, and we show that the nonperturbative lattice
data support this structure. The arguments leading to
Eq. (16) can be made more concrete using Feynman
diagrammatic language [9]: in Appendix B we outline this
argument. There we also show the results of the leading
order HTL perturbation calculation of WTðτ; r⃗Þ [8], which
fully supports the structures of Aðτ; r⃗Þ and Bðτ; r⃗Þ discussed
above, and which motivated this nonperturbative study. The

1=ω2 behavior in Eq. (17) comes from the term ρðωÞ
ω2 and a

distribution function, ð1þ nBðωÞÞ⟶ω→0 T
ω, which follows

from the structure of the time-ordered propagator [see
Appendix B and Eq. (B4)]. It is connected to the scattering
origin of the imaginary part of the potential, discussed
below Eq. (9).
Our strategy for extraction of the potential is therefore

straightforward: we extractVre
T ðr⃗Þ from a linear fit toBðτ; r⃗Þ,

and to getV im
T ðr⃗Þ, we expand σðω;TÞ in Eq. (14) in the basis

ð1þ nBðωÞÞf1=ω;ω;…g, and extract Vim
T ðr⃗Þ from the

coefficient of the most singular term. As Fig. 1 suggests,
the leading terms dominate the data around β=2, allowing us
to extract the potential relatively simply. We discuss further
details in Sec. IV.

III. TECHNICAL DETAILS OF OUR STUDY

In this work, we have calculated the QQ̄ potential in a
gluonic plasma, for moderately high temperatures ≤2Tc.
We have generated lattices with a spacetime anisotropic
discretization with ξ ¼ as=aτ ≈ 3. A convenient algorithm
for doing this is given in [32]. We follow this reference to
estimate the lattice parameters we require. The anisotropy
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FIG. 1. (Left) “Local mass” plot from WTðτ; r⃗Þ and Wa
Tðτ; r⃗Þ for Set 3, 1.5 Tc, at three different values of R ¼ r=as. The results are

from smeared Wilson loops. The dashed lines show the fitted mass. (Right) ∂τW
p
Tðτ; r⃗Þ for the same set; the lines show the singular

structure contribution [Eq. (17); see text].
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is estimated nonperturbatively from the comparison of
spatial and temporal Wilson loops [32], while aτ is
estimated from the string tension calculated from temporal
Wilson loops. We use three sets of lattices, with aτ ranging
between 1=19Tc and 1=45Tc. For each set, we change the
temperature by changing Nτ, while keeping the spatial
volume fixed.
For each set, we first make short Monte Carlo runs at

closely spaced Nτ to find the Nτ for deconfinement
transition. The final lattice sets used for the studies above
Tc are shown in Table I. For much of this paper, we will
measure all scales in units of Tc. However, for Sec. V we
will need to quote physical units. We will do so by taking
the string tension σ ¼ ð0.44 GeVÞ2. This translates to a
transition temperature ∼280 MeV. The spatial extent of the
lattices are 1.44 fm or above. Some more details regarding
the runs are given in Appendix A.
To determine the potential, we calculate thermal expect-

ation values of timelike Wilson loops, i.e., the Euclidean
time version of WM in Eq. (8). It is well known that for the
spatial connections U straight thin-link gauge connections
are not suitable: they lead to very noisy signals in numerical
Monte Carlo studies. To alleviate the problem due to
extended spatial connections, we do APE smearing [33].
This constitutes a replacement of the elementary gauge
links Ui,

Uiðx⃗;τÞ→ProjSUð3Þ

	
αUiðx⃗;τÞ

þ
X
1≤j≤3
j≠i

ðUjðx⃗;τÞUiðx⃗þasĵ;τÞU†
jðx⃗þasî;τÞ

þU†
jðx⃗−asĵ;τÞUiðx⃗−asĵ;τÞUjðx⃗−asĵþasî;τÞÞ



ð18Þ

iteratively. The spatial connections U are then constructed
from these smeared links. For this work, we have taken
α ¼ 2.5.

Note that Eq. ([18]) does not involve the time direction,
and the time direction links are not smeared. So time slices
and the definition of transfer matrix is not affected by the
smearing. We use the multilevel algorithm [26] in the
temporal direction: this allows us to get a good signal even
for Wilson loops with a large time extent. For calculation of
the potential at T ¼ 0, smearing is routinely used, and the
potential should be independent of the smearing. In the
finite temperature case, the physical quantity one is
interested in, the quarkonia peak in the dilepton channel,
is independent of the details of the connection U, as it is
connected to the point current. We however, do a detailed
study of the dependence of the potential on the smearing
level in the next section.
In the literature, the correlator of Coulomb gauge fixed

Wilson lines have often been used to extract the potential.
The Coulomb gauge fixing can be formally understood as a
dressing of the quark fields [34]:

ψ̄ðxÞψðyÞjcoul: ≡ ψ̄ΩðxÞψΩðyÞ; ð19Þ

where ψΩðxÞ ¼ ΩðxÞψðxÞ and ΩðxÞ is a dressing function
such that ψΩðxÞ is gauge invariant [34].
The Coulomb gauge potential has obvious advantages

in that the extended spatial links are not there. At T ¼ 0,
it is also easy to argue (and has been well tested) that
the Coulomb gauge potential agrees with the potential
extracted from the Wilson loop. For T > Tc such detailed
comparison does not exist in the literature. Here we have
made such a comparative study. The Coulomb gauge is
fixed to an accuracy of 10−7. We have also checked that the
results do not change if the accuracy is made 10−6 or 10−9

instead. The potential from this Wilson line correlator has
also been presented in Sec. IV. In particular, for the
imaginary part of the potential, we observe differences
between this potential and that obtained from the smeared
Wilson loop. Since the Wilson loop operator does not
involve dressing of the quark field, the connection to the
point-point correlator at r⃗ → 0 is transparent. We use
the potential obtained from the Wilson loop for further
studies in Sec. V.

IV. POTENTIAL CALCULATED
FROM WILSON LOOPS

In this section we present the details of our extraction of
the potential, using Eq. (16). In Sec. IVA we discuss the
real part of the potential. The results for the free energy of a
QQ̄ pair is given in Sec. IV B, and the extraction of V im

T ðr⃗Þ
is discussed in Sec. IV C. Besides quoting the results for the
potential, we also compare the potential at different levels
of smearing, and the results for Coulomb gauge. Finally, in
Sec. IV D we will discuss the spectral representation
Eq. (11) and touch on issues of direct extraction of spectral
function from Euclidean data.

TABLE I. Parameter sets for the finite temperature runs.

Set βs, βt Ns Nt T=Tc L [fm] at [fm]

I 2.469, 14.8 16 48 0.4 1.82 0.038
24 0.8
16 1.2

II 2.53, 15.95 24 48 0.6 1.73 0.024
24 1.2
20 1.5

III 2.6, 16.98 30 72 0.63 1.44 0.016
60 0.75
38 1.2
30 1.5
23 2
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A. Real part of the potential

As outlined in Sec. II and Fig. 1, for smeared Wilson
loops the extraction of the real part of the potential from
Wa

Tðτ; r⃗Þ is straightforward. In the left panel of Fig. 2 we
show the “local measurements” of Vre

T ðr⃗Þ from Wilson
loops at different levels of smearing. The error bars shown
are from a jackknife analysis, after blocking the data to
reduce autocorrelation. As the figure shows, while for a
small number of APE smearing steps, the local mass takes
time to reach a plateau, on increasing the number of steps a
plateau is reached quickly, and we can easily extract the
potential using a single exponent fit. While we have shown
the local mass for one particular case, the effects are very
similar for all our sets. For each smearing level the value
obtained from the fit is shown by the horizontal band of the
same color. The goodness of the fit, as demonstrated by χ2,
is very good. The figure also shows that varying the number
of smearing steps over a large range does not seem to have
any statistically significant effect on the value reached at the
plateau.
We also show in the figure the local values of the

potential obtained from the Coulomb gauge fixed Wilson
lines. As the figure shows, the Coulomb gauge data seem to
be noisier than the data fromWilson loops. We checked that
this is not an artifact of the accuracy at which the Coulomb
gauge is fixed. Also the Coulomb gauge results are found to
be close to the results from the smeared Wilson loops, but
the difference between them is statistically significant.
In the right panel of Fig. 2 we summarize the fitted value

of Vre
T ðr⃗Þ for this set. At this scale, the dependence of the

potential on the smearing level is hardly visible. Similarly,
the potential from smeared Wilson loops and that from
Coulomb gauge fixed Wilson lines are very close, though
they differ at the 1σ level.
As we have discussed in Sec. III, we believe that for the

study of quarkonia property in medium, the potential from

the smeared Wilson loop is appropriate. It is satisfactory
that Vre

T ðr⃗Þ becomes practically independent of the level of
smearing very soon. Anyway, when quoting a result for
Vre
T ðr⃗Þ, we include, as a systematic error, some variation

with the level of smearing: for example, for the set shown in
Fig. 2 we include the spread in results between smearing
levels of 100 and 250 as a systematic error. In what follows,
our error bars for Vre

T ðr⃗Þ include this variation for all sets.
Results from lattices at a finite lattice spacing have

discretization errors. We can have an idea of the size of the
discretization error by comparing the results at different
lattice spacings. As Table I shows, we have lattices with
three different lattice spacings at 1.2 Tc, and at 1.5 Tc we
have results with two different lattice spacings. In Fig. 3 we
show the potentials calculated from lattices at different
lattice spacings. Within our error bars the results agree very
well, indicating that the cutoff effects are very small at these
lattice spacings. We will, therefore, take the results on our
finest lattice spacings as a valid estimator of the continuum
results.
Figure 4 summarizes our results for Vre

T ðr⃗Þ at different
temperatures. We see that the potentials at the two temper-
atures below Tc agree completely, indicating that the
temperature effect is small even at 0.75 Tc. The potentials
have the familiar Cornell form, with a dip at small r and a
linearly rising part for r≳ 0.5 fm. This behavior changes
abruptly on crossing Tc: while the short distance part,
≲0.2 fm, remains similar to the form below Tc, beyond
rTc ∼ 0.5 ∼ 0.35 fm the effect of string breaking clearly
shows up, and the potential becomes flatter with increasing
temperature.

B. Free energy

The study of the free energy cost of introducing a QQ̄
pair in the plasma is almost as old as the study of
deconfinement transition in QCD. The free energy of a
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QQ̄ pair was calculated from the correlator of Polyakov
loops, hLðr⃗ÞL†ð0⃗Þi [35]. Later, the free energy cost of a
singlet QQ̄ pair was connected to the cyclic Wilson loop
(for sufficiently smeared loops) [36],

Fðr⃗;TÞ ¼ −T logWTðβ; r⃗Þ; ð20Þ

or from Coulomb gauge fixed circular Wilson lines [37]
(see also [38]). In leading order perturbation theory, the
singlet free energy agrees with Vre

T ðr⃗Þ.
The singlet free energy has been studied in great detail,

for both gluonic plasma and the theory with quarks [5], and
we do not intend to add to the existing results. Here we will,
however, examine the issue of whether the perturbative
agreement between the free energy and Vre

T ðr⃗Þ is also valid
nonperturbatively.
In Fig. 5 we show the singlet free energy calculated

from the smeared circular Wilson loop at different levels of

smearing, and that from the Coulomb gauge fixed operator.
The smearing dependence is similar to what was seen for
Vre
T ðr⃗Þ: the results are quite insensitive to the smearing level

used. The Coulomb gauge operator is close to the Wilson
loop results, but not exactly identical.
In Fig. 6 we compare the free energy and Vre

T ðr⃗Þ,
extracted from the smeared Wilson loops, at three different
temperatures. As discussed before in Sec. IVA, the results
are expected to be valid continuum results. At all temper-
atures, we find that Fðr⃗;TÞ and Vre

T ðr⃗Þ are very close to
each other. However, at long distances Vre

T ðr⃗Þ shows
slightly less screened behavior than Fðr⃗;TÞ.

C. Imaginary part of the potential

As we have discussed in Sec. II, the behavior of the
symmetrized correlation functionWp

Tðτ; r⃗Þ is dominated by
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the most singular behavior in Eq. (17), which is the term
that corresponds to V im

T ðr⃗Þ. Encouraged by this, we expand
σðω;TÞ in Eq. (14) in a series

σðω;TÞ ¼ ð1þ nBðωÞÞ
�
c0
ω

þ c1ωþ c2ω3 þ � � �
�
; ð21Þ

where the form of Eq. (21) is motivated by the structure of
Aðτ; r⃗Þ [see Eq. (B4) and the discussion at the end of Sec. II].
σðω;TÞ in Eq. (21) has the property that σð−ω;TÞ ¼
e−βωσðω;TÞ and so the integrand in Eq. (14) is an even
function of ω; the even powers of ω are absent in Eq. (21) as
they will not contribute to the integral. The imaginary
potential V im

T ðr⃗Þ is obtained from the coefficient of the
1=ω term: V im

T ðr⃗Þ ¼ π
β c0. Putting Eq. (21) in Eq. (15), we

get the linear series for the “local mass”:

∂τAðτ; r⃗Þ ¼ c0G̃0ðτÞ þ
X

l¼1;2;…

clG̃lðτÞ;

G̃0 ¼ −
π

β
cot

πτ

β
;

G̃l ¼
ð2lÞ!
β2lþ1

�
ζ

�
2lþ 1; 1 −

τ

β

�
− ζ

�
2lþ 1;

τ

β

��
;

ð22Þ

where the generalized ζ functions ζðs; xÞ ¼ P∞
n¼1

1
ðxþnÞs.

Note that this form Eq. (22) is similar to, and could also be
motivated by, perturbation theory [8].
The data near β=2 give a very good fit to just two terms in

Eq. (22), and with three terms, almost the entire range of τ
could be fit in all our datasets. In Fig. 7 we show the results
for V im

T ðr⃗Þ obtained with different levels of smearing. The
error bar here includes the variation due to the change in
number of terms of Eq. (22) in the fit. The dependence on
the level of smearing is stronger here, but a plateau can be
reached after some levels of smearing. When quoting a
result for the imaginary part of the potential in what
follows, our error bar encompasses the spread among the
different smearing levels in this plateau.
In Fig. 8 we show the imaginary potential at two different

temperatures, obtained on lattices with different cutoffs.
While our coarsest lattice, Set I, seems to show some lattice
spacing dependence, the results from the two finer sets
agree very well. We therefore take V im

T ðr⃗Þ obtained from
our finest lattice as a good approximation to the continuum
result.
In Fig. 9 we show our final results for the imaginary

potential at three different temperatures. In Sec. V we will
use this data as the nonperturbatively evaluated V im

T ðr⃗Þ and
explore its physics. We have shown here the results above
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Tc only; we have, however, run the same analysis strategy
on the configurations below Tc, and checked that the results
are consistent with zero, as expected.

D. Low-ω structure of the spectral function

Combining the results of Sec. IVA and Sec. IV C, we
can write the correlation function near the center of the
lattice as

WTðτ; r⃗Þ ¼ e−V
re
T ðr⃗Þðτ−β

2
Þ−β

πV
im
T ðr⃗Þ log sinðπτβ Þ−���WTðβ=2; r⃗Þ; ð23Þ

where the higher order terms,

� � � ¼
X
l

cl

Z
τ

β
2

G̃lðτÞ;

do not contribute to the potential. For explaining theWilson
loop data over a substantial range near the center, just c1 is

enough, while adding c2 allows us to explainWTðτ; r⃗Þ over
the entire range except a couple of points at the edge.
Further insight into the potential can be obtained if we

investigate the structure of the low ω part of ρðω; r⃗;TÞ in
Eq. (11). In order to do this, we take the Fourier transform
of the structure of WTðτ; r⃗Þ, Eq. (23), continued to real
time:WTðt ¼ −iτ; r⃗Þ. This shows a peak structure at low ω,
as has been anticipated in various lattice extractions of the
potential, e.g., [25,27–29,31]. Interestingly, however, the
peak structure is very different from what has often been
anticipated. In the literature a Lorentzian or a Gaussian
structure has often been assumed for the peak. Instead, we
find a structure that is exponentially falling in the low ω
side of the peak, ∼ expðω=TÞ, while in the high ω side it
falls only as a power law. The illustration of the peak
structure is shown for a few representative values of r in
Fig. 10. Given this peak structure, we could rephrase our
discussion of the potential extraction by simply starting
from a structure such as those shown in Fig. 10, and
extracting the potential from them. We checked numeri-
cally that the Laplace transform of the peak gives a
statistically satisfactory description of WTðτ; r⃗Þ near β=2.
While the direct Bayesian inversions have to grapple with
the issue of convergence of the integral in the negative ω
side, here we could easily do the integral by putting a lower
cutoff: because of the sharp fall, the effect of the cutoff on
the value of the integral is negligible. The addition of the
correction terms does not have any significant effect on
the position or the half-width of the peak, but modifies the
falloff with ω away from the position of the peak.
Bayesian statistics based studies of the potential proceed

without making strong assumptions about the structure of
the peak. In fact, some of the Baysian analyses use only
very mild information about the peak. We would like to add
a note of caution here. If we do not make the assumption
Eq. (22), which is well-motivated by the physics involved
in the imaginary potential and also by perturbation theory,
it is possible to describe the Wilson loop data by other
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structures, leading to different V im
T ðr⃗Þ. In particular, a very

good description of the data is provided by the form

WTðτ; r⃗Þ ¼ e
−Vre

T ðr⃗Þðτ−β
2
Þ−Vim

T
ðr⃗Þ

π

R
τ

β=2
logβ−ττ −���

WTðβ=2; r⃗Þ: ð24Þ

The spectral peak obtained from this form is considerably
different from that shown above; see Fig. 11. A Bayesian
analysis, in our opinion, ought to include the broad features
of the low ω peak discussed in the previous paragraph.

V. DISCUSSION OF POTENTIALS
AND QUARKONIA

Let us try to analyze in some detail the potentials
obtained in Sec. IV. We start with Vre

T ðr⃗Þ. Figure 4 shows
our estimation of Vre

T ðr⃗Þ at different temperatures. As is
expected for a gluonic plasma, the thermal effects are
negligible at temperatures of 0.75 Tc: the potential agrees
completely between 0.75 Tc and 0.63 Tc. So the potential at
our lowest temperature measured for each set can safely be

taken to approximate the zero-temperature potential. The
potential shows the familiar features of the 1=r singularity
at short distances and the linear rise at large distances, and
gives a good fit to the Cornell form.
As we cross Tc, the finite temperature potential is close

to that at T ¼ 0 at short distances. But clear temperature
effects are seen as r increases: in particular, the linear
behavior of the T ¼ 0 potential gets screened. In perturba-
tion theory one expects, in leading order, a Debye-screened
form of Vre

T ðr⃗Þ which is the same as the free energy [8],

Vre
pertðr⃗; TÞ ¼ −

αðTÞ
r

e−mDr −mDαðTÞ þ C; ð25Þ

where mD ¼ gT in leading order and αðTÞ is the running
coupling at the appropriate temperature scale. In Fig. 12
this form, Eq. (25), is shown at different temperatures,
along with the nonperturbatively obtained potential.
For drawing the perturbative curve, following [8], we have
used a one-loop formula for the coupling [39], α−1ðTÞ ¼
33
8π logð6.742T=ΛMSÞ, and Tc=ΛMS ¼ 1.10–1.20 [40]. The
band in the perturbative form in Fig. 12 corresponds to
this range in Tc=ΛMS. Since we are interested in the r
dependence of Vre

T ðr⃗Þ, the additive renormalization constant
C is fixed by matching to the lattice potential at rTc ¼ 0.5
at T ¼ 2Tc.
As Fig. 12 shows, the perturbative form does not explain

the potential obtained in Sec. IVA. In particular, the long
distance part of the potential is not as flat as the screened
Debye form predicts: as if a shadow of the string tension
rise survives.
Since the long distance part of the QQ̄ potential in the

QCD vacuum has a linear string tension term, a natural next
step would be to try a screened form of the string tension
term. The string tension term being entirely nonperturba-
tive, there is, however, no single unique/preferred possibil-
ity for the screened form of this term. We will consider here
two models for screening that have been discussed in the
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literature. A linear string tension is obtained in the (1þ 1)-
dimensional Schwinger model. Since string is essentially a
one-dimensional (1D) object, one can assume that the
physics of screening of the string term will also be similar
to that in the Schwinger model. Such a consideration leads
to the potential [41]

Vre
1Dðr⃗; TÞ ¼ −

α

r
e−mDr þ σ

mD
ð1 − e−mDrÞ þ C0: ð26Þ

This form of the screened potential can also be obtained by
generalizing the timelike gluon propagator to [42]

Dðp0 ¼ 0; p⃗Þ≡ 1

p2 þm2
D
þ 2σ=α
ðp2 þm2

DÞ2
: ð27Þ

The second term gives a linear string term in the limit
mD → 0. We treat Eq. ([27]) here as a purely phenomeno-
logical construct to model the screening in a string tension
term. In perturbation theory, one expects α to be a function
of r and T. In the Cornell potential, however, one usually
treats α as a constant. We follow [41] and keep α, σ fixed to
their T ¼ 0 value, the temperature dependence entering in
Eq. (26) only through mD. The long distance part of the
potential Vre

T ðr⃗Þ, Fig. 4, is fitted to Eq. (26) to obtain
mD;C0. Vre

1Dðr⃗; TÞ does a good job of explaining the
measured potential as shown in Fig. 12. We have tried a
few fit ranges covering the large distance side of our
measured potential. The band in Fig. 12 shows the variation
of the fit parameters on shifting the fit range. The narrow-
ness of the band is evidence for the stability of the fit to the
form of Eq. (26). The fitted value of mD obtained from the
fits is shown in Table II; the range corresponds to this
change in the fit range.
A different line of argument to a screened potential is to

start with a generalized Gauss’ law which gives a linear
potential [43]. The medium effect then can be incorporated
by introducing a medium permittivity [44]. Using an
isotropic permittivity motivated by HTL perturbation
theory leads to the potential [45]

Vre
3Dðr⃗;TÞ¼−

α

r
e−mDr−

Γð1=4Þ
2π

σ

μ

ffiffiffi
x

p
K1

4

�
x2

2

�
þC00; ð28Þ

where μ2 ¼ mD
ffiffi
σ
α

p
, x ¼ μr, and K1=4 is the modified

Bessel function of the second kind [46]. At large r, the

second term behaves as expð−x2=2Þffiffi
x

p . The results of the fit to

this form are also shown in Fig. 12 and the value of mD
shown in Table II. The fit to Eq. (26) is found to be slightly
more stable than that to Eq. (28), and so we use it for
analysis of quarkonia behavior. However, Eq. (28) also
approximately captures the r dependence of Vre

T ðr⃗Þ; with
our data we cannot statistically rule out either of the one-
dimensional and three-dimensional (3D) screening forms.
The imaginary part, V im

T ðr⃗Þ, turns out to be more difficult
to model using the conventional screening forms available
in the literature. The perturbative form of the imaginary
part, Eq. (9), is shown in Fig. 13 together with our data, for
three different temperatures. The parameters used are
identical to that for the real part, as detailed below
Eq. (25). The data show very different behavior from that
of Eq. (9): at short distance, the perturbative result over-
shoots the data, but it soon saturates, while our non-
perturbative data do not show a sign of saturation in the
distance scale studied by us. The perturbative result
V im
T ðr⃗Þpert behaves ∼r2 log r at small r, and saturates to
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TABLE II. Various parameter sets related to the potential models
discussed in Sec. V. The 1D refers to Eq. (26), the 3D to Eq. (28).
Also shown are fits to V im

T ðr⃗Þ with a quadratic form V im
fit ðr⃗; TÞ ¼

bTðrTÞ2 and a form V im
fit ðr⃗; TÞ ¼ a1V im

pertðr⃗; TÞ þ a2V im
σ ðr⃗; TÞ,

where V im
pertðr⃗; TÞ and V im

σ ðr⃗; TÞ are given in Eq. (9) and
Eq. (30), respectively. The errors shown include the variation
with a fit range and should be treated as a systematic band rather
than a statistical 1 − σ band.

mD=T

T=Tc 1D 3D b a1 a2

1.2 1.18(6) 1.37(6) 0.34(1) −1.23ð7Þ 1.22(4)
1.5 1.34(8) 1.49(6) 0.35(3) −0.87ð2Þ 1.85(2)
2.0 1.46(8) 1.60(9) 0.29(2) −0.8ð2Þ 2.85(38)
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∼αT as r → ∞. The nonperturbative data show a r2

behavior to a much larger distance: in particular, almost
the whole range of r explored by us, rTc ≲ 1, can be fitted
to a quadratic behavior at 1.5 Tc and 2 Tc.

The HTL permittivity that leads to Eq. (9), is complex, so
as to produce a complex potential. Use of this permittivity
in the generalized Gauss’ law leads to [45] Eq. (28) and an
imaginary part

V im
3Dðr⃗; TÞ ¼ V im

T ðr⃗Þpert þ αT

	
D−1=2ð

ffiffiffi
2

p
xÞ

Z
x

0

dyReD−1=2ði
ffiffiffi
2

p
yÞy2g

�
mD

μ
y

�

þ ReD−1=2ði
ffiffiffi
2

p
xÞ

Z
∞

x
dyD−1=2ð

ffiffiffi
2

p
yÞy2g

�
mD

μ
y

�
−D−1=2ð0Þ

Z
∞

0

dyD−1=2ð
ffiffiffi
2

p
yÞy2g

�
mD

μ
y

�

;

where gðxÞ ¼
Z

∞

0

dz
2z

z2 þ 1

sin zx
zx

; ð29Þ

and

D−1=2ðzÞ ¼
ffiffiffiffiffiffi
z
2π

r
K1=4

�
z2

4

�

is the parabolic cylinder function. V im
3Dðr⃗; TÞ is also shown

in Fig. 13, with the legend “3D.” Here the value of mD
obtained from Eq. (28) is used, and the band corresponds to
the range inmD (Table II). This form has a similar behavior
∼r2 at small r to the data. While it is steeper at large r than
the perturbative form, it is less steep than our data.
If one uses a complex permittivity analogous to the

HTL term in conjunction with the modified propagator
of Eq. ([42]), one can get the “complex potential” for
1D screening, i.e., the imaginary part of Eq. (26). The
imaginary part reads [42]

V im
1Dðr⃗;TÞ¼V im

pertðr⃗;TÞþV im
σ ðr⃗;TÞ;

V im
σ ðr⃗;TÞ¼ 4σT

m2
D

Z
∞

0

dz
2z

ðz2þ1Þ3
�
1−

sinðzmDrÞ
zmDr

�
: ð30Þ

V im
1Dðr⃗; TÞ is shown in Fig. 13 with legend “1D”; the value

of mD is that obtained from Eq. (26) in Table II. This form
seems to have a higher slope than our data at small r and a
smaller slope at large r, though at 1.5 Tc it is close to our
data in the range of r studied by us.

As Fig. 13 reveals, none of the simple forms discussed
does a good job of modeling our data for the imaginary
potential over the range of r studied by us. At small r, the
numerically calculated potential has a smaller slope than
either the screened string forms or the forms Eq. (30) and
Eq. (29). At large r, on the other hand, it is steeper. Both of
these latter forms, in turn, show a much larger imaginary
part than the perturbative form at large r, with Eq. (30)
comparable to our data at larger values of r. In the range
rTc ≲ 1 studied here, our data for V im

T ðr⃗Þ grows ∼r2. On
physical principles we expect it to saturate at large r.
Motivated by Eq. (30), we tried to model the imaginary part
of the potential by fitting the data to an arbitrary combi-
nation a1V im

pertðr⃗; TÞ þ a2V im
σ ðr⃗; TÞ. The results of the fit are

shown in Table II, which also shows the results of the fit to
a purely quadratic form bTðrTÞ2. We emphasize that our
forms for V im

fit ðr⃗; TÞ represent purely phenomenological fits
of the data; one can take them to correspond to two limiting
asymptotic behaviors given the data.
To get an idea of the effect of the imaginary part at

various quark masses, let us calculate the spectral function
of the Q̄γμQ current at various values ofMQ using Eqs. (4)
and (6), with

VQQ̄ðr⃗; TÞ ¼ Vre
1Dðr⃗; TÞ − iV im

fit ðr⃗; TÞ; ð31Þ
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FIG. 13. The imaginary part of the finite temperature potential, V im
T ðr⃗Þ, at temperatures 1.2 Tc (left), 1.5 Tc (middle), and 2 Tc (right),

shown with various models for the potential: perturbative form [Eq. (9)], Debye-screened string in 1D [Eq. (30)] and in 3D [Eq. (29)].
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where Vre
1Dðr⃗; TÞ is given in Eq. (26) and for V im

fit ðr⃗; TÞ we
use the two fit forms with the fit parameters given in
Table II, treating the results obtained with the two forms
of V im

T ðr⃗Þ as a systematic band. As mentioned in the
Introduction, this corresponds to an idealized situation of
an external heavy quark current probe in an equilibriated
plasma [11,22]. A dynamical study of quarkonia in plasma
requires a more elaborate formalism [12,23,24]. However,
the spectral function obtained here can be compared to
lattice studies of quarkonia spectral functions for charm
[15,16] and bottom [17,18]. In the left panel of Fig. 14 we
have shown the spectral function obtained using Eq. (31) at
1.5 Tc, with the quark mass varying from 1.5 GeV to
6 GeV. At T ¼ 0, using the unscreened Cornell potential
we get a series of sharp peaks. We denote the mass of the 1S
state as MP and normalize the x axis with respect to it in
Fig. 14. At 1.5 Tc, even for a quark mass of 6 GeV we only
find one peak. Of course, 1.5 Tc here corresponds to a
temperature of about 420 MeV. Expectedly, the peak is the
sharpest for the heaviest quark, gradually broadening till,
for quark masses close to the charm, only a very broad peak
structure can be seen. The spectral function for MQ ¼
1.5 GeV is also qualitatively different from the others, and
it is very different from the spectral function obtained
directly from c̄γμc correlators in [15], but in qualitative
agreement with a later study [16]. Similar results have been
seen in [20]. In the right panel of Fig. 14 we have shown the
peak in the spectral function of the b̄γμb current. Quark
mass MQ was tuned to get the 1S state mass (in vacuum)
∼9.45 GeV. A sharp peak is seen at 1.2 Tc, which
gradually broadens as the temperature increases. But a
peak structure survives all the way to 2 Tc. Note that 2 Tc
here corresponds to about 560 MeV, setting the scale using
the string tension. Also at low temperatures the peak is
quite narrow, in comparison to what was found from
nonrelativistic bottomonia correlators in [17].

VI. SUMMARY

For the study of quarkonia in quark-gluon plasma, an
effective “in-medium potential” is an important ingredient.
Theoretically, a suitable potential can be defined [8,9] by
examining the time dependence of the Minkowski-time
Wilson loop, Eq. (8). This potential is complex, with the
real part of the potential describing the Debye-screened
binding of the QQ̄ pair in medium and the imaginary part
related to Landau damping. A nonperturbative extraction of
this potential [25] involves extracting the low-frequency
structure of the spectral function from the Euclidean-time
Wilson loop, Eq. (11). This is in general a very difficult
problem. The existing studies in the literature have pro-
gressed through either by using Bayesian analysis, with
their associated, and sometimes hard-to-estimate, system-
atic errors, or by making an ad hoc assumption about the
low-frequency structure.
In this work we have introduced a new method of

nonperturbative evaluation of the potential. We find that
a reorganization of the Euclidean Wilson loop data,
motivated by the underlying structure of the finite temper-
ature correlation function (see Appendix B), leads to an
enormous simplification in the extraction of the peak
structure from the Wilson loop. The main ingredients of
our method are outlined in Sec. II, and the details are given
in Sec. IV. We have calculated the potential in a gluonic
plasma for temperatures ≤2Tc from smeared Wilson loops,
calculated using anisotropic lattice discretization of the
gluonic theory. Our results for the potential are summarized
in Fig. 4 and Fig. 9. The real part of the potential, which
shows the Cornell form below Tc with no noticeable
temperature dependence up to 0.75 Tc, shows Debye
screening on crossing Tc, with the screening mass increas-
ing with temperature. The form of the potential is different
from the perturbative form at least up to 2 Tc, as illustrated
in Fig. 12. The imaginary part of the potential is zero below
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FIG. 14. (Left) the peak of the spectral function ρðω; r⃗ → 0Þ for a Q̄γμQ current probe in an equilibriated plasma at a temperature of
1.5 Tc, for different values of the quark mass. The dashed line corresponds to the quadratic form and the full line to the two-parameter
form of V im

T ðr⃗Þ. (Right) The spectral function at different temperatures for a quark mass close to the bottom,Mð1SÞ ¼ 9.45 GeV. In the
x axis, the zero is at ω ¼ MP, the 1S state mass obtained using the Cornell potential.
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Tc. Above Tc it rises rapidly, with a spatial dependence ∼r2
till distances r≲ 1=Tc. Its behavior is sharply different
from the perturbative result, as illustrated in Fig. 13.
In the course of our study, we have also investigated

issues such as the dependence of the finite-temperature
potential on the definition of the operator, which, we feel,
have not been properly discussed in the literature. We have
examined how the potential depends on the smearing and
compared the potential obtained from smeared Wilson
loops with those from Coulomb gauge fixed Wilson line
correlators. We have also examined the relation between
the real part of the potential and the free energy of a static
QQ̄ pair in the plasma; see Fig. 6. In Sec. IV D we have
discussed the structure of the low energy peak of the
spectral function. It is quite different from the Lorentzian
structure that has often been assumed in direct extractions
of potential from the Euclidean Wilson loop using Eq. (11).
We have also illustrated, with an example, the difficulty of
extracting the low energy peak from the Euclidean Wilson
loop without putting in additional physics input.
Our data for the extracted potential can be found in

Sec. IV, in particular in Fig. 4 and Fig. 9. Moreover, for
various purposes it is convenient to have a parametrization
of the potential. In Sec. V we have explored various
standard forms of a screened potential. As Fig. 12 shows,
for the real part, the form of 1D screening of the string
potential seems to give a reasonable description of the data,
with parameters given in Table II. For the imaginary part it
is more difficult to find a quantitative agreement with a
standard screened form. The potential rises ∼r2 till inter-
mediate distances rTc ∼ 1. While the potential is expected
to saturate as r → ∞, it is difficult to make any statement
about that behavior from our data at rTc ≲ 1. A purely
phenomenological generalization of Eq. (30), using an
arbitrary linear combination of V im

T ðr⃗Þpert and V im
T ðr⃗Þσ ,

seems to give a good description of the data in the range
of r explored by us, with coefficients given in Table II.
Since we expect the long distance behavior of V im

T ðr⃗Þ to be
somewhere between this and the r2 behavior, for a study of
the spectral peaks of Q̄γμQ current in the plasma we use
both of the forms for V im

T ðr⃗Þ. The difference in the spectral
structure obtained with these two forms is considered as a
qualitative systematic band.
The spectral function peaks for a vector current probe in

the equilibriated plasma are shown in Fig. 14. In the left
panel, the variation of the spectral function with the heavy
quark mass, MQ, is shown. Below Tc the spectral function
has a number of narrow peaks corresponding to the nS
states; but above Tc only a single peak near 2MQ survived
even for MQ ¼ 6 GeV. For MQ ¼ 1.5 GeV, close to the
mass of charm, there is no significant peak structure at this
temperature. Of course, the nonrelativistic formalism may
not be valid for charmonia at these temperatures. For
MQ ¼ 3 GeV, a clear peak structure is seen at 1.5 Tc,

with very little shift in the peak position. In the right panel
of Fig. 14 the spectral function peak for b̄γμb current is
shown. While the peak structure weakens with temperature,
a clear peak survives till 2 Tc, with very little shift in peak
position, and a reasonably narrow peak, at least till 1.5 Tc.
While potential by itself does not provide a complete

description of medium interaction of quarkonia, it is an
important part of a complete description. It provides
essential nonperturbative ingredients of an open quantum
system analysis of in-medium quarkonia [11–13,22–24]. It
can also provide a useful benchmark for direct extraction of
spectral functions fromMatsubara correlators calculated on
lattice. Our results are for the quenched theory, and one
needs to be careful when applying them for quarkonia
phenomenology. However, the method we have outlined
for the extraction of the potential, Sec. II, is quite simple
and stable, and we expect one should be able to use it to
extract the reliable potential also from dynamical lattices.
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APPENDIX A: LATTICE PARAMETERS

We use the anisotropic Wilson gauge action for our
discretization of the gluonic theory. The discretized
Euclidean action is

SG ¼ βs
N

X
ij

Re trð1 − PijðxÞÞ þ
βτ
N

X
i

Re trð1 − P4iðxÞÞ;

ðA1Þ

where i, j ¼ 1, 2, 3 and Pμν are the plaquette variables in
the μ, ν direction. Since we are interested in fine grating in
the time direction, we use βτ ≫ βs.
Klassen has provided a convenient way of nonperturba-

tively finding couplings suitable for an anisotropy,
ξ ¼ as=aτ, from the comparison of spatial and spacetime
Wilson loops [32]: find ξ0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
βτ=βs

p
such that

Rðx; yÞ
Rðx; t ¼ ξyÞ ¼ 1 where Rði; jÞ ¼ Wði; jÞ

Wðiþ 1; jÞ : ðA2Þ

An interpolating formula for estimating βs and βτ for a
given ξ is also given [32]. We use this formula to get the
suitable couplings for our purpose and then checked the
anisotropy by comparing the potentials as mentioned
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above. We use this formula to get a set of prior guesses for
lattices with ξ ¼ 3, and then did some simulations to tune
the anisotropy. The final parameter set for our runs is shown
in Table I.
For each of the lattices in Table I we have used about

Oð104Þ configurations. For each set, the configurationswere
generated from 90 independent (different random number
seeds) runs. For the runs below Tc, a multilevel algorithm
was used. About 2000 measurements were collected (90
independent runs with 20–25 measurements each), with
each measurement being a sublattice average of 200–400
updates, and after each measurement 100 decorrelating
sweeps were made. Each sweep consisted of one heat bath
and three overrelaxation steps (this was kept fixed across all
runs). The above Tc multilevel was less cost effective and
was used mostly for the runs with large Nτ. The multilevel
steps were similar to what is described above, but a larger
number of measurements ∼4500–9000 were used. In the
runs above Tc where multilevel was not used, 9000–27000
configurations were used, two configurations being sepa-
rated by 100 sweeps.

APPENDIX B: PERTURBATIVE EXPRESSIONS

In Sec. II we have outlined our method to extract the
thermal potential, Eq. (6). At T ¼ 0 the definition of Vðr⃗Þ
through Eq. (8) is well understood diagrammatically: the
ladder of time-ordered gluon propagators D00 (including the
crossed diagrams) lead to an exponentiation of the Fourier
transform of D00ð0; k⃗Þ, which defines the potential [47].
At finite temperature, the structure of the Wilson loop is

more complicated. It was stressed in [9], however (and
demonstrated for QED), that in order for a potential to exist
via Eq. (8) the ladder of the time-ordered gluon propagators
need to be resummed. Then WMðt; r⃗Þ will have the
structure

WMðt; r⃗1; r⃗2Þ ∼ e−i
R

t

0
dt1

R
t

0
dt2D00

T ðt1−t2;r⃗1−r⃗2Þ: ðB1Þ

Here we have only shown the potential part that depends on
r⃗1 − r⃗2, omitting self-energy corrections and nonpotential
contributions.
The Euclidean Wilson loop can, similarly, be written

as [9]

WTðτ; r⃗Þ ∼ e−
R

τ

0
dτ1

R
τ

0
dτ2Δðτ1−τ2;r⃗Þ; ðB2Þ

where the finite-temperature imaginary-time propagator
has the structure [9]

Δðτ; r⃗Þ ¼
Z

dω
2π

e−ωτρDðω; r⃗Þ½θðτÞ þ nBðωÞ�: ðB3Þ

Here we have used a mixed representation in the right-hand
side: ρDðω; r⃗Þ is the spatial Fourier transform of the usual
spectral function.
Putting Eq. (B3) in Eq. (B2) gives, using nBðωÞ ¼

e−βωð1þ nBðωÞÞ,

logWTðτ; r⃗ Þ ∼
Z

dω
2π

τ
ρDðω; r⃗ Þ

ω

þ
Z

dω
2π

ð1þ nBðωÞÞðe−ωτ þ e−ωðβ−τÞÞ

×
ρDðω; r⃗ Þ

ω2
; ðB4Þ

omitting τ independent terms. The first and second terms in
the right-hand side of Eq. (B4) correspond to Bðτ; r⃗Þ and
Aðτ; r⃗Þ in Sec. II.
For QCD, the expression for the Wilson loop has been

calculated in [8] to leading order in HTL perturbation
theory. For convenience, we reproduce here the results of
[8], written in the notation of Sec. II,

Aðτ; r⃗ Þ ¼ 2g2cf

Z
dqsin2

q3r
2

ð1þ nBðωÞÞðe−ωτ þ e−ðβ−τÞωÞ

×

	�
1

q⃗2
−

1

ω2

�
ρEðω; q⃗Þþ

�
1

q⃗32
−

1

q⃗2

�
ρTðω; q⃗Þ



þ τ indep: terms;

Bðτ; r⃗ Þ ¼ 2g2cf

Z
dqsin2

q3r
2

β=2− τ

ω
ρEðω; q⃗Þ: ðB5Þ

Here dq ¼ d3q
ð2πÞ3

dω
π , cf ¼ 4

3
is the color factor, and ρTðω; q⃗Þ,

ρEðω; q⃗Þ are the spectral functions corresponding to the
transverse and the longitudinal parts of the gluon
propagator.
We are interested in the energy regime jωj ≪ jq⃗j. In this

regime, the spectral functions ρEðω; q⃗Þ; ρTðω; q⃗Þ become,
to leading order in HTL perturbation theory,

ρEðω; q⃗Þ ¼ −πm2
D

ω

2jq⃗jðω2 þm2
DÞ2

;

ρTðω; q⃗Þ ¼ πm2
D

ω

4jq⃗j5 : ðB6Þ
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